WO2011142352A1 - Air conditioning device for vehicle - Google Patents

Air conditioning device for vehicle Download PDF

Info

Publication number
WO2011142352A1
WO2011142352A1 PCT/JP2011/060746 JP2011060746W WO2011142352A1 WO 2011142352 A1 WO2011142352 A1 WO 2011142352A1 JP 2011060746 W JP2011060746 W JP 2011060746W WO 2011142352 A1 WO2011142352 A1 WO 2011142352A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
cooling
medium
adsorption
mode
Prior art date
Application number
PCT/JP2011/060746
Other languages
French (fr)
Japanese (ja)
Inventor
功 加藤
正道 野田
潤一郎 粕谷
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2011142352A1 publication Critical patent/WO2011142352A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • B60H1/32014Cooling devices using absorption or adsorption using adsorption, e.g. using Zeolite and water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Definitions

  • the present invention relates to a vehicle air conditioner, and more particularly to a vehicle air conditioner that improves the cooling capacity of a vapor compression refrigerator using an adsorption refrigerator.
  • cooling capability is obtained by a vapor compression refrigerator having a compressor that operates by obtaining power from a traveling engine. For this reason, when the vehicle is stopped by waiting for a signal or the like while the vapor compression refrigerator is in operation, the compressor is controlled by performing engine control such as increasing the rotational speed of the traveling engine from the idle rotational speed. The torque necessary to drive the compressor and the number of rotations of the compressor necessary to obtain a desired cooling capacity are secured. Therefore, the fuel supplied to the engine when the vehicle is stopped is increased as compared with the normal idling operation, so that the fuel consumption of the vehicle is deteriorated.
  • an adsorption refrigeration machine is provided, and an evaporator section of the adsorption refrigeration machine is incorporated in a refrigerant circuit of a vapor compression refrigeration machine to cool the refrigerant.
  • the adsorption refrigeration machine used here includes an adsorption core part that adsorbs a gas phase medium by being cooled and desorbing the gas phase medium by being heated at the upper part of the airtight container.
  • the desorbed medium is condensed and stored in the lower part of the inside, and is provided with a condensation / evaporation core part that evaporates the liquid phase medium at the time of adsorption, and the gas adsorbed by the adsorption core part is heated.
  • the vapor phase medium is adsorbed by the cold storage mode in which the phase medium is desorbed and condensed and stored in the condensation / evaporation core part and the adsorption core part is cooled, and the condensation / evaporation is accompanied by this.
  • both heating and cooling of the adsorption core part are performed by engine cooling water, and when the adsorption core part is heated, high-temperature cooling water before passing through the radiator is used, and during cooling, low-temperature cooling water after passing through the radiator is used. The flow path of the cooling water is switched.
  • the heating and cooling of the adsorption core part is performed by engine cooling water as in the prior art, particularly when the adsorption core part is cooled in the cooling mode (medium adsorption mode), when the engine load is large, The engine coolant temperature after passing through the radiator is so high that low-temperature coolant required for adsorption cannot be obtained, and adsorption may not be possible. Therefore, after all, it can be operated only when the low-temperature cooling water necessary for adsorption when the engine load is small, such as when the vehicle is stopped, and the use is considered to be limited.
  • the heat exchange at the adsorption core part especially the cooling water that has become hot due to the generation of adsorption heat, returns to the engine, which leads to a situation where the engine temperature rises. Necessary.
  • the medium in the cold storage mode, the medium is cooled and condensed by the refrigerant of the vapor compression refrigerator, and therefore, the refrigerant on the condenser side of the refrigerant circuit is heated to increase the condensation pressure, As a result, the flow to the expansion valve is obstructed, resulting in a decrease in cooling capacity, and consequently the power consumption of the compressor, that is, the engine load increases, which is necessary in the vapor compression refrigerator. Driving power increases and vehicle fuel consumption decreases.
  • An object of the present invention is to provide a vehicle air conditioner that can solve such a conventional problem.
  • this invention provides an adsorption-type refrigerator with respect to a vehicle air conditioner provided with a vapor compression refrigerator.
  • the adsorption refrigerator includes a cold storage mode in which the medium adsorbed on the adsorber is desorbed and condensed by heating the adsorber, and a cooling mode in which the adsorber is evaporated and adsorbed by cooling the adsorber.
  • the adsorption refrigeration machine adsorbs the medium by being cooled and desorbs the medium by being heated, the condensing unit connected to the medium outlet of the adsorber, and the condensing unit
  • An evaporator connected to a medium outlet and connected to a medium inlet of the adsorber, and the condenser adsorbed by the adsorber is heated to desorb the medium.
  • the evaporation part or evaporator of an adsorption-type refrigerator is incorporated in the refrigerant circuit of the said vapor compression refrigerator, and is comprised so that a refrigerant
  • coolant may be cooled by evaporation of the said medium.
  • the adsorber is heated by waste heat (including engine cooling water) from a vehicle drive source, and the adsorber is cooled by air.
  • the adsorber can be cooled without being affected by the engine load by air cooling, so that sufficient adsorption performance can always be secured, and adverse effects on engine cooling performance can be ensured. It is possible to eliminate the need for countermeasures on the engine side. On the other hand, since the adsorber is heated by waste heat from the vehicle drive source, sufficient desorption performance can be ensured. Furthermore, since the adsorption chiller can be operated regardless of the running state of the vehicle, the power consumption of the compressor, that is, the engine load is reduced, and the power required for the vapor compression chiller is reduced. This can reduce the vehicle fuel consumption.
  • FIG. 2A Side view of vehicle showing layout example of air conditioner for vehicle FIG. 2A view (plan view)
  • FIG. 4 Side view of an adsorption refrigeration machine built into an existing vehicle
  • B arrow view of FIG. 4 (plan view)
  • C arrow view of FIG. 4 front view
  • FIG. 1 is a system diagram of a vehicle air conditioner showing an embodiment of the present invention.
  • the engine 1 is an internal combustion engine that serves as a driving source for driving the vehicle.
  • the cooling system 2 of the engine 1 is provided with a water pump 3 and a radiator 4.
  • the water pump 3 circulates engine cooling water to the engine 1.
  • the radiator 4 circulates in the engine 1 and cools the engine coolant that has become high temperature by exchanging heat with the outside air.
  • the engine cooling system 2 is provided with a bypass circuit for the radiator 4, a thermostat for controlling the bypass flow rate, and the like, which are not shown.
  • the vapor compression refrigerator 5 cools the air blown into the room by the evaporating action of the refrigerant circulating in the circuit, and includes the compressor 6, the condenser 7, the expansion valve 8 that forms the decompression means, and the evaporator 9. Consists of including.
  • the compressor 6 is driven by an engine 1 through an electromagnetic clutch (not shown), compresses a low-pressure low-temperature gas refrigerant, and obtains a high-pressure high-temperature gas refrigerant.
  • the condenser 7 uses a cooling fan 10 to cool the high-pressure high-temperature gas refrigerant from the compressor 6 to the condensation point with outdoor air and reduce it to a high-pressure room-temperature liquid refrigerant.
  • the expansion valve 8 rapidly decompresses and expands the high-pressure room-temperature liquid refrigerant from the condenser 7 to obtain a low-pressure low-temperature liquid (mist-like) refrigerant.
  • the evaporator 9 is disposed in the indoor air circulation path (between the inlet and the outlet), and evaporates the refrigerant of the low-pressure low-temperature liquid from the expansion valve 8 while taking heat from the surroundings. Thereby, indoor air (air which blows off indoors) is cooled.
  • an evaporator 15 to be described later constituting the adsorption refrigerator 11 is disposed as a supercooling heat exchanger at the subsequent stage of the condenser 7 in the vapor compression refrigerator 5 (between the condenser 7 and the expansion valve 8).
  • the adsorption refrigeration machine 11 includes an adsorber 12, a condenser 14 as a condenser connected to the outlet of the adsorber 12 via a first valve 13, and an evaporator connected to the outlet of the condenser 14. 15, and the outlet of the evaporator 15 is connected by piping to the inlet of the adsorber 12 via the second valve 16. And in the circuit of the adsorption refrigeration machine 11, water (steam) as an adsorption medium is sealed under vacuum.
  • the adsorber 12 contains an adsorbent 12a therein, and a water adsorbent such as silica gel or zeolite is used as the adsorbent 12a.
  • the adsorbent 12a has a property that the amount of adsorbable medium (adsorption capacity) increases as the relative humidity of the atmosphere in which it is stored increases. For this reason, when the adsorbent 12a is heated, the relative humidity in the vicinity of the surface of the adsorbent 12a is reduced and the adsorption capacity is reduced, so that the adsorbed medium is desorbed and released.
  • the adsorbent 12a when the adsorbent 12a is cooled, the relative humidity in the vicinity of the surface of the adsorbent 12a increases and the adsorption capacity increases, so that the medium is adsorbed by the increase.
  • the adsorbent 12a generates heat of adsorption equivalent to the heat of condensation of the medium when adsorbing the vapor medium.
  • a heat exchange pipe 12b passes through the adsorber 12 so as to be in thermal contact with the adsorbent 12a for heating the adsorbent 12a, and engine cooling water flows through the heat exchange pipe 12b as will be described later. By doing so, the adsorbent 12a can be heated.
  • heat radiation fins 12c are provided on the outer surface (outer wall portion) of the adsorber 12 for cooling (air cooling) the adsorbent 12a, and the adsorbent 12a can be cooled by using the cooling fan 17 in combination. is there.
  • the condenser 14 cools and vaporizes the vapor medium desorbed and released from the adsorbent 12a by the adsorber 12, and a cooling fan 17 is used for cooling. Therefore, the cooling fan 17 serves as both the air cooling means of the adsorber 12 and the air cooling means of the condenser 14.
  • the evaporator 15 is configured such that water as an adsorbing medium is stored in the evaporator 15, and the liquid level is disposed below the condenser 14.
  • a heat exchange passage 15 a passes through the evaporator 15, and the heat exchange passage 15 a forms a refrigerant passage between the condenser 7 and the expansion valve 8 in the vapor compression refrigerator 5. . Therefore, the evaporator 15 is provided as a supercooling heat exchanger in the vapor compression refrigerator 5.
  • a pipe (high temperature cooling water extraction pipe) 18 connected downstream of the cooling water outlet of the engine 1 and upstream of the radiator 4 is a valve (engine cooling water introduction valve) 19.
  • a pipe 20 returning to the engine cooling system 2 (water pump 3 suction side) is connected to the other end (exit part) of the heat exchange pipe 12b of the adsorber 12.
  • a valve (flow rate control valve) 21 is interposed downstream of the radiator 4 of the engine cooling system 2, and a pipe (low temperature cooling water extraction pipe) 22 connected between the radiator 4 and the valve 21 is connected via a one-way valve 23.
  • the adsorber 12 is connected to the inlet of the heat exchange pipe 12b.
  • the cooling fan 17 which is an air cooling means for the adsorber 12 and the condenser 14 will be described.
  • the cooling fan for the adsorber 12 and the cooling fan for the condenser 14 may be provided separately because the modes that require cooling are different, but in this embodiment, the cooling fan 17 is shared to reduce costs.
  • the layout is such that the condenser 14 is arranged on the upstream side in the flow direction of the cooling air by the cooling fan 17 and the adsorber 12 is arranged on the downstream side. The reason will be described later.
  • the adsorption refrigerator 11 periodically repeats a cold storage mode (medium desorption mode) and a cooling mode (medium adsorption mode).
  • a cold storage mode the first valve 13 on the outlet side (condenser 14 side) of the adsorber 12 is opened, and the second valve 16 on the inlet side (evaporator 15 side) is closed.
  • the engine coolant introduction valve 19 is opened to heat the adsorber 2.
  • the cooling fan 17 is operated in both the cold storage mode and the cooling mode.
  • the condenser 14 When the condenser 14 is cooled by the cooling fan 17, the air blown by the cooling fan 17 reaches the adsorber 12 through the condenser 14, but the adsorber 12 is cooled by the cooling fan 17. It can be canceled by the condensation heat generated in the upstream condenser 14, and does not hinder the heating of the adsorber 12. This is the main reason why the condenser 14 is arranged on the upstream side in the flow direction of the cooling air by the cooling fan 17 and the adsorber 12 is arranged on the downstream side.
  • the cooling mode is entered.
  • the cooling mode is switched to the cooling mode, the mode is temporarily switched.
  • the engine coolant introduction valve 19 is closed, the valve (flow rate control valve) 21 is closed or throttled, and the low-temperature coolant cooled by the radiator 4 is adsorbed through the one-way valve 23 from the radiator 4 outlet side. It introduce
  • the operation time in the switching mode may be, for example, until the adsorber outlet temperature of the heat exchange pipe 12b and the outlet temperature of the radiator 4 become substantially the same.
  • the operation time may be determined based on a calculation formula or a table.
  • valve (flow rate control valve) 21 After completion of replacement of the cooling water in the heat exchange pipe 12b, the valve (flow rate control valve) 21 is opened and the cooling mode is started.
  • the engine coolant on the outlet side of the radiator 4 flows to the valve 21 side having a small passage resistance, and does not flow to the one-way valve 23 side (adsorber 12 side).
  • An open / close valve may be provided instead of the one-way valve 23, or a three-way switching valve may be provided at point c in the figure instead of the valves 21 and 23.
  • the first valve 13 on the outlet side (condenser 14 side) of the adsorber 12 is closed, and the second valve 16 on the inlet side (evaporator 15 side) is opened.
  • the engine coolant introduction valve 19 is closed.
  • the cool-down mode the flow of engine cooling water for heating to the adsorber 12 is stopped, and the supply of steam to the condenser 14 is stopped by closing the first valve 13 to reduce the heat of condensation. Therefore, the adsorber 12 and thus the adsorbent 12a are cooled by the air blow by the cooling fan 17.
  • the operation proceeds to the cold storage mode again.
  • the first valve 13 on the outlet side (condenser 14 side) of the adsorber 12 is opened as it is, and the inlet side (evaporator 15 side) is opened. ) Of the second valve 16 is closed. Then, the engine coolant introduction valve 19 is opened to heat the adsorber 12.
  • switching from the cool storage mode to the cool-down mode is performed by detecting the completion of the medium desorption of the adsorbent 12a, and switching from the cool-down mode to the cool storage mode is performed by detecting the completion of the medium adsorption of the adsorbent 12a.
  • the mode switching is preferably performed based on a parameter related to the medium adsorption state (adsorption amount) of the adsorbent 12a, in particular, the pressure in the adsorber 12.
  • parameters such as temperature and humidity other than pressure may be used, or switching may be performed at predetermined time intervals based on an experimentally obtained switching cycle. Further, switching may be performed based on a cooling request.
  • the cooling mode may be started.
  • the vehicle air conditioner of the present embodiment incorporates an adsorption refrigeration machine 11 into a vehicle having an existing vapor compression refrigeration machine 5 and an engine cooling system 2 and appropriately connects them, thereby the vapor compression refrigeration machine 5.
  • the refrigeration capacity can be improved without affecting the control of the engine and the control of the engine cooling system 2. That is, the heat exchange passage 15a on the evaporator 15 side of the adsorption refrigeration machine 11 is interposed between the illustrations a and a 'of the refrigerant circuit of the vapor compression refrigeration machine 5 and b of the engine cooling system 2
  • the pipes 18, 22, and 20 on the adsorber 12 side of the adsorption refrigerator 11 between the points c and c ′, the vapor compression refrigerator 5 and the engine cooling system 2 can be controlled. Refrigerating capacity can be improved without affecting it.
  • FIG. 2 is a side view of the vehicle showing a layout example of the vehicle air conditioner
  • FIG. 3 is a view (plan view) taken along arrow A in FIG.
  • a blower duct 30 is provided that surrounds the condenser 14 and the adsorber 12 of the adsorption refrigerator 11 and extends in the longitudinal direction of the vehicle, and a cooling fan is provided at the most downstream side of the blower duct 30. 17, a blower fan is provided, whereby an air flow is generated in the air duct 30.
  • the condenser 14 is disposed on the upstream side, and the adsorber 12 is disposed on the downstream side.
  • the condenser 14 in the cool storage mode (medium desorption mode) in which the condenser 14 needs to be cooled, the condenser 14 can be sufficiently cooled, and the cooling of the adsorber 12 can be canceled by the generation of condensation heat, and the engine cooling water can be used.
  • the heating of the adsorber 12 is not hindered.
  • the cooling mode medium adsorption mode
  • no heat of condensation is generated in the condenser 14, so that the adsorber 12 can be sufficiently cooled.
  • the cooling fan 17 is stopped to eliminate power consumption in the cooling fan 17. be able to.
  • FIG. 4 is a side view of an adsorption refrigeration machine incorporated into an existing vehicle
  • FIG. 5 is a view as viewed from arrow B (plan view) in FIG. 4
  • FIG. 6 is a view as viewed from arrow C in FIG.
  • the adsorption refrigerator can be set in an assembled state
  • the engine can be set at the points a and a ′ shown in the figure for the vapor compression refrigerator 5 as long as the installation space can be secured.
  • the cooling system 2 can be easily retrofitted by connecting at the points b, c and c ′ shown in the figure.
  • the cooling capacity can be improved with little influence on the current equipment, it has a very comfortable mountability.
  • the adsorber 12 is heated by engine cooling water, and the adsorber 12 is cooled by air, so that the following effects can be obtained.
  • the engine cooling water from the radiator is used for water cooling, when the engine load is large, the low-temperature cooling water cannot be obtained as described above, and the adsorption may not be possible. Therefore, continuous adsorption cannot be performed, and after all, it can be operated only when the engine load is small.
  • a method for solving this it is conceivable to enlarge the radiator, but it is not practical.
  • the adsorber can be cooled without being affected by the engine load by air cooling, and sufficient adsorbing performance can always be secured. Because water cooling depends on the engine load condition, the cooling capacity always fluctuates, but air cooling using outside air is capable of stable operation.
  • the cooling water heated by the adsorption heat generated from the adsorbent during cooling is returned to the engine, which is not good for the engine. That is, returning water that has become high temperature due to adsorption heat generation to the engine causes an increase in the engine temperature and requires countermeasures on the vehicle side. That is, it is necessary to change the cooling water circuit and add a control valve.
  • air cooling can prevent adverse effects on engine cooling performance and can eliminate the need for measures on the engine side. That is, an air circuit is separately required, but the number of changes in the current cooling water circuit can be extremely reduced.
  • the adsorber 12 is heated by engine coolant having a large heat capacity, it is excellent in heat transfer, can be heated quickly, and sufficient desorption performance can be ensured. Thereby, the time of cool storage mode (medium detachment
  • the adsorber 12 is heated in the cold storage mode by supplying high-temperature cooling water after cooling the engine and before flowing into the radiator to the adsorber heating pipe (heat exchange pipe 12b).
  • the pipe (12b) is supplied with the low-temperature cooling water after passing through the radiator, and has a switching mode for discharging the high-temperature cooling water in the pipe (12b). Switching from heating to cooling (air cooling) of the vessel 12 can be performed more quickly.
  • the condenser 14 is disposed on the upstream side in the flow direction of the air for cooling the adsorber, and the adsorber 12 is disposed on the downstream side.
  • the cooling of the adsorber 12 in the cooling mode and the cooling of the condenser 14 in the cool storage mode can be performed by one air cooling means without adversely affecting the other (especially condensation during cool storage). It is possible to suppress the cooling of the adsorber 12 by giving the heat deprived from the container 14 to the adsorber 12), and to reduce the weight, the size, and the cost.
  • switching between the cold storage mode and the cooling mode can be performed at an appropriate timing by performing the switching based on the adsorption state of the adsorbent in the adsorber 12.
  • the vapor compression refrigerator 5 is configured to include the compressor 6, the condenser 7, the decompression means (expansion valve 8), and the evaporator 9, and the evaporation of the adsorption refrigerator 11.
  • the cooler 15 can be efficiently cooled to improve the cooling performance by being disposed downstream of the condenser 7 of the vapor compression refrigerator 5.
  • the arrangement position of the evaporator 15 of the adsorption refrigeration machine 11 is not limited to this, and the position where the refrigerant of the vapor compression refrigeration machine 5 can be cooled by evaporation of the adsorption medium in the refrigerant circuit of the vapor compression refrigeration machine 5. If it is.
  • the adsorber 12 is provided with the heat exchange pipe 12b through which the engine cooling water for heating can flow in the adsorbent storage space, and is used for air cooling on the outer wall portion of the adsorbent storage space.
  • the heat radiation fins 12c are provided, heating with engine cooling water and cooling with outside air can be performed efficiently.
  • the adsorber 12 is heated by engine cooling water.
  • engine waste heat other than engine cooling water for example, exhaust heat
  • waste heat generated from a vehicle drive source other than the engine for example, waste heat generated from a wheel drive motor or a motor drive inverter of a fuel cell vehicle or an electric vehicle, a fuel cell of a fuel cell vehicle, or the like is used. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The adsorption performance of an adsorption refrigerating machine is ameliorated regardless of the engine load when the cooling capacity of a steam compression refrigerating machine is improved by concurrently using an adsorption refrigerating machine. An adsorption refrigerating machine (11) is equipped with an adsorber (12), which adsorbs/desorbs a medium by cooling/heating, and has: a cold storage mode in which a medium adsorbed to the adsorber (12) is desorbed by heating the adsorber (12), is condensed and liquefied in a condenser (14), and is retained in an evaporator (15); and a cold releasing mode in which a medium is adsorbed to the adsorber (12) by cooling the adsorber (12) resulting in the medium to evaporate in the evaporator (15). The evaporator (15) of the adsorption refrigerating machine (11) is incorporated into the refrigerant circuit (compressor (6), condenser (7), expansion valve (8), and evaporator (9)) of a steam compression refrigerating machine (5), and is configured to cool the refrigerant when the medium evaporates. The adsorber (12) is heated by introducing the cooling water of an engine (1) to a heat exchanging pipe (12b) by means of a valve (19), and the adsorber (12) is cooled by means of a cooling fan (17).

Description

車両用空調装置Air conditioner for vehicles
 本発明は、車両空調装置に関し、特に蒸気圧縮式冷凍機の冷房能力を吸着式冷凍機を併用して向上させる車両用空調装置に関する。 The present invention relates to a vehicle air conditioner, and more particularly to a vehicle air conditioner that improves the cooling capacity of a vapor compression refrigerator using an adsorption refrigerator.
 一般的な車両用空調装置では、走行用エンジンから動力を得て稼働する圧縮機を有する蒸気圧縮式冷凍機にて冷房能力を得ている。
 このため、蒸気圧縮式冷凍機を稼働させた状態で、信号待ち等により車両を停止させたときには、走行用エンジンの回転数をアイドル回転数より上昇させる等のエンジン制御を行うことにより、圧縮機を駆動させるに必要なトルク及び所望の冷房能力を得るに必要な圧縮機の回転数を確保している。従って、車両停止時にエンジンに供給する燃料を通常のアイドル運転時より増大させるので、車両の燃費が悪化してしまう。
In a general vehicle air conditioner, cooling capability is obtained by a vapor compression refrigerator having a compressor that operates by obtaining power from a traveling engine.
For this reason, when the vehicle is stopped by waiting for a signal or the like while the vapor compression refrigerator is in operation, the compressor is controlled by performing engine control such as increasing the rotational speed of the traveling engine from the idle rotational speed. The torque necessary to drive the compressor and the number of rotations of the compressor necessary to obtain a desired cooling capacity are secured. Therefore, the fuel supplied to the engine when the vehicle is stopped is increased as compared with the normal idling operation, so that the fuel consumption of the vehicle is deteriorated.
 そこで特許文献1に記載の技術では、吸着式冷凍機を併設し、吸着式冷凍機の蒸発部を蒸気圧縮式冷凍機の冷媒回路内に組み込んで、冷媒を冷却することで、圧縮機の負担を低減し、燃費向上を図っている。
 ここで用いている吸着式冷凍機は、密閉容器内の上部に、冷却されることにより気相媒体を吸着し、加熱されることにより気相媒体を脱離する吸着コア部を備え、密閉容器内の下部に、脱離した媒体が凝縮液化されて貯留され、吸着時に液相媒体を蒸発させる凝縮・蒸発コア部を備えてなり、前記吸着コア部の加熱により、これに吸着されている気相媒体を脱離させ、前記凝縮・蒸発コア部にて凝縮液化して貯留する蓄冷モードと、前記吸着コア部の冷却により、これに気相媒体を吸着し、これに伴って前記凝縮・蒸発コア部の液相媒体を蒸発させる放冷モードとを有している。
Therefore, in the technology described in Patent Document 1, an adsorption refrigeration machine is provided, and an evaporator section of the adsorption refrigeration machine is incorporated in a refrigerant circuit of a vapor compression refrigeration machine to cool the refrigerant. To improve fuel efficiency.
The adsorption refrigeration machine used here includes an adsorption core part that adsorbs a gas phase medium by being cooled and desorbing the gas phase medium by being heated at the upper part of the airtight container. The desorbed medium is condensed and stored in the lower part of the inside, and is provided with a condensation / evaporation core part that evaporates the liquid phase medium at the time of adsorption, and the gas adsorbed by the adsorption core part is heated. The vapor phase medium is adsorbed by the cold storage mode in which the phase medium is desorbed and condensed and stored in the condensation / evaporation core part and the adsorption core part is cooled, and the condensation / evaporation is accompanied by this. A cooling mode for evaporating the liquid phase medium in the core portion.
 ここで、吸着コア部の加熱・冷却は共にエンジン冷却水により行い、吸着コア部の加熱時はラジエータ通過前の高温冷却水を用い、冷却時はラジエータ通過後の低温冷却水を用いるように、冷却水の流路を切換えている。 Here, both heating and cooling of the adsorption core part are performed by engine cooling water, and when the adsorption core part is heated, high-temperature cooling water before passing through the radiator is used, and during cooling, low-temperature cooling water after passing through the radiator is used. The flow path of the cooling water is switched.
日本国特許公報:特許第4069691号Japanese Patent Gazette: Patent No. 4069691
 しかしながら、従来技術のように、吸着コア部の加熱及び冷却をエンジン冷却水によって行う場合は、特に放冷モード(媒体吸着モード)での吸着コア部の冷却時に、エンジン負荷が大きい場合には、ラジエータ通過後のエンジン冷却水温度が高く、吸着に必要な低温冷却水を得られず、吸着が不可能となる場合が発生する。従って、結局のところ、車両が停止した時などエンジン負荷が小さい時の吸着に必要な低温冷却水を得ることができるときしか作動させることができず、用途が限られてしまうと考えられる。 However, when the heating and cooling of the adsorption core part is performed by engine cooling water as in the prior art, particularly when the adsorption core part is cooled in the cooling mode (medium adsorption mode), when the engine load is large, The engine coolant temperature after passing through the radiator is so high that low-temperature coolant required for adsorption cannot be obtained, and adsorption may not be possible. Therefore, after all, it can be operated only when the low-temperature cooling water necessary for adsorption when the engine load is small, such as when the vehicle is stopped, and the use is considered to be limited.
 また、吸着コア部の冷却時には、吸着コア部での熱交換、特に吸着熱の発生によって高温となった冷却水がエンジンに戻るので、エンジンの温度が上昇する状況となり、エンジン側での対策が必要となる。
 更に、従来技術では、蓄冷モードにおいて媒体を蒸気圧縮式冷凍機の冷媒によって冷却して凝縮しているために、冷媒回路の凝縮器側の冷媒が加熱され凝縮圧力が上昇したり、過冷却がとれなくなり、膨張弁への流れが阻害されたりして、結果的に冷房能力を低下させ、延いては圧縮機の消費動力、すなわちエンジンの負荷が増大し、蒸気圧縮式冷凍機にて必要とする動力が増加し、車両燃費を低下させる。
In addition, when cooling the adsorption core part, the heat exchange at the adsorption core part, especially the cooling water that has become hot due to the generation of adsorption heat, returns to the engine, which leads to a situation where the engine temperature rises. Necessary.
Furthermore, in the prior art, in the cold storage mode, the medium is cooled and condensed by the refrigerant of the vapor compression refrigerator, and therefore, the refrigerant on the condenser side of the refrigerant circuit is heated to increase the condensation pressure, As a result, the flow to the expansion valve is obstructed, resulting in a decrease in cooling capacity, and consequently the power consumption of the compressor, that is, the engine load increases, which is necessary in the vapor compression refrigerator. Driving power increases and vehicle fuel consumption decreases.
 本発明は、このような従来の問題点を解決できる車両用空調装置を提供することを課題とする。 An object of the present invention is to provide a vehicle air conditioner that can solve such a conventional problem.
 このため、本発明は、蒸気圧縮式冷凍機を備える車両用空調装置に対し、吸着式冷凍機を設ける。
 吸着式冷凍機は、吸着器の加熱により、前記吸着器に吸着されている媒体を脱離凝縮させる蓄冷モードと、前記吸着器の冷却により、前記吸着器に媒体を蒸発吸着させる放冷モードとを有する。又は、吸着式冷凍機は、冷却されることにより媒体を吸着し、加熱されることにより媒体を脱離する吸着器と、該吸着器の媒体出口に接続される凝縮部と、該凝縮部の媒体出口に接続されると共に前記吸着器の媒体入口へ接続される蒸発器とを含んで構成され、前記吸着器の加熱により、前記吸着器に吸着されている媒体を脱離させ、前記凝縮器にて凝縮液化して前記蒸発器内に貯留する蓄冷モードと、前記吸着器の冷却により、前記吸着器に媒体を吸着し、これに伴って前記蒸発器にて媒体を蒸発させる放冷モードとを有する。
For this reason, this invention provides an adsorption-type refrigerator with respect to a vehicle air conditioner provided with a vapor compression refrigerator.
The adsorption refrigerator includes a cold storage mode in which the medium adsorbed on the adsorber is desorbed and condensed by heating the adsorber, and a cooling mode in which the adsorber is evaporated and adsorbed by cooling the adsorber. Have Alternatively, the adsorption refrigeration machine adsorbs the medium by being cooled and desorbs the medium by being heated, the condensing unit connected to the medium outlet of the adsorber, and the condensing unit An evaporator connected to a medium outlet and connected to a medium inlet of the adsorber, and the condenser adsorbed by the adsorber is heated to desorb the medium. A cold storage mode in which the liquid is condensed and stored in the evaporator, and a cooling mode in which the medium is adsorbed to the adsorber by the cooling of the adsorber, and the medium is evaporated in the evaporator accordingly. Have
 そして、吸着式冷凍機の蒸発部又は蒸発器は、前記蒸気圧縮式冷凍機の冷媒回路に組み込まれて、前記媒体の蒸発により冷媒を冷却するように構成される。
 ここにおいて、前記吸着器の加熱は車両駆動源の廃熱(エンジン冷却水を含む)により行い、前記吸着器の冷却は空気により行う構成とする。
And the evaporation part or evaporator of an adsorption-type refrigerator is incorporated in the refrigerant circuit of the said vapor compression refrigerator, and is comprised so that a refrigerant | coolant may be cooled by evaporation of the said medium.
Here, the adsorber is heated by waste heat (including engine cooling water) from a vehicle drive source, and the adsorber is cooled by air.
 本発明によれば、吸着器の冷却は、空冷とすることで、エンジン負荷の影響を受けることなく、冷却することができ、常に十分な吸着性能を確保でき、また、エンジン冷却性能への悪影響を防止し、エンジン側での対策も不要とすることができる。その一方、吸着器の加熱は、車両駆動源の廃熱により行うので、十分な脱離性能を確保することができる。
 更に、車両の走行状態にかからわず、吸着式冷凍機を動作させることができるため、圧縮機の消費動力、すなわちエンジンの負荷を軽減し、蒸気圧縮式冷凍機にて必要とする動力が減少し、車両燃費を向上させることができる。
According to the present invention, the adsorber can be cooled without being affected by the engine load by air cooling, so that sufficient adsorption performance can always be secured, and adverse effects on engine cooling performance can be ensured. It is possible to eliminate the need for countermeasures on the engine side. On the other hand, since the adsorber is heated by waste heat from the vehicle drive source, sufficient desorption performance can be ensured.
Furthermore, since the adsorption chiller can be operated regardless of the running state of the vehicle, the power consumption of the compressor, that is, the engine load is reduced, and the power required for the vapor compression chiller is reduced. This can reduce the vehicle fuel consumption.
本発明の一実施形態を示す車両用空調装置のシステム図The system figure of the vehicle air conditioner which shows one Embodiment of this invention. 車両用空調装置のレイアウト例を示す車両の側面図Side view of vehicle showing layout example of air conditioner for vehicle 図2のA矢視図(平面図)FIG. 2A view (plan view) 既存車両へ組込む吸着式冷凍機の側面図Side view of an adsorption refrigeration machine built into an existing vehicle 図4のB矢視図(平面図)B arrow view of FIG. 4 (plan view) 図4のC矢視図(正面図)C arrow view of FIG. 4 (front view)
 以下、本発明の実施の形態について、詳細に説明する。
 図1は本発明の一実施形態を示す車両用空調装置のシステム図である。
 エンジン1は、車両の走行用駆動源をなす内燃機関である。エンジン1の冷却系2にはウォータポンプ3とラジエータ4とが設けられる。ウォータポンプ3はエンジン冷却水をエンジン1へ循環させる。ラジエータ4はエンジン1内を循環して高温となったエンジン冷却水を外気との熱交換により冷却する。尚、エンジン冷却系2には、この他、ラジエータ4に対するバイパス回路、バイパス流量を制御するサーモスタット等が設けられるが、図示は省略した。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a system diagram of a vehicle air conditioner showing an embodiment of the present invention.
The engine 1 is an internal combustion engine that serves as a driving source for driving the vehicle. The cooling system 2 of the engine 1 is provided with a water pump 3 and a radiator 4. The water pump 3 circulates engine cooling water to the engine 1. The radiator 4 circulates in the engine 1 and cools the engine coolant that has become high temperature by exchanging heat with the outside air. In addition, the engine cooling system 2 is provided with a bypass circuit for the radiator 4, a thermostat for controlling the bypass flow rate, and the like, which are not shown.
 蒸気圧縮式冷凍機5は、回路内を循環する冷媒の蒸発作用により、室内に吹出す空気を冷却するもので、圧縮機6、凝縮器7、減圧手段をなす膨張弁8、蒸発器9を含んで構成される。
 圧縮機6は、エンジン1により図示しない電磁クラッチを介して駆動され、低圧低温気体の冷媒を圧縮して、高圧高温気体の冷媒を得る。凝縮器7は、冷却用ファン10を用い、圧縮機6からの高圧高温気体の冷媒を室外空気で凝縮点まで冷却して、高圧常温液体の冷媒に還元する。膨張弁8は、凝縮器7からの高圧常温液体の冷媒を急激に減圧膨張させて、低圧低温液体(霧状)の冷媒を得る。蒸発器9は、室内空気の循環路(吸込口と吹出口との間)に配置され、膨張弁8からの低圧低温液体の冷媒を周囲から熱を奪いながら蒸発させる。これにより、室内空気(室内に吹出す空気)を冷却する。
The vapor compression refrigerator 5 cools the air blown into the room by the evaporating action of the refrigerant circulating in the circuit, and includes the compressor 6, the condenser 7, the expansion valve 8 that forms the decompression means, and the evaporator 9. Consists of including.
The compressor 6 is driven by an engine 1 through an electromagnetic clutch (not shown), compresses a low-pressure low-temperature gas refrigerant, and obtains a high-pressure high-temperature gas refrigerant. The condenser 7 uses a cooling fan 10 to cool the high-pressure high-temperature gas refrigerant from the compressor 6 to the condensation point with outdoor air and reduce it to a high-pressure room-temperature liquid refrigerant. The expansion valve 8 rapidly decompresses and expands the high-pressure room-temperature liquid refrigerant from the condenser 7 to obtain a low-pressure low-temperature liquid (mist-like) refrigerant. The evaporator 9 is disposed in the indoor air circulation path (between the inlet and the outlet), and evaporates the refrigerant of the low-pressure low-temperature liquid from the expansion valve 8 while taking heat from the surroundings. Thereby, indoor air (air which blows off indoors) is cooled.
 ここで、蒸気圧縮式冷凍機5における凝縮器7の後段(凝縮器7と膨張弁8との間)に、吸着式冷凍機11を構成する後述の蒸発器15が過冷却熱交換器として配置されている。
 吸着式冷凍機11は、吸着器12と、吸着器12の出口に第1バルブ13を介して配管接続された凝縮部としての凝縮器14と、凝縮器14の出口に配管接続された蒸発器15と、を含んで構成され、蒸発器15の出口は第2バルブ16を介して吸着器12の入口に配管接続されている。そして、吸着式冷凍機11の回路内には真空下で吸着媒体としての水(蒸気)が封入されている。
Here, an evaporator 15 to be described later constituting the adsorption refrigerator 11 is disposed as a supercooling heat exchanger at the subsequent stage of the condenser 7 in the vapor compression refrigerator 5 (between the condenser 7 and the expansion valve 8). Has been.
The adsorption refrigeration machine 11 includes an adsorber 12, a condenser 14 as a condenser connected to the outlet of the adsorber 12 via a first valve 13, and an evaporator connected to the outlet of the condenser 14. 15, and the outlet of the evaporator 15 is connected by piping to the inlet of the adsorber 12 via the second valve 16. And in the circuit of the adsorption refrigeration machine 11, water (steam) as an adsorption medium is sealed under vacuum.
 吸着器12は、その内部に吸着剤12aを収納しており、吸着剤12aとしては、シリカゲル、ゼオライト等の水吸着剤が用いられる。
 吸着剤12aは、これが収納された雰囲気の相対湿度が高くなるほど、吸着可能な媒体量(吸着容量)が増大する性質を有している。
 このため、吸着剤12aを加熱すると、吸着剤12aの表面近傍の相対湿度が低下して吸着容量が減少するので、その減少分、吸着していた媒体を脱離放出する。その一方、吸着剤12aを冷却すると、吸着剤12aの表面近傍の相対湿度が上昇して吸着容量が増加するので、その増加分、媒体を吸着する。尚、吸着剤12aは、蒸気媒体を吸着する際に媒体の凝縮熱相当の吸着熱を発生する。
The adsorber 12 contains an adsorbent 12a therein, and a water adsorbent such as silica gel or zeolite is used as the adsorbent 12a.
The adsorbent 12a has a property that the amount of adsorbable medium (adsorption capacity) increases as the relative humidity of the atmosphere in which it is stored increases.
For this reason, when the adsorbent 12a is heated, the relative humidity in the vicinity of the surface of the adsorbent 12a is reduced and the adsorption capacity is reduced, so that the adsorbed medium is desorbed and released. On the other hand, when the adsorbent 12a is cooled, the relative humidity in the vicinity of the surface of the adsorbent 12a increases and the adsorption capacity increases, so that the medium is adsorbed by the increase. The adsorbent 12a generates heat of adsorption equivalent to the heat of condensation of the medium when adsorbing the vapor medium.
 吸着器12の内部には、吸着剤12aの加熱のため、これと熱的に接するように、熱交換パイプ12bが貫通しており、この熱交換パイプ12bに後述のようにエンジン冷却水を流通させることで、吸着剤12aを加熱可能としてある。その一方、吸着器12の外面(外壁部)には、吸着剤12aの冷却(空冷)のため、放熱フィン12cが設けられており、冷却用ファン17の併用で、吸着剤12aを冷却可能としてある。 A heat exchange pipe 12b passes through the adsorber 12 so as to be in thermal contact with the adsorbent 12a for heating the adsorbent 12a, and engine cooling water flows through the heat exchange pipe 12b as will be described later. By doing so, the adsorbent 12a can be heated. On the other hand, heat radiation fins 12c are provided on the outer surface (outer wall portion) of the adsorber 12 for cooling (air cooling) the adsorbent 12a, and the adsorbent 12a can be cooled by using the cooling fan 17 in combination. is there.
 凝縮器14は、吸着器12にて吸着剤12aから脱離放出された蒸気媒体を冷却して凝縮液化するものであり、その冷却には冷却用ファン17が用いられる。従って、冷却用ファン17は、吸着器12の空冷手段と凝縮器14の空冷手段とを兼ねる。
 蒸発器15は、その内部に吸着媒体としての水が貯留されるようになっており、その液面が凝縮器14より下方になるように配置されている。そして、蒸発器15の内部には、熱交換通路15aが貫通しており、この熱交換通路15aは蒸気圧縮式冷凍機5における凝縮器7と膨張弁8との間の冷媒通路をなしている。従って、蒸発器15は、蒸気圧縮式冷凍機5における過冷却熱交換器として設けられている。
The condenser 14 cools and vaporizes the vapor medium desorbed and released from the adsorbent 12a by the adsorber 12, and a cooling fan 17 is used for cooling. Therefore, the cooling fan 17 serves as both the air cooling means of the adsorber 12 and the air cooling means of the condenser 14.
The evaporator 15 is configured such that water as an adsorbing medium is stored in the evaporator 15, and the liquid level is disposed below the condenser 14. A heat exchange passage 15 a passes through the evaporator 15, and the heat exchange passage 15 a forms a refrigerant passage between the condenser 7 and the expansion valve 8 in the vapor compression refrigerator 5. . Therefore, the evaporator 15 is provided as a supercooling heat exchanger in the vapor compression refrigerator 5.
 次に吸着器12の加熱手段であるエンジン冷却系2との接続について説明する。
 吸着器12の熱交換パイプ12bの一端(入口部)には、エンジン1の冷却水出口下流でラジエータ4上流に接続した配管(高温冷却水取出し配管)18をバルブ(エンジン冷却水導入バルブ)19を介して接続する。
 吸着器12の熱交換パイプ12bの他端(出口部)には、エンジン冷却系2(ウォータポンプ3吸入側)へ戻る配管20を接続する。
 また、エンジン冷却系2のラジエータ4下流にバルブ(流量制御弁)21を介装し、ラジエータ4とバルブ21との間に接続した配管(低温冷却水取出し配管)22を一方向バルブ23を介して吸着器12の熱交換パイプ12bの入口部に接続してある。
Next, connection with the engine cooling system 2 which is a heating means of the adsorber 12 will be described.
At one end (inlet part) of the heat exchange pipe 12b of the adsorber 12, a pipe (high temperature cooling water extraction pipe) 18 connected downstream of the cooling water outlet of the engine 1 and upstream of the radiator 4 is a valve (engine cooling water introduction valve) 19. Connect through.
A pipe 20 returning to the engine cooling system 2 (water pump 3 suction side) is connected to the other end (exit part) of the heat exchange pipe 12b of the adsorber 12.
Further, a valve (flow rate control valve) 21 is interposed downstream of the radiator 4 of the engine cooling system 2, and a pipe (low temperature cooling water extraction pipe) 22 connected between the radiator 4 and the valve 21 is connected via a one-way valve 23. The adsorber 12 is connected to the inlet of the heat exchange pipe 12b.
 次に吸着器12及び凝縮器14の空冷手段である冷却用ファン17について説明する。
 吸着器12に対する冷却用ファンと凝縮器14に対する冷却用ファンとは、冷却を要するモードが異なるため、別々に設けてもよいが、本実施形態では、冷却用ファン17を共用してコスト低減を図るため、冷却用ファン17による冷却用空気の流れ方向の上流側に凝縮器14を配置し、下流側に吸着器12を配置するレイアウトとしている。その理由については後述する。
Next, the cooling fan 17 which is an air cooling means for the adsorber 12 and the condenser 14 will be described.
The cooling fan for the adsorber 12 and the cooling fan for the condenser 14 may be provided separately because the modes that require cooling are different, but in this embodiment, the cooling fan 17 is shared to reduce costs. For the sake of illustration, the layout is such that the condenser 14 is arranged on the upstream side in the flow direction of the cooling air by the cooling fan 17 and the adsorber 12 is arranged on the downstream side. The reason will be described later.
 次に作用を説明する。
 吸着式冷凍機11は、蓄冷モード(媒体脱離モード)と放冷モード(媒体吸着モード)とを周期的に繰り返す。
 蓄冷モードでは、吸着器12の出口側(凝縮器14側)の第1バルブ13を開き、入口側(蒸発器15側)の第2バルブ16を閉じる。そして、吸着器2の加熱のため、エンジン冷却水導入バルブ19を開く。尚、冷却用ファン17は蓄冷モード及び放冷モードのいずれにおいても作動させる。
Next, the operation will be described.
The adsorption refrigerator 11 periodically repeats a cold storage mode (medium desorption mode) and a cooling mode (medium adsorption mode).
In the cold storage mode, the first valve 13 on the outlet side (condenser 14 side) of the adsorber 12 is opened, and the second valve 16 on the inlet side (evaporator 15 side) is closed. Then, the engine coolant introduction valve 19 is opened to heat the adsorber 2. The cooling fan 17 is operated in both the cold storage mode and the cooling mode.
 エンジン冷却水導入バルブ19の開弁により、エンジン1の冷却水出口からの高温冷却水が吸着器12の熱交換パイプ12bに流入し、ここで吸着剤12aを加熱した後、エンジン冷却系2に戻る。
 エンジン冷却水による吸着剤12aの加熱により、相対湿度が低下して、吸着容量が減少するため、吸着剤12aに吸着されていた蒸気が脱離放出される。そして、吸着器12内の圧力が上昇するため、脱離した蒸気は第1バルブ13を介して凝縮器14へと押出され、凝縮器14にて冷却されて水に戻り、蒸発器15内に流入して貯留される。
When the engine coolant introduction valve 19 is opened, high-temperature coolant from the coolant outlet of the engine 1 flows into the heat exchange pipe 12b of the adsorber 12, where the adsorbent 12a is heated, Return.
By heating the adsorbent 12a with engine cooling water, the relative humidity decreases and the adsorption capacity decreases, so that the vapor adsorbed on the adsorbent 12a is desorbed and released. Then, since the pressure in the adsorber 12 rises, the desorbed vapor is pushed out to the condenser 14 via the first valve 13, cooled in the condenser 14, returned to water, and into the evaporator 15. It flows in and is stored.
 尚、冷却用ファン17により凝縮器14を冷却する際に、冷却用ファン17による送風は凝縮器14を経て吸着器12に達するが、冷却用ファン17による吸着器12の冷却は、吸着器12上流側の凝縮器14にて発生する凝縮熱でキャンセルでき、吸着器12の加熱の妨げとなることはない。これが冷却ファン17による冷却風の流れ方向の上流側に凝縮器14を配置し、下流側に吸着器12を配置している大きな理由である。 When the condenser 14 is cooled by the cooling fan 17, the air blown by the cooling fan 17 reaches the adsorber 12 through the condenser 14, but the adsorber 12 is cooled by the cooling fan 17. It can be canceled by the condensation heat generated in the upstream condenser 14, and does not hinder the heating of the adsorber 12. This is the main reason why the condenser 14 is arranged on the upstream side in the flow direction of the cooling air by the cooling fan 17 and the adsorber 12 is arranged on the downstream side.
 次に放冷モードに移るが、蓄冷モードから放冷モードへ移行する際は、一時的な切換モードを経由する。
 切換モードでは、エンジン冷却水導入バルブ19を閉じ、バルブ(流量制御弁)21を閉じるか絞って、ラジエータ4出口側より、ラジエータ4により冷却された低温冷却水を一方向バルブ23を介して吸着器12内の熱交換パイプ12b内に導入し、熱交換パイプ12b内に残っている高温冷却水を一掃する。これは、次の放冷モードでは、エンジン冷却水による吸着器12の加熱を停止して、空冷するので、熱交換パイプ12b内に残っている高温冷却水を追い出し、低温冷却水で置換することで、空冷の妨げとならないようにするためである。
Next, the cooling mode is entered. When the cooling mode is switched to the cooling mode, the mode is temporarily switched.
In the switching mode, the engine coolant introduction valve 19 is closed, the valve (flow rate control valve) 21 is closed or throttled, and the low-temperature coolant cooled by the radiator 4 is adsorbed through the one-way valve 23 from the radiator 4 outlet side. It introduce | transduces in the heat exchange pipe 12b in the container 12, and wipes out the high temperature cooling water which remains in the heat exchange pipe 12b. This is because in the next cooling mode, heating of the adsorber 12 with engine cooling water is stopped and air cooling is performed, so that the high temperature cooling water remaining in the heat exchange pipe 12b is expelled and replaced with low temperature cooling water. This is so as not to hinder air cooling.
 尚、この切換モードでは、熱交換パイプ12b内に滞留している高温冷却水を排出する量だけ、低温冷却水を流せばよいので、熱交換パイプ12bの容量にもよるが、数百cc程度を想定しており、実際に流す時間は、ほんの一瞬である。より厳密に制御するため、切換モードの動作時間は、例えば、熱交換パイプ12bの吸着器出口温度とラジエータ4の出口温度とがほぼ同一になるまでとしてもよい。あるいは、一方向バルブ23から吸着器12入口までの配管(低温冷却水取出し配管)22と熱交換パイプ12bとを合算した容積(容量)と、エンジン回転数=ウォータポンプ回転数に比例した吐出容量とから、計算式やテーブルを基に動作時間を決定するようにしてもよい。 In this switching mode, it is only necessary to flow low-temperature cooling water by an amount that discharges the high-temperature cooling water staying in the heat exchange pipe 12b. Therefore, depending on the capacity of the heat exchange pipe 12b, about several hundred cc. The actual flow time is only a moment. In order to control more strictly, the operation time in the switching mode may be, for example, until the adsorber outlet temperature of the heat exchange pipe 12b and the outlet temperature of the radiator 4 become substantially the same. Alternatively, the total volume (capacity) of the pipe (low-temperature cooling water extraction pipe) 22 from the one-way valve 23 to the adsorber 12 inlet and the heat exchange pipe 12b and the discharge capacity proportional to the engine speed = water pump speed Therefore, the operation time may be determined based on a calculation formula or a table.
 熱交換パイプ12b内の冷却水の置換終了後、バルブ(流量制御弁)21を開いて、放冷モードに移る。尚、バルブ21の開放状態では、ラジエータ4出口側のエンジン冷却水は通路抵抗の小さいバルブ21側へ流れ、一方向バルブ23側(吸着器12側)へは流れない。尚、一方向バルブ23に代えて開閉バルブを設けてもよいし、バルブ21、23に代えて、図示c点に三方切換バルブを設けてもよい。 After completion of replacement of the cooling water in the heat exchange pipe 12b, the valve (flow rate control valve) 21 is opened and the cooling mode is started. In the open state of the valve 21, the engine coolant on the outlet side of the radiator 4 flows to the valve 21 side having a small passage resistance, and does not flow to the one-way valve 23 side (adsorber 12 side). An open / close valve may be provided instead of the one-way valve 23, or a three-way switching valve may be provided at point c in the figure instead of the valves 21 and 23.
 放冷モードでは、吸着器12の出口側(凝縮器14側)の第1バルブ13を閉じ、入口側(蒸発器15側)の第2バルブ16を開く。もちろん、エンジン冷却水導入バルブ19は閉じている。
 放冷モードでは、蓄冷モードに対し、吸着器12への加熱用のエンジン冷却水の流通が停止され、また第1バルブ13が閉じることで凝縮器14への蒸気の供給が停止されて凝縮熱の発生がなくなることから、冷却用ファン17による送風で吸着器12したがって吸着剤12aが冷却される。
In the cooling mode, the first valve 13 on the outlet side (condenser 14 side) of the adsorber 12 is closed, and the second valve 16 on the inlet side (evaporator 15 side) is opened. Of course, the engine coolant introduction valve 19 is closed.
In the cool-down mode, the flow of engine cooling water for heating to the adsorber 12 is stopped, and the supply of steam to the condenser 14 is stopped by closing the first valve 13 to reduce the heat of condensation. Therefore, the adsorber 12 and thus the adsorbent 12a are cooled by the air blow by the cooling fan 17.
 吸着剤12aの空冷により、相対湿度が増加して、吸着容量が増大するため、吸着器12内の蒸気が吸着剤12aに吸着される。これにより、吸着器12内の圧力が低下し、この圧力低下は第2バルブ16を介して蒸発器15に伝えられる。蒸発器15内の圧力低下により、蒸発器15内に貯留されていた水が蒸発し、蒸気は吸着器12内に移動して吸着剤12aに吸着される。尚、吸着剤12aでの吸着に伴って吸着熱が発生するが、その熱発生分も含めて冷却用ファン17により冷却される。 Since the relative humidity increases and the adsorption capacity increases due to air cooling of the adsorbent 12a, the vapor in the adsorber 12 is adsorbed by the adsorbent 12a. As a result, the pressure in the adsorber 12 is reduced, and this pressure drop is transmitted to the evaporator 15 via the second valve 16. Due to the pressure drop in the evaporator 15, the water stored in the evaporator 15 evaporates, and the vapor moves into the adsorber 12 and is adsorbed by the adsorbent 12 a. In addition, although adsorption | suction heat generate | occur | produces with adsorption | suction with the adsorption agent 12a, it cools with the cooling fan 17 also including the heat generation part.
 従って、このときの蒸発器15内での蒸発作用により、熱交換通路15a内を流れる冷媒から熱を奪って、冷媒を冷却することができる。
 蒸気圧縮式冷凍機5の凝縮機7側の冷媒が、凝縮器7単体の場合に比べて更に冷却されることで、蒸発器9の入口冷媒のエンタルピ及び乾き度を下げることができるので、冷房能力を向上させることができる。延いては、圧縮機6の吐出流量を減少させることができるので、圧縮機6の消費動力、つまりエンジン1の負荷が低下し、蒸気圧縮式冷凍機5にて必要とする動力を削減することができるので、車両燃費を向上させることができる。
Therefore, due to the evaporation action in the evaporator 15 at this time, heat can be taken from the refrigerant flowing in the heat exchange passage 15a, and the refrigerant can be cooled.
Since the refrigerant on the condenser 7 side of the vapor compression refrigerator 5 is further cooled as compared with the case of the condenser 7 alone, the enthalpy and the dryness of the inlet refrigerant of the evaporator 9 can be lowered. Ability can be improved. As a result, since the discharge flow rate of the compressor 6 can be reduced, the power consumption of the compressor 6, that is, the load of the engine 1 is reduced, and the power required for the vapor compression refrigerator 5 is reduced. As a result, vehicle fuel efficiency can be improved.
 次に再び蓄冷モードに移るが、このときは、切換モードを経由することなく、そのまま、吸着器12の出口側(凝縮器14側)の第1バルブ13を開き、入口側(蒸発器15側)の第2バルブ16を閉じる。そして、吸着器12の加熱のため、エンジン冷却水導入バルブ19を開く。 Next, the operation proceeds to the cold storage mode again. At this time, without passing through the switching mode, the first valve 13 on the outlet side (condenser 14 side) of the adsorber 12 is opened as it is, and the inlet side (evaporator 15 side) is opened. ) Of the second valve 16 is closed. Then, the engine coolant introduction valve 19 is opened to heat the adsorber 12.
 尚、蓄冷モードから放冷モードへの切換えは、吸着剤12aの媒体脱離完了を検知して行い、放冷モードから蓄冷モードへの切換えは、吸着剤12aの媒体吸着完了を検知して行うのが望ましい。すなわち、モードの切換えは、吸着剤12aの媒体吸着状態(吸着量)に関連するパラメータ、特に、吸着器12内の圧力に基づいて行うのが望ましい。但し、圧力以外の温度、湿度などのパラメータを用いてもよいし、実験的に求めた切換周期に基づいて、所定時間毎に切換えるようにしてもよい。
 また、冷房要求に基づいて切換えるようにしてもよい。すなわち、冷房要求が低い状態(例えば蒸気圧縮式冷凍機5の停止状態)では、蓄冷モードを実行した後、第1及び第2バルブ13、16を共に閉じて待機し、冷房要求が高くなったとき(蒸気圧縮式冷凍機5の運転開始時)に、放冷モードを開始するようにしてもよい。
Note that switching from the cool storage mode to the cool-down mode is performed by detecting the completion of the medium desorption of the adsorbent 12a, and switching from the cool-down mode to the cool storage mode is performed by detecting the completion of the medium adsorption of the adsorbent 12a. Is desirable. That is, the mode switching is preferably performed based on a parameter related to the medium adsorption state (adsorption amount) of the adsorbent 12a, in particular, the pressure in the adsorber 12. However, parameters such as temperature and humidity other than pressure may be used, or switching may be performed at predetermined time intervals based on an experimentally obtained switching cycle.
Further, switching may be performed based on a cooling request. That is, in a state where the cooling request is low (for example, when the vapor compression refrigerator 5 is stopped), after executing the cold storage mode, the first and second valves 13 and 16 are both closed and waited, and the cooling request becomes high. At the time (when the operation of the vapor compression refrigerator 5 starts), the cooling mode may be started.
 本実施形態の車両用空調装置は、既存の蒸気圧縮式冷凍機5とエンジン冷却系2とを有する車両に、吸着式冷凍機11を組み込んで、適宜接続することで、蒸気圧縮式冷凍機5の制御や、エンジン冷却系2の制御に影響を及ぼすことなく、冷凍能力を改善することができる。
 すなわち、蒸気圧縮式冷凍機5の冷媒回路の図示a、a’間に、吸着式冷凍機11の蒸発器15側の熱交換通路15aを介装するようにし、また、エンジン冷却系2のb点、及びc、c’間に、吸着式冷凍機11の吸着器12側の配管18、22、20を接続するだけで、蒸気圧縮式冷凍機5の制御や、エンジン冷却系2の制御に影響を及ぼすことなく、冷凍能力を改善することができる。
The vehicle air conditioner of the present embodiment incorporates an adsorption refrigeration machine 11 into a vehicle having an existing vapor compression refrigeration machine 5 and an engine cooling system 2 and appropriately connects them, thereby the vapor compression refrigeration machine 5. The refrigeration capacity can be improved without affecting the control of the engine and the control of the engine cooling system 2.
That is, the heat exchange passage 15a on the evaporator 15 side of the adsorption refrigeration machine 11 is interposed between the illustrations a and a 'of the refrigerant circuit of the vapor compression refrigeration machine 5 and b of the engine cooling system 2 By simply connecting the pipes 18, 22, and 20 on the adsorber 12 side of the adsorption refrigerator 11 between the points c and c ′, the vapor compression refrigerator 5 and the engine cooling system 2 can be controlled. Refrigerating capacity can be improved without affecting it.
 次に具体的なレイアウト例について説明する。
 図2は車両用空調装置のレイアウト例を示す車両の側面図、図3は図2のA矢視図(平面図)である。
 ここで特徴的なことは、吸着式冷凍機11の凝縮器14と吸着器12とを囲んで車両の前後方向に延びる送風ダクト30が設けられ、送風ダクト30の最下流側に、冷却用ファン17として、ブロワーファンが設けられ、これにより送風ダクト30内に空気流が生起されるようになっている。
Next, a specific layout example will be described.
FIG. 2 is a side view of the vehicle showing a layout example of the vehicle air conditioner, and FIG. 3 is a view (plan view) taken along arrow A in FIG.
What is characteristic here is that a blower duct 30 is provided that surrounds the condenser 14 and the adsorber 12 of the adsorption refrigerator 11 and extends in the longitudinal direction of the vehicle, and a cooling fan is provided at the most downstream side of the blower duct 30. 17, a blower fan is provided, whereby an air flow is generated in the air duct 30.
 ここにおいて、送風ダクト30における冷却用空気の流れ方向で、上流側に凝縮器14が配置され、下流側に吸着器12が配置される。これにより、凝縮器14の冷却が必要となる蓄冷モード(媒体脱離モード)では、凝縮器14を十分に冷却できる一方、凝縮熱の発生で吸着器12の冷却をキャンセルでき、エンジン冷却水による吸着器12の加熱を妨げることがない。また、吸着器12の冷却が必要となる放冷モード(媒体吸着モード)では、凝縮器14での凝縮熱の発生がなくなるので、吸着器12を十分に冷却することができる。 Here, in the flow direction of the cooling air in the air duct 30, the condenser 14 is disposed on the upstream side, and the adsorber 12 is disposed on the downstream side. Thereby, in the cool storage mode (medium desorption mode) in which the condenser 14 needs to be cooled, the condenser 14 can be sufficiently cooled, and the cooling of the adsorber 12 can be canceled by the generation of condensation heat, and the engine cooling water can be used. The heating of the adsorber 12 is not hindered. Further, in the cooling mode (medium adsorption mode) in which the adsorber 12 needs to be cooled, no heat of condensation is generated in the condenser 14, so that the adsorber 12 can be sufficiently cooled.
 尚、車速が上がり、凝縮器14又は吸着器12を冷却するのに十分な風量を得ることができる場合には、冷却用ファン17を停止させることにより、冷却用ファン17での消費電力をなくすことができる。 When the vehicle speed increases and a sufficient air volume can be obtained to cool the condenser 14 or the adsorber 12, the cooling fan 17 is stopped to eliminate power consumption in the cooling fan 17. be able to.
 図4は既存車両へ組込む吸着式冷凍機の側面図、図5は図4のB矢視図(平面図)、図6は図4のC矢視図(正面図)である。
 これらの図からわかるように、吸着式冷凍機は、アッセンブリ状態でセット可能であるので、設置スペースさえ確保できれば、蒸気圧縮式冷凍機5に対しては、図示のa、a’点で、エンジン冷却系2に対しては、図示のb、c、c’点で接続することで、簡単に後付け可能である。しかも、現行機器にほとんど影響を与えることなく冷房能力を向上できるので、極めて快適な搭載性を有する。
FIG. 4 is a side view of an adsorption refrigeration machine incorporated into an existing vehicle, FIG. 5 is a view as viewed from arrow B (plan view) in FIG. 4, and FIG. 6 is a view as viewed from arrow C in FIG.
As can be seen from these drawings, since the adsorption refrigerator can be set in an assembled state, the engine can be set at the points a and a ′ shown in the figure for the vapor compression refrigerator 5 as long as the installation space can be secured. The cooling system 2 can be easily retrofitted by connecting at the points b, c and c ′ shown in the figure. In addition, since the cooling capacity can be improved with little influence on the current equipment, it has a very comfortable mountability.
 本実施形態によれば、吸着器12の加熱はエンジン冷却水により行い、吸着器12の冷却は空気により行うことにより、次のような効果が得られる。
 ラジエータからのエンジン冷却水を使って、水冷する場合、エンジン負荷が大きい場合には前述のように低温冷却水が得られず、吸着が不可能な場合が発生する。従って、連続的に吸着を行うことができず、結局のところ、エンジン負荷が小さい場合にしか作動させることができない。
 これを解決する方法としては、ラジエータを大きくすることが考えられるが、実用的ではない。あるいは、エンジンの運転状態によらず、吸着用の低温冷却水を得るために、水冷専用の熱交換器やポンプ等を設けることも考えられるが、重量面やコスト面から実用的ではない。
According to this embodiment, the adsorber 12 is heated by engine cooling water, and the adsorber 12 is cooled by air, so that the following effects can be obtained.
When the engine cooling water from the radiator is used for water cooling, when the engine load is large, the low-temperature cooling water cannot be obtained as described above, and the adsorption may not be possible. Therefore, continuous adsorption cannot be performed, and after all, it can be operated only when the engine load is small.
As a method for solving this, it is conceivable to enlarge the radiator, but it is not practical. Alternatively, in order to obtain low-temperature cooling water for adsorption regardless of the operating state of the engine, it may be possible to provide a heat exchanger, a pump, or the like dedicated to water cooling, but this is not practical in terms of weight and cost.
 これらに鑑み、吸着器の冷却は、空冷とすることで、エンジン負荷の影響を受けることなく、冷却することができ、常に十分な吸着性能を確保できる。水冷はエンジン負荷状態に依存することから冷却能力が常に変動するが、外気を利用した空冷は安定動作が可能だからである。 In view of these, the adsorber can be cooled without being affected by the engine load by air cooling, and sufficient adsorbing performance can always be secured. Because water cooling depends on the engine load condition, the cooling capacity always fluctuates, but air cooling using outside air is capable of stable operation.
 また、エンジン冷却水による水冷の場合、放冷時の吸着剤から発生する吸着熱によって加熱された冷却水がエンジンに戻るので、エンジンにとっては良くない状況となる。すなわち、吸着発熱で高温になった水をエンジンに戻すことは、エンジン温度の上昇を招き、車両側での対応策が必要になってしまう。すなわち、冷却水回路を大幅な変更と制御弁の追加等が必要となる。 Also, in the case of water cooling with engine cooling water, the cooling water heated by the adsorption heat generated from the adsorbent during cooling is returned to the engine, which is not good for the engine. That is, returning water that has become high temperature due to adsorption heat generation to the engine causes an increase in the engine temperature and requires countermeasures on the vehicle side. That is, it is necessary to change the cooling water circuit and add a control valve.
 この点、空冷とすることで、エンジン冷却性能への悪影響を防止し、エンジン側での対策も不要とすることができる。すなわち、空気回路は別に必要となるが、現行の冷却水回路の変更箇所を極めて少なくすることができる。
 その一方、吸着器12の加熱は、熱容量の大きいエンジン冷却水により行うので、熱伝達に優れ、すばやく加熱でき、十分な脱離性能を確保することができる。これにより、蓄冷モード(媒体脱離モード)の時間を短縮でき、その分、放冷モードの時間割合を増加させ、冷房能力を向上させることができる。
In this regard, air cooling can prevent adverse effects on engine cooling performance and can eliminate the need for measures on the engine side. That is, an air circuit is separately required, but the number of changes in the current cooling water circuit can be extremely reduced.
On the other hand, since the adsorber 12 is heated by engine coolant having a large heat capacity, it is excellent in heat transfer, can be heated quickly, and sufficient desorption performance can be ensured. Thereby, the time of cool storage mode (medium detachment | desorption mode) can be shortened, the time ratio of cool-down mode can be increased by that much, and the air_conditioning | cooling capability can be improved.
 また、本実施形態によれば、蓄冷モードでの吸着器12の加熱は、吸着器加熱用の配管(熱交換パイプ12b)にエンジン冷却後・ラジエータ流入前の高温冷却水を供給することにより行い、蓄冷モードから放冷モードへの切換時に、前記配管(12b)にラジエータ通過後の低温冷却水を供給して前記配管(12b)内の高温冷却水を排出する切換モードを有することにより、吸着器12の加熱から冷却(空冷)への切換えをより速やかに行うことができる。 Further, according to the present embodiment, the adsorber 12 is heated in the cold storage mode by supplying high-temperature cooling water after cooling the engine and before flowing into the radiator to the adsorber heating pipe (heat exchange pipe 12b). In the switching from the cold storage mode to the cool-down mode, the pipe (12b) is supplied with the low-temperature cooling water after passing through the radiator, and has a switching mode for discharging the high-temperature cooling water in the pipe (12b). Switching from heating to cooling (air cooling) of the vessel 12 can be performed more quickly.
 また、本実施形態によれば、吸着器冷却用の空気の流れ方向上流側に凝縮器14を配置し、下流側に吸着器12を配置して、蓄冷モード及び放冷モードのいずれにおいても空気を流す構成とすることにより、放冷モードでの吸着器12の冷却と蓄冷モードでの凝縮器14の冷却とを1つの空冷手段により、他に悪影響を与えることなく実施でき(特に蓄冷時に凝縮器14から奪った熱を吸着器12に与えることで吸着器12が冷却されることを抑制)、軽量・コンパクト化、コスト低減等を図ることができる。 In addition, according to the present embodiment, the condenser 14 is disposed on the upstream side in the flow direction of the air for cooling the adsorber, and the adsorber 12 is disposed on the downstream side. The cooling of the adsorber 12 in the cooling mode and the cooling of the condenser 14 in the cool storage mode can be performed by one air cooling means without adversely affecting the other (especially condensation during cool storage). It is possible to suppress the cooling of the adsorber 12 by giving the heat deprived from the container 14 to the adsorber 12), and to reduce the weight, the size, and the cost.
 また、本実施形態によれば、蓄冷モードと放冷モードとの切換えは、吸着器12内の吸着剤の吸着状態に基づいて行うことにより、適切なタイミングで切換えを行うことができる。 Further, according to the present embodiment, switching between the cold storage mode and the cooling mode can be performed at an appropriate timing by performing the switching based on the adsorption state of the adsorbent in the adsorber 12.
 また、本実施形態によれば、蒸気圧縮式冷凍機5は、圧縮機6、凝縮器7、減圧手段(膨張弁8)、及び蒸発器9を含んで構成され、吸着式冷凍機11の蒸発器15は、蒸気圧縮式冷凍機5の凝縮器7の後段に配置されることにより、効率良く、冷媒を冷却して冷房性能を向上させることができる。但し、吸着式冷凍機11の蒸発器15の配置位置はこれに限るものではなく、蒸気圧縮式冷凍機5の冷媒回路にて吸着媒体の蒸発により蒸気圧縮式冷凍機5の冷媒を冷却できる位置であればよい。 Further, according to the present embodiment, the vapor compression refrigerator 5 is configured to include the compressor 6, the condenser 7, the decompression means (expansion valve 8), and the evaporator 9, and the evaporation of the adsorption refrigerator 11. The cooler 15 can be efficiently cooled to improve the cooling performance by being disposed downstream of the condenser 7 of the vapor compression refrigerator 5. However, the arrangement position of the evaporator 15 of the adsorption refrigeration machine 11 is not limited to this, and the position where the refrigerant of the vapor compression refrigeration machine 5 can be cooled by evaporation of the adsorption medium in the refrigerant circuit of the vapor compression refrigeration machine 5. If it is.
 また、本実施形態によれば、吸着器12は、吸着剤収納空間の内部に加熱用のエンジン冷却水が流通可能な熱交換パイプ12bが配設され、吸着剤収納空間の外壁部に空冷用の放熱フィン12cが設けられる構成としたことにより、エンジン冷却水による加熱と外気による冷却とを効率的に行うことができる。 Further, according to the present embodiment, the adsorber 12 is provided with the heat exchange pipe 12b through which the engine cooling water for heating can flow in the adsorbent storage space, and is used for air cooling on the outer wall portion of the adsorbent storage space. With the configuration in which the heat radiation fins 12c are provided, heating with engine cooling water and cooling with outside air can be performed efficiently.
 尚、以上の説明では、吸着器12の加熱はエンジン冷却水により行うものとして説明したが、エンジン冷却水以外の、エンジン廃熱、例えば排気熱を用いるようにしてもよい。更に、エンジン以外の、車両用駆動源の廃熱、例えば、燃料電池車や電気自動車の車輪駆動用モータやモータ駆動用インバータ、燃料電池車の燃料電池等から発生する廃熱を用いるようにしてもよい。 In the above description, the adsorber 12 is heated by engine cooling water. However, engine waste heat other than engine cooling water, for example, exhaust heat, may be used. Further, waste heat generated from a vehicle drive source other than the engine, for example, waste heat generated from a wheel drive motor or a motor drive inverter of a fuel cell vehicle or an electric vehicle, a fuel cell of a fuel cell vehicle, or the like is used. Also good.
 また、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。 The illustrated embodiments are merely examples of the present invention, and the present invention is not limited to those directly described by the described embodiments, and various improvements and modifications made by those skilled in the art within the scope of the claims. Needless to say, it encompasses changes.
 1 エンジン
 2 エンジン冷却系
 3 ウォータポンプ
 4 ラジエータ
 5 蒸気圧縮式冷凍機
 6 圧縮機
 7 凝縮器
 8 膨張弁
 9 蒸発器
10 冷却用ファン
11 吸着式冷凍機
12 吸着器
12a 吸着剤
12b 熱交換パイプ
12c 放熱フィン
13 第1バルブ
14 凝縮器
15 蒸発器(過冷却熱交換器)
15a 熱交換通路
16 第2バルブ
17 冷却用ファン
18 配管(高温冷却水取出し配管)
19 バルブ(エンジン冷却水導入バルブ)
20 配管
21 バルブ(流量制御弁)
22 配管(低温冷却水取出し配管)
23 一方向バルブ
30 送風ダクト
1 Engine 2 Engine Cooling System 3 Water Pump 4 Radiator 5 Vapor Compression Refrigerator 6 Compressor 7 Condenser 8 Expansion Valve 9 Evaporator 10 Cooling Fan 11 Adsorption Refrigerator 12 Adsorber 12a Adsorbent 12b Heat Exchange Pipe 12c Heat Dissipation Fin 13 First valve 14 Condenser 15 Evaporator (supercooling heat exchanger)
15a Heat exchange passage 16 Second valve 17 Cooling fan 18 Piping (high temperature cooling water outlet piping)
19 Valve (Engine coolant introduction valve)
20 Piping 21 Valve (Flow control valve)
22 Piping (Pipe for extracting low-temperature cooling water)
23 One-way valve 30 Air duct

Claims (8)

  1.  蒸気圧縮式冷凍機を備える車両用空調装置であって、
     吸着器の加熱により、前記吸着器に吸着されている媒体を脱離凝縮させる蓄冷モードと、前記吸着器の冷却により、前記吸着器に媒体を蒸発吸着させる放冷モードとを有する吸着式冷凍機を備え、
     前記吸着式冷凍機の蒸発部は、前記蒸気圧縮式冷凍機の冷媒回路に組み込まれて、前記媒体の蒸発により冷媒を冷却するように構成され、
     前記吸着器の加熱は車両用駆動源の廃熱により行い、前記吸着器の冷却は空気により行うことを特徴とする車両用空調装置。
    A vehicle air conditioner equipped with a vapor compression refrigerator,
    An adsorption refrigerator having a cold storage mode in which a medium adsorbed on the adsorber is desorbed and condensed by heating the adsorber and a cooling mode in which the adsorber is evaporated and adsorbed by cooling of the adsorber. With
    The evaporation unit of the adsorption refrigeration machine is incorporated in a refrigerant circuit of the vapor compression refrigeration machine, and is configured to cool the refrigerant by evaporation of the medium.
    The vehicle air conditioner is characterized in that the adsorber is heated by waste heat from a vehicle drive source, and the adsorber is cooled by air.
  2.  蒸気圧縮式冷凍機を備える車両用空調装置であって、
     冷却されることにより媒体を吸着し、加熱されることにより媒体を脱離する吸着器と、該吸着器の媒体出口に接続される凝縮部と、該凝縮部の媒体出口に接続されると共に前記吸着器の媒体入口へ接続される蒸発器とを含んで構成され、前記吸着器の加熱により、前記吸着器に吸着されている媒体を脱離させ、前記凝縮部にて凝縮液化して前記蒸発器内に貯留する蓄冷モードと、前記吸着器の冷却により、前記吸着器に媒体を吸着し、これに伴って前記蒸発器にて媒体を蒸発させる放冷モードとを有する吸着式冷凍機を備え、
     前記吸着式冷凍機の蒸発器は、前記蒸気圧縮式冷凍機の冷媒回路に組み込まれて、前記媒体の蒸発により冷媒を冷却するように構成され、
     前記吸着器の加熱は車両用駆動源の廃熱により行い、前記吸着器の冷却は空気により行うことを特徴とする車両用空調装置。
    A vehicle air conditioner equipped with a vapor compression refrigerator,
    An adsorber that adsorbs a medium by being cooled and desorbs a medium by being heated, a condensing unit connected to a medium outlet of the adsorber, and connected to a medium outlet of the condensing unit and An evaporator connected to the medium inlet of the adsorber, and the adsorber is heated to desorb the medium adsorbed on the adsorber and condense and liquefy at the condenser. An adsorption type refrigerator having a cold storage mode for storing in a chamber and a cooling mode in which a medium is adsorbed to the adsorber by the cooling of the adsorber and the medium is evaporated in the evaporator accordingly. ,
    The evaporator of the adsorption refrigeration machine is incorporated in a refrigerant circuit of the vapor compression refrigeration machine, and is configured to cool the refrigerant by evaporation of the medium.
    The vehicle air conditioner is characterized in that the adsorber is heated by waste heat from a vehicle drive source, and the adsorber is cooled by air.
  3.  前記車両用駆動源の廃熱は、エンジン冷却水であることを特徴とする請求項1又は請求項2記載の車両用空調装置。 The vehicle air conditioner according to claim 1 or 2, wherein the waste heat of the vehicle drive source is engine cooling water.
  4.  前記蓄冷モードでの前記吸着器の加熱は、吸着器加熱用の配管にエンジン冷却後・ラジエータ流入前の高温冷却水を供給することにより行い、
     前記蓄冷モードから前記放冷モードへ切換えする前に、前記配管にラジエータ通過後の低温冷却水を供給して前記配管内の高温冷却水を排出する切換モードを有することを特徴とする請求項1又は請求項2記載の車両用空調装置。
    The heating of the adsorber in the cold storage mode is performed by supplying high-temperature cooling water after cooling the engine and before flowing into the radiator to the pipe for heating the adsorber,
    2. A switching mode for supplying low-temperature cooling water after passing through a radiator to the piping and discharging high-temperature cooling water in the piping before switching from the cold storage mode to the cooling mode. Or the vehicle air conditioner of Claim 2.
  5.  吸着器冷却用の空気の流れ方向上流側に凝縮部を配置し、下流側に前記吸着器を配置して、前記蓄冷モード及び前記放冷モードのいずれにおいても空気を流すことを特徴とする請求項1又は請求項2記載の車両用空調装置。 The condensing part is arranged upstream in the flow direction of the air for cooling the adsorber, and the adsorber is arranged downstream, so that air flows in both the cold storage mode and the cool-down mode. The vehicle air conditioner according to claim 1 or 2.
  6.  前記蓄冷モードと前記放冷モードとの切換えは、前記吸着器内の吸着剤の吸着状態に基づいて行うことを特徴とする請求項1又は請求項2記載の車両用空調装置。 3. The vehicle air conditioner according to claim 1 or 2, wherein switching between the cold storage mode and the cooling mode is performed based on an adsorption state of an adsorbent in the adsorber.
  7.  前記蒸気圧縮式冷凍機は、圧縮機、凝縮器、減圧手段、及び蒸発器を含んで構成され、
     前記吸着式冷凍機の蒸発器は、前記蒸気圧縮式冷凍機の凝縮器の後段に配置されることを特徴とする請求項2記載の車両用空調装置。
    The vapor compression refrigerator includes a compressor, a condenser, a decompression unit, and an evaporator.
    The vehicle air conditioner according to claim 2, wherein the evaporator of the adsorption refrigeration machine is arranged at a stage subsequent to the condenser of the vapor compression refrigeration machine.
  8.  前記吸着器は、吸着剤収納空間の内部にエンジン冷却水が流通可能な熱交換パイプが配設され、吸着剤収納空間の外壁部に空冷用の放熱フィンが設けられていることを特徴とする請求項1又は請求項2記載の車両用空調装置。 The adsorber is characterized in that a heat exchange pipe through which engine coolant can circulate is disposed inside the adsorbent storage space, and heat radiation fins for air cooling are provided on the outer wall portion of the adsorbent storage space. The vehicle air conditioner according to claim 1 or 2.
PCT/JP2011/060746 2010-05-14 2011-05-10 Air conditioning device for vehicle WO2011142352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010112596A JP2011242017A (en) 2010-05-14 2010-05-14 Air conditioning device for vehicle
JP2010-112596 2010-05-14

Publications (1)

Publication Number Publication Date
WO2011142352A1 true WO2011142352A1 (en) 2011-11-17

Family

ID=44914407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060746 WO2011142352A1 (en) 2010-05-14 2011-05-10 Air conditioning device for vehicle

Country Status (2)

Country Link
JP (1) JP2011242017A (en)
WO (1) WO2011142352A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181666A (en) * 2012-02-29 2013-09-12 Fujitsu General Ltd Air conditioning system
CN103587373A (en) * 2012-08-16 2014-02-19 福特环球技术公司 Motor vehicle climate control system
CN103625240A (en) * 2012-08-27 2014-03-12 福特环球技术公司 Motor vehicle climate control system
DE102014205532A1 (en) * 2014-03-25 2015-10-01 MAHLE Behr GmbH & Co. KG motor vehicle
US20160257181A1 (en) * 2015-03-03 2016-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. System for cooling a vehicle compartment
CN108357333A (en) * 2017-01-27 2018-08-03 福特全球技术公司 The method of battery coolant pump control battery cooling is used in electrified vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788446A (en) * 2012-08-30 2012-11-21 华北电力大学(保定) Adsorption type auxiliary heat pump refrigerating system driven by condensation heat
KR102403512B1 (en) 2015-04-30 2022-05-31 삼성전자주식회사 Outdoor unit of air conditioner, control device applying the same
DE102017200412A1 (en) * 2017-01-12 2018-07-12 Bayerische Motoren Werke Aktiengesellschaft VEHICLE AND METHOD FOR AIR-CONDITIONING A VEHICLE
CN110398043B (en) * 2018-04-25 2022-06-14 三花控股集团有限公司 Thermal management system and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190566A (en) * 1997-12-25 1999-07-13 Denso Corp Refrigerating unit
JP2001241692A (en) * 2000-02-28 2001-09-07 Fuji Silysia Chemical Ltd Coolerand cooling system
JP2003312240A (en) * 2002-04-19 2003-11-06 Denso Corp Air conditioner for vehicle
JP2004028401A (en) * 2002-06-24 2004-01-29 Denso Corp Air-conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190566A (en) * 1997-12-25 1999-07-13 Denso Corp Refrigerating unit
JP2001241692A (en) * 2000-02-28 2001-09-07 Fuji Silysia Chemical Ltd Coolerand cooling system
JP2003312240A (en) * 2002-04-19 2003-11-06 Denso Corp Air conditioner for vehicle
JP2004028401A (en) * 2002-06-24 2004-01-29 Denso Corp Air-conditioner for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181666A (en) * 2012-02-29 2013-09-12 Fujitsu General Ltd Air conditioning system
CN103587373A (en) * 2012-08-16 2014-02-19 福特环球技术公司 Motor vehicle climate control system
CN103587373B (en) * 2012-08-16 2017-09-19 福特环球技术公司 Vehicle climate control system and the method for vehicle car atmosphere control system
CN103625240A (en) * 2012-08-27 2014-03-12 福特环球技术公司 Motor vehicle climate control system
CN103625240B (en) * 2012-08-27 2017-05-03 福特环球技术公司 Motor vehicle climate control system
DE102014205532A1 (en) * 2014-03-25 2015-10-01 MAHLE Behr GmbH & Co. KG motor vehicle
US10226983B2 (en) 2014-03-25 2019-03-12 MAHLE Behr GmbH & Co. KG Motor vehicle
US20160257181A1 (en) * 2015-03-03 2016-09-08 Toyota Motor Engineering & Manufacturing North America, Inc. System for cooling a vehicle compartment
US9656536B2 (en) * 2015-03-03 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. System for cooling a vehicle compartment
CN108357333A (en) * 2017-01-27 2018-08-03 福特全球技术公司 The method of battery coolant pump control battery cooling is used in electrified vehicle

Also Published As

Publication number Publication date
JP2011242017A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011142352A1 (en) Air conditioning device for vehicle
JP4192385B2 (en) Adsorption type refrigerator
JP2020168950A (en) On-vehicle temperature control device
JP2013096586A (en) Adsorption type refrigeration device
WO2003021166A1 (en) Exhaust heat utilizing refrigeration system
JP5402564B2 (en) Adsorption refrigerator and refrigerator
JP5803704B2 (en) Refrigeration system
JP2016080310A (en) Cooling system
JP2015048987A (en) Air conditioner
JP2001213149A (en) Air conditioner for vehicle
JP3959829B2 (en) Refrigeration equipment and air conditioning equipment
JP5974541B2 (en) Air conditioning system
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
US10864800B2 (en) Method for a vehicle climate control system
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JP2017161159A (en) Outdoor uni of air conditioner
JP2004340520A (en) Refrigerating cycle device
JP2003312240A (en) Air conditioner for vehicle
JP5098547B2 (en) Absorption refrigeration system
JP4086011B2 (en) Refrigeration equipment
JP3925245B2 (en) Vehicle heat storage system
JP4069691B2 (en) Air conditioner for vehicles
JP6613404B2 (en) Refrigeration system
JP2018070038A (en) Air conditioner for vehicle having adsorption-type heat pump
JPH037859A (en) Controlling method of adsorptive type freezer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780609

Country of ref document: EP

Kind code of ref document: A1