JPS63154967A - Combustion improver for gas analysis - Google Patents

Combustion improver for gas analysis

Info

Publication number
JPS63154967A
JPS63154967A JP30158386A JP30158386A JPS63154967A JP S63154967 A JPS63154967 A JP S63154967A JP 30158386 A JP30158386 A JP 30158386A JP 30158386 A JP30158386 A JP 30158386A JP S63154967 A JPS63154967 A JP S63154967A
Authority
JP
Japan
Prior art keywords
powder
combustion improver
particle size
combustion
pelletized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30158386A
Other languages
Japanese (ja)
Inventor
Isamu Koseki
小関 勇
Junji Hatakeyama
畠山 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30158386A priority Critical patent/JPS63154967A/en
Publication of JPS63154967A publication Critical patent/JPS63154967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To eliminate uneven combustion in an analysis sample, by arranging 10-35wt% of tin, 10ppm each of sulfur and carbon and tungsten in substance for the remainder. CONSTITUTION:This combustion improver is composed of 10-35wt% of Sn, less than 10ppm each of S and C and W in substance for the remainder. The combustion improver is made up of W powder and Sn powder both pelletized, where the average particle size of the pelletized powder is preferably about 0.1-2mm. The ratio of the Sn powder is set at 10-35wt% to avoid segregation due to increase in the volume with easier melting. Moreover, mixing with impurities is suppressed from outside during the pelletization along with heightened purity of the W and Sn powder used for pelletization. To produce such pelletized powder, for example, fine W powder with an average particle size of about 1.0-10mum is thermally treated in a hydrogen furnace at 1,400-1,850 deg.C once to volatilize S and C and molded and crushed into pellets with a specified particle size. This eliminates uneven fuel in an analysis sample.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は鉄鋼中の硫黄(S)、炭素(C)のガス分析を
行なう際に用いる助燃剤に関し、更に詳しくは、測定値
のバラツキを小たらしめて測定精度の向上を可能たらし
めるタングステン(W)−スズ(S n)系のガス分析
用助燃剤に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a combustion improver used when performing gas analysis of sulfur (S) and carbon (C) in steel, and more specifically, The present invention relates to a tungsten (W)-tin (Sn)-based combustion improver for gas analysis, which makes it possible to improve measurement accuracy by reducing variations in measured values.

(従来の技術) 鉄鋼中の不純物1例えばS、Cのガス分析は概ね次のよ
うにして行なわれている。まず、ブロック、粉末の形態
は問わず所定量の分析試料がルツボ、ポートのような容
器に採取される。ついで、これらを燃焼炉内にセットし
、所定温度に加熱して分析試料を燃焼せしめる。そして
、発生した燃焼ガスを所定の分析装置にかけて、S、C
などの不純物を測定するのである。
(Prior Art) Gas analysis of impurities such as S and C in steel is generally carried out as follows. First, a predetermined amount of an analysis sample, regardless of whether it is in the form of a block or powder, is collected into a container such as a crucible or port. Next, these are placed in a combustion furnace and heated to a predetermined temperature to burn the analysis sample. Then, the generated combustion gas is passed through a predetermined analyzer to
It measures impurities such as

この場合、分析試料を完全燃焼せしめるために、分析試
料は助燃剤と一緒に燃焼処理に付される。助燃剤として
は各種の金属又はそれらの酸化物が多用されるが、最近
では概ね高純度、とりわけ分析対象物であるS、Cの含
有量が少なく、粒径が0.3〜1.5mm程度のW粉粒
と同じく高純度で粒径が1〜2+u+程度のSn粉粒と
が同時に用いられている。
In this case, the analysis sample is subjected to a combustion treatment together with a combustion improver in order to completely burn the analysis sample. Various metals or their oxides are often used as combustion improvers, but recently they are generally of high purity, with a particularly low content of S and C, which are the analytes, and a particle size of about 0.3 to 1.5 mm. Similarly to the W powder, Sn powder having a high purity and a particle size of about 1 to 2+u+ is used at the same time.

このとき、助燃剤は次のように取扱われている。例えば
、上記したW粉粒とSn粉粒を諸定量混合し、この混合
粉を分析試料とともに容器内に収容したり、または、容
器内に収容しである分析試料に上記各粉末を別々に添加
したのち全体を簡単に混合するという操作である。いず
れにしても、W粉粒とSn粉粒とは簡単に混合して燃焼
処理に付されているにすぎない。
At this time, combustion improvers are handled as follows. For example, the W powder and Sn powder described above may be mixed in various amounts and the mixed powder may be placed in a container together with the analysis sample, or each of the above powders may be separately added to the analysis sample contained in the container. After that, the whole thing is simply mixed. In any case, W powder and Sn powder are simply mixed and subjected to combustion treatment.

(従来技術の問題点) しかしながら、上記した従来操作のようにW粉粒とSn
粉粒を分析試料に添加する方法では次のような問題が生
じている。すなわち、W粉粒とSn粉粒との均一混合が
不充分であるという問題である。
(Problems with the prior art) However, as in the conventional operation described above, W powder particles and Sn
The following problems arise with the method of adding powder particles to an analytical sample. That is, the problem is that uniform mixing of W powder and Sn powder is insufficient.

W粉粒とSn粉粒とが不均一な混合状態にあると1分析
試料には燃焼ムラが発生し易くなり、その結果、S、C
の抽出率は低下し、しかも測定値がバランいて測定精度
の低下を招く。
If W powder and Sn powder are in a non-uniform mixed state, uneven combustion is likely to occur in one analysis sample, and as a result, S, C
The extraction rate of is reduced, and the measured values become unbalanced, leading to a decrease in measurement accuracy.

本発明は、WとSnを所定の量比関係で予め均一に一体
化した混合粉粒であり、そのため1分析試料に燃焼ムラ
が生ずることのない助燃剤の提供を目的とする。
The present invention aims to provide a combustion improver that is a mixed powder in which W and Sn are uniformly integrated in advance in a predetermined quantitative ratio, and therefore does not cause uneven combustion in one analysis sample.

[発明の構成] (問題点を解決するための手段・作用)本発明者らは上
記問題点を解決すべく鋭意研究を重ねるなかで、この問
題点が上記した操作ではW粉粒とSn粉粒との不均一混
合に基因すること、したがって、予めWとSnが均一に
混合した状態の粉粒体を助燃剤として用いれば上記問題
点は解消し得ること、を想到し、この着想に基づいて更
に種々の研究を重ねた結果その着想の正しさを確認し本
発明の助燃剤を開発するに到った。
[Structure of the invention] (Means/effects for solving the problem) The inventors of the present invention have conducted extensive research to solve the above problem, and have found that this problem has been solved by the above-mentioned operation. Based on this idea, we realized that the above problem is caused by uneven mixing with grains, and that the above problem can be solved by using powder and granules in which W and Sn are uniformly mixed in advance as a combustion improver. As a result of further various studies, the correctness of the idea was confirmed and the combustion improver of the present invention was developed.

すなわち、本発明の助燃剤は、Sn  10〜35重量
%、SおよびCがそれぞれ10ppm以下であり、残部
が実質的にWであることを特徴とする。
That is, the combustion improver of the present invention is characterized in that Sn is 10 to 35% by weight, S and C are each 10 ppm or less, and the balance is substantially W.

本発明の助燃剤はW粉とSn粉を造粒したものである。The combustion improver of the present invention is made by granulating W powder and Sn powder.

この場合、造粒粉の平均粒径はO01〜2mm程度に整
粒することが好ましい。
In this case, the average particle size of the granulated powder is preferably sized to about 001 to 2 mm.

Sn粉の割合いが少なすぎると分析試料が完全に溶融し
ない等の問題が生じ、また逆に多すぎると体積が増加す
るため偏析が起こりやすくなるような問題が生じはじめ
るので、10〜35重量%に設定する。好ましくは20
〜30重量%であり、更に好ましくは20〜25重量%
である。
If the proportion of Sn powder is too small, problems such as the analysis sample not being completely melted will occur, while if it is too large, the volume will increase, making segregation more likely. Set to %. Preferably 20
-30% by weight, more preferably 20-25% by weight
It is.

また、この造粒粉において、S、Cの含有量が多い場合
は、分析精度の信頼性が落ちるので、それぞれの含有量
はloppm以下に設定される。このためには、造粒に
用いるW粉、Sn粉の純度をそれぞれ高めると同時に造
粒時の外部からの不純物混入を抑制することが必要であ
る。
Moreover, in this granulated powder, if the content of S and C is large, the reliability of analysis accuracy decreases, so the content of each is set to loppm or less. To this end, it is necessary to increase the purity of the W powder and Sn powder used for granulation, and at the same time to suppress the contamination of external impurities during granulation.

このような造粒粉は例えば次のようにして製造すること
ができる0例えばまず、平均粒径1.0〜10μm程度
のW微粉を一旦水素炉中において1400−1850℃
で熱処理する。この熱処理によりW微粉中のS、Cを揮
散せしめ、その含有量を10ppm以下に減少せしめる
のである。その後、得られたW微粉、に高純度のSn粉
を所定量混合し、両者を例えばWの内張りが施されてい
る混合機の中で所定時間混合し、成形・粉砕し、所定粒
径の造粒粉に整粒するのである。
Such granulated powder can be produced, for example, as follows. For example, first, fine W powder with an average particle size of about 1.0 to 10 μm is heated in a hydrogen furnace at 1400 to 1850°C.
Heat treated with This heat treatment volatilizes S and C in the fine W powder and reduces the content to 10 ppm or less. Thereafter, a predetermined amount of high-purity Sn powder is mixed with the obtained W fine powder, and both are mixed for a predetermined time in a mixer lined with W, for example, and then shaped and pulverized to form a predetermined particle size. It is sized into granulated powder.

このときに、W微粉の代りに、予め0、l〜1.5mm
程度に整粒された造粒W粉を用いてもよい、又、均一に
混合されたW−3n粉を成形のみで整粒しても良い。
At this time, instead of W fine powder, 0.1 to 1.5 mm of
Granulated W powder that has been sized to a certain degree may be used, or W-3n powder that has been uniformly mixed may be sized by only molding.

(発明の実施例) 実施例1.実施例2 平均粒径7戸のW微粉を1800″Cの水素炉中で1時
間熱処理した。得られたW微粉のS、C含有量はそれぞ
れ5ppm  、 8ppmであった。
(Embodiments of the invention) Example 1. Example 2 W fine powder having an average particle size of 7 units was heat treated in a hydrogen furnace at 1800''C for 1 hour. The S and C contents of the obtained W fine powder were 5 ppm and 8 ppm, respectively.

ついで、このW微粉に、s、c含有量がそれぞれ5pp
m 、 5ppmであるSn粉(100メツシユ以下)
を表示の割合で混合し、W内張りのポットで1時間混合
した。得られた造粒粉を粒径0.1〜2Iに整粒した。
Next, the s and c contents were added to this W fine powder at 5 ppp each.
m, 5ppm Sn powder (100 mesh or less)
were mixed at the indicated ratio and mixed in a W-lined pot for 1 hour. The obtained granulated powder was sized to a particle size of 0.1 to 2I.

これを第1の実施例粉とする。This is referred to as the first example powder.

得られた各造粒粉つき無作為にサンプル3種をとりだし
、それぞれSnMを分析した。その結果(平均値及び最
大値−最小値)を表に示した。
Three types of samples were randomly taken out from each of the obtained granulated powders, and SnM was analyzed for each sample. The results (average value and maximum value - minimum value) are shown in the table.

また、これら各造粒粉を用い、分析試料としてNi系鉄
鋼を選び、常法によりS、Cの同時定量分析を行なった
。その結果を表に示した。
Further, using each of these granulated powders, Ni-based steel was selected as an analysis sample, and simultaneous quantitative analysis of S and C was conducted by a conventional method. The results are shown in the table.

また、上記したW微粉を−H直径0.1−0.8ff1
mの造粒粉に整粒したのち、上記と同様にしてW−3n
造粒粉(これを第2の実施例粉とする)を調製した場合
のSn量、S、Cの同時分析の結果も示した。
In addition, the above-mentioned W fine powder -H diameter 0.1-0.8ff1
After grading into W-3n granulated powder in the same manner as above,
The results of simultaneous analysis of the amount of Sn, S, and C in the case of preparing granulated powder (this is referred to as the second example powder) are also shown.

比較のために、S、C含有量がそれぞれ5ppm。For comparison, the S and C contents were each 5 ppm.

8 ppmであるW粒とS、C含有量がそれぞれ5PP
III l 5ppmであるSn粒とを別々に所定量ず
つ今後した場合の混合粉におけるSn量の分析値及びそ
れを用いたときのNi系鉄鋼のS、C同時分析の結果も
表に示した。
W grain with 8 ppm and S and C contents of 5PP each
The table also shows the analysis value of the amount of Sn in the mixed powder when a predetermined amount of Sn grains with a concentration of 5 ppm is added separately, and the results of the simultaneous S and C analysis of Ni-based steel using the same.

この結果より明らかなように本発明の実施例である第1
.第2の実施例粉中のSn  10〜35重量%の助燃
剤はSnが均一に混合しており、かつS、C分析値のバ
ラツキが小さい。
As is clear from this result, the first example of the present invention
.. In the combustion improver containing 10 to 35% by weight of Sn in the powder of the second example, Sn is mixed uniformly, and the variation in S and C analysis values is small.

[発明の効果] 以上の説明で明らかなように、本発明の助燃剤はW粉と
Sn粉とが均一に今後した状態で造粒されていて分析試
料の完全燃焼を可能たらしめ、S、C分析値のバラツキ
が小さくなり分析精度を高めることができて有用である
[Effects of the Invention] As is clear from the above explanation, the combustion improver of the present invention is granulated with W powder and Sn powder evenly mixed together, making it possible to completely burn the analysis sample. This is useful because it reduces the variation in C analysis values and improves analysis accuracy.

Claims (2)

【特許請求の範囲】[Claims] (1)スズ10〜35重量%、硫黄および炭素がそれぞ
れ10ppm以下であり、残部が実質的にタングステン
よりなるガス分析用助燃剤。
(1) A combustion improver for gas analysis, containing 10 to 35% by weight of tin, 10 ppm or less of each of sulfur and carbon, and the remainder substantially consisting of tungsten.
(2)助燃剤の平均粒径が、0.1〜2.0mmである
特許請求の範囲第1項に記載のガス分析用助燃剤。
(2) The combustion improver for gas analysis according to claim 1, wherein the average particle size of the combustion improver is 0.1 to 2.0 mm.
JP30158386A 1986-12-19 1986-12-19 Combustion improver for gas analysis Pending JPS63154967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30158386A JPS63154967A (en) 1986-12-19 1986-12-19 Combustion improver for gas analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30158386A JPS63154967A (en) 1986-12-19 1986-12-19 Combustion improver for gas analysis

Publications (1)

Publication Number Publication Date
JPS63154967A true JPS63154967A (en) 1988-06-28

Family

ID=17898693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30158386A Pending JPS63154967A (en) 1986-12-19 1986-12-19 Combustion improver for gas analysis

Country Status (1)

Country Link
JP (1) JPS63154967A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279454A2 (en) * 1987-02-20 1988-08-24 Horiba, Ltd. Assistant combustion agent for the use in a high-frequency combustion furnace
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
US11913730B2 (en) 2019-04-09 2024-02-27 Pfannenberg Gmbh Heat exchanger arrangement and method for producing a heat exchanger arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279454A2 (en) * 1987-02-20 1988-08-24 Horiba, Ltd. Assistant combustion agent for the use in a high-frequency combustion furnace
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
US11913730B2 (en) 2019-04-09 2024-02-27 Pfannenberg Gmbh Heat exchanger arrangement and method for producing a heat exchanger arrangement

Similar Documents

Publication Publication Date Title
US7976776B2 (en) Mercury dispensing compositions and manufacturing process thereof
Blank et al. Specimen preparation in x‐ray fluorescence analysis of materials and natural objects
Duke et al. Density and Electrical Conductance in the System KCl‐ZnCl2
JPS63154967A (en) Combustion improver for gas analysis
CA1175660A (en) Process for the manufacture of basic slags for the electroslag remelting process
WO2021014946A1 (en) Pgm recovery method
JP2002030357A (en) Method for separating iridium, ruthenium and rhodium and their batch quantitative determination method
CN114323859A (en) Preparation method of impurity element gold standard sample
CN114993969A (en) Method for enriching and determining gold, platinum and palladium in copper-nickel sulfide ore by fire assay method
Moloughney et al. A rapid fire-assay/atomic-absorption method for the determination of platinum, palladium and gold in ores and concentrates: A modification of the tin-collection scheme
AU2007202706B2 (en) X-ray flux composition mixture
Hoffman et al. Assay for platinum metals in ores and concentrates
Gordon et al. Combustion-Conductometric Determination of Less than 10 ppm Carbon in Tungsten.
RU2010881C1 (en) Process of producing aluminum-silicon alloys
RU2760533C1 (en) Method for producing palladium powder
Muromura Carbothermic synthesis of high purity plutonium nitride from plutonium oxide
KR0143493B1 (en) Combustion supporting composition for the analysis of carbon & sulphur in molten metal
Krishnamurthy et al. Refining of tantalum by sacrificial and carbon deoxidation
JPS58122458A (en) Combustion assisting agent for combustion analysis
JPH06221975A (en) Method of preventing evaporation of sulfer in preparing sample for x-ray fluorescence analysis
Pickles et al. Sulphur dioxide emissions from soda ash smelting of scrap lead acid battery residues
CN114441462A (en) Method for testing content of gold and palladium in chromium powder
Farnsworth et al. THE DETERMINATION OF URANIUM IN WASTE PRODUCTS ASSOCIATED WITH ZIRCONIUM-URANTUM FUEL ELEMENT PRODUCTION
CN116930114A (en) Sample melting method for detecting carbon element in metal through infrared absorption and detection method
O'Klatner et al. Metallurgy in the Laboratory: Preparation of Pure Antimony