JP2002356776A - Method of manufacturing single layer carbon nanotube - Google Patents

Method of manufacturing single layer carbon nanotube

Info

Publication number
JP2002356776A
JP2002356776A JP2001163190A JP2001163190A JP2002356776A JP 2002356776 A JP2002356776 A JP 2002356776A JP 2001163190 A JP2001163190 A JP 2001163190A JP 2001163190 A JP2001163190 A JP 2001163190A JP 2002356776 A JP2002356776 A JP 2002356776A
Authority
JP
Japan
Prior art keywords
metal
catalyst
carbon nanotube
alumina
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001163190A
Other languages
Japanese (ja)
Other versions
JP3451339B2 (en
Inventor
Fumiyuki Hoshi
文之 星
Takefumi Ishikura
威文 石倉
Morio Yumura
守雄 湯村
Satoru Oshima
哲 大嶋
Shuzo Fujiwara
修三 藤原
Yoshinori Koga
義紀 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Tokyo Gas Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001163190A priority Critical patent/JP3451339B2/en
Publication of JP2002356776A publication Critical patent/JP2002356776A/en
Application granted granted Critical
Publication of JP3451339B2 publication Critical patent/JP3451339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a single layer carbon nanotube having a relatively uniform diameter and length at a low temperature. SOLUTION: This method of manufacturing the carbon nanotube comprises passing gas of an organic carbon raw material at 700 to 800 deg.C onto an active substrate constituting of high-purified alumina of <=0.05% in the contents of impurities consisting of alkaline metals, sulfur and silica as a catalyst and molybdenum as a co-catalyst metal thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CVD法(化学蒸
着法)により単層カーボンナノチューブを製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing single-walled carbon nanotubes by a CVD method (chemical vapor deposition).

【0002】[0002]

【従来の技術】単層カーボンナノチューブの合成にはア
ーク放電法、レーザー照射法が主に用いられている。ア
ーク放電やレーザー照射法によるカーボンナノチューブ
の合成においては空排気装置や高電圧・大電流電源など
の高価かつ危険な装置を必要とし、また生成量も少な
く、多層カーボンナノチューブや黒鉛、アモルファスカ
ーボンが混在し、単層カーボンナノチューブの径や長さ
のばらつきが大きい等の問題がある。また、触媒金属を
含有させた活性基体上で、炭素源となる炭化水素を熱分
解させて、該基体上に直接カーボンナノチューブを生成
させるCVD法が知られている。このCVD法では通常
850〜1000℃程度の反応温度が必要とされてお
り、多量の熱エネルギーの使用を要するという問題があ
る。
2. Description of the Related Art An arc discharge method and a laser irradiation method are mainly used for synthesizing single-walled carbon nanotubes. The synthesis of carbon nanotubes by arc discharge or laser irradiation requires expensive and dangerous equipment such as vacuum exhaust equipment and high-voltage / high-current power supplies, and produces a small amount of mixed carbon nanotubes, graphite, and amorphous carbon. However, there are problems such as large variations in diameter and length of the single-walled carbon nanotube. Further, there is known a CVD method in which a hydrocarbon serving as a carbon source is thermally decomposed on an active substrate containing a catalytic metal to form carbon nanotubes directly on the substrate. This CVD method usually requires a reaction temperature of about 850 to 1000 ° C., and has a problem that a large amount of thermal energy needs to be used.

【0003】[0003]

【発明が解決しようとする課題】本発明は径や長さが比
較的揃った単層カーボンナノチューブを低温で合成する
ためのカーボンナノチューブの製造方法を提供すること
をその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing carbon nanotubes for synthesizing single-wall carbon nanotubes having a relatively uniform diameter and length at a low temperature.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を行った結果、本発明を完成する
に至った。即ち、本発明によれば、以下の発明が提供さ
れる。 (1)アルカリ金属、硫黄及びシリカからなる不純物の
含有量が0.05%以下の高純度アルミナにカーボンナ
ノチューブ生成反応に活性を有する触媒金属とその触媒
助剤金属としてモリブデンを含有させたものからなる活
性基体上に、700〜800℃の温度において、有機炭
素原料の気体を流通させることを特徴とする単層カーボ
ンナノチューブの製造方法。 (2)該触媒金属が、Fe、Co及びNiの中から選ば
れる少なくとも1種の金属を含有する前記(1)に記載
の方法。 (3)該炭素原料としてメタンを用いる前記(1)〜
(2)のいずれかに記載の方法。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, the following inventions are provided. (1) From a high purity alumina containing 0.05% or less of an impurity composed of an alkali metal, sulfur and silica, containing a catalytic metal having an activity in a carbon nanotube generation reaction and molybdenum as a catalytic auxiliary metal. A method for producing single-walled carbon nanotubes, comprising flowing a gas of an organic carbon raw material at a temperature of 700 to 800 ° C over an active substrate. (2) The method according to (1), wherein the catalyst metal contains at least one metal selected from Fe, Co and Ni. (3) The above (1) to (4), wherein methane is used as the carbon raw material.
The method according to any one of (2).

【0005】[0005]

【発明の実施の形態】本発明のカーボンナノチューブの
製造方法においては、カーボンナノチューブを成長させ
る活性基体として、アルカリ金属(Na、K等)、硫黄
及びシリカからなる不純物の含有量が0.05%以下、
好ましくは0.01%以下の高純度アルミナに触媒金属
とその触媒助剤金属を含有させたものを用いる。この場
合の高純度アルミナは、例えば、高純度のアルミニウム
トリアルコキシドを原料とし、これを加水分解し、焼成
することにより製造することが出来る。アルミナの形態
は、粉末状、ペレット状、板体状などの各種の形状であ
ることが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing carbon nanotubes of the present invention, the content of impurities consisting of alkali metals (Na, K, etc.), sulfur and silica is 0.05% as an active substrate for growing carbon nanotubes. Less than,
Preferably, a high-purity alumina of 0.01% or less containing a catalyst metal and a catalyst auxiliary metal is used. The high-purity alumina in this case can be produced, for example, by using a high-purity aluminum trialkoxide as a raw material, hydrolyzing it, and firing it. The form of alumina can be in various forms such as powder, pellet, and plate.

【0006】本発明で用いる活性基体を製造するには、
前記高純度アルミナを触媒金属とその触媒助剤金属を溶
解状で含む溶液と接触させ、アルミナにその触媒金属と
触媒助剤金属を含有させる。この場合の触媒金属として
は、カーボンナノチューブの成長に活性を有する従来公
知の触媒金属、例えばFe、Co、Ni等の各種の遷移
金属を1種もしくは2種組み合わせて用いることが出来
る。触媒助剤金属としては、Moが用いられる。これら
の触媒金属及びその触媒助剤金属は可溶性塩、例えば、
硝酸塩という形態で用いられる。触媒金属及びその触媒
助剤金属を溶解状で含む溶液(金属溶液)は、触媒金属
及びその触媒助剤金属を可溶性塩の形態で、それを溶解
する溶媒、例えば、水、低級アルコール等の有機溶媒又
は水と水溶性有機溶媒との混合液、好ましくは水に溶解
させることによって調製することが出来る。この触媒金
属及びその触媒助剤金属を含む溶液において、その金属
濃度はその飽和溶解濃度以下であるが、通常は0.01
〜0.05%、好ましくは0.005〜0.01%であ
る。アルミナと金属溶液との接触法としては、浸漬法や
スプレー法等があるが、通常は浸漬法が用いられる。そ
の接触温度は室温〜80℃、好ましくは50〜60℃で
ある。前記アルミナと金属溶液との接触により、触媒溶
液はアルミナに含浸される。
To produce the active substrate used in the present invention,
The high-purity alumina is brought into contact with a solution containing the catalyst metal and the catalyst auxiliary metal in a dissolved state, and the alumina contains the catalyst metal and the catalyst auxiliary metal. As the catalyst metal in this case, a conventionally known catalyst metal having an activity for growing carbon nanotubes, for example, various transition metals such as Fe, Co, and Ni can be used alone or in combination of two or more. Mo is used as the catalyst auxiliary metal. These catalyst metals and their catalyst auxiliary metals are soluble salts, for example,
Used in the form of nitrates. The solution (metal solution) containing the catalyst metal and the catalyst auxiliary metal in a dissolved state is a solvent that dissolves the catalyst metal and the catalyst auxiliary metal in the form of a soluble salt, for example, an organic solvent such as water or a lower alcohol. It can be prepared by dissolving in a solvent or a mixture of water and a water-soluble organic solvent, preferably water. In the solution containing the catalyst metal and the catalyst auxiliary metal, the metal concentration is equal to or lower than the saturation dissolution concentration, but is usually 0.01%.
-0.05%, preferably 0.005-0.01%. As a method of contacting the alumina with the metal solution, there are an immersion method, a spray method, and the like, but the immersion method is usually used. The contact temperature is from room temperature to 80 ° C, preferably from 50 to 60 ° C. The catalyst solution is impregnated into the alumina by the contact between the alumina and the metal solution.

【0007】この触媒金属及び触媒助剤金属を含有する
アルミナにおいて、その触媒金属の含有量は、触媒金属
として、1〜20%、好ましくは5〜10%である。そ
の触媒助剤金属としてのMoの含有量は、金属Moとし
て、0.1〜1.5%、好ましくは0.3〜0.8%で
ある。アルミナに含有されたそれら金属の形態は、カー
ボンナノチューブの生成を促進させる形態であればよ
く、金属形態の他、金属酸化物、金属水酸化物の形態で
あることができる。金属形態の場合、前記で得られた金
属含有アルミナは、これを水素還元すればよい。また、
金属酸化物形態の場合、前記で得られた金属含有アルミ
ナは、これを焼成すればよい。
In the alumina containing the catalyst metal and the catalyst auxiliary metal, the content of the catalyst metal is 1 to 20%, preferably 5 to 10% as the catalyst metal. The content of Mo as a catalyst auxiliary metal is 0.1 to 1.5%, preferably 0.3 to 0.8%, as metal Mo. The form of these metals contained in alumina may be any form that promotes the formation of carbon nanotubes, and may be in the form of a metal oxide, a metal oxide, or a metal hydroxide in addition to the metal form. In the case of a metal form, the metal-containing alumina obtained above may be reduced with hydrogen. Also,
In the case of a metal oxide form, the metal-containing alumina obtained above may be fired.

【0008】本発明により触媒金属及び触媒助剤金属を
含有する活性基体を好ましく製造するには、先ずそれら
金属を含有する粉体状アルミナを作り、次に、このアル
ミナを所要形状に成形する方法と、Siや石英ガラス等
の基板に塗布する方法がある。この場合、粉体状アルミ
ナにおいては比表面積は100〜250cm2/g、好
ましくは200〜250cm2/gである。
In order to preferably produce an active substrate containing a catalyst metal and a catalyst auxiliary metal according to the present invention, first, a powdery alumina containing these metals is prepared, and then the alumina is formed into a required shape. And a method of applying to a substrate such as Si or quartz glass. In this case, the specific surface area of the powdery alumina is 100 to 250 cm 2 / g, preferably 200 to 250 cm 2 / g.

【0009】本発明によりカーボンナノチューブを製造
するには、前記触媒金属と触媒助剤金属を含有するアル
ミナからなる基体の存在下において、有機炭素原料を流
通させながら熱分解させる。この場合の反応温度(熱分
解温度)は700〜1000℃であればよく、特に制約
されないが、本発明の場合、特に700〜800℃とい
う低い温度においてカーボンナノチューブの製造が可能
であるという大きな利点がある。有機炭素原料の流通速
度は、ガス空間速度(GHSV)で2000〜2000
00hr-1、好ましくは、5000〜10000hr-1
である。
To produce carbon nanotubes according to the present invention, an organic carbon raw material is thermally decomposed in the presence of a base made of alumina containing the above-mentioned catalyst metal and catalyst auxiliary metal. The reaction temperature (pyrolysis temperature) in this case may be 700-1000 ° C. and is not particularly limited, but in the case of the present invention, a great advantage is that carbon nanotubes can be produced particularly at a low temperature of 700-800 ° C. There is. The flow rate of the organic carbon raw material is 2000 to 2000 in gas hourly space velocity (GHSV).
00 hr -1 , preferably 5000 to 10000 hr -1
It is.

【0010】前記有機炭素原料としては、特に制約され
ず、高温で炭素化されるものであればよい。このような
ものとしては、メタン、エタン、プロパン、ブタン等の
飽和炭化水素;エチレン、プロピレン、ブテン、イソブ
テン等の不飽和炭化水素;アセチレン等のアセチレン系
化合物;ベンゼン、トルエン、キシレン、ナフタレン等
の芳香族炭化水素、これらの混合物(例えばナフサや軽
油等)等が包含される。前記有機炭素原料を熱分解する
場合、その気体中にはアルゴンガスや水素ガスをキャリ
アーとして混入することができる。また、有機炭素原料
には、硫化水素やメルカプタン等のイオウ化合物を適量
加えることができる。これにより、基体状に真っ直ぐな
カーボンナノチューブを得ることが出来る。本発明によ
り得られるカーボンナノチューブは、細径のもので、そ
の太さ(直径)は、通常0.5〜2nm程度の単層のも
のである。
The organic carbon raw material is not particularly limited as long as it can be carbonized at a high temperature. Examples of such a compound include saturated hydrocarbons such as methane, ethane, propane and butane; unsaturated hydrocarbons such as ethylene, propylene, butene and isobutene; acetylene-based compounds such as acetylene; benzene, toluene, xylene and naphthalene. Aromatic hydrocarbons, mixtures thereof (eg, naphtha, gas oil, etc.) and the like are included. When the organic carbon raw material is thermally decomposed, an argon gas or a hydrogen gas can be mixed into the gas as a carrier. In addition, an appropriate amount of a sulfur compound such as hydrogen sulfide or mercaptan can be added to the organic carbon raw material. Thereby, a carbon nanotube straight in the shape of a substrate can be obtained. The carbon nanotubes obtained by the present invention have a small diameter, and have a single-layer thickness (diameter) of usually about 0.5 to 2 nm.

【0011】[0011]

【実施例】次に本発明を実施例により詳細に説明する。Next, the present invention will be described in detail with reference to examples.

【0012】実施例1 ナトリウム含有量が0.01%以下の純度が99.95
%以上である高純度γ−アルミナ粉末1.0gを、硝酸
鉄(Fe(NO3)2・9H2O)0.2gと酸化モリブデ
ンアセチルアセトナート((CH3COCHCOCH3)2
MoO2)0.01gをメタノール35mlに溶解させ
て得た溶液中に30分間浸し、3時間超音波処理により
分散させた。これをSi基板に塗布し、空気中で120
℃で1時間乾燥させた。次に、この基板をアルミナボー
トにのせ、電気炉に挿入し、アルゴン雰囲気下で700
℃まで昇温させた後、メタンを60cc/分、アルゴン
を240cc/分を5分間流通させた。その結果、基板
表面にはバンドルになったカーボンナノチューブが堆積
した。カーボンナノチューブの太さ(直径)は1nm程
度であった。
Example 1 Purity of 99.95 with a sodium content of 0.01% or less
% High purity γ- alumina powder 1.0g in the above, iron nitrate (Fe (NO 3) 2 · 9H 2 O) 0.2g and molybdenum acetylacetonate ((CH 3 COCHCOCH 3) 2
MoO 2 ) was immersed in a solution obtained by dissolving 0.01 g of methanol in 35 ml of methanol for 30 minutes and dispersed by ultrasonication for 3 hours. This is applied to a Si substrate, and 120
Dried for 1 hour at ° C. Next, the substrate was placed on an alumina boat, inserted into an electric furnace, and placed under an argon atmosphere at 700.degree.
After the temperature was raised to ℃, methane was passed at 60 cc / min and argon was passed at 240 cc / min for 5 minutes. As a result, bundled carbon nanotubes were deposited on the substrate surface. The thickness (diameter) of the carbon nanotube was about 1 nm.

【0013】比較例1 ナトリウム含有量が0.01%以下の純度が99.95
%以上である高純度γ−アルミナ粉末1.0gを硝酸鉄
九水和物(Fe(NO3)2・9H2O)0.2gをメタノ
ール35mlに溶解させて得た溶液中に30分間浸し、
3時間超音波処理により分散させた。これをSi基板に
塗布し、空気中で120℃で1時間乾燥させた。次に、
この基板をアルミナボートにのせ、電気炉に挿入し、ア
ルゴン雰囲気下で700℃まで昇温させた後、メタンを
60cc/分、アルゴンを240cc/分を5分間流通
させた。その結果、基板表面にはバンドルになったカー
ボンナノチューブが極くわずか生成した。カーボンナノ
チューブの太さ(直径)は1nm程度であった。
Comparative Example 1 Purity of 99.95 with a sodium content of 0.01% or less
High purity γ- alumina powder 1.0g iron nitrate nonahydrate (Fe (NO 3) 2 · 9H 2 O) 0.2g immersed for 30 minutes in a solution obtained by dissolving in methanol 35ml which is more than% ,
Dispersed by sonication for 3 hours. This was applied to a Si substrate and dried in air at 120 ° C. for 1 hour. next,
The substrate was placed on an alumina boat, inserted into an electric furnace, heated to 700 ° C. in an argon atmosphere, and then methane was flowed at 60 cc / min and argon at 240 cc / min for 5 minutes. As a result, very few bundled carbon nanotubes were formed on the substrate surface. The thickness (diameter) of the carbon nanotube was about 1 nm.

【0014】比較例2 ナトリウム含有量が0.02%、鉄0.6%程度の不純
物を含むγ−アルミナ粉末1.0gを硝酸鉄九水和物
0.2gと酸化モリブデンアセチルアセトナート0.0
1gをメタノール35mlに溶解させて得た溶液中に3
0分間浸し、3時間超音波処理により分散させた。これ
をSi基板に塗布し、700℃で実施例1と同様に反応
させた。その結果、基板表面にはアモルファスカーボン
が堆積し、カーボンナノチューブは生成していなかっ
た。
Comparative Example 2 1.0 g of γ-alumina powder containing impurities of about 0.02% of sodium and about 0.6% of iron was added to 0.2 g of iron nitrate nonahydrate and 0.1 g of molybdenum acetylacetonate. 0
3 g in a solution obtained by dissolving 1 g in 35 ml of methanol.
It was soaked for 0 minutes and dispersed by sonication for 3 hours. This was applied to a Si substrate and reacted at 700 ° C. in the same manner as in Example 1. As a result, amorphous carbon was deposited on the substrate surface, and no carbon nanotube was generated.

【0015】実施例2 ナトリウム含有量が0.01%以下の純度が99.95
%以上である高純度γ−アルミナ粉末1.0gを硝酸コ
バルト(Co(NO3)2)0.1gと酸化モリブデンア
セチルアセトナート0.01gをメタノールに溶解させ
て得た溶液中に30分間浸し、3時間超音波処理により
分散させた。これをSi基板に塗布し、800℃で実施
例1と同様に反応させた。基板表面に、バンドルになっ
たカーボンナノチューブが堆積した。その太さ(直径)
は1.2nm程度であった。
Example 2 Purity of 99.95 with a sodium content of 0.01% or less
% Of high-purity γ-alumina powder of 0.1% or more is immersed in a solution obtained by dissolving 0.1 g of cobalt nitrate (Co (NO 3 ) 2 ) and 0.01 g of molybdenum acetylacetonate in methanol for 30 minutes. And dispersed by sonication for 3 hours. This was applied to a Si substrate and reacted at 800 ° C. in the same manner as in Example 1. Bundles of carbon nanotubes were deposited on the substrate surface. Its thickness (diameter)
Was about 1.2 nm.

【0016】実施例3 99.999%のAl(OCH(CH3)2)34.0gを
イソプロパノール140mlに加え、還流により溶解さ
せた溶液中に、硝酸ニッケル(Ni(NO3)2)0.1g
と酸化モリブデンアセチルアセトナート0.01gをイ
ソプロパノール10mlに溶解させて得た溶液を混合し
た。これをSi基板に塗布し、800℃で実施例1と同
様に反応させた。基板表面に、バンドルになったカーボ
ンナノチューブが堆積した。カーボンナノチューブの太
さ(直径)は0.8nm程度であった。
Example 3 4.0 g of 99.999% Al (OCH (CH 3 ) 2 ) 3 was added to 140 ml of isopropanol, and nickel nitrate (Ni (NO 3 ) 2 ) 0 was added to a solution dissolved by reflux. .1g
And a solution obtained by dissolving 0.01 g of molybdenum acetylacetonate in 10 ml of isopropanol was mixed. This was applied to a Si substrate and reacted at 800 ° C. in the same manner as in Example 1. Bundles of carbon nanotubes were deposited on the substrate surface. The thickness (diameter) of the carbon nanotube was about 0.8 nm.

【0017】[0017]

【発明の効果】本発明によれば、700〜800℃とい
う比較的低い反応温度で、単層カーボンナノチューブを
製造することができる。従って、本発明は、省エネルギ
ーの点及び装置コストの点で非常に有利な方法である。
According to the present invention, single-walled carbon nanotubes can be produced at a relatively low reaction temperature of 700 to 800 ° C. Therefore, the present invention is a very advantageous method in terms of energy saving and equipment cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石倉 威文 東京都港区海岸1−5−20 東京瓦斯株式 会社内 (72)発明者 湯村 守雄 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 (72)発明者 大嶋 哲 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 (72)発明者 藤原 修三 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 (72)発明者 古賀 義紀 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 Fターム(参考) 4G046 CA02 CB03 CC02 CC03 CC06 CC08 4K030 AA09 AA10 AA16 BA27 BB11 CA05 FA10 JA10  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takefumi Ishikura 1-5-20 Minato-ku, Tokyo 1-5-20 Tokyo Gas Co., Ltd. (72) Inventor Morio Yumura 1-1-1 Higashi, Tsukuba-shi, Ibaraki Independent Administrative Institution AIST Tsukuba Center (72) Inventor Satoshi Oshima 1-1-1 Higashi Tsukuba City, Ibaraki Prefecture Independent Administrative Institution AIST Tsukuba Center (72) Inventor Shuzo Fujiwara 1-1 Higashi Higashi Tsukuba City Ibaraki Prefecture -1 Independent Administrative Institution AIST Tsukuba Center (72) Inventor Yoshinori Koga 1-1-1 Higashi Tsukuba, Ibaraki Pref. Independent Administrative Institution AIST Tsukuba Center F-term (reference) 4G046 CA02 CB03 CC02 CC03 CC06 CC08 4K030 AA09 AA10 AA16 BA27 BB11 CA05 FA10 JA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属、硫黄及びシリカからなる
不純物の含有量が0.05%以下の高純度アルミナにカ
ーボンナノチューブ生成反応に活性を有する触媒金属と
その触媒助剤金属としてモリブデンを含有させたものか
らなる活性基体上に、700〜800℃の温度におい
て、有機炭素原料の気体を流通させることを特徴とする
単層カーボンナノチューブの製造方法。
1. A high-purity alumina containing 0.05% or less of an impurity composed of an alkali metal, sulfur, and silica, containing a catalytic metal having an activity in a carbon nanotube generation reaction and molybdenum as a catalytic auxiliary metal. A method for producing single-walled carbon nanotubes, characterized in that a gas of an organic carbon raw material is allowed to flow at a temperature of 700 to 800 ° C over an active substrate made of the same.
【請求項2】 該触媒金属が、Fe、Co及びNiの中
から選ばれる少なくとも1種の金属を含有する請求項1
に記載の方法。
2. The catalyst according to claim 1, wherein the catalyst metal contains at least one metal selected from the group consisting of Fe, Co and Ni.
The method described in.
【請求項3】 該炭素原料としてメタンを用いる請求項
1〜2のいずれかに記載の方法。
3. The method according to claim 1, wherein methane is used as the carbon raw material.
JP2001163190A 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube Expired - Lifetime JP3451339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163190A JP3451339B2 (en) 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163190A JP3451339B2 (en) 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube

Publications (2)

Publication Number Publication Date
JP2002356776A true JP2002356776A (en) 2002-12-13
JP3451339B2 JP3451339B2 (en) 2003-09-29

Family

ID=19006207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163190A Expired - Lifetime JP3451339B2 (en) 2001-05-30 2001-05-30 Method for producing single-walled carbon nanotube

Country Status (1)

Country Link
JP (1) JP3451339B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213590A (en) * 2005-01-04 2006-08-17 National Institute Of Advanced Industrial & Technology Carbon fiber aggregate composed of very fine single-wall carbon nanotube and its manufacturing method
WO2007105707A1 (en) 2006-03-13 2007-09-20 Nikon Corporation Process for production of carbon nanotube aggregates, carbon nanotube aggregates, catalyst particle dispersion membrane, electron emitters, and field emission displays
JP2008526683A (en) * 2005-01-11 2008-07-24 本田技研工業株式会社 Method for growing long carbon single-walled nanotubes
JP2009528238A (en) * 2005-12-19 2009-08-06 ナンテロ,インク. Formation of carbon nanotubes
JP2015057367A (en) * 2008-05-01 2015-03-26 本田技研工業株式会社 Synthesis of high-quality monolayer carbon nanotube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383104B (en) * 2018-03-27 2019-11-22 清华大学 A kind of generated in-situ carbon nanotube and the preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213590A (en) * 2005-01-04 2006-08-17 National Institute Of Advanced Industrial & Technology Carbon fiber aggregate composed of very fine single-wall carbon nanotube and its manufacturing method
JP4706058B2 (en) * 2005-01-04 2011-06-22 独立行政法人産業技術総合研究所 Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JP2008526683A (en) * 2005-01-11 2008-07-24 本田技研工業株式会社 Method for growing long carbon single-walled nanotubes
JP2009528238A (en) * 2005-12-19 2009-08-06 ナンテロ,インク. Formation of carbon nanotubes
WO2007105707A1 (en) 2006-03-13 2007-09-20 Nikon Corporation Process for production of carbon nanotube aggregates, carbon nanotube aggregates, catalyst particle dispersion membrane, electron emitters, and field emission displays
JP2015057367A (en) * 2008-05-01 2015-03-26 本田技研工業株式会社 Synthesis of high-quality monolayer carbon nanotube
JP2016164122A (en) * 2008-05-01 2016-09-08 本田技研工業株式会社 Synthesis of high-quality carbon single-walled nanotube
JP2017222565A (en) * 2008-05-01 2017-12-21 本田技研工業株式会社 Synthesis of high-quality carbon single-layer nanotube
US10850984B2 (en) 2008-05-01 2020-12-01 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes

Also Published As

Publication number Publication date
JP3451339B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
Tessonnier et al. Recent progress on the growth mechanism of carbon nanotubes: a review
US7504570B2 (en) Method of manufacturing carbon nanotubes
Pham-Huu et al. Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes
ES2658069T3 (en) Carbon nanotube synthesis procedure
JP5702043B2 (en) Catalyst for producing carbon nanotubes by decomposing gaseous carbon compounds with heterogeneous catalysts
Prasek et al. Methods for carbon nanotubes synthesis
JP5065898B2 (en) Synthesis of carbon single-walled nanotubes with narrow diameter distribution
KR101508101B1 (en) Carbon nanotubes having high specific surface area and Process for preparing same
Kukovecz et al. Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol–gel silica–aluminas
JP6449251B2 (en) Catalytic degradation of lower hydrocarbons to produce carbon oxide free hydrogen and bamboo structure carbon nanotubes
US20080206125A1 (en) Catalyst System for a Multi-Walled Carbon Nanotube Production Process
US8835006B2 (en) Carbon nanohorn carried material and process for producing carbon nanotube
JP2004525853A5 (en)
TW201119979A (en) Process for the oxidative coupling of methane
JP2013502309A (en) Bilayer catalyst, process for its production and its use in the production of nanotubes
WO2007088867A1 (en) Process and apparatus for producing carbon nanotube
JP2015048263A (en) Carbon nanotube assembly containing single walled carbon nanotube and double walled carbon nanotube, and synthesis method thereof
Zhu et al. A new method for synthesizing double-walled carbon nanotubes
Toussi et al. Effect of synthesis condition on the growth of SWCNTs via catalytic chemical vapour deposition
JP2002356776A (en) Method of manufacturing single layer carbon nanotube
KR20090087454A (en) Process for synthesizing nanotubes, especially carbon nanotubes, and their uses
JP2002180252A (en) Method of manufacturing carbon nanotube
CN101213020B (en) Method for synthesis of carbon nanotubes
JP2004018309A (en) Method for manufacturing carbon nanotube
KR20180116270A (en) Method for producing fibrous carbon nanostructure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3451339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term