JP4727051B2 - Intercooler and CO2 refrigerant vehicle air conditioner - Google Patents

Intercooler and CO2 refrigerant vehicle air conditioner Download PDF

Info

Publication number
JP4727051B2
JP4727051B2 JP2001037184A JP2001037184A JP4727051B2 JP 4727051 B2 JP4727051 B2 JP 4727051B2 JP 2001037184 A JP2001037184 A JP 2001037184A JP 2001037184 A JP2001037184 A JP 2001037184A JP 4727051 B2 JP4727051 B2 JP 4727051B2
Authority
JP
Japan
Prior art keywords
temperature
low
pressure refrigerant
heat transfer
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001037184A
Other languages
Japanese (ja)
Other versions
JP2002243374A (en
Inventor
吉典 渡辺
泰高 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001037184A priority Critical patent/JP4727051B2/en
Publication of JP2002243374A publication Critical patent/JP2002243374A/en
Application granted granted Critical
Publication of JP4727051B2 publication Critical patent/JP4727051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インタークーラ及びCO冷媒車両用空調装置に係り、特に、車両への搭載性を向上させたインタークーラ及びCO冷媒車両用空調装置に関するものである。
【0002】
【従来の技術】
図9は従来の車両用空調装置の一例を示す構成図である。空調装置本体としてのケーシング50は、その内空間が車室内へ導入される空気の流路となるもので、後述するように種々の構成機器を収容している。
送風ブロワ51は、内気口52あるいは外気口53を通じてケーシング50内に空気を導入するものであり、この導入された空気はエバポレータ(冷却器)54を通過する。なお、符号の55は内気口52と外気口53との切り換えを行う内外気切換ダンパである。
エバポレータ54の導入空気の下流側には、エアミックスダンパ56及びヒータコア(加熱器)57が設けられている。また、図中の符号58,59,60はそれぞれフェイス吹出口、フット吹出口、デフロスト吹出口を示しており、各吹出口58,59,60は、それぞれがフェイスダンパ61,フットダンパ62、デフロストダンパ63によって開閉される。なお、各吹出口58,59,60は図示しないダクトを介して車室内に通じている。
制御装置64は、送風ブロワ51の制御、各ダンパ55,56,61,62,63を駆動するためのモータ(不図示)の制御、さらには後述する圧縮機66のオン・オフ等の制御を行うものである。
【0003】
このように構成された車両用空調装置では、内気口52あるいは外気口53より導入した空気は、その全量がエバポレータ54を通り、後述する冷凍サイクル65の冷媒と熱交換して冷却される。この後、ヒータコア57を通過して加熱される空気量はエアミックスダンパ56の開度に応じて分配されるので、所定の温度に調整されて吹出口58,59,60の少なくとも1つから車室内に導入される。なお、ヒータコア57には、一般的には図示しない内燃機関の駆動源を冷却して高温となった冷却水が供給されるようになっている。
【0004】
次に、冷凍サイクル65について説明すると、圧縮機66は図示しない駆動源(例えば車両走行用のエンジン等)から駆動力を得て駆動し、気相状態の冷媒を圧縮する。ガスクーラ(放熱器)67は、圧縮機66で圧縮された冷媒を外気等との間で熱交換して冷却する。符号の68は、ガスクーラ67の出口側で冷媒を減圧して低温低圧の気液2相状態とする絞り装置である。
エバポレータ54は、車室内の空気冷却手段をなす蒸発器(吸熱器)で、気液2相状態の冷媒は蒸発器内で気化(蒸発)する際に、車室内空気あるいは車室外空気から蒸発潜熱を奪って冷却する。そして、圧縮機66,ガスクーラ67、絞り装置68及びエバポレータ54は冷媒配管69により直列に接続され、冷媒が状態変化を繰り返して循環する冷凍サイクルとしての閉回路を構成する。
ここで用いられる冷媒には、例えばR134aといった代替フロン冷媒などがある。このR134aが冷却器54の内部で蒸発することにより、送風ブロワ51より送られる空気から吸熱し、冷却を行う。なお、圧縮機66、ガスクーラ67、及び絞り装置68はエンジンルーム内などに設置されている。
【0005】
ところで、近年、地球環境の保全に対する関心が高まっているが、車両用空調装置の冷媒として従来用いられているR134aといった代替フロンは、地球温暖化に対して影響を与えることが懸念されている。このため、このような代替フロン冷媒に代わる物質として、元来自然界に存在する物質、いわゆる自然冷媒を用いた車両用空調装置の研究が行われている。
このような自然冷媒の候補として、二酸化炭素(CO)が注目されている。このCOは、地球温暖化に対する寄与が代替フロンよりもはるかに小さいだけでなく、可燃性がないうえ、基本的には人体に無害である。
【0006】
このような背景から、二酸化炭素を使用した蒸気圧縮式冷凍サイクル(以下、CO冷凍サイクルと略す)が提案されている。このCO冷凍サイクルの作動は、フロンを使用した従来の蒸気圧縮式冷凍サイクルと同様である。すなわち、図10(COモリエル線図)のA−B−C−D−Aで示されるように、圧縮機で気相状態のCOを圧縮し(A−B)、この高温圧縮の気相状態のCOを放熱器(ガスクーラ)にて冷却する(B−C)。そして、減圧器(絞り装置)により減圧して(C−D)、気液相状態となったCOを冷却器(エバポレータ)で蒸発させて(D−A)、蒸発潜熱を空気等の外部流体から奪って外部流体を冷却する。
【0007】
しかしながら、COの臨界温度は約31℃と従来の冷媒であるフロンの臨界温度と比べて低いので、夏場等外気温の高いときには、放熱器側でのCOの温度がCOの臨界点温度よりも高くなってしまう。つまり、放熱器出口側においてCOは凝縮しない(線分BCが飽和液線SLと交差しない)。
また、放熱器出口側(C点)の状態は、圧縮機の吐出圧力と放熱器出口側でのCO温度によって決定され、放熱器出口側でのCO温度は放熱器の放熱能力と外気温度(制御不可)とによって決定するので、放熱器出口での温度は、実質的には制御することができない。従って、放熱器出口側(C点)の状態は、圧縮機の吐出圧力(放熱器出口側圧力)を制御することによって制御可能となる。つまり、夏場等外気温の高いときには、十分な冷却能力(エンタルピ差)を確保するためには、モリエル線図にE−FG−H−Eで示されるように、放熱器出口側圧力を高くする必要がある。そのために、圧縮機の運転圧力は、従来のフロンを用いた冷凍サイクルに比べて高くする必要がある。
【0008】
車両用空調装置を例にすると、前記圧縮機の運転圧力は、従来のR134(フロン)では3kg/cm程度であるのに対して、COでは40kg/cm程度と高くなり、また、運転停止圧力は、R134(フロン)では15kg/cm程度であるのに対して、COでは100kg/cm程度と高くなる。
【0009】
【発明が解決しようとする課題】
さて、上述したCO冷凍サイクルにおいて、その能力増大要件に対する応答速度を改善するためには、インタークーラと呼ばれる熱交換器の設置が有効であることが知られている。このインタークーラは、ガスクーラ(放熱器)を通過した液冷媒とエバポレータ(冷却器)を通過した気体冷媒との間で熱交換を行うように構成された熱交換器(いわゆる向流型熱交換器)であり、例えば図11に示すように、高温高圧冷媒流路71と低温低圧冷媒流路72とを2重管構造にして、多重のトラック(長円)巻きや円形巻きの立体構造としたインタークーラ70が従来より採用されている。
【0010】
しかしながら、上述したインタークーラ70をCO冷媒車両用空調装置に採用する場合、その設置位置は、圧縮機66やガスクーラ67などと同様にエンジンルーム内とするのが一般的である。このため、上述した従来構造(立体構造)のインタークーラ70では、駆動源のエンジンやトランスミッションなど各種の機器類がぎっしりと配置されたエンジンルーム内に適当な設置スペースを確保するのが困難な状況にある。換言すれば、従来のフロン冷媒を使用した車両用空調装置では不要のインタークーラ70を設置するためには、立体的に大きなスペースを新たに確保する必要が生じるため、車両側においてエンジンルーム内のレイアウトを大幅に変更するなどの対応が必要となる。
また、上記のような2重管構造にあっては、熱交換効率に限度があり、さらに良好に熱交換を行うことが可能なインタークーラが要求されている。
【0011】
本発明は、上記の事情に鑑みてなされたもので、エンジンルーム内に容易に設置することができる極めて効率の高いインタークーラ及びこのインタークーラを備えたCO冷媒車両用空調装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載のインタークーラは、高温高圧状態の冷媒と、低温低圧状態の冷媒とを熱交換させるインタークーラであって、前記冷媒同士の熱交換が行われる熱交換部と、該熱交換部の両端が連結されたヘッダとを有し、該ヘッダは、前記高温高圧冷媒伝熱管の端部が連結された高温高圧冷媒ヘッダ部と、前記低温低圧冷媒伝熱管の端部が連結された低温低圧冷媒ヘッダ部とを有し、前記熱交換部は、前記高温高圧状態の冷媒が流される複数の高温高圧冷媒伝熱管と、前記低温低圧状態の冷媒が流される複数の低温低圧冷媒伝熱管とが交互に積層されて構成され、これら高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管は、冷媒が通される複数の冷媒流路が幅方向へ配列された断面偏平形状に形成され、積層された前記高温高圧冷媒伝熱管および前記低温低圧冷媒伝熱管の各両端は、前記ヘッダに連結される手前位置で、互いに離反し、隣り合う前記伝熱管の間に所定間隔を有した状態で、前記高温高圧冷媒伝熱管の前記冷媒流路の両端は、前記高温高圧冷媒ヘッダ部に連結されており、前記低温低圧冷媒伝熱管の前記冷媒流路の両端は、前記低温低圧冷媒ヘッダ部に連結されており、前記高温高圧冷媒伝熱管が、前記低温低圧冷媒ヘッダ部を貫通して前記高温高圧冷媒ヘッダ部に連結されることを特徴としている。
【0013】
このように、冷媒同士の熱交換が行われる熱交換部を構成する高温高圧状態の冷媒が流される高温高圧冷媒伝熱管及び低温低圧状態の冷媒が流される低温低圧冷媒伝熱管が、それぞれ冷媒が通される複数の冷媒流路を幅方向へ配列させた断面偏平形状に形成され、さらに、これらが交互に積層されているので、高温高圧状態の冷媒と低温低圧状態の冷媒とを極めて効率的に熱交換させることができるとともに、小型化を図ることができ、狭隘なエンジンルーム内に配置する際にも有利である。
【0014】
請求項2記載のインタークーラは、高温高圧状態の冷媒と、低温低圧状態の冷媒とを熱交換させるインタークーラであって、前記冷媒同士の熱交換が行われる熱交換部と、該熱交換部の両端が連結されたヘッダとを有し、該ヘッダは、前記高温高圧冷媒伝熱管の端部が連結された高温高圧冷媒ヘッダ部と、前記低温低圧冷媒伝熱管の端部が連結された低温低圧冷媒ヘッダ部とを有し、前記熱交換部は、前記高温高圧状態の冷媒が流される複数の高温高圧冷媒伝熱管と、前記低温低圧状態の冷媒が流される複数の低温低圧冷媒伝熱管とが交互に積層されて構成され、これら高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管は、冷媒が通される複数の冷媒流路が幅方向へ配列された断面偏平形状に形成され、積層された前記高温高圧冷媒伝熱管および前記低温高圧冷媒伝熱管の各両端は、前記ヘッダに連結される手前位置で、互いに離反し、隣り合う前記伝熱管の間に所定間隔を有した状態で、前記高温高圧冷媒伝熱管の前記冷媒流路の両端は、前記高温高圧冷媒ヘッダ部に連結されており、前記低温低圧冷媒伝熱管の前記冷媒流路の両端は、前記低温低圧冷媒ヘッダ部に連結されており、前記低温低圧冷媒伝熱管が、前記高温高圧冷媒ヘッダ部を貫通して前記低温低圧冷媒ヘッダ部に連結されることを特徴としている。
【0015】
つまり、ヘッダを構成する高温高圧冷媒ヘッダ部及び低温低圧冷媒ヘッダ部の連通路と、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管の冷媒流路とが連通されているので、高温高圧冷媒ヘッダ部及び低温低圧冷媒ヘッダ部のそれぞれの連通路を介して、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管の冷媒流路への冷媒の送り込み、送り出しを一括して行うことができる。したがって、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管の冷媒流路への冷媒の送り込み、送り出しを個別に行う構造と比較して、その構造の簡略化を図ることができ、これにより、さらなる小型化が可能である。
【0016】
本発明の参考例のインタークーラは、前記低温低圧冷媒ヘッダ部及び前記高温高圧冷媒ヘッダ部が、前記熱交換部側から順に設けられ、前記高温高圧冷媒伝熱管が、前記低温低圧冷媒ヘッダ部に貫通していることを特徴としている。
【0017】
すなわち、高温高圧冷媒伝熱管を低温低圧冷媒ヘッダ部に貫通させることにより、低温低圧冷媒ヘッダ部及び高温高圧冷媒ヘッダ部を熱交換部側から順に配設させたので、ヘッダにおける幅寸法を最小限に抑えることができ、これにより、小型化とともに薄型化が可能となり、狭隘なスペースへの設置にさらに有利である。
【0018】
本発明の参考例のインタークーラは、前前記高温高圧冷媒ヘッダ部及び前記低温低圧冷媒ヘッダ部が、前記熱交換部側から順に設けられ、前記低温低圧冷媒伝熱管が、前記高温高圧冷媒ヘッダ部に貫通していることを特徴としている。
【0019】
つまり、低温低圧冷媒伝熱管を高温高圧冷媒ヘッダ部に貫通させることにより、高温高圧冷媒ヘッダ部及び低温低圧冷媒ヘッダ部を熱交換部側から順に配設させたので、ヘッダにおける幅寸法を最小限に抑えることができ、これにより、小型化とともに薄型化が可能となり、狭隘なスペースへの設置にさらに有利である。
【0020】
請求項記載のインタークーラは、請求項1または2項記載のインタークーラにおいて、前記高温高圧冷媒ヘッダ部及び前記低温低圧冷媒ヘッダ部が一体化されていることを特徴としている。
【0021】
このように、高温高圧冷媒ヘッダ部と低温低圧ヘッダ部とを一体構造としたので、構造の簡略化、部品点数の削減を図ることができ、コスト低減及びさらなるコンパクト化を図ることができる。
【0022】
請求項記載のインタークーラは、請求項1〜のいずれか1項記載のインタークーラにおいて、前記低温低圧冷媒伝熱管の冷媒流路が、前記高温高圧冷媒伝熱管の前記冷媒流路よりも大径に形成されていることを特徴としている。
【0023】
すなわち、低温低圧冷媒伝熱管に形成された冷媒流路の径が、高温高圧冷媒伝熱管に形成された冷媒流路よりも大きく形成されているので、圧力の異なる冷媒同士の熱交換のバランスが改善され、良好な熱交換を行うことが可能となる。
【0024】
請求項記載のインタークーラは、請求項1〜のいずれか1項記載のインタークーラにおいて、前記低温低圧冷媒伝熱管の冷媒流路が、前記高温高圧冷媒伝熱管の前記冷媒流路よりも多く形成されていることを特徴としている。
つまり、低温低圧冷媒伝熱管の冷媒流路が、高温高圧冷媒伝熱管の冷媒流路よりも多く形成されているので、圧力の異なる冷媒同士の熱交換のバランスが改善され、良好な熱交換を行うことが可能となる。
【0025】
請求項記載のインタークーラは、請求項1〜のいずれか1項記載のインタークーラにおいて、前記高温高圧冷媒伝熱管及び前記低温低圧冷媒伝熱管に、前記冷媒がそれぞれ逆方向へ流されることを特徴としている。
【0026】
このように、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管に、それぞれ逆方向へ冷媒を流す向流型であるので、冷媒同士の熱交換性を大幅に向上させることができる。
【0027】
請求項記載のCO冷媒車両用空調装置は、ケーシング内に導入した空気を冷却する冷却器がCOを冷媒とする冷凍サイクルの一部を構成するCO冷媒車両用空調装置において、前記冷凍サイクルに、請求項1〜のいずれか1項記載のインタークーラが設けられていることを特徴としている。
【0028】
すなわち、小型化、構造の簡略化が図られ、しかも冷媒同士の熱交換性に優れたインタークーラを用いているので、例えば、自動車等の車両のエンジンルームなどの狭隘な設置場所への組み込み作業性を大幅に向上させることができるとともに、冷凍サイクルの能力増大要件に対する応答速度を効率良く改善することができ、冷凍サイクルの能力を向上させることができる。
【0029】
【発明の実施の形態】
以下、本発明および本発明の参考例に係るインタークーラ及びCO冷媒車両用空調装置の実施形態例を、図面に基づいて説明する。
図1に示すものは、CO冷凍サイクルを適用した車両用空調装置であり、図中の符号1は気相状態のCOを圧縮する圧縮機である。圧縮機1は、図示しない駆動源(例えば内燃機関エンジン等)から駆動力を得て駆動する。符号の2は圧縮機1で圧縮されたCOを外気等との間で熱交換して冷却するガスクーラ(放熱器)であり、符号の3は後述するインタークーラ7出口側の配管に設けられた圧力制御弁である。この圧力制御弁3は、ガスクーラ2出口側において後述する感温筒11により検知されたCO温度(冷媒温度)に応じてガスクーラ2出口側圧力(本例ではインタークーラ7出口側の高サイド圧力)を制御する。
なお、圧力制御弁3は高圧力を制御するとともに減圧器を兼ねたものであり、CO冷媒は、この圧力制御弁3により減圧されて低温低圧の気液2相状態のCOとなり、さらに絞り抵抗4a(絞り手段)により減圧される。
【0030】
図中の符号4は、車室内の空気冷却手段(冷却器)として機能するエバポレータ(蒸発器)で、気液2相状態のCOはエバポレータ4内で気化(蒸発)する際に、車室内空気から蒸発潜熱を奪って車室内空気を冷却する。符号の5は液体冷媒5aを貯留する液溜容器であり、この液溜容器5にはエバポレータ4出口側の配管6が上下に貫通しており、液溜容器5内の液体冷媒5aと配管6内の液体冷媒とが熱交換される構成になっている。液溜容器5の配管6の貫通部は、液溜容器5内が密閉空間となるようにシール(不図示)されている。また、液溜容器5の底部は、連通管5bにより、圧力制御弁3および絞り抵抗4a間の配管6に連通している。
【0031】
インタークーラ7は、ガスクーラ2を通過した高温高圧の液体冷媒とエバポレータ4を通過した低温低圧の気体冷媒との間で熱交換を行う向流型熱交換器であり、このインタークーラ7は、CO冷凍サイクルの能力増大要件に対する応答速度を改善する機能を有するものである。なお、インタークーラ7の構成および設置位置については、後に詳細に説明する。
そして、圧縮機1、ガスクーラ2、インタークーラ7、圧力制御弁3、絞り抵抗4aおよびエバポレータ4は、それぞれが配管6によって接続されて、閉回路(CO冷凍サイクル)を形成している。なお、符号の8は圧縮機1から吐出された冷媒ガスより潤滑油を捕集するオイルセパレータであり、捕集された潤滑油は油戻し管9を通って圧縮機1内に戻される。
【0032】
次に、インタークーラ7についてさらに詳細に説明する。
図2及び図3に示すように、このインタークーラ7は、熱交換が行われる向流型熱交換部(熱交換部)21と、この向流型熱交換部21の両端部に設けられたヘッダ22とを有している。
向流型熱交換部21は、複数の伝熱管23を積層させた構造とされている。これら伝熱管23は、図4に示すように、断面偏平形状に形成されたもので、その内部には、複数の冷媒流路24が幅方向へ配列されて形成されている。
【0033】
これら伝熱管23は、高温高圧冷媒が流される高温高圧冷媒伝熱管23aと、低温低圧冷媒が流される低温低圧冷媒伝熱管23bとに区別されており、これら高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bが交互に積層された構造とされて、それぞれロー付けによって一体化されている。
上記のように構成された向流型熱交換部21は、その両端部がヘッダ22に連結されている。
なお、高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bを1本ずつ交互に積層しているが、複数本ずつ例えば2本ずつ交互に積層しても良い。
【0034】
図5及び図6に示すように、このヘッダ22は、それぞれ長手方向にわたって連通路31が形成された高温高圧冷媒ヘッダ部22a及び低温低圧冷媒ヘッダ部22bとから構成されており、低温低圧冷媒ヘッダ部22b及び高温高圧冷媒ヘッダ部22aが向流型熱交換部21側から順に設けられている。
低温低圧冷媒伝熱管23bは、その端部が低温低圧冷媒ヘッダ部22bの連通路31内にて開口され、また、高温高圧冷媒伝熱管23aは、その端部が、低温低圧冷媒ヘッダ部22bを貫通し、高温高圧冷媒ヘッダ部22aの連通管31内にて開口されている。
【0035】
なお、低温低圧冷媒ヘッダ部22bの連通路31は、その幅寸法が伝熱管23の幅寸法よりも十分に大きくされており、したがって、この低温低圧冷媒ヘッダ部22bの連通路31は、貫通された高温高圧冷媒伝熱管23aによって閉鎖されることなく、その両側部に長手方向へわたる流路が確保されるようになっている。
また、各ヘッダ22と伝熱管23との連結箇所は、それぞれロー付けによって固定されてシールされている。
【0036】
上記構造のインタークーラ7では、ガスクーラ2から送り出された高温高圧冷媒が、一端側のヘッダ22の高温高圧冷媒ヘッダ部22aから、その連通路31へ送り込まれ、その後、この連通路31からそれぞれの高温高圧冷媒伝熱管23aの冷媒流路24を通過して、他端側の高温高圧冷媒ヘッダ部22aの連通路31へ送り出され、この他端側の高温高圧冷媒ヘッダ部22aに接続された配管6を介して圧力制御弁3へ送り出されるようになっている。
【0037】
また、エバポレータ4から送り出されて液溜容器5内を通された低温低圧冷媒は、他端側のヘッダ22の低温低圧冷媒ヘッダ部22bから、その連通路31へ送り込まれ、その後、この連通路31からそれぞれの低温低圧冷媒伝熱管23bの冷媒流路24を通過して、一端側の低温低圧冷媒ヘッダ部22bの連通路31へ送り出され、この一端側の低温低圧冷媒ヘッダ部22bに接続された配管6を介して圧縮機1へ送り出されるようになっている。
【0038】
そして、このように、高温高圧冷媒及び低温低圧冷媒がそれぞれインタークーラ7の高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bを逆向きに流されることにより、これら高温高圧冷媒伝熱管23aと低温低圧冷媒伝熱管23bとの間にて熱交換が行われる。つまり、ガスクーラ2から送り出される高温高圧冷媒の熱が低温低圧冷媒に伝達されることにより、上記圧縮式冷凍サイクルの能力増大要件に対する応答速度が改善される。
【0039】
このように、上記構造のインタークーラ7によれば、冷媒同士の熱交換が行われる向流型熱交換部21を構成する高温高圧状態の冷媒が流される高温高圧冷媒伝熱管23a及び低温低圧状態の冷媒が流される低温低圧冷媒伝熱管23bが、それぞれ冷媒が通される複数の冷媒流路24を幅方向へ配列させた断面偏平形状に形成され、さらに、これらが交互に積層されているので、高温高圧状態の冷媒と低温低圧状態の冷媒とを極めて効率的に熱交換させることができるとともに、小型化を図ることができ、狭隘なエンジンルーム内に配置する際にも有利である。
【0040】
しかも、ヘッダ22を構成する高温高圧冷媒ヘッダ部22a及び低温低圧冷媒ヘッダ部22bの連通路31と、高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bの冷媒流路24とが連通されているので、高温高圧冷媒ヘッダ部22a及び低温低圧冷媒ヘッダ部22bのそれぞれの連通路31を介して、高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bの冷媒流路24への冷媒の送り込み、送り出しを一括して行うことができる。したがって、高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bの冷媒流路24への冷媒の送り込み、送り出しを個別に行う構造と比較して、その構造の簡略化を図ることができ、これにより、さらなる小型化が可能である。
【0041】
さらには、高温高圧冷媒伝熱管23aを低温低圧冷媒ヘッダ部22bに貫通させることにより、高温低圧冷媒ヘッダ部22a及び低温低圧冷媒ヘッダ部22bを向流型熱交換部21側から順に配設させたので、ヘッダ22における幅寸法を最小限に抑えることができ、これにより、小型化とともに薄型化が可能となり、狭隘なスペースへの設置にさらに有利である。
なお、低温低圧冷媒伝熱管23bを高温高圧冷媒ヘッダ部22aに貫通させて、高温高圧冷媒ヘッダ部22a及び低温低圧冷媒ヘッダ部22bを向流型熱交換部21側から順に配設させても良く、この場合も、ヘッダ22における幅寸法を最小限に抑え、小型化とともに薄型化を図ることができる。
【0042】
しかも、上記のインタークーラ7は、高温高圧冷媒伝熱管23a及び低温低圧冷媒伝熱管23bに、それぞれ逆方向へ冷媒を流す向流型であるので、冷媒同士の熱交換性を大幅に向上させることができる。
そして、上記構造のインタークーラ7を備えたCO冷媒車両用空調装置によれば、小型化、構造の簡略化が図られ、しかも冷媒同士の熱交換性に優れたインタークーラ7を用いているので、例えば、自動車等の車両のエンジンルームなどの狭隘な設置場所への組み込み作業性を大幅に向上させることができるとともに、冷凍サイクルの能力増大要件に対する応答速度を効率良く改善することができ、冷凍サイクルの能力を向上させることができる。
【0043】
なお、上記構造のインタークーラ7では、ヘッダ22を、高温高圧冷媒ヘッダ部22aと低温低圧冷媒ヘッダ部22bとに分割した構造としたが、図7に示すように、高温高圧冷媒ヘッダ部22aと低温低圧冷媒ヘッダ部22bとを一体化させても良く、このようにすると、部品点数の削減が図れ、コスト低減及びさらなるコンパクト化を図ることができる。
【0044】
また、図8に示すものは、他の構造の向流型熱交換部21を有するインタークーラ7である。
このインタークーラ7では、向流型熱交換部21を構成する低温低圧冷媒伝熱管23bに形成された冷媒流路24の径が、高温高圧冷媒伝熱管23aに形成された冷媒流路24aよりも大きく形成されている。
つまり、高温高圧冷媒伝熱管23aの冷媒流路24に対して、流される冷媒が気液二相であるために圧損が大きい低温低圧冷媒伝熱管23bの冷媒流路24の径を大きくしたので、熱交換のバランスが改善され、良好な熱交換を行うことが可能となる。
【0045】
なお、低温低圧冷媒伝熱管23bの冷媒流路24を、高温高圧冷媒伝熱管23aの冷媒流路24よりも多く形成しても、圧力の異なる冷媒同士の熱交換のバランスを改善して、良好な熱交換を行うことを可能とすることができる。
【0046】
なおまた、これまで説明した実施形態及び変形例ではいずれもCO冷媒を使用するものとして説明したが、本発明および本発明の参考例は上述した実施形態及び変形例に限定されるものではなく、たとえばCO冷媒のように臨界温度が低い他の冷媒を用いたものへの適用も可能である。
【0047】
【発明の効果】
本発明および本発明の参考例のインタークーラ及びCO冷媒車両用空調装置によれば、下記の効果を得ることができる。
請求項1記載のインタークーラによれば、冷媒同士の熱交換が行われる熱交換部を構成する高温高圧状態の冷媒が流される高温高圧冷媒伝熱管及び低温低圧状態の冷媒が流される低温低圧冷媒伝熱管が、それぞれ冷媒が通される複数の冷媒流路を幅方向へ配列させた断面偏平形状に形成され、さらに、これらが交互に積層されているので、高温高圧状態の冷媒と低温低圧状態の冷媒とを極めて効率的に熱交換させることができるとともに、小型化を図ることができ、狭隘なエンジンルーム内に配置する際にも有利である。
【0048】
請求項2記載のインタークーラによれば、ヘッダを構成する高温高圧冷媒ヘッダ部及び低温低圧冷媒ヘッダ部の連通路と、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管の冷媒流路とが連通されているので、高温高圧冷媒ヘッダ部及び低温低圧冷媒ヘッダ部のそれぞれの連通路を介して、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管の冷媒流路への冷媒の送り込み、送り出しを一括して行うことができる。したがって、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管の冷媒流路への冷媒の送り込み、送り出しを個別に行う構造と比較して、その構造の簡略化を図ることができ、これにより、さらなる小型化が可能である。
【0049】
本発明の参考例のインタークーラによれば、高温高圧冷媒伝熱管を低温低圧冷媒ヘッダ部に貫通させることにより、低温低圧冷媒ヘッダ部及び高温高圧冷媒ヘッダ部を熱交換部側から順に配設させたので、ヘッダにおける幅寸法を最小限に抑えることができ、これにより、小型化とともに薄型化が可能となり、狭隘なスペースへの設置にさらに有利である。
【0050】
本発明の参考例のインタークーラによれば、低温低圧冷媒伝熱管を高温高圧冷媒ヘッダ部に貫通させることにより、高温高圧冷媒ヘッダ部及び低温低圧冷媒ヘッダ部を熱交換部側から順に配設させたので、ヘッダにおける幅寸法を最小限に抑えることができ、これにより、小型化とともに薄型化が可能となり、狭隘なスペースへの設置にさらに有利である。
【0051】
請求項記載のインタークーラによれば、高温高圧冷媒ヘッダ部と低温低圧ヘッダ部とを一体構造としたので、構造の簡略化、部品点数の削減を図ることができ、コスト低減及びさらなるコンパクト化を図ることができる。
【0052】
請求項記載のインタークーラによれば、低温低圧冷媒伝熱管に形成された冷媒流路の径が、高温高圧冷媒伝熱管に形成された冷媒流路よりも大きく形成されているので、圧力の異なる冷媒同士の熱交換のバランスが改善され、良好な熱交換を行うことが可能となる。
【0053】
請求項記載のインタークーラによれば、低温低圧冷媒伝熱管の冷媒流路が、高温高圧冷媒伝熱管の冷媒流路よりも多く形成されているので、圧力の異なる冷媒同士の熱交換のバランスが改善され、良好な熱交換を行うことが可能となる。
【0054】
請求項記載のインタークーラによれば、高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管に、それぞれ逆方向へ冷媒を流す向流型であるので、冷媒同士の熱交換性を大幅に向上させることができる。
【0055】
請求項記載のCO冷媒車両用空調装置によれば、小型化、構造の簡略化が図られ、しかも冷媒同士の熱交換性に優れたインタークーラを用いているので、例えば、自動車等の車両のエンジンルームなどの狭隘な設置場所への組み込み作業性を大幅に向上させることができるとともに、冷凍サイクルの能力増大要件に対する応答速度を効率良く改善することができ、冷凍サイクルの能力を向上させることができる。
【図面の簡単な説明】
【図1】 本発明および本発明の参考例の実施形態例を説明するインタークーラを備えたCO冷凍サイクルの構成図である。
【図2】 本発明および本発明の参考例の実施形態例のインタークーラの構成及び構造を説明するインタークーラの正面図である。
【図3】 本発明および本発明の参考例の実施形態例のインタークーラの構成及び構造を説明するインタークーラの平面図である。
【図4】 本発明および本発明の参考例の実施形態例のインタークーラを構成する向流型熱交換部の構造を説明する向流型熱交換部の断面図である。
【図5】 本発明および本発明の参考例の実施形態例のインタークーラの構成及び構造を説明するヘッダの一部を断面視した側面図である。
【図6】 本発明および本発明の参考例の実施形態例のインタークーラの構成及び構造を説明するヘッダの平断面図である。
【図7】 本発明および本発明の参考例の実施形態例のインタークーラを構成するヘッダの他の例を説明するヘッダの平断面図である。
【図8】 本発明および本発明の参考例の実施形態例のインタークーラを構成する他の向流型熱交換部の断面図である。
【図9】 従来の車両用空調装置の一例を示す構成図である。
【図10】 COのモリエル線図である。
【図11】 従来のインタークーラを示す図で、(a)は斜視図、(b)は2重管構造を示す断面図である。
【符号の説明】
1 圧縮機
2 ガスクーラ(放熱器)
4 エバポレータ(蒸発器)
7 インタークーラ
21 向流型熱交換部(熱交換部)
22 ヘッダ
22a 高温高圧冷媒ヘッダ部
22b 低温低圧冷媒ヘッダ部
23、23a 高温高圧冷媒伝熱管
23、23b 低温低圧冷媒伝熱管
24 冷媒流路
31 連通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intercooler and a CO. 2 The present invention relates to an air conditioner for a refrigerant vehicle, and in particular, an intercooler and a CO that have improved mountability on a vehicle. 2 The present invention relates to a refrigerant vehicle air conditioner.
[0002]
[Prior art]
FIG. 9 is a block diagram showing an example of a conventional vehicle air conditioner. The casing 50 as the air conditioner main body has an inner space serving as a flow path for air introduced into the vehicle interior, and accommodates various components as will be described later.
The blower blower 51 introduces air into the casing 50 through the inside air port 52 or the outside air port 53, and this introduced air passes through an evaporator (cooler) 54. Reference numeral 55 denotes an inside / outside air switching damper for switching between the inside air port 52 and the outside air port 53.
An air mix damper 56 and a heater core (heater) 57 are provided on the downstream side of the air introduced into the evaporator 54. Reference numerals 58, 59, and 60 in the figure indicate a face outlet, a foot outlet, and a defrost outlet, respectively. Each of the outlets 58, 59, and 60 is a face damper 61, a foot damper 62, and a defrost damper, respectively. It is opened and closed by 63. In addition, each blower outlet 58,59,60 is connected to the vehicle interior via the duct which is not shown in figure.
The control device 64 controls the blower blower 51, controls motors (not shown) for driving the dampers 55, 56, 61, 62, and 63, and controls on / off of the compressor 66 described later. Is what you do.
[0003]
In the vehicle air conditioner configured as described above, the entire amount of air introduced from the inside air port 52 or the outside air port 53 passes through the evaporator 54 and is cooled by exchanging heat with a refrigerant of a refrigeration cycle 65 described later. Thereafter, the amount of air heated through the heater core 57 is distributed in accordance with the opening degree of the air mix damper 56. Therefore, the amount of air is adjusted to a predetermined temperature and is sent from at least one of the outlets 58, 59, 60 to the vehicle. It is introduced indoors. In general, the heater core 57 is supplied with cooling water that has become a high temperature by cooling a drive source of an internal combustion engine (not shown).
[0004]
Next, the refrigeration cycle 65 will be described. The compressor 66 is driven by obtaining a driving force from a driving source (not shown) (for example, an engine for driving a vehicle) to compress the refrigerant in the gas phase. The gas cooler (heat radiator) 67 cools the refrigerant compressed by the compressor 66 by exchanging heat with the outside air or the like. Reference numeral 68 denotes a throttling device that depressurizes the refrigerant on the outlet side of the gas cooler 67 to obtain a low-temperature low-pressure gas-liquid two-phase state.
The evaporator 54 is an evaporator (heat absorber) that serves as an air cooling means for the passenger compartment. When the gas-liquid two-phase refrigerant is vaporized (evaporated) in the evaporator, the latent heat of vaporization is generated from the passenger compartment air or the passenger compartment air. Take away and cool. The compressor 66, the gas cooler 67, the expansion device 68, and the evaporator 54 are connected in series by a refrigerant pipe 69, and constitute a closed circuit as a refrigeration cycle in which the refrigerant circulates repeatedly changing its state.
The refrigerant used here includes, for example, an alternative chlorofluorocarbon refrigerant such as R134a. When this R134a evaporates inside the cooler 54, heat is absorbed from the air sent from the blower blower 51, and cooling is performed. The compressor 66, the gas cooler 67, and the expansion device 68 are installed in the engine room.
[0005]
By the way, in recent years, interest in the preservation of the global environment has increased, but there is concern that alternative chlorofluorocarbons such as R134a conventionally used as a refrigerant for vehicle air conditioners will affect global warming. For this reason, as a substitute for such an alternative chlorofluorocarbon refrigerant, research on a vehicle air conditioner using a substance that naturally exists in nature, a so-called natural refrigerant, has been conducted.
As a candidate for such a natural refrigerant, carbon dioxide (CO 2 ) Is attracting attention. This CO 2 Not only is the contribution to global warming much smaller than alternative CFCs, but it is not flammable and basically harmless to the human body.
[0006]
From such a background, a vapor compression refrigeration cycle using carbon dioxide (hereinafter referred to as CO 2). 2 Abbreviated refrigeration cycle). This CO 2 The operation of the refrigeration cycle is the same as that of a conventional vapor compression refrigeration cycle using Freon. That is, FIG. 10 (CO 2 As shown by A-B-C-D-A of the Mollier diagram) 2 (A-B), and this hot compressed gas phase CO 2 Is cooled by a radiator (gas cooler) (BC). Then, the pressure is reduced by a pressure reducer (throttle device) (C-D), and CO in a gas-liquid phase state is obtained. 2 Is evaporated by a cooler (evaporator) (D-A), and latent heat of evaporation is taken from an external fluid such as air to cool the external fluid.
[0007]
However, CO 2 Since the critical temperature of the refrigerant is about 31 ° C, which is lower than the critical temperature of the conventional refrigerant, Freon, when the outside air temperature is high, such as in summer, the CO on the radiator side 2 The temperature of CO is 2 It becomes higher than the critical point temperature. That is, CO at the outlet side of the radiator 2 Does not condense (the line segment BC does not intersect the saturated liquid line SL).
Also, the state of the radiator outlet side (C point) is the discharge pressure of the compressor and the CO at the radiator outlet side. 2 Determined by temperature, CO on the outlet side of the radiator 2 Since the temperature is determined by the heat dissipation capability of the radiator and the outside air temperature (not controllable), the temperature at the radiator outlet cannot be controlled substantially. Therefore, the state of the radiator outlet side (point C) can be controlled by controlling the discharge pressure (radiator outlet side pressure) of the compressor. That is, when the outside air temperature is high, such as summer, in order to ensure sufficient cooling capacity (enthalpy difference), the radiator outlet side pressure is increased as shown by E-FG-H-E in the Mollier diagram. There is a need. Therefore, the operating pressure of the compressor needs to be higher than that of a conventional refrigeration cycle using Freon.
[0008]
Taking a vehicle air conditioner as an example, the operating pressure of the compressor is 3 kg / cm in the conventional R134 (Freon). 2 CO 2 Then 40kg / cm 2 In addition, the shutdown pressure is 15 kg / cm for R134 (Freon). 2 CO 2 Then 100kg / cm 2 Get higher with the degree.
[0009]
[Problems to be solved by the invention]
Now, the above-mentioned CO 2 In the refrigeration cycle, it is known that installation of a heat exchanger called an intercooler is effective for improving the response speed to the capacity increase requirement. This intercooler is a heat exchanger (so-called countercurrent heat exchanger) configured to exchange heat between the liquid refrigerant that has passed through the gas cooler (heat radiator) and the gas refrigerant that has passed through the evaporator (cooler). For example, as shown in FIG. 11, the high-temperature / high-pressure refrigerant flow path 71 and the low-temperature / low-pressure refrigerant flow path 72 have a double-pipe structure to form a three-dimensional structure of multiple tracks (oval) winding or circular winding. An intercooler 70 is conventionally employed.
[0010]
However, the above-described intercooler 70 is replaced with CO. 2 When employed in a refrigerant vehicle air conditioner, the installation position is generally in the engine room, like the compressor 66 and the gas cooler 67. For this reason, in the above-described intercooler 70 having the conventional structure (three-dimensional structure), it is difficult to secure an appropriate installation space in the engine room where various devices such as the engine and transmission of the drive source are closely arranged. It is in. In other words, in order to install an unnecessary intercooler 70 in a conventional vehicle air conditioner using a chlorofluorocarbon refrigerant, it is necessary to newly secure a large three-dimensional space. It is necessary to take measures such as drastically changing the layout.
Further, in the double pipe structure as described above, there is a limit to the heat exchange efficiency, and an intercooler capable of performing heat exchange more favorably is required.
[0011]
The present invention has been made in view of the above circumstances, and an extremely efficient intercooler that can be easily installed in an engine room and a CO provided with the intercooler. 2 It aims at providing the air conditioner for refrigerant vehicles.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, an intercooler according to claim 1 is an intercooler that exchanges heat between a refrigerant in a high-temperature and high-pressure state and a refrigerant in a low-temperature and low-pressure state, and heat that exchanges heat between the refrigerants. Having an exchange part and a header to which both ends of the heat exchange part are connected; The header has a high-temperature and high-pressure refrigerant header portion to which an end portion of the high-temperature and high-pressure refrigerant heat transfer tube is connected, and a low-temperature and low-pressure refrigerant header portion to which an end portion of the low-temperature and low-pressure refrigerant heat transfer tube is connected, The heat exchanging unit is configured by alternately laminating a plurality of high-temperature and high-pressure refrigerant heat transfer tubes through which the high-temperature and high-pressure refrigerant flows and a plurality of low-temperature and low-pressure refrigerant heat transfer tubes through which the low-temperature and low-pressure refrigerant flows. The high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes are formed in a cross-sectional flat shape in which a plurality of refrigerant flow paths through which the refrigerant passes are arranged in the width direction, and are stacked. Both ends of the low-pressure refrigerant heat transfer tube are separated from each other at a position near the header and connected to the header, with a predetermined interval between the adjacent heat transfer tubes. Both ends of the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube are connected to the high-temperature high-pressure refrigerant header section, and both ends of the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer pipe are connected to the low-temperature low-pressure refrigerant header section. The high-temperature and high-pressure refrigerant heat transfer pipe is connected to the high-temperature and high-pressure refrigerant header part through the low-temperature and low-pressure refrigerant header part. It is characterized by that.
[0013]
In this way, the high-temperature and high-pressure refrigerant heat transfer tube through which the high-temperature and high-pressure refrigerant that constitutes the heat exchange section that performs heat exchange between the refrigerant and the low-temperature and low-pressure refrigerant heat transfer tube through which the low-temperature and low-pressure refrigerant flows are respectively It is formed in a flat cross-sectional shape in which a plurality of refrigerant flow paths are arranged in the width direction, and these are alternately stacked, so that a refrigerant in a high temperature and high pressure state and a refrigerant in a low temperature and low pressure state are extremely efficient. It is possible to exchange heat with each other, and it is possible to reduce the size, and it is advantageous when it is arranged in a narrow engine room.
[0014]
The intercooler according to claim 2 High An intercooler for exchanging heat between a refrigerant in a temperature and high pressure state and a refrigerant in a low temperature and low pressure state, a heat exchange part in which heat exchange between the refrigerants is performed, and a header to which both ends of the heat exchange part are connected Have The header has a high-temperature and high-pressure refrigerant header portion to which an end portion of the high-temperature and high-pressure refrigerant heat transfer tube is connected, and a low-temperature and low-pressure refrigerant header portion to which an end portion of the low-temperature and low-pressure refrigerant heat transfer tube is connected, The heat exchanging unit is configured by alternately laminating a plurality of high-temperature and high-pressure refrigerant heat transfer tubes through which the high-temperature and high-pressure refrigerant flows and a plurality of low-temperature and low-pressure refrigerant heat transfer tubes through which the low-temperature and low-pressure refrigerant flows. The high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes are formed in a cross-sectional flat shape in which a plurality of refrigerant flow paths through which the refrigerant passes are arranged in the width direction, and are stacked. Both ends of the high-pressure refrigerant heat transfer tube are separated from each other at a position before the header is connected to the header, and have a predetermined interval between the adjacent heat transfer tubes. Both ends of the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube are connected to the high-temperature high-pressure refrigerant header section, and both ends of the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer pipe are connected to the low-temperature low-pressure refrigerant header section. The low-temperature low-pressure refrigerant heat transfer tube is connected to the low-temperature low-pressure refrigerant header part through the high-temperature high-pressure refrigerant header part. It is characterized by that.
[0015]
That is, the communication path of the high-temperature and high-pressure refrigerant header part and the low-temperature and low-pressure refrigerant header part constituting the header and the refrigerant flow path of the high-temperature and high-pressure refrigerant heat transfer pipe and the low-temperature and low-pressure refrigerant heat transfer pipe communicate with each other. In addition, the refrigerant can be fed into and delivered to the refrigerant flow paths of the high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes through the respective communication paths of the low-temperature and low-pressure refrigerant header portions. Therefore, the structure can be simplified compared to the structure in which the refrigerant is individually fed into and delivered from the refrigerant flow paths of the high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes. Is possible.
[0016]
Reference example of the present invention Intercooler ,in front The low-temperature and low-pressure refrigerant header part and the high-temperature and high-pressure refrigerant header part are provided in order from the heat exchange part side, and the high-temperature and high-pressure refrigerant heat transfer tube penetrates the low-temperature and low-pressure refrigerant header part.
[0017]
That is, by passing the high-temperature and high-pressure refrigerant heat transfer pipe through the low-temperature and low-pressure refrigerant header part, the low-temperature and low-pressure refrigerant header part and the high-temperature and high-pressure refrigerant header part are sequentially arranged from the heat exchange part side, so the width dimension in the header is minimized. As a result, it is possible to reduce the size and the thickness, which is more advantageous for installation in a narrow space.
[0018]
Reference example of the present invention Intercooler ,in front The high-temperature and high-pressure refrigerant header part and the low-temperature and low-pressure refrigerant header part are provided in order from the heat exchange part side, and the low-temperature and low-pressure refrigerant heat transfer tube penetrates the high-temperature and high-pressure refrigerant header part.
[0019]
That is, the high-temperature and high-pressure refrigerant header part and the low-temperature and low-pressure refrigerant header part are arranged in order from the heat exchange part side by passing the low-temperature and low-pressure refrigerant heat transfer pipe through the high-temperature and high-pressure refrigerant header part. As a result, it is possible to reduce the size and the thickness, which is more advantageous for installation in a narrow space.
[0020]
Claim 3 The described intercooler is claimed 1 or 2 The intercooler described in the above item is characterized in that the high-temperature and high-pressure refrigerant header part and the low-temperature and low-pressure refrigerant header part are integrated.
[0021]
As described above, since the high-temperature and high-pressure refrigerant header portion and the low-temperature and low-pressure header portion have an integrated structure, the structure can be simplified and the number of parts can be reduced, and the cost can be reduced and the size can be further reduced.
[0022]
Claim 4 The intercooler according to claim 1. 3 The intercooler according to any one of the above, wherein the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer tube is formed to have a larger diameter than the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube.
[0023]
That is, since the diameter of the refrigerant flow path formed in the low-temperature and low-pressure refrigerant heat transfer tube is larger than the refrigerant flow path formed in the high-temperature and high-pressure refrigerant heat transfer pipe, the heat exchange balance between the refrigerants having different pressures is increased. Improved and good heat exchange can be performed.
[0024]
Claim 5 The intercooler according to claim 1. 4 The intercooler according to any one of the above, wherein the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer tube is formed more than the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube.
In other words, since the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer tube is formed more than the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube, the heat exchange balance between refrigerants with different pressures is improved, and good heat exchange is achieved. Can be done.
[0025]
Claim 6 The intercooler according to claim 1. 5 The intercooler according to any one of the above, characterized in that the refrigerant flows through the high-temperature high-pressure refrigerant heat transfer tube and the low-temperature low-pressure refrigerant heat transfer tube in opposite directions.
[0026]
Thus, since it is a counterflow type which flows a refrigerant | coolant to a high temperature / high pressure refrigerant | coolant heat exchanger tube and a low temperature / low pressure refrigerant | coolant heat exchanger tube, respectively, the heat exchange property of refrigerant | coolants can be improved significantly.
[0027]
Claim 7 CO described 2 A refrigerant vehicle air conditioner has a cooler that cools the air introduced into the casing. 2 CO that constitutes part of the refrigeration cycle with refrigerant 2 In the refrigerant vehicle air conditioner, the refrigeration cycle includes: 6 The intercooler described in any one of the above is provided.
[0028]
In other words, the use of an intercooler that has been reduced in size and simplified in structure and excellent in heat exchange between refrigerants. For example, it can be installed in a narrow installation place such as an engine room of a vehicle such as an automobile. Performance can be significantly improved, the response speed to the capacity increase requirement of the refrigeration cycle can be improved efficiently, and the capacity of the refrigeration cycle can be improved.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention And reference examples of the present invention Intercooler and CO 2 An embodiment of a refrigerant vehicle air conditioner will be described with reference to the drawings.
What is shown in FIG. 2 This is a vehicle air conditioner to which a refrigeration cycle is applied. 2 It is a compressor that compresses. The compressor 1 is driven by obtaining a driving force from a driving source (not shown) (for example, an internal combustion engine). The code 2 is the CO compressed by the compressor 1. 2 Is a gas cooler (heat radiator) that exchanges heat with the outside air and cools, and numeral 3 is a pressure control valve provided in a pipe on the outlet side of the intercooler 7 described later. The pressure control valve 3 is a CO gas detected by a temperature sensing cylinder 11 to be described later on the gas cooler 2 outlet side. 2 The pressure on the outlet side of the gas cooler 2 (high side pressure on the outlet side of the intercooler 7 in this example) is controlled according to the temperature (refrigerant temperature).
The pressure control valve 3 controls a high pressure and also serves as a pressure reducer. 2 The refrigerant is depressurized by the pressure control valve 3 and is a low-temperature low-pressure gas-liquid two-phase CO. 2 Further, the pressure is reduced by the aperture resistor 4a (aperture means).
[0030]
Reference numeral 4 in the figure denotes an evaporator (evaporator) that functions as an air cooling means (cooler) in the passenger compartment. 2 When vaporizing (evaporating) in the evaporator 4, the vehicle interior air is deprived of the latent heat of vaporization to cool the vehicle interior air. Reference numeral 5 denotes a liquid storage container for storing the liquid refrigerant 5 a, and a pipe 6 on the outlet side of the evaporator 4 passes vertically through the liquid storage container 5, and the liquid refrigerant 5 a and the pipe 6 in the liquid storage container 5 are provided. Heat exchange is performed with the liquid refrigerant inside. The penetrating portion of the pipe 6 of the liquid reservoir 5 is sealed (not shown) so that the inside of the liquid reservoir 5 becomes a sealed space. The bottom of the liquid reservoir 5 is communicated with a pipe 6 between the pressure control valve 3 and the throttle resistor 4a through a communication pipe 5b.
[0031]
The intercooler 7 is a countercurrent heat exchanger that exchanges heat between the high-temperature and high-pressure liquid refrigerant that has passed through the gas cooler 2 and the low-temperature and low-pressure gas refrigerant that has passed through the evaporator 4. 2 It has the function of improving the response speed to the capacity increase requirement of the refrigeration cycle. The configuration and installation position of the intercooler 7 will be described in detail later.
The compressor 1, the gas cooler 2, the intercooler 7, the pressure control valve 3, the throttle resistor 4a, and the evaporator 4 are each connected by a pipe 6 to form a closed circuit (CO 2 A refrigeration cycle). Reference numeral 8 denotes an oil separator that collects lubricating oil from the refrigerant gas discharged from the compressor 1, and the collected lubricating oil is returned into the compressor 1 through the oil return pipe 9.
[0032]
Next, the intercooler 7 will be described in more detail.
As shown in FIGS. 2 and 3, the intercooler 7 is provided at a counter-current heat exchanging portion (heat exchanging portion) 21 in which heat is exchanged and at both ends of the counter-current heat exchanging portion 21. And a header 22.
The counterflow type heat exchange unit 21 has a structure in which a plurality of heat transfer tubes 23 are stacked. As shown in FIG. 4, these heat transfer tubes 23 are formed in a flat cross-sectional shape, and a plurality of refrigerant flow paths 24 are arranged in the width direction therein.
[0033]
These heat transfer tubes 23 are classified into a high-temperature / high-pressure refrigerant heat transfer tube 23a through which a high-temperature / high-pressure refrigerant flows and a low-temperature / low-pressure refrigerant heat transfer tube 23b through which a low-temperature / low-pressure refrigerant flows. The heat transfer tubes 23b are alternately stacked, and are integrated by brazing.
The counterflow type heat exchanging portion 21 configured as described above is connected to the header 22 at both ends thereof.
In addition, although the high temperature / high pressure refrigerant heat transfer tubes 23a and the low temperature / low pressure refrigerant heat transfer tubes 23b are alternately stacked one by one, a plurality of, for example, two may be alternately stacked.
[0034]
As shown in FIGS. 5 and 6, the header 22 includes a high-temperature and high-pressure refrigerant header portion 22 a and a low-temperature and low-pressure refrigerant header portion 22 b each having a communication passage 31 formed in the longitudinal direction. The part 22b and the high-temperature / high-pressure refrigerant header part 22a are provided in order from the countercurrent heat exchange part 21 side.
The end of the low-temperature and low-pressure refrigerant heat transfer tube 23b is opened in the communication passage 31 of the low-temperature and low-pressure refrigerant header portion 22b, and the end of the high-temperature and high-pressure refrigerant heat transfer tube 23a is connected to the low-temperature and low-pressure refrigerant header portion 22b. It penetrates and is opened in the communication pipe 31 of the high-temperature / high-pressure refrigerant header 22a.
[0035]
Note that the communication passage 31 of the low-temperature and low-pressure refrigerant header portion 22b has a width dimension sufficiently larger than the width dimension of the heat transfer tube 23. Therefore, the communication passage 31 of the low-temperature and low-pressure refrigerant header portion 22b is penetrated. Without being closed by the high-temperature and high-pressure refrigerant heat transfer tube 23a, a flow path extending in the longitudinal direction is secured on both sides thereof.
Moreover, the connection location of each header 22 and the heat exchanger tube 23 is each fixed and sealed by brazing.
[0036]
In the intercooler 7 having the above-described structure, the high-temperature and high-pressure refrigerant sent out from the gas cooler 2 is sent from the high-temperature and high-pressure refrigerant header portion 22a of the header 22 on one end side to the communication passage 31, and then from the communication passage 31 to each of the communication passages 31. A pipe that passes through the refrigerant flow path 24 of the high-temperature and high-pressure refrigerant heat transfer pipe 23a, is sent to the communication path 31 of the high-temperature and high-pressure refrigerant header portion 22a on the other end side, and is connected to the high-temperature and high-pressure refrigerant header portion 22a on the other end side. 6 is sent out to the pressure control valve 3 through 6.
[0037]
Further, the low-temperature and low-pressure refrigerant sent out from the evaporator 4 and passed through the liquid storage container 5 is sent from the low-temperature and low-pressure refrigerant header portion 22b of the header 22 on the other end side to the communication passage 31, and then this communication passage. 31 passes through the refrigerant flow path 24 of each low-temperature and low-pressure refrigerant heat transfer tube 23b, is sent to the communication path 31 of the low-temperature and low-pressure refrigerant header portion 22b on one end side, and is connected to the low-temperature and low-pressure refrigerant header portion 22b on this one end side. It is sent out to the compressor 1 through the pipe 6.
[0038]
In this way, the high-temperature high-pressure refrigerant heat transfer tube 23a and the low-temperature low-pressure refrigerant heat transfer tube 23b of the intercooler 7 are caused to flow in the opposite directions in the intercooler 7, respectively. Heat exchange is performed with the low-pressure refrigerant heat transfer tube 23b. That is, the heat of the high-temperature and high-pressure refrigerant sent out from the gas cooler 2 is transmitted to the low-temperature and low-pressure refrigerant, thereby improving the response speed with respect to the capacity increase requirement of the compression refrigeration cycle.
[0039]
Thus, according to the intercooler 7 of the said structure, the high temperature / high pressure refrigerant | coolant heat exchanger tube 23a in which the refrigerant | coolant of the high temperature / high pressure state which comprises the counterflow type heat exchange part 21 in which heat exchange of refrigerant | coolants is flowed, and the low temperature / low pressure state The low-temperature and low-pressure refrigerant heat transfer tubes 23b through which the refrigerant flows are formed in a cross-sectional flat shape in which a plurality of refrigerant flow paths 24 through which the refrigerant passes are arranged in the width direction, and these are alternately stacked. The high-temperature and high-pressure state refrigerant and the low-temperature and low-pressure state refrigerant can exchange heat very efficiently, and can be reduced in size, which is advantageous when it is arranged in a narrow engine room.
[0040]
In addition, the communication path 31 of the high-temperature and high-pressure refrigerant header portion 22a and the low-temperature and low-pressure refrigerant header portion 22b constituting the header 22 and the refrigerant flow path 24 of the high-temperature and high-pressure refrigerant heat transfer tube 23a and the low-temperature and low-pressure refrigerant heat transfer tube 23b communicate with each other. Therefore, the refrigerant is sent to and sent out from the refrigerant flow path 24 of the high-temperature / high-pressure refrigerant heat transfer tube 23a and the low-temperature / low-pressure refrigerant heat transfer tube 23b via the communication passages 31 of the high-temperature / high-pressure refrigerant header portion 22a and the low-temperature / low-pressure refrigerant header portion 22b. Can be performed in a lump. Therefore, the structure can be simplified as compared with the structure in which the refrigerant is fed into and sent out from the refrigerant flow path 24 of the high-temperature and high-pressure refrigerant heat transfer tube 23a and the low-temperature and low-pressure refrigerant heat transfer tube 23b. Further downsizing is possible.
[0041]
Furthermore, the high-temperature and low-pressure refrigerant header portion 22b and the low-temperature and low-pressure refrigerant header portion 22b are arranged in order from the countercurrent heat exchanger 21 side by passing the high-temperature and high-pressure refrigerant heat transfer tube 23a through the low-temperature and low-pressure refrigerant header portion 22b. Therefore, the width dimension of the header 22 can be minimized, and this enables a reduction in size and a reduction in thickness, which is further advantageous for installation in a narrow space.
Alternatively, the low-temperature and low-pressure refrigerant heat transfer pipe 23b may be passed through the high-temperature and high-pressure refrigerant header portion 22a, and the high-temperature and high-pressure refrigerant header portion 22a and the low-temperature and low-pressure refrigerant header portion 22b may be sequentially arranged from the counterflow heat exchange portion 21 side. In this case as well, the width dimension of the header 22 can be minimized, and the size and thickness can be reduced.
[0042]
In addition, since the intercooler 7 is a counter-flow type in which the refrigerant flows in the opposite directions to the high-temperature and high-pressure refrigerant heat transfer tube 23a and the low-temperature and low-pressure refrigerant heat transfer tube 23b, respectively, the heat exchange between the refrigerants can be greatly improved. Can do.
And CO equipped with the intercooler 7 of the said structure 2 According to the refrigerant vehicle air conditioner, the intercooler 7 that is reduced in size and simplified in structure and excellent in heat exchange between the refrigerants is used. For example, the engine room of a vehicle such as an automobile is used. The workability for assembling in a narrow installation place can be significantly improved, the response speed to the capacity increase requirement of the refrigeration cycle can be improved efficiently, and the capacity of the refrigeration cycle can be improved.
[0043]
In the intercooler 7 having the above structure, the header 22 is divided into a high-temperature and high-pressure refrigerant header portion 22a and a low-temperature and low-pressure refrigerant header portion 22b. However, as shown in FIG. The low-temperature and low-pressure refrigerant header portion 22b may be integrated. In this way, the number of parts can be reduced, and the cost can be reduced and the size can be further reduced.
[0044]
Moreover, what is shown in FIG. 8 is the intercooler 7 which has the counterflow type heat exchange part 21 of another structure.
In this intercooler 7, the diameter of the refrigerant flow path 24 formed in the low-temperature and low-pressure refrigerant heat transfer tube 23b constituting the countercurrent heat exchange unit 21 is larger than that of the refrigerant flow path 24a formed in the high-temperature and high-pressure refrigerant heat transfer pipe 23a. Largely formed.
That is, the diameter of the refrigerant flow path 24 of the low-temperature low-pressure refrigerant heat transfer pipe 23b, which has a large pressure loss because the flowed refrigerant is gas-liquid two-phase with respect to the refrigerant flow path 24 of the high-temperature high-pressure refrigerant heat transfer pipe 23a, The balance of heat exchange is improved, and good heat exchange can be performed.
[0045]
Even if the refrigerant flow path 24 of the low-temperature and low-pressure refrigerant heat transfer tube 23b is formed more than the refrigerant flow path 24 of the high-temperature and high-pressure refrigerant heat transfer pipe 23a, the balance of heat exchange between refrigerants having different pressures is improved. Heat exchange can be performed.
[0046]
In the embodiment and the modification described so far, both are CO. 2 Although described as using a refrigerant, the present invention And reference examples of the present invention Is not limited to the above-described embodiments and modifications, for example, CO 2 Application to other refrigerants having a low critical temperature such as refrigerant is also possible.
[0047]
【The invention's effect】
The present invention And reference examples of the present invention Intercooler and CO 2 According to the refrigerant vehicle air conditioner, the following effects can be obtained.
According to the intercooler according to claim 1, a high-temperature and high-pressure refrigerant heat transfer tube through which a high-temperature and high-pressure state refrigerant that constitutes a heat exchange unit that performs heat exchange between the refrigerants and a low-temperature and low-pressure refrigerant through which a low-temperature and low-pressure state refrigerant flows. The heat transfer tube is formed in a cross-sectional flat shape in which a plurality of refrigerant flow paths through which the refrigerant passes are arranged in the width direction, and since these are alternately stacked, the high temperature and high pressure state refrigerant and the low temperature and low pressure state It is possible to exchange heat with the other refrigerants very efficiently, and it is possible to reduce the size of the refrigerant, which is advantageous when it is arranged in a narrow engine room.
[0048]
According to the intercooler of the second aspect, the communication passages of the high-temperature and high-pressure refrigerant header portion and the low-temperature and low-pressure refrigerant header portion constituting the header and the refrigerant flow paths of the high-temperature and high-pressure refrigerant heat transfer tube and the low-temperature and low-pressure refrigerant heat transfer tube are communicated. Therefore, the refrigerant is fed and delivered to the refrigerant flow paths of the high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes collectively through the respective communication paths of the high-temperature and high-pressure refrigerant header portion and the low-temperature and low-pressure refrigerant header portion. It can be carried out. Therefore, the structure can be simplified compared to the structure in which the refrigerant is individually fed into and delivered from the refrigerant flow paths of the high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes. Is possible.
[0049]
Reference example of the present invention According to the intercooler, the low-temperature and low-pressure refrigerant header part and the high-temperature and high-pressure refrigerant header part are arranged in order from the heat exchange part side by passing the high-temperature and high-pressure refrigerant heat transfer pipe through the low-temperature and low-pressure refrigerant header part. The width dimension can be minimized, and this makes it possible to reduce the size and the thickness, which is further advantageous for installation in a narrow space.
[0050]
Reference example of the present invention According to the intercooler, the high-temperature high-pressure refrigerant header part and the low-temperature low-pressure refrigerant header part are arranged in order from the heat exchange part side by passing the low-temperature low-pressure refrigerant heat transfer pipe through the high-temperature high-pressure refrigerant header part. The width dimension can be minimized, and this makes it possible to reduce the size and the thickness, which is further advantageous for installation in a narrow space.
[0051]
Claim 3 According to the described intercooler, the high-temperature and high-pressure refrigerant header part and the low-temperature and low-pressure header part are integrated, so that the structure can be simplified and the number of parts can be reduced, and cost reduction and further downsizing can be achieved. Can do.
[0052]
Claim 4 According to the described intercooler, since the diameter of the refrigerant channel formed in the low-temperature and low-pressure refrigerant heat transfer tube is larger than the refrigerant channel formed in the high-temperature and high-pressure refrigerant heat transfer tube, refrigerants having different pressures The heat exchange balance is improved, and good heat exchange can be performed.
[0053]
Claim 5 According to the described intercooler, the refrigerant flow path of the low-temperature and low-pressure refrigerant heat transfer tube is formed more than the refrigerant flow path of the high-temperature and high-pressure refrigerant heat transfer tube, so the balance of heat exchange between refrigerants with different pressures is improved. It is possible to perform good heat exchange.
[0054]
Claim 6 According to the described intercooler, since the refrigerant flows in the opposite direction to the high-temperature high-pressure refrigerant heat transfer tube and the low-temperature low-pressure refrigerant heat transfer tube, the heat exchange between the refrigerants can be greatly improved.
[0055]
Claim 7 CO described 2 According to the refrigerant vehicle air conditioner, the intercooler is miniaturized, simplified in structure, and excellent in heat exchange between the refrigerants. For example, it is narrow in an engine room of a vehicle such as an automobile. As a result, it is possible to significantly improve the workability of assembling in a proper installation place, to efficiently improve the response speed to the capacity increase requirement of the refrigeration cycle, and to improve the capacity of the refrigeration cycle.
[Brief description of the drawings]
FIG. 1 shows the present invention. And reference examples of the present invention CO with an intercooler illustrating an example embodiment of 2 It is a block diagram of a refrigerating cycle.
FIG. 2 And reference examples of the present invention It is a front view of the intercooler explaining the structure and structure of the intercooler of the embodiment.
FIG. 3 And reference examples of the present invention It is a top view of the intercooler explaining the structure and structure of the intercooler of the embodiment.
FIG. 4 The present invention And reference examples of the present invention It is sectional drawing of the countercurrent type heat exchange part explaining the structure of the countercurrent type heat exchange part which comprises the intercooler of the example of an embodiment.
FIG. 5 shows the present invention. And reference examples of the present invention It is the side view which looked at a part of header which explains composition and structure of an intercooler of an example of an embodiment.
FIG. 6 And reference examples of the present invention It is a plane sectional view of a header explaining composition and structure of an intercooler of an example of an embodiment.
FIG. 7 And reference examples of the present invention It is a plane sectional view of a header explaining other examples of a header which constitutes an intercooler of an example of an embodiment.
FIG. 8 And reference examples of the present invention It is sectional drawing of the other counterflow type heat exchange part which comprises the intercooler of the example of an embodiment.
FIG. 9 is a configuration diagram showing an example of a conventional vehicle air conditioner.
FIG. 10 CO 2 It is a Mollier diagram.
11A and 11B are diagrams showing a conventional intercooler, in which FIG. 11A is a perspective view, and FIG. 11B is a cross-sectional view showing a double tube structure.
[Explanation of symbols]
1 Compressor
2 Gas cooler (heatsink)
4 Evaporator
7 Intercooler
21 Counter-current heat exchanger (heat exchanger)
22 Header
22a High-temperature and high-pressure refrigerant header
22b Low temperature and low pressure refrigerant header
23, 23a High-temperature high-pressure refrigerant heat transfer tube
23, 23b Low-temperature low-pressure refrigerant heat transfer tube
24 Refrigerant flow path
31 passage

Claims (7)

高温高圧状態の冷媒と、低温低圧状態の冷媒とを熱交換させるインタークーラであって、
前記冷媒同士の熱交換が行われる熱交換部と、該熱交換部の両端が連結されたヘッダとを有し、
該ヘッダは、前記高温高圧冷媒伝熱管の端部が連結された高温高圧冷媒ヘッダ部と、前記低温低圧冷媒伝熱管の端部が連結された低温低圧冷媒ヘッダ部とを有し、
前記熱交換部は、前記高温高圧状態の冷媒が流される複数の高温高圧冷媒伝熱管と、前記低温低圧状態の冷媒が流される複数の低温低圧冷媒伝熱管とが交互に積層されて構成され、
これら高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管は、冷媒が通される複数の冷媒流路が幅方向へ配列された断面偏平形状に形成され、
積層された前記高温高圧冷媒伝熱管および前記低温低圧冷媒伝熱管の各両端は、前記ヘッダに連結される手前位置で、互いに離反し、隣り合う前記伝熱管の間に所定間隔を有した状態で、前記高温高圧冷媒伝熱管の前記冷媒流路の両端は、前記高温高圧冷媒ヘッダ部に連結されており、前記低温低圧冷媒伝熱管の前記冷媒流路の両端は、前記低温低圧冷媒ヘッダ部に連結されており、
前記高温高圧冷媒伝熱管が、前記低温低圧冷媒ヘッダ部を貫通して前記高温高圧冷媒ヘッダ部に連結されることを特徴とするインタークーラ。
An intercooler that exchanges heat between a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant,
A heat exchanging unit in which heat exchange between the refrigerants is performed, and a header to which both ends of the heat exchanging unit are connected,
The header has a high-temperature and high-pressure refrigerant header portion to which an end portion of the high-temperature and high-pressure refrigerant heat transfer tube is connected, and a low-temperature and low-pressure refrigerant header portion to which an end portion of the low-temperature and low-pressure refrigerant heat transfer tube is connected,
The heat exchanging unit is configured by alternately laminating a plurality of high-temperature and high-pressure refrigerant heat transfer tubes through which the high-temperature and high-pressure refrigerant flows and a plurality of low-temperature and low-pressure refrigerant heat transfer tubes through which the low-temperature and low-pressure refrigerant flows.
These high-temperature high-pressure refrigerant heat transfer tubes and low-temperature low-pressure refrigerant heat transfer tubes are formed in a cross-sectional flat shape in which a plurality of refrigerant flow paths through which the refrigerant passes are arranged in the width direction,
Both ends of the stacked high-temperature and high-pressure refrigerant heat transfer tubes and the low-temperature and low-pressure refrigerant heat transfer tubes are separated from each other at a position in front of being connected to the header, with a predetermined interval between the adjacent heat transfer tubes. Both ends of the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube are connected to the high-temperature high-pressure refrigerant header section, and both ends of the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer pipe are connected to the low-temperature low-pressure refrigerant header section. Are connected,
The intercooler, wherein the high-temperature and high-pressure refrigerant heat transfer pipe penetrates through the low-temperature and low-pressure refrigerant header part and is connected to the high-temperature and high-pressure refrigerant header part .
高温高圧状態の冷媒と、低温低圧状態の冷媒とを熱交換させるインタークーラであって、
前記冷媒同士の熱交換が行われる熱交換部と、該熱交換部の両端が連結されたヘッダとを有し、
該ヘッダは、前記高温高圧冷媒伝熱管の端部が連結された高温高圧冷媒ヘッダ部と、前記低温低圧冷媒伝熱管の端部が連結された低温低圧冷媒ヘッダ部とを有し、
前記熱交換部は、前記高温高圧状態の冷媒が流される複数の高温高圧冷媒伝熱管と、前記低温低圧状態の冷媒が流される複数の低温低圧冷媒伝熱管とが交互に積層されて構成され、
これら高温高圧冷媒伝熱管及び低温低圧冷媒伝熱管は、冷媒が通される複数の冷媒流路が幅方向へ配列された断面偏平形状に形成され、
積層された前記高温高圧冷媒伝熱管および前記低温高圧冷媒伝熱管の各両端は、前記ヘッダに連結される手前位置で、互いに離反し、隣り合う前記伝熱管の間に所定間隔を有した状態で、前記高温高圧冷媒伝熱管の前記冷媒流路の両端は、前記高温高圧冷媒ヘッダ部に連結されており、前記低温低圧冷媒伝熱管の前記冷媒流路の両端は、前記低温低圧冷媒ヘッダ部に連結されており、
前記低温低圧冷媒伝熱管が、前記高温高圧冷媒ヘッダ部を貫通して前記低温低圧冷媒ヘッダ部に連結されることを特徴とするインタークーラ。
An intercooler that exchanges heat between a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant,
A heat exchanging unit in which heat exchange between the refrigerants is performed, and a header to which both ends of the heat exchanging unit are connected,
The header has a high-temperature and high-pressure refrigerant header portion to which an end portion of the high-temperature and high-pressure refrigerant heat transfer tube is connected, and a low-temperature and low-pressure refrigerant header portion to which an end portion of the low-temperature and low-pressure refrigerant heat transfer tube is connected,
The heat exchanging unit is configured by alternately laminating a plurality of high-temperature and high-pressure refrigerant heat transfer tubes through which the high-temperature and high-pressure refrigerant flows and a plurality of low-temperature and low-pressure refrigerant heat transfer tubes through which the low-temperature and low-pressure refrigerant flows.
These high-temperature high-pressure refrigerant heat transfer tubes and low-temperature low-pressure refrigerant heat transfer tubes are formed in a cross-sectional flat shape in which a plurality of refrigerant flow paths through which the refrigerant passes are arranged in the width direction,
Each end of the laminated high-temperature / high-pressure refrigerant heat transfer tube and the low-temperature / high-pressure refrigerant heat transfer tube are separated from each other at a position in front of being connected to the header, with a predetermined interval between the adjacent heat transfer tubes. Both ends of the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer tube are connected to the high-temperature high-pressure refrigerant header section, and both ends of the refrigerant flow path of the low-temperature low-pressure refrigerant heat transfer pipe are connected to the low-temperature low-pressure refrigerant header section. Are connected,
The intercooler, wherein the low-temperature and low-pressure refrigerant heat transfer pipe is connected to the low-temperature and low-pressure refrigerant header portion through the high-temperature and high-pressure refrigerant header portion .
前記高温高圧冷媒ヘッダ部及び前記低温低圧冷媒ヘッダ部が一体化されていることを特徴とする請求項1または請求項2に記載のインタークーラ。The intercooler according to claim 1 or 2, wherein the high-temperature and high-pressure refrigerant header part and the low-temperature and low-pressure refrigerant header part are integrated. 前記低温低圧冷媒伝熱管は、その冷媒流路が、前記高温高圧冷媒伝熱管の前記冷媒流路よりも大径に形成されていることを特徴とする請求項1〜のいずれか1項記載のインタークーラ。The low-temperature low-pressure refrigerant heat-transfer tubes, the coolant flow path, according to any one of claims 1-3, characterized in that has a larger diameter than the refrigerant passage of the high-temperature high-pressure refrigerant heat-transfer pipe Intercooler. 前記低温低圧冷媒伝熱管は、その冷媒流路が、前記高温高圧冷媒伝熱管の前記冷媒流路よりも多く形成されていることを特徴とする請求項1〜のいずれか1項記載のインタークーラ。The intercooler according to any one of claims 1 to 4 , wherein the low-temperature low-pressure refrigerant heat transfer tube has more refrigerant flow paths than the refrigerant flow path of the high-temperature high-pressure refrigerant heat transfer pipe. Cooler. 前記高温高圧冷媒伝熱管及び前記低温低圧冷媒伝熱管には、前記冷媒がそれぞれ逆方向へ流されることを特徴とする請求項1〜のいずれか1項記載のインタークーラ。The intercooler according to any one of claims 1 to 5 , wherein the refrigerant flows through the high-temperature high-pressure refrigerant heat transfer tube and the low-temperature low-pressure refrigerant heat transfer tube in opposite directions. ケーシング内に導入した空気を冷却する冷却器がCOを冷媒とする冷凍サイクルの一部を構成するCO冷媒車両用空調装置において、
前記冷凍サイクルに、請求項1〜のいずれか1項記載のインタークーラが設けられていることを特徴とするCO冷媒車両用空調装置。
In CO 2 refrigerant air conditioning system forms a part of a refrigeration cycle cooler for a CO 2 refrigerant for cooling the air introduced into the casing,
An air conditioner for a CO 2 refrigerant vehicle, wherein the intercooler according to any one of claims 1 to 6 is provided in the refrigeration cycle.
JP2001037184A 2001-02-14 2001-02-14 Intercooler and CO2 refrigerant vehicle air conditioner Expired - Lifetime JP4727051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037184A JP4727051B2 (en) 2001-02-14 2001-02-14 Intercooler and CO2 refrigerant vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037184A JP4727051B2 (en) 2001-02-14 2001-02-14 Intercooler and CO2 refrigerant vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2002243374A JP2002243374A (en) 2002-08-28
JP4727051B2 true JP4727051B2 (en) 2011-07-20

Family

ID=18900353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037184A Expired - Lifetime JP4727051B2 (en) 2001-02-14 2001-02-14 Intercooler and CO2 refrigerant vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP4727051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042456A1 (en) * 2020-08-26 2022-03-03 广东美的暖通设备有限公司 Heat exchanger, electric control box and air conditioning system
EP4269926A4 (en) * 2021-02-08 2024-06-19 GD Midea Heating & Ventilating Equipment Co., Ltd. Heat exchanger, electric control box and air conditioning system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457660B1 (en) * 2002-10-31 2004-11-18 현대자동차주식회사 CO2 aircondination system for automobile
JP2004177006A (en) * 2002-11-27 2004-06-24 Japan Climate Systems Corp Internal heat exchanger
DE10303595B4 (en) * 2003-01-30 2005-02-17 Visteon Global Technologies, Inc., Dearborn Multi-channel heat exchanger and connection unit
JP2004286280A (en) * 2003-03-20 2004-10-14 Denso Corp Heat exchanger
JP4348113B2 (en) * 2003-05-23 2009-10-21 株式会社ヴァレオサーマルシステムズ Heat exchanger
JP2005337700A (en) * 2004-04-28 2005-12-08 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit
JP4536459B2 (en) * 2004-08-25 2010-09-01 株式会社ティラド Heat exchanger tubes and heat exchangers
DE102005045539A1 (en) * 2005-09-23 2007-03-29 Valeo Klimasysteme Gmbh Inner heat exchanger for a refrigerant circuit of an air conditioner
JP2007183062A (en) * 2006-01-10 2007-07-19 Sanden Corp Heat exchanger
ES2447776T3 (en) 2006-04-14 2014-03-12 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and cooling air conditioner
EP2017555A1 (en) * 2006-04-19 2009-01-21 Calsonic Kansei Corporation Internal heat exchanger
US20110056667A1 (en) * 2008-07-15 2011-03-10 Taras Michael F Integrated multi-circuit microchannel heat exchanger
JP2010125979A (en) * 2008-11-27 2010-06-10 Sanden Corp Air conditioning device for vehicle
JP6025716B2 (en) * 2011-05-11 2016-11-16 株式会社ヴァレオジャパン Air conditioner for vehicles
JP5287949B2 (en) * 2011-07-28 2013-09-11 ダイキン工業株式会社 Heat exchanger
JP2012093091A (en) * 2012-02-17 2012-05-17 Mitsubishi Electric Corp Heat exchanger and refrigeration air conditioning device
WO2013132544A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Heat exchanger, and heat pump system with heat exchanger
JP2013234801A (en) * 2012-05-09 2013-11-21 Mitsubishi Heavy Ind Ltd Heat exchanger and vehicle air conditioning device
CN103837023B (en) * 2012-11-20 2019-05-17 浙江盾安热工科技有限公司 Double-compressor micro-channel heat exchanger
CN103837025B (en) * 2012-11-23 2016-06-08 广东美的制冷设备有限公司 Micro-channel heat exchanger
JP2019056536A (en) * 2017-09-22 2019-04-11 パナソニックIpマネジメント株式会社 Refrigeration cycle device
CN111981869A (en) * 2019-05-22 2020-11-24 北京航空航天大学 Compact light harmonica tube heat exchanger
WO2020250972A1 (en) * 2019-06-12 2020-12-17 パナソニック株式会社 Heat storage device
WO2020250970A1 (en) * 2019-06-12 2020-12-17 パナソニック株式会社 Heat storage device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154967U (en) * 1987-03-30 1988-10-12
JPH0410279U (en) * 1990-05-09 1992-01-29
JPH05196377A (en) * 1991-08-22 1993-08-06 Modine Mfg Co Heat exchanger
JPH08261669A (en) * 1995-03-27 1996-10-11 Sanden Corp Heat exchanger
JPH09210576A (en) * 1996-01-31 1997-08-12 Kubota Corp Double tube type heat exchanger
JPH10267585A (en) * 1997-01-27 1998-10-09 Denso Corp Heat exchanger
JP2000146466A (en) * 1998-10-30 2000-05-26 Miura Co Ltd Heat exchanger
JP2000346584A (en) * 1999-06-02 2000-12-15 Denso Corp Heat exchanger
JP2001153571A (en) * 1999-09-16 2001-06-08 Denso Corp Heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154967A (en) * 1986-12-19 1988-06-28 Toshiba Corp Combustion improver for gas analysis
JPH0410279A (en) * 1990-04-26 1992-01-14 Mitsubishi Electric Corp Video recording and reproducing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154967U (en) * 1987-03-30 1988-10-12
JPH0410279U (en) * 1990-05-09 1992-01-29
JPH05196377A (en) * 1991-08-22 1993-08-06 Modine Mfg Co Heat exchanger
JPH08261669A (en) * 1995-03-27 1996-10-11 Sanden Corp Heat exchanger
JPH09210576A (en) * 1996-01-31 1997-08-12 Kubota Corp Double tube type heat exchanger
JPH10267585A (en) * 1997-01-27 1998-10-09 Denso Corp Heat exchanger
JP2000146466A (en) * 1998-10-30 2000-05-26 Miura Co Ltd Heat exchanger
JP2000346584A (en) * 1999-06-02 2000-12-15 Denso Corp Heat exchanger
JP2001153571A (en) * 1999-09-16 2001-06-08 Denso Corp Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042456A1 (en) * 2020-08-26 2022-03-03 广东美的暖通设备有限公司 Heat exchanger, electric control box and air conditioning system
EP4269926A4 (en) * 2021-02-08 2024-06-19 GD Midea Heating & Ventilating Equipment Co., Ltd. Heat exchanger, electric control box and air conditioning system

Also Published As

Publication number Publication date
JP2002243374A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP4727051B2 (en) Intercooler and CO2 refrigerant vehicle air conditioner
JP4692295B2 (en) Evaporator unit and ejector refrigeration cycle
US8099978B2 (en) Evaporator unit
US20060288727A1 (en) Cold storage tank unit and refrigeration cycle apparatus using the same
JP2004190875A (en) Refrigerating cycle device
MXPA03001819A (en) Reversible vapor compression system.
JP2005308384A (en) Ejector cycle
CN102788452A (en) Condenser for vehicle and air conditioning system for vehicle
CN112092566A (en) Thermal management system
JP4718716B2 (en) Gas cooler and in-vehicle air conditioner
WO2011142352A1 (en) Air conditioning device for vehicle
JP2007113904A (en) Cold storage tank apparatus and refrigeration cycle apparatus using the same
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP4508006B2 (en) Refrigeration cycle equipment for vehicles
JP2002156161A (en) Air conditioner
CN210951942U (en) Thermal management system
JP2006207980A (en) Refrigerating apparatus and refrigerator
JP2002156162A (en) Intercooler and air conditioner for vehicle using co2 refrigerant
JP2002130963A (en) Intercooler and air conditioning device for co2 refrigerant vehicle
JP3959805B2 (en) Engine driven refrigeration system
WO2020246337A1 (en) Heat exchanger, and refrigeration cycle device
JP2001174102A (en) Air conditioner
JP4086011B2 (en) Refrigeration equipment
JP2004189069A (en) Refrigeration cycle device
JP2003121025A (en) Heating-cooling combination appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R151 Written notification of patent or utility model registration

Ref document number: 4727051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term