JP4678727B2 - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP4678727B2
JP4678727B2 JP2005229599A JP2005229599A JP4678727B2 JP 4678727 B2 JP4678727 B2 JP 4678727B2 JP 2005229599 A JP2005229599 A JP 2005229599A JP 2005229599 A JP2005229599 A JP 2005229599A JP 4678727 B2 JP4678727 B2 JP 4678727B2
Authority
JP
Japan
Prior art keywords
dodger
bridge
wind
support structure
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005229599A
Other languages
Japanese (ja)
Other versions
JP2007045223A (en
Inventor
光 八木
昭彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Tokai University Educational Systems
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Tokai University Educational Systems
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Tokai University Educational Systems, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005229599A priority Critical patent/JP4678727B2/en
Publication of JP2007045223A publication Critical patent/JP2007045223A/en
Application granted granted Critical
Publication of JP4678727B2 publication Critical patent/JP4678727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wind Motors (AREA)

Description

本発明は、効率よく風力から補助推進力を得ることができる船舶に関し、より詳細には、風力から補助推進力を得る柱状補助推進力発生体で形成したドジャー支持構造体を備えた船舶における、船橋とドジャー支持構造体の相互の位置関係や船橋の形状に関する。   The present invention relates to a ship that can efficiently obtain auxiliary propulsion from wind power, and more specifically, in a ship that includes a dodger support structure formed of a columnar auxiliary propulsion generator that obtains auxiliary propulsion from wind. This relates to the mutual positional relationship between the bridge and the dodger support structure and the shape of the bridge.

タンカー等の大型船舶等において、近年の船舶の自動化、省力化により船員の減少が進んで居住区画が小さくなってきているが、操舵室は視界確保の面から、ある程度の高さを維持する必要があるため、船橋の幅が狭くなってきている。一方、狭水路航行時、離岸時、接岸時等の操船においては、舷側を監視する必要があるため、操舵室の両側から船体の舷側の上部に設けた監視場所まで水平に張り出したドジャーと呼ばれる通路が設けられている。   In large ships such as tankers, the number of occupants is decreasing due to the recent automation and labor saving of ships, but the wheelhouse is required to maintain a certain height in terms of securing visibility. As a result, the width of the bridge is getting narrower. On the other hand, when maneuvering on narrow waterways, at berths, at berths, etc., it is necessary to monitor the side of the berth, so there is a dodger that projects horizontally from both sides of the wheelhouse to the monitoring location on the upper side of the hull. There is a passage called.

このドジャーは、船橋の幅が船幅と略同じである場合には、船橋の一部として構成されたり、船橋から斜めに張り出した支柱により支持されている。しかし、船橋の幅が船幅よりもある程度狭い場合には、図4及び図5に示すように、このドジャー60s,60pの船体中心側は船橋70に固定支持され、他方の舷側側の端部は甲板81上に立設されたドジャー支持構造体1Xs,1Xpにより固定支持されている。   When the width of the bridge is substantially the same as the width of the bridge, the dodger is configured as a part of the bridge or is supported by a support column extending obliquely from the bridge. However, when the width of the bridge is somewhat narrower than the width of the bridge, as shown in FIGS. 4 and 5, the hull center side of the dodgers 60s and 60p is fixedly supported by the bridge 70, and the other end portion on the shore side Is fixedly supported by dodger support structures 1Xs, 1Xp standing on the deck 81.

このドジャー60s,60pは、通常は、図4に示すように、平面視で、船橋70の前端70fから船体中心線C.L.に略垂直方向に側方(左右)に延びて形成され、ドジャー支持構造体1Xs,1Xpは船橋70の側方(両舷側)に配置されている。   As shown in FIG. 4, the dodgers 60 s and 60 p are normally connected to the hull center line C.B from the front end 70 f of the bridge 70 in a plan view. L. The dodger support structures 1Xs and 1Xp are arranged on the sides of the bridge 70 (both sides).

この船橋の側方に、風車、帆等の風力利用装置を配置させる共に、この風力利用装置の支持部材としてドジャー支持構造体(船橋支持柱)を使用する船舶における風力の利用方法及び装置が提案されている(例えば、特許文献1参照。)。   A wind energy utilization method such as a windmill or sail is arranged on the side of the bridge, and a method and apparatus for utilizing wind power in a ship using a dodger support structure (support bridge pillar) as a support member of the wind energy utilization device is proposed. (For example, refer to Patent Document 1).

また、ドジャー支持構造体とは関係しないが、風力を利用する補助推進装置の一つとして、船舶の暴露甲板上に突出し、かつ水平方向に回転可能な円筒状構造物を設けると共に、主機関の廃棄エネルギーによって作動する駆動装置を配設し、この駆動装置によって円筒状構造物を回転させることにより、マグナス効果を利用して、風から補助推進力を得る船舶の補助推進装置が提案されている(例えば、特許文献2参照。)。   Although not related to the dodger support structure, as an auxiliary propulsion device that uses wind power, a cylindrical structure that protrudes on the exposed deck of the ship and can be rotated horizontally is provided. There has been proposed an auxiliary propulsion device for a ship that provides an auxiliary propulsion force from wind by using a Magnus effect by disposing a drive device that operates by waste energy and rotating a cylindrical structure by this drive device. (For example, refer to Patent Document 2).

更に、このマグナス効果を利用する揚力発生装置として、円柱状の構造物に設けた穴より空気や水などの流体を出し入れすると共に、流体の吹き出し速度と吸入速度の一方又は両方を制御することによって、円柱状の構造物のまわりの流れとこの流れに起因する圧力分布を変化させて発生する揚力の大きさを変える揚力発生装置も提案されている(例えば、特許文献3参照。)。   Furthermore, as a lift generating device using this Magnus effect, a fluid such as air or water is taken in and out from a hole provided in a cylindrical structure, and one or both of a fluid blowing speed and a suction speed are controlled. There has also been proposed a lift generator that changes the magnitude of lift generated by changing the flow around a cylindrical structure and the pressure distribution resulting from this flow (see, for example, Patent Document 3).

これらに関連して、本発明者らは、甲板上に設けられた居住区から左右両方向に延びたドジャーを支持するドジャー支持構造体を、回転円筒体の回転型や円筒表面に空気を出入りさせる空気吸い込み型等の、風力によって船舶を推進するための補助推進力を発生する柱状補助推進力発生体で形成し、該ドジャー支持構造体により、マグナス効果を利用して補助推進力を発生させる船舶を提案している(特許文献4参照。)。   In relation to these, the present inventors let the dodger support structure that supports the dodger extending in the left and right directions from the residential area provided on the deck to allow air to enter and exit the rotary mold of the rotary cylinder and the cylindrical surface. A ship that is formed of a columnar auxiliary propulsion generator that generates an auxiliary propulsion force for propelling a ship by wind power, such as an air suction type, and that generates an auxiliary propulsion force using the Magnus effect by the dodger support structure. (Refer to Patent Document 4).

このような船舶においては、風力によって発生する揚力の船体前方の方向成分を補助推進力として利用している。この場合、船舶は航海速力で航走しているため、風および航海速力の合成結果として得られる見掛けの相対風速及び相対風向が重要となる。   In such a ship, a directional component in front of the hull of lift generated by wind power is used as auxiliary propulsive force. In this case, since the ship is navigating at the voyage speed, the apparent relative wind speed and the relative wind direction obtained as a result of combining the wind and the voyage speed are important.

この補助推進力が大きくなる相対風向は、図3に示す補助推進力と相対風向の関係等から分かるように、相対風速が同じ場合には、船体前方から後方に吹く風の角度をゼロとし、右舷方向を+、左舷方向を−とした場合に、相対風向が100度(α1)〜140度(α2)(あるいは、−100度〜−140度)となる横風の範囲で、補助推進力が大きくなりピークを示す。なお、図3は回転円筒型の補助推進力発生装置を使用した場合でありC0〜C4は、πnd/Vaw、即ち、回転周速度(πnd)と風速(Vaw)の比を0〜4まで増加させた場合を示す。   As can be seen from the relationship between the auxiliary propulsion force and the relative wind direction shown in FIG. When the starboard direction is + and the starboard direction is-, the auxiliary propulsive force is within the range of the crosswind where the relative wind direction is 100 degrees (α1) to 140 degrees (α2) (or -100 degrees to -140 degrees). It becomes larger and shows a peak. FIG. 3 shows a case where a rotating cylindrical auxiliary propulsion generator is used, and C0 to C4 increase πnd / Vaw, that is, the ratio between the rotational peripheral speed (πnd) and the wind speed (Vaw) to 0-4. The case where it was made to show is shown.

また、この補助推進力は、相対風速の2乗に比例するため、相対風速が大きい程大きくなる。そして、相対風向が前方に近い(αが0(ゼロ)に近い)ほど補助推進力が減少し、0度〜30度の間では揚力が発生しても補助推進力とならず、抵抗となる。従って、相対風向を30度以上にすることができれば補助推進力を発生させることができる。   Moreover, since this auxiliary propulsive force is proportional to the square of the relative wind speed, it increases as the relative wind speed increases. And, as the relative wind direction is closer to the front (α is closer to 0 (zero)), the auxiliary propulsive force decreases, and even if lift is generated between 0 ° and 30 °, the auxiliary propulsive force does not become the auxiliary propulsive force but becomes resistance. . Therefore, if the relative wind direction can be set to 30 degrees or more, an auxiliary propulsive force can be generated.

そして、船橋配置においては、一般的には、図4に示すように、船橋70とドジャー支持構造体1Xは、前端同士が略真横に並ぶように配置されるため、相対風向αが真横(90度、−90度)近傍の場合に、風上側では風の流れが船橋70に塞き止められるため、風上側では良好な流れ場が発生せず、ドジャー支持構造体1Xは有効な補助推進力を発生できない。また、風下側では風が船橋70に遮られるため、風下側のドジャー支持構造体1Xは、船橋70の後方の流れの剥離域に入ってしまい、有効な補助推進力を発生できない。そのため、単体では補助推進力が最も大きくなる横方向の風の場合においても、船橋70の影響で、ドジャー支持構造体1Xは有効な補助推進力を発生できないという問題がある。   In the bridge arrangement, generally, as shown in FIG. 4, the bridge 70 and the dodger support structure 1X are arranged so that the front ends are arranged substantially side by side, so that the relative wind direction α is right side (90 In the case of the vicinity of −90 degrees), since the wind flow is blocked by the bridge 70 on the windward side, a good flow field is not generated on the windward side, and the dodger support structure 1X has an effective auxiliary propulsive force. Can not occur. Further, since the wind is blocked by the bridge 70 on the leeward side, the dodger support structure 1X on the leeward side enters the separation region of the flow behind the bridge 70 and cannot generate an effective auxiliary propulsive force. Therefore, there is a problem that the dodger support structure 1X cannot generate an effective auxiliary propulsive force due to the influence of the bridge 70 even in the case of a wind in the lateral direction where the auxiliary propulsive force is the largest alone.

また、船橋とドジャー支持構造体との離間距離が小さい場合には、相対風速が大きく補助推進力が大きくなる船体斜め前方の相対風向のときでも、ドジャー支持構造体に吹き込む風(空気流)が船橋の影響を受けて乱れてしまうため、有効な補助推進力を発生できないという問題がある。
特開昭57−144190号公報 特開昭57−55292号公報 特開平5−213271号公報 特願2004−33762号明細書
In addition, when the separation distance between the bridge and the dodger support structure is small, even when the relative wind speed is large and the auxiliary propulsive force is large, the wind (air flow) blown into the dodger support structure is even when the relative wind direction is obliquely forward of the hull. There is a problem that effective auxiliary propulsion cannot be generated because it is disturbed by the influence of the bridge.
JP 57-144190 A JP 57-55292 A JP-A-5-213271 Japanese Patent Application No. 2004-33762

本発明は、上記の問題を解決するためになされたものであり、その目的は、柱状補助推進力発生体として形成したドジャー支持構造体と船橋との位置関係や船橋の形状を工夫することにより、補助推進力が大きくなる相対風向の範囲で効果的にドジャー支持構造体によって有効な補助推進力を得ることができる船舶を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to devise the positional relationship between the dodger support structure formed as a columnar auxiliary propulsion generator and the bridge and the shape of the bridge. Another object of the present invention is to provide a ship capable of obtaining effective auxiliary propulsive force effectively by the dodger support structure in the range of the relative wind direction in which the auxiliary propulsive force is increased.

上記の目的を達成するための本発明の船舶は、甲板上に設けられた船橋の操舵室から左右両方向に延びたドジャーを支持するドジャー支持構造体を、風力によって船舶を推進するための補助推進力を発生する柱状補助推進力発生体で形成した船舶において、前記ドジャー支持構造体を、船橋の前面より前方に配置して構成する。   In order to achieve the above object, a ship according to the present invention is an auxiliary propulsion for propelling a ship by wind power with a dodger support structure that supports a dodger extending in both the left and right directions from a steering room of a bridge provided on a deck. In a ship formed of a columnar auxiliary propulsion force generator that generates a force, the dodger support structure is arranged in front of the front surface of the bridge.

ここでいう補助推進力とは、船舶のスクリュー等の主とする推進装置で得られる以外の推進力をいい、抵抗減少も含み、風力に関係する補助的な推進力のことをいう。
この本発明では、つまり、ドジャー支持構造体を舷側に沿って前方に移動し、船橋より前方に配置して、船橋とドジャー支持構造体の前後位置に差を設け、ドジャー支持構造体が風力による補助推進力を発生できる相対風向の範囲を広くする。特に、補助推進力が大きくなる横風を有効利用できるようにする。
As used herein, the auxiliary propulsive force refers to propulsive force other than that obtained by a main propulsion device such as a ship screw, and includes auxiliary propulsive force related to wind power including resistance reduction.
That is, in the present invention, the dodger support structure is moved forward along the shore side and is disposed in front of the bridge so that a difference is provided between the front and rear positions of the bridge and the dodger support structure. Widen the range of relative wind direction that can generate auxiliary thrust. In particular, it is possible to make effective use of the crosswind that increases the auxiliary propulsive force.

この構成により、補助推進力が大きくなる相対風向が横方向の風に対して、船橋の干渉が少なくなり、空気流の乱れが少なくなる。そのため、船橋による、空気流の塞き止め効果は大幅に減少し、風上側では、減速されずに大きな風速を持つ風がドジャー支持構造体に流れ込み、大きな補助推進力が得られる。また、風下側では、ドジャー支持構造体に船橋の後流に入る場合が少なくなり、大きな風速を持つ風がドジャー支持構造体に流れ込み、大きな補助推進力が得られる。   According to this configuration, the interference of the bridge is reduced with respect to the wind with the relative wind direction in which the auxiliary propulsive force is increased, and the turbulence of the air flow is reduced. Therefore, the effect of blocking the airflow by the bridge is greatly reduced, and on the windward side, a wind having a large wind speed flows into the dodger support structure without being decelerated, and a large auxiliary propulsive force is obtained. Further, on the leeward side, the number of cases where the dodger support structure enters the wake of the bridge is reduced, and a wind having a large wind speed flows into the dodger support structure, thereby obtaining a large auxiliary propulsive force.

従って、ドジャーの持つ操船上必要な舷側監視機能を満たしつつ、補助推進力が大きくなる相対風向が横方向の風に対する船橋の影響を少なくして、ドジャー支持構造体が有効な補助推進力を発生できるようにすることができる。   Therefore, while satisfying the shipside monitoring function necessary for maneuvering of the Dodger, the relative wind direction that increases the auxiliary propulsive force reduces the influence of the bridge on the wind in the lateral direction, and the Dodger support structure generates effective auxiliary propulsive force. Can be able to.

このドジャー支持構造体の前方への突出量の最大値と最小値は、ドジャーの舷側監視機能と、通路長さや構造強度等からの制約により、補助推進力の発生力の大きさと、これらの構造的に不利な点とのバランスから決まるが、図3に示すような回転型を例にとると、ドジャー支持構造体の補助推進力が大きくなる相対風向の範囲内(α1(100度)〜α2(140度))を考慮すると、次のような範囲とすることが好ましい。以下、ドジャー支持構造体の配置については、ドジャー支持構造体の甲板に接合する部分において、その水平断面の半分以上がこの指定範囲の内側に入ることをいう。   The maximum value and minimum value of the forward protrusion amount of this dodger support structure depends on the dodge side monitoring function and the restrictions on passage length, structural strength, etc. However, if the rotary type as shown in FIG. 3 is taken as an example, within the range of relative wind direction (α1 (100 degrees) to α2) in which the auxiliary propulsion force of the dodger support structure becomes large. In consideration of (140 degrees)), the following range is preferable. Hereinafter, with regard to the arrangement of the dodger support structure, it means that more than half of the horizontal cross section falls within the specified range at the portion joined to the deck of the dodger support structure.

この前方への配置の具体的な範囲としては、図3の相対風向と補助推進力の大きさの実験結果を考慮して、図1に示すように、相対風向αについて、船体中心線C.L.に対して前方から後方へに吹く風Wの角度αをゼロとし、左舷側を−とし、右舷側を+とし、かつ、風Wが直線上を吹くと仮定したときに、右舷側のドジャー支持構造体1Asを、少なくとも100度(α1)〜140度(α2)、好ましくは120度(α1)〜135度(α2)の相対風向αの風Wが船橋70に遮られずに到達できる範囲(斜線部)に配置し、かつ、左舷側のドジャー支持構造体1Apを、少なくとも−100(−α1)度〜−140度(−α2)、好ましくは−120度(α1)〜−135度(α2)の相対風向αの風Wが船橋70に遮られずに到達できる範囲(斜線部)に配置することが好ましい。   As a specific range of the forward arrangement, the experimental results of the relative wind direction and the magnitude of the auxiliary propulsive force in FIG. 3 are considered, and as shown in FIG. L. Assuming that the angle α of the wind W blowing from the front to the rear is zero, the port side is-, the starboard side is +, and the wind W blows on a straight line, the dodger support on the starboard side A range in which the wind W having a relative wind direction α of at least 100 degrees (α1) to 140 degrees (α2), preferably 120 degrees (α1) to 135 degrees (α2) can reach the structure 1As without being blocked by the bridge 70 ( The dodger support structure 1Ap on the port side is arranged at least −100 (−α1) to −140 degrees (−α2), preferably −120 degrees (α1) to −135 degrees (α2). ) In the range (shaded portion) where the wind W having the relative wind direction α can reach without being blocked by the bridge 70.

なお、ここでは、100度〜140度等の「〜」は、両端の値を含むものとする。つまり、100度〜140度は100度と140度を含む。その他の「〜」の範囲も同様である。   Here, “˜” such as 100 ° to 140 ° includes values at both ends. That is, 100 degrees to 140 degrees includes 100 degrees and 140 degrees. The same applies to the other ranges of “˜”.

なお、配置関係を明確にするために、説明上便宜的に「風が直線上を吹くと仮定し」ているだけで、実際には、船橋やドジャー支持構造体等の影響を受けるので、必ずしも、風が直線上を吹くとは限らない。 In order to clarify the arrangement relationship, for the sake of convenience, it is assumed that the wind blows on a straight line. In fact, it is affected by the bridge, dodger support structure, etc. The wind does not always blow on a straight line.

この構成により、図3に示すような、補助推進力が大きくなる相対風向(100度(α1)〜140度(α2))の範囲内の風を船橋の干渉が殆ど無い状態で利用できるようになるので、大きな補助推進力を得ることができる。   With this configuration, as shown in FIG. 3, the wind within the range of the relative wind direction (100 degrees (α1) to 140 degrees (α2)) in which the auxiliary propulsive force is increased can be used with almost no interference with the bridge. Therefore, a large auxiliary propulsive force can be obtained.

なお、左右の両舷に配置されたドジャー支持構造体は相対風向が−90度〜90度の範囲の前方方向ないし斜め前方から吹き込む風に対しては、同じ相対風速では発生する補助推進力の大きさが小さくなり、また、船橋の影響を多少受けるが、相対風速が船速の影響で大きくなり、また、左右のドジャー支持構造体で同時に補助推進力を発生できるので、有効な補助推進力となる。   It should be noted that the dodger support structures disposed on both the left and right sides of the auxiliary propulsive force generated at the same relative wind speed with respect to the wind blowing from the forward direction or obliquely forward in the range of the relative wind direction of −90 degrees to 90 degrees. Although the size is reduced and it is somewhat affected by the bridge, the relative wind speed increases due to the ship speed, and the auxiliary propulsive force can be generated simultaneously by the left and right dodger support structures. It becomes.

また、この前方への配置の他の具体的な範囲としては、図1に示す参照番号を用いながら説明すると、船橋70Bの前端位置70fから前方へドジャー支持構造体1As,1Apがその直径Dの2倍以上前方に配置されており、かつ、前方角部71s,71pからドジャー支持構造体1As,1Apがその直径Dの2倍以上、好ましく5倍以上離れているように構成する。即ち、前方角部71s,71pとドジャー支持構造体1As,1Apのそれぞれの距離Lfがその直径Dの2倍以上(Lf≧2D)、好ましく5倍(以上(Lf≧5D)となるように構成する。なお、前方配置の上限は、ドジャーの舷側監視機能と、通路長さや構造強度等の構造的に不利な点と、補助推進力の発生力の大きさとのバランスから決まる。   Further, as another specific range of the forward arrangement, the reference numerals shown in FIG. 1 will be used to explain, and the dodger support structures 1As, 1Ap of the diameter D are forward from the front end position 70f of the bridge 70B. The dodger support structures 1As and 1Ap are arranged two or more times forward and are separated from the front corners 71s and 71p by at least twice, preferably at least five times the diameter D. That is, the distance Lf between the front corners 71s and 71p and the dodger support structures 1As and 1Ap is configured to be not less than twice the diameter D (Lf ≧ 2D), preferably 5 times (more than (Lf ≧ 5D)). Note that the upper limit of the forward arrangement is determined by the balance between the dodger side monitoring function, structural disadvantages such as passage length and structural strength, and the magnitude of the generated auxiliary propulsive force.

あるいは、上記の目的を達成するための本発明の船舶は、甲板上に設けられた船橋の操舵室から左右両方向に延びたドジャーを支持するドジャー支持構造体を、風力によって船舶を推進するための補助推進力を発生する柱状補助推進力発生体で形成した船舶において、
前記船橋の前方両側の角部に、前方から吹き込む風の流れを船体中心線に対して傾斜させる整流面を設けると共に、前記ドジャー支持構造体を、船橋の前面より後方に配置し、前記柱状補助推進力発生体として、円筒回転型、フィン移動型、吸気制御型のいずれか、あるいはそれらを併用した柱状補助推進力発生体を採用して構成する。
Alternatively, the ship of the present invention for achieving the above object is for propelling a ship by wind power by using a dodger support structure that supports a dodger that extends in both the left and right directions from a wheelhouse of a bridge provided on a deck. In ships formed with columnar auxiliary propulsion generators that generate auxiliary propulsion,
The corners on both sides of the front of the bridge are provided with rectifying surfaces that incline the flow of wind blowing from the front with respect to the center line of the hull, and the dodger support structure is arranged behind the front of the bridge, and the columnar auxiliary As the propulsive force generator, any one of a cylindrical rotating type, a fin moving type, an intake control type, or a columnar auxiliary propulsive force generator using them in combination is adopted .

この本発明は、ドジャー支持構造体を、船橋の前面より前方に配置することが困難である場合や、船橋とドジャー支持構造体との離間距離が比較的小さく相互干渉が避けられない場合に適した構成であり、船橋の前面及び側面形状を変更して、前方側部の角部に整流面を設けると共に、ドジャー支持構造体を後方に配置し、整流面で流れ方向が変化した風を受け易いようにするものである。   The present invention is suitable when it is difficult to dispose the dodger support structure in front of the front surface of the bridge or when the distance between the bridge and the dodger support structure is relatively small and mutual interference cannot be avoided. The front and side shapes of the bridge are changed to provide a rectifying surface at the corner of the front side, and a dodger support structure is arranged at the rear to receive wind whose flow direction has changed on the rectifying surface. It is intended to make it easier.

この構成により、前方や斜め前方から吹き込んで来る風を、船橋の整流面に沿って流して、ドジャー支持構造体に適度な迎角を持って流入させることにより、このドジャー支持構造体で発生する補助推進力を大きくすることができる。つまり、船橋構造形状の整流面に沿って流れを整流し、また、ドジャー支持構造体への空気流の流入角度(迎角)をより大きな補助推進力が得られるような角度にすることにより、ドジャー支持構造体において大きな揚力を発生し、その前後方向(船長方向)成分としての補助推進力を効率よく得るものである。   With this configuration, the wind blown from the front or diagonally forward is caused to flow along the rectifying surface of the bridge and flow into the dodger support structure with an appropriate angle of attack, thereby generating in the dodger support structure. Auxiliary driving force can be increased. In other words, by rectifying the flow along the rectification surface of the bridge structure shape, and by making the inflow angle (attack angle) of the air flow into the dodger support structure an angle at which a larger auxiliary propulsive force can be obtained, A large lift is generated in the dodger support structure, and an auxiliary propulsive force as a longitudinal component (captain direction) is efficiently obtained.

従って、ドジャーの持つ操船上必要な舷側監視機能を満たしつつ、前方及び斜め前方からの風に対しては船橋を利用して風向を変化させ、また、横風及び斜め後方からの風に対しては船橋の影響を少なくして、ドジャー支持構造体が有効な補助推進力を発生できるようにすることができる。   Therefore, while satisfying the shipside monitoring function necessary for maneuvering of the Dodger, the wind direction is changed using the bridge for the wind from the front and diagonally forward, and for the wind from the crosswind and diagonally backward The influence of the bridge can be reduced so that the dodger support structure can generate an effective auxiliary propulsion force.

なお、このドジャー支持構造体の後方への移動距離の最大値と最小値は、船橋の形状を変更できる範囲で決まり、この船橋の形状の変更は、船橋や操舵室や居住区等とも関係し、様々な設計要素間のバランスから決まる。しかし、図3に示すような、ドジャー支持構造体の補助推進力が大きくなる相対風向の範囲内(α1(100度)〜α2(140度))と、利用可能な風の相対風速と相対風向を考慮すると、次のような範囲とすることが好ましい。   Note that the maximum and minimum values of the rearward movement distance of this dodger support structure are determined within the range in which the shape of the bridge can be changed, and this change in the shape of the bridge is also related to the bridge, wheelhouse, residential area, etc. , Determined by the balance between the various design elements. However, as shown in FIG. 3, the relative wind speed and relative wind direction of the available wind are within the range of the relative wind direction (α1 (100 degrees) to α2 (140 degrees)) in which the auxiliary propulsion force of the dodger support structure is increased. In view of the above, the following range is preferable.

この具体的な構成の範囲としては、図2に示すように、配置の角度について、船体中心線に対して前方から後方への角度をゼロとし、左舷側を−とし、右舷側を+としたときに、前記船橋の右舷側の前記整流面の船体中心線に対する角度を、30度以上、好ましくは45度〜60度にし、左舷側の前記整流面の船体中心線に対する角度を−30度以下、好ましくは−45度〜−60度にすると共に、前記ドジャー支持構造体の後端部の前後方向に関する位置を、前記整流面の後端部の位置に略一致させて構成する。   As shown in FIG. 2, the range of this specific configuration is such that the angle from the front to the rear with respect to the hull centerline is zero, the port side is-, and the starboard side is +, as shown in FIG. Sometimes, the angle of the rectifying surface on the starboard side of the bridge with respect to the hull center line is 30 degrees or more, preferably 45 to 60 degrees, and the angle of the rectifying surface on the port side with respect to the hull center line is -30 degrees or less. The position of the rear end portion of the dodger support structure in the front-rear direction is preferably substantially coincident with the position of the rear end portion of the rectifying surface.

このドジャー支持構造体の後端部の前後方向に関する位置を、整流面の後端部の位置に略一致させるとは、図2のドジャー支持構造体1As,1Apの後端部の位置と整流面71s、71pの後端部73s、73pの位置との距離Laを略ゼロにすることを言う。具体的には、ドジャー支持構造体1As,1Apの直径をDとした場合に、この距離Laを0〜2Dの範囲内、好ましくは、0(ゼロ)〜Dの範囲内にする。整流面71s、71pの流れの偏向効果を十分に利用するためには、ドジャー支持構造体1As,1Apの最後端部を整流面71s、71pの後端部73s、73pの位置よりも前方に配置することが好ましい。   The position of the rear end portion of the dodger support structure in the front-rear direction substantially coincides with the position of the rear end portion of the rectifying surface. The positions of the rear end portions of the dodger support structures 1As and 1Ap in FIG. This means that the distance La to the positions of the rear end portions 73s and 73p of 71s and 71p is made substantially zero. Specifically, when the diameter of the dodger support structures 1As and 1Ap is D, the distance La is set in the range of 0 to 2D, preferably in the range of 0 (zero) to D. In order to fully utilize the deflection effect of the flow of the rectifying surfaces 71s and 71p, the rearmost ends of the dodger support structures 1As and 1Ap are arranged in front of the positions of the rear end portions 73s and 73p of the rectifying surfaces 71s and 71p. It is preferable to do.

図2の整流面71s、71pの船体中心線C.L.に対する角度βが前記の範囲内にあると、居住性が良好な船橋構造を保ちつつ、優位な揚力Fが得られる。なお、整流面71s、71pの形状を凹面状にすれば、角度βを90度とすることも可能である。即ち、整流面71s、71pの船体中心線に対する角度βの上限を90度とすることもできる。   The hull center line C. of the rectifying surfaces 71s and 71p in FIG. L. If the angle β with respect to is within the above range, a superior lift F can be obtained while maintaining a bridge structure with good habitability. If the shapes of the rectifying surfaces 71s and 71p are concave, the angle β can be set to 90 degrees. That is, the upper limit of the angle β with respect to the hull center line of the rectifying surfaces 71s and 71p can be 90 degrees.

このとき、真正面からの風も整流面72s、72pの作用により角度β(例えば45度)に偏向し、揚力の発生(=ドジャー支持構造体1As,1Apの抵抗の減少)となり風速によっては推力を得ることができる。また、整流面72s、72pを凹面状にし、ドジャー支持構造体1As,1Apの位置で局所的な流れ角度が90度となると正面の風が真横の風に偏向されてドジャー支持構造体1As,1Apに流れ込むことになるので揚力の発生が可能となる。   At this time, the wind from the front is also deflected to an angle β (for example, 45 degrees) by the action of the rectifying surfaces 72s and 72p, generating lift (= reduction in the resistance of the dodger support structures 1As and 1Ap), and thrust depending on the wind speed. Obtainable. Further, when the rectifying surfaces 72s and 72p are concave, and the local flow angle is 90 degrees at the positions of the dodger support structures 1As and 1Ap, the wind in the front is deflected to the right side wind and the dodger support structures 1As and 1Ap. As a result, the lift can be generated.

つまり、角度βを30度以上とし、整流面72p,72sの後端部73s、73pより前方にあると、正面からの流れ(α=0度)であっても、ドジャー支持構造体1As,1Apに当たる流れは角度γを持ち補助推進力を発揮することができる。また、横風や斜め後方から吹き込んで来る風に対しても、片舷側だけであるがドジャー支持構造体1As(又は1Ap)への空気流を整流できるので、補助推進力を効率よく得ることができる。   That is, if the angle β is 30 degrees or more and the front side of the rear end portions 73s and 73p of the rectifying surfaces 72p and 72s is forward, the dodger support structures 1As and 1Ap even if the flow is from the front (α = 0 degrees). The flow that hits the angle has an angle γ and can exert an auxiliary propulsive force. In addition, even for cross winds or winds blown obliquely from behind, the air flow to the dodger support structure 1As (or 1Ap) can be rectified only on one side, so auxiliary propulsion can be efficiently obtained. .

更に、揚力Fを発生させるためにドジャー支持構造体1As,1Apを回転させたり、空気の吸い込みを行うと、整流面71s、71pに沿って流れてきた流れが、剥離せずにあるいは剥離量が少ない状態で船橋70Bの側面後部へ円滑に誘導されるので、船橋70Bの抵抗も減少するという効果も奏することもできる。   Further, when the dodger support structures 1As and 1Ap are rotated to generate the lift F or when air is sucked in, the flow flowing along the rectifying surfaces 71s and 71p does not peel off or the amount of peeling is reduced. Since it is smoothly guided to the rear side portion of the bridge 70B in a small state, the resistance of the bridge 70B can also be reduced.

そして、上記の船舶において、ドジャー支持構造体を形成する柱状補助推進力発生体を、次のように構成することができる。
柱状補助推進力発生体を、前記甲板上に立設した柱状のドジャー支持体と、該ドジャー支持体の周囲に回転する回転円筒体と、該回転円筒体を回転させる回転駆動装置を備えて構成し、該回転駆動装置により前記回転円筒体を回転させることにより、補助推進力を発生させるように構成する。
And in said ship, the columnar auxiliary | assistant thrust generator which forms a dodger support structure can be comprised as follows.
The columnar auxiliary propulsive force generator includes a columnar dodger support erected on the deck, a rotating cylinder that rotates around the dodger support, and a rotation drive device that rotates the rotating cylinder. And it is comprised so that an auxiliary | assistant thrust may be generated by rotating the said rotation cylindrical body with this rotational drive device.

あるいは、柱状補助推進力発生体を、前記甲板上に立設した柱状のドジャー支持体と、該ドジャー支持体の周方向の少なくとも一部分で移動可能なフィンを備えて構成し、相対風向に対して前記フィンを該ドジャー支持体の周方向への移動を制御することにより、補助推進力を発生させるように構成する。   Alternatively, the columnar auxiliary propulsive force generator includes a columnar dodger support erected on the deck, and a fin that is movable in at least a part of the circumferential direction of the dodger support, and relative to the relative wind direction. The fin is configured to generate an auxiliary propulsive force by controlling the movement of the dodger support in the circumferential direction.

あるいは、柱状補助推進力発生体を、前記甲板上に立設した柱状のドジャー支持体と、該ドジャー支持体に設けた吸気孔を備えて構成し、前記吸気孔から吸入する空気量を制御することにより、補助推進力を発生させるように構成する。   Alternatively, the columnar auxiliary propulsive force generator includes a columnar dodger support erected on the deck and an intake hole provided in the dodger support, and controls the amount of air sucked from the intake hole Thus, the auxiliary propulsive force is generated.

本発明の船舶によれば、補助推進力が大きくなる相対風向の横方向近傍から吹き込む風に対しては、柱状補助推進力発生体として形成したドジャー支持構造体に流入する風に対する船橋の影響を少なくしたり、前方や斜め前方から吹き込む風に対しては、船橋の前方側面に設けた整流面で、ドジャー支持構造体に流入する風向を補助推進力が大きくなる風向に変化させたりして、有効な補助推進力を得ることができる。   According to the ship of the present invention, the influence of the bridge on the wind flowing into the dodger support structure formed as a columnar auxiliary propulsion force generator for the wind blown from near the lateral direction of the relative wind direction where the auxiliary propulsion force becomes large. For the wind blown from the front or diagonally forward, the wind direction flowing into the dodger support structure is changed to the wind direction that increases the auxiliary propulsion force with the rectifying surface provided on the front side surface of the bridge, Effective auxiliary propulsive force can be obtained.

従って、ドジャーの持つ操船上必要な舷側監視機能を満たしつつ、ドジャー支持構造体が有効な補助推進力を発生できるようにすることができる。   Therefore, the dodger support structure can generate an effective auxiliary propulsive force while satisfying the shipside monitoring function necessary for maneuvering of the dodger.

以下図面を参照して本発明に係る船舶の実施の形態について説明する。
なお、相対風向αや配置に関する角度β、γ等については、船体中心線C.L.に対して前方から後方への方向をゼロとし、左舷側を−とし、右舷側を+とする。また、以下、ドジャー支持構造体の配置については、ドジャー支持構造体の甲板に接合する部分において、その水平断面の半分以上がこの指定範囲の内側に入ることをいう。
Hereinafter, embodiments of a ship according to the present invention will be described with reference to the drawings.
Regarding the relative wind direction α and the angles β, γ related to the arrangement, the hull center line C.I. L. The direction from the front to the rear is zero, the port side is-, and the starboard side is +. Further, hereinafter, regarding the arrangement of the dodger support structure, it means that more than half of the horizontal cross section falls within the specified range at the portion where the dodger support structure is joined to the deck.

先ず、本発明の第1の実施の形態の船舶について説明する。
図1及び図5に示すように、第1の実施の形態の船舶80Aでは、甲板81上に設けられた船橋70の操舵室74から左右両方向に水平に延びたドジャー60s,60pをドジャー支持構造体1As,1Apで固定支持している。このドジャー支持構造体1As,1Apは風力によって船舶80Aを推進するための補助推進力を発生する柱状補助推進力発生体で形成される。なお、この柱状補助推進力発生体の詳細は後述する。
First, the ship according to the first embodiment of the present invention will be described.
As shown in FIGS. 1 and 5, in the ship 80 </ b> A of the first embodiment, dodgers 60 s and 60 p that extend horizontally from the steering chamber 74 of the bridge 70 provided on the deck 81 in both the left and right directions are provided as a dodger support structure. It is fixedly supported by the bodies 1As and 1Ap. The dodger support structures 1As and 1Ap are formed of columnar auxiliary propulsive force generators that generate an auxiliary propulsive force for propelling the ship 80A by wind power. The details of the columnar auxiliary propulsive force generator will be described later.

そして、図1に示すように、本発明の第1の実施の形態では、このドジャー支持構造体1As,1Apによって風力による補助推進力を発生できる相対風向αの範囲を広くするために、ドジャー支持構造体1As,1Apを、船橋70の前面70fより前方に配置して構成する。つまり、ドジャー支持構造体1As,1Apを舷側82s,82pに沿って、船橋70より前方に配置して、船橋70とドジャー支持構造体1As,1Apとの間に距離を設ける。   As shown in FIG. 1, in the first embodiment of the present invention, in order to widen the range of the relative wind direction α in which the auxiliary propulsion force by the wind force can be generated by the dodger support structures 1As, 1Ap, The structures 1As and 1Ap are arranged in front of the front surface 70f of the bridge 70. In other words, the dodger support structures 1As and 1Ap are arranged in front of the bridge 70 along the heel sides 82s and 82p, and a distance is provided between the bridge 70 and the dodger support structures 1As and 1Ap.

このドジャー支持構造体1As,1Apの前方への突出距離の最大値と最小値は、ドジャー60s,60pの舷側監視機能と、通路長さや構造強度等からの制約により、補助推進力Taの発生力の大きさと、これらの構造的に不利な点とのバランスから決まるが、図3に示すような、ドジャー支持構造体の補助推進力が大きくなる相対風向の範囲内(α1(100度)〜α2(140度))を考慮すると、次のような範囲とすることが好ましい。   The maximum value and the minimum value of the forward projecting distance of the dodger support structures 1As, 1Ap are the generation forces of the auxiliary propulsion force Ta due to restrictions on the side monitoring function of the dodgers 60s, 60p and the passage length, structural strength, etc. 3 and a balance between these structural disadvantages, but as shown in FIG. 3, within the range of relative wind direction (α1 (100 degrees) to α2) in which the auxiliary propulsion force of the dodger support structure increases. In consideration of (140 degrees)), the following range is preferable.

図1に示すように、好ましくは、風Wが直線上を吹くと仮定したときに、右舷側のドジャー支持構造体1Asを、少なくとも100度(α1)〜140度(α2)、好ましくは120度〜135度の相対風向αの風Wが、船橋70に遮られずに到達できる範囲(斜線部)に配置し、かつ、左舷側のドジャー支持構造体1Apを、少なくとも−100(−α1)度から−140度(−α2)、好ましくは−120度〜−135度の相対風向αの風Wが船橋70に遮られずに到達できる範囲(斜線部)に配置する。   As shown in FIG. 1, when assuming that the wind W blows on a straight line, the starboard-side dodger support structure 1As is preferably at least 100 degrees (α1) to 140 degrees (α2), preferably 120 degrees. The wind W having a relative wind direction α of ˜135 degrees is disposed in a range (shaded portion) that can be reached without being blocked by the bridge 70, and the dodger support structure 1Ap on the port side is at least −100 (−α1) degrees. To −140 degrees (−α2), preferably −120 degrees to −135 degrees relative to the wind direction W, the wind W is arranged in a range (shaded portion) that can be reached without being blocked by the bridge 70.

また、この前方への配置の他の範囲としては、船橋70Bの前端位置70fから前方へドジャー支持構造体1As,1Apの中心がその直径Dの2倍以上前方に配置されており、かつ、前方角部71s,71pからドジャー支持構造体1As,1Apの中心がその直径Dの2倍以上、好ましく5倍以上離れているように構成する。即ち、前方角部71s,71pとドジャー支持構造体1As,1Apのそれぞれの距離Lfがその直径Dの2倍以上(Lf≧2D)、好ましく5倍以上(Lf≧5D)となるように構成する。なお、図1では、船橋70Bの前端位置70fと前方角部71s,71pが前方方向に関しては同じ位置となっている。   In addition, as another range of the forward arrangement, the center of the dodger support structures 1As, 1Ap is arranged forward from the front end position 70f of the bridge 70B by more than twice the diameter D, and the front The center of the dodger support structures 1As, 1Ap is configured to be separated from the direction portions 71s, 71p by at least twice, preferably at least five times the diameter D. That is, the distance Lf between the front corners 71s and 71p and the dodger support structures 1As and 1Ap is configured to be not less than twice the diameter D (Lf ≧ 2D), preferably not less than 5 times (Lf ≧ 5D). . In FIG. 1, the front end position 70f of the bridge 70B and the front corners 71s and 71p are at the same position in the forward direction.

これらの配置により、相対風向αが横方向の風W、即ち、補助推進力Taが大きくなる風Wに対して、船橋70の干渉が少なくなり、空気流の乱れが少なくなる。そのため、船橋70による、空気流の塞き止め効果は大幅に減少し、風上側では、減速されずに大きな風速を持つ風Wがドジャー支持構造体1Ap(又は1As)に流れ込み、大きな補助推進力が得られる。また、風下側では、ドジャー支持構造体1As(又は1Ap)が船橋70の後流に入る場合が少なくなり、大きな風速を持つ風Wがドジャー支持構造体1As,1Apに流れ込み、大きな補助推進力Taが得られる。つまり、図3に示すような、補助推進力Taが大きくなる相対風向αの範囲内(100度〜140度)の風Wを船橋70の干渉が殆ど無い状態で利用できるようになる。   With these arrangements, the bridge 70 has less interference with the wind W with the relative wind direction α being the lateral direction, that is, the wind W with the increased auxiliary thrust Ta, and the air flow is less disturbed. Therefore, the effect of blocking the air flow by the bridge 70 is greatly reduced. On the windward side, the wind W having a large wind speed is not decelerated and flows into the dodger support structure 1Ap (or 1As), and a large auxiliary propulsive force is generated. Is obtained. Further, on the leeward side, the case where the dodger support structure 1As (or 1Ap) enters the wake of the bridge 70 is reduced, and the wind W having a large wind speed flows into the dodger support structures 1As and 1Ap, and the large auxiliary propulsive force Ta Is obtained. That is, as shown in FIG. 3, the wind W within the range of the relative wind direction α (100 degrees to 140 degrees) in which the auxiliary propulsive force Ta increases can be used in a state where there is almost no interference with the bridge 70.

また、相対風向αが−90度〜90度の範囲の前方から来る風Wに対しても、左右の両舷に配置されたドジャー支持構造体1As,1Apは、同じ相対風速では発生する補助推進力Taの大きさが小さくなり、また、多少船橋70の影響を受けるが、相対風速が船速の影響で大きくなり、しかも、左右のドジャー支持構造体1As,1Apで同時に補助推進力Taを発生できるので、有効な補助推進力となる。   In addition, the dodger support structures 1As and 1Ap arranged on both the left and right sides of the wind W coming from the front in the range where the relative wind direction α is in the range of −90 degrees to 90 degrees is the auxiliary propulsion generated at the same relative wind speed. Although the magnitude of the force Ta is reduced and is somewhat affected by the bridge 70, the relative wind speed is increased due to the ship speed, and the auxiliary propulsion force Ta is simultaneously generated by the left and right dodger support structures 1As and 1Ap. It can be an effective auxiliary propulsion force.

従って、ドジャー60の持つ操船上必要な舷側監視機能を満たしつつ、相対風向αが横方向近傍の風Wに対する船橋70の影響を少なくすることができ、ドジャー支持構造体1As,1Apによって有効な補助推進力を発生させることができる。   Therefore, the influence of the bridge 70 on the wind W having the relative wind direction α in the lateral direction can be reduced while satisfying the shipside monitoring function necessary for maneuvering of the dodger 60, and effective assistance is provided by the dodger support structures 1As and 1Ap. Propulsion can be generated.

次に、本発明の第2の実施の形態の船舶について説明する。これは船橋とドジャー支持構造体の距離が十分にとれない場合の装置である。
図2及び図5に示すように、第2の実施の形態の船舶80Bは、甲板81上に設けられた船橋70Bの操舵室74から左右両方向に水平に延びたドジャー60s,60pをドジャー支持構造体1Bs,1Bpで固定支持している。このドジャー支持構造体1Bs,1Bpは風力によって船舶80Bを推進するための補助推進力Taを発生する柱状補助推進力発生体で形成される。なお、この柱状補助推進力発生体の詳細は後述する。
Next, a ship according to a second embodiment of the present invention will be described. This is a device when the distance between the bridge and the dodger support structure is not sufficient.
As shown in FIGS. 2 and 5, the ship 80B of the second embodiment is provided with dodger support structures 60d and 60p extending horizontally from the steering chamber 74 of the bridge 70B provided on the deck 81 in both the left and right directions. It is fixedly supported by the bodies 1Bs and 1Bp. The dodger support structures 1Bs and 1Bp are formed of a columnar auxiliary propulsion force generator that generates an auxiliary propulsion force Ta for propelling the ship 80B by wind power. The details of the columnar auxiliary propulsive force generator will be described later.

そして、図2に示すように、本発明の第2の実施の形態では、ドジャー支持構造体1Bs,1Bpが風力による補助推進力Taを発生できる相対風向αの範囲を広くするために、船橋70Bの前面70fの両側部に船体中心線C.L.に対して傾斜した整流面72s,72pを設けると共に、ドジャー支持構造体1Bs,1Bpを、船橋70Bの前面70fより後方に配置して構成する。   As shown in FIG. 2, in the second embodiment of the present invention, in order to widen the range of the relative wind direction α in which the dodger support structures 1Bs and 1Bp can generate the auxiliary propulsion force Ta by wind power, the bridge 70B Hull center line C. on both sides of the front face 70f. L. Are provided, and the dodger support structures 1Bs and 1Bp are arranged behind the front surface 70f of the bridge 70B.

この整流面72s,72pは、通常は平面で形成されるが、広い範囲の相対風向αに対して、風Wの流れを円滑にするために、流線型などの曲面で形成してもよい。また、幾つかの面で形成してもよい。また、凹型にすることにより正面(α=0)からの風を横(γ=90度)からの風に偏向することもできる。   The rectifying surfaces 72s and 72p are usually formed as flat surfaces, but may be formed as curved lines such as streamlines in order to make the flow of the wind W smooth over a wide range of relative wind directions α. Moreover, you may form in several surfaces. In addition, by making it concave, it is possible to deflect the wind from the front (α = 0) to the wind from the side (γ = 90 degrees).

この整流面72s,72pを設けることにより、正面や斜め前方からの風Wが、この船橋70Bの側面傾斜である整流面72s(又は72p)に沿って流れ、ドジャー支持構造体1Bs(又は1Bp)が効率よく補助推進力Taを発生するように、風向を変化させて、風Wが迎角γを持ってドジャー支持構造体1Bs(又は1Bp)に流れ込むように構成する。   By providing the rectifying surfaces 72s and 72p, the wind W from the front or diagonally forward flows along the rectifying surface 72s (or 72p) that is the side surface inclination of the bridge 70B, and the dodger support structure 1Bs (or 1Bp). In order to efficiently generate the auxiliary propulsion force Ta, the wind direction is changed so that the wind W flows into the dodger support structure 1Bs (or 1Bp) with an angle of attack γ.

また、このドジャー支持構造体1Bs,1Bpの後方配置は、船橋70Bの形状の変更、すなわち、整流面72s,72pの形成と密接な関係を持つ。この船橋70Bの形状の変更は、船橋や操舵室74や居住区等とも関係し、様々な設計要素間のバランスから決まる。   The rear arrangement of the dodger support structures 1Bs and 1Bp is closely related to the change in the shape of the bridge 70B, that is, the formation of the rectifying surfaces 72s and 72p. The change in the shape of the bridge 70B is related to the bridge, the wheelhouse 74, the residential area, and the like, and is determined from the balance among various design elements.

そして、図3に示すような、ドジャー支持構造体1Bs,1Bpの補助推進力Taが大きくなる相対風向αの範囲内(100度〜140度)と、利用可能な風の相対風速と相対風向αを考慮すると、次のような範囲とすることが好ましい。   Then, as shown in FIG. 3, the relative wind speed α and the relative wind direction α of the available wind are within the range of the relative wind direction α (100 degrees to 140 degrees) in which the auxiliary thrust Ta of the dodger support structures 1Bs and 1Bp becomes large. In view of the above, the following range is preferable.

図3に示すように、船橋70Bの右舷側の整流面72sの船体中心線C.L.に対する角度βを、30度以上、好ましくは45度(β1)〜60度(β2)にし、左舷側の整流面72pの船体中心線C.L.に対する角度−βを、−30度以下、好ましくは−45度(−β1)〜−60度(−β2)にする。整流面72s,72pが曲面の場合には、ドジャー支持構造体1Bs,1Bpの真横における、整流面72s,72pに沿って流れる風の向きが45度から90度の範囲にあるように構成する。   As shown in FIG. 3, the hull centerline C.V. of the rectifying surface 72s on the starboard side of the bridge 70B. L. Is set to 30 degrees or more, preferably 45 degrees (β1) to 60 degrees (β2), and the hull centerline C.P. L. The angle −β with respect to is −30 degrees or less, preferably −45 degrees (−β1) to −60 degrees (−β2). When the rectifying surfaces 72 s and 72 p are curved surfaces, the direction of the wind flowing along the rectifying surfaces 72 s and 72 p immediately beside the dodger support structures 1 </ b> Bs and 1 </ b> Bp is in the range of 45 to 90 degrees.

この第2の実施の形態は、第1の実施の形態のような変更が困難である場合や、船橋70Bとドジャー支持構造体1Bs,1Bpとの間隔が比較的狭く相互干渉が避けられない場合に適している。   In the second embodiment, when the change is difficult as in the first embodiment, or when the distance between the bridge 70B and the dodger support structures 1Bs and 1Bp is relatively narrow, mutual interference is unavoidable. Suitable for

この構成により、船橋70Bの前面70f及び側面形状を従来の四角形状から変更し、整流面72s,72pを設けることにより、前方や斜め前方の相対風向αから吹き込んで来る風Wの流れを、柱状補助推進力発生装置であるドジャー支持構造体1Bs,1Bpに有利な流れ方向γ、即ち、補助推進力Taが大きくなる流れ方向γに変化させることができる。   With this configuration, the front surface 70f and the side surface shape of the bridge 70B are changed from the conventional rectangular shape, and the flow of the wind W blowing from the relative wind direction α forward or obliquely forward is changed to a columnar shape by providing the rectifying surfaces 72s and 72p. It is possible to change the flow direction γ which is advantageous to the dodger support structures 1Bs and 1Bp which are auxiliary propulsion force generators, that is, the flow direction γ in which the auxiliary propulsion force Ta is increased.

従って、船体のほぼ前方方向から吹き込み、従来例では単なる抵抗としかならず補助推進力Taを得難い風Wの場合でも、船橋70Bの整流面72s,72pに沿って流れ方向を変化させ、また、流れを整流することにより、図2に示すように、斜め前方方向の揚力Fを発生し、その前後方向成分として得られる補助推進力Taを大きくすることができる。   Therefore, even in the case of wind W, which blows from almost in the forward direction of the hull and is merely a resistance in the conventional example and it is difficult to obtain the auxiliary thrust force Ta, the flow direction is changed along the rectifying surfaces 72s and 72p of the bridge 70B, and the flow is changed. By rectifying, as shown in FIG. 2, it is possible to generate a lift F in the obliquely forward direction and increase the auxiliary propulsive force Ta obtained as a longitudinal component thereof.

次に、ドジャー支持構造体1As、1Ap,1Bs,1Bpを形成する柱状補助推進力発生体について説明する。この柱状補助推進力発生体としては、次のような円筒回転型、フィン移動型、吸気制御型等の柱状補助推進力発生体を採用することができる。また、この柱状補助推進力発生体がドジャー支持構造体1As、1Ap,1Bs,1Bpの全長に設けるか一部に設けるか、また、どのくらいの長さを占めるかは、補助推進力Taを得る面からは長い方が好ましいが、構造面やコスト等から決められる。   Next, a columnar auxiliary propulsive force generator that forms the dodger support structures 1As, 1Ap, 1Bs, and 1Bp will be described. As the columnar auxiliary propulsive force generator, the following cylindrical auxiliary propulsive force generators such as a cylindrical rotating type, a fin moving type, and an intake control type can be adopted. In addition, whether the columnar auxiliary propulsive force generator is provided on the entire length or part of the dodger support structures 1As, 1Ap, 1Bs, 1Bp, and how long it occupies is a surface for obtaining the auxiliary propulsive force Ta. From the viewpoint of structure, cost and the like are preferable.

図6に円筒回転型と吸気制御型を併用した場合を示す。この柱状補助推進力発生体を、甲板81上に立設した柱状のドジャー支持体1と、このドジャー支持体1の周囲に回転する回転円筒体20と、この回転円筒体20を回転させる回転駆動装置10を備えて構成する。そして、この回転駆動装置10により回転円筒体20を回転させることにより、マグナス効果を利用して補助推進力を発生させる。   FIG. 6 shows a case where the cylindrical rotation type and the intake control type are used together. The columnar auxiliary propulsive force generating body includes a columnar dodger support 1 erected on the deck 81, a rotating cylinder 20 that rotates around the dodger support 1, and a rotational drive that rotates the rotating cylinder 20. The apparatus 10 is provided. Then, by rotating the rotating cylindrical body 20 by the rotation driving device 10, an auxiliary propulsion force is generated using the Magnus effect.

この回転円筒体20は外筒部21と内筒部22とこれらを連結する連結リブ23とから構成され、この内筒部22がドジャー支持体1の外周に取り付けられたラジアルベアリング2を介して回転可能に装着される。この回転円筒体20は、基板4上のスラストベアリング3の上に設置されると共に、下端の外周部に大歯車25が設けられる。この大歯車25は、電動モータ等の回転駆動装置10に取り付けられた駆動歯車11と噛み合わされる。この回転駆動装置10の駆動により、駆動歯車11と大歯車25を介して回転円筒体20が回転する。なお、この回転駆動伝達手段は、ベルトやチェーン等でもよく、正逆回転可能に設ける。   The rotating cylindrical body 20 is composed of an outer cylindrical portion 21, an inner cylindrical portion 22, and a connecting rib 23 that connects them, and the inner cylindrical portion 22 is interposed via a radial bearing 2 attached to the outer periphery of the dodger support 1. Mounted to be rotatable. The rotating cylindrical body 20 is installed on the thrust bearing 3 on the substrate 4 and a large gear 25 is provided on the outer periphery of the lower end. The large gear 25 is meshed with the drive gear 11 attached to the rotary drive device 10 such as an electric motor. The rotary cylinder 20 is rotated through the drive gear 11 and the large gear 25 by the drive of the rotary drive device 10. The rotational drive transmission means may be a belt, a chain, or the like, and is provided so as to be able to rotate forward and backward.

図7及び図8に円柱体90の周囲で起こる気流Aの変化を模式的に示す。図7に示すような気流Aが、円柱体90の回転により、図8に示すような流れへと変り、円柱体90の右側で流速が大きくなり、円柱体90の左側で流速が小さくなる。この流速の差からベルヌーイの定理に従って圧力差が生じ、右側の圧力が左側の圧力よりも小さくなり、これらの圧力の総和として右側方向に揚力Fが発生する。この揚力Fの船首方向成分が補助推進力Taとなる。なお、抗力については説明を省略する。また、ここでいう補助推進力Taには船首方向の抵抗減少分も含む。   7 and 8 schematically show changes in the airflow A that occur around the cylindrical body 90. FIG. The airflow A as shown in FIG. 7 changes to the flow as shown in FIG. 8 due to the rotation of the cylindrical body 90, and the flow velocity increases on the right side of the cylindrical body 90 and decreases on the left side of the cylindrical body 90. From this difference in flow velocity, a pressure difference is generated according to Bernoulli's theorem, the pressure on the right side becomes smaller than the pressure on the left side, and a lift F is generated in the right direction as the sum of these pressures. The bow direction component of the lift F becomes the auxiliary propulsion force Ta. The description of the drag is omitted. Further, the auxiliary propulsive force Ta here includes a resistance decrease in the bow direction.

更に、補助推進力Taを増加するために、図6に示すように、吸気制御用に、回転筒体20に、円周方向の所定の範囲にスリット状や円形や楕円形等の吸気孔24が複数設けられる。この吸気孔24から、外部の空気Cが、回転円筒体20とドジャー支持体1との隙間と、基板4上の連通路8とを経由して、船体内部に吸入されるように、吸入ポンプ5が設けられる。なお、吸入された空気Cは船内の機関室、居室、貨物室等の換気等に利用される。   Further, in order to increase the auxiliary propulsion force Ta, as shown in FIG. 6, for the intake control, the rotary cylinder 20 has a slit-like, circular, or elliptical intake hole 24 in a predetermined range in the circumferential direction. Are provided. From this intake hole 24, a suction pump is used so that external air C is sucked into the hull through the gap between the rotating cylindrical body 20 and the dodger support 1 and the communication path 8 on the substrate 4. 5 is provided. The inhaled air C is used for ventilation of the engine room, the room, the cargo room, etc. in the ship.

また、図6に示すように、ドジャー支持体1の上端部などに風向風速センサ6が取り付けられると共に、図9に示すように、この風向風速センサ6の信号eを受けて、回転駆動装置10と吸入ポンプ5を制御して、回転円筒体20の回転方向、回転速度、吸気孔24からの外気の吸入量などを制御する制御部7が設けられる。なお、風向と風速と、回転方向、回転速度、吸入位置、外気の吸入量などは予め実験等により求めておき、制御データとして制御部7に記憶しておく。   Further, as shown in FIG. 6, a wind direction / air speed sensor 6 is attached to the upper end portion of the dodger support 1 and the like, and as shown in FIG. And a control unit 7 that controls the suction pump 5 to control the rotation direction and rotation speed of the rotating cylindrical body 20, the amount of outside air sucked from the suction holes 24, and the like. Note that the wind direction and speed, the rotation direction, the rotation speed, the suction position, the intake amount of the outside air, and the like are obtained in advance by experiments and stored in the control unit 7 as control data.

この円筒回転型と吸気制御型の併用の場合は、図10に示すように左舷前方から風Wを受ける場合には、回転円筒体20を時計回りに回転させることにより、マグナス効果により、船首方向成分を有するの揚力Fを発生でき、また、図11に示すように右舷前方から風Wを受ける場合には、回転円筒体20を反時計回りに回転させることにより、マグナス効果により、船首方向成分を有する揚力Fを発生できる。   In the case of the combined use of the cylindrical rotation type and the intake control type, as shown in FIG. 10, when the wind W is received from the front side of the port, the rotating cylindrical body 20 is rotated clockwise, and the Magnus effect causes the bow direction. When the lift force F having a component can be generated and the wind W is received from the starboard front as shown in FIG. 11, by rotating the rotating cylinder 20 counterclockwise, the Magnus effect causes the bow direction component. The lift force F having can be generated.

この構成により、相対風向αが、30°〜135°(左舷側から右舷側に吹く)及び−30°〜−135(右舷側から左舷側に吹く)の範囲で、特に有効な範囲としては45°〜120°及び−45°〜−120°の範囲で、有効な補助推進力Fを得ることができる。   With this configuration, the relative wind direction α is in the range of 30 ° to 135 ° (blowing from the port side to the starboard side) and −30 ° to −135 (blowing from the starboard side to the port side). An effective auxiliary propulsive force F can be obtained in the range of ° to 120 ° and -45 ° to -120 °.

また、図12に示すような、有効な補助推進力Fを得ることが難しい、例えば、相対風向αが、−30°〜30°の風Wの場合には、回転円筒体20を回転停止状態とし、下流側の吸気孔24からの吸気により、図12で示すような回転円筒体20の後流における気流Aの間に比較的大きな剥離領域Bの発生している状態から、図13で示すように、剥離位置が後方にずれ、比較的小さな剥離領域Bとなっている状態にすることにより、図12の抗力R1よりも図13の抗力R2を小さくする。これにより、ドジャー支持構造体1の空気抵抗を低減し、消極的ではあるが補助推進力Taを発生する。   In addition, when it is difficult to obtain an effective auxiliary propulsive force F as shown in FIG. 12, for example, when the relative wind direction α is a wind W of −30 ° to 30 °, the rotary cylinder 20 is stopped. FIG. 13 shows a state in which a relatively large separation region B is generated between the airflow A in the wake of the rotating cylindrical body 20 as shown in FIG. 12 by the intake air from the intake hole 24 on the downstream side. In this way, by setting the peeling position to the rear and forming a relatively small peeling region B, the drag R2 in FIG. 13 is made smaller than the drag R1 in FIG. Thereby, the air resistance of the dodger support structure 1 is reduced, and the auxiliary propulsive force Ta is generated although it is passive.

また、吸気制御型だけの場合は、ドジャー支持体1の周囲を回転させずに、吹き込んでくる風Wの風下側の吸気孔24における吸気を制御することにより、補助推進力Taを発生させる。つまり、正面の場合は、図12のように吸気制御することにより、抵抗を減少し補助推進力Taを発生させ、その他の場合には、吹き込んでくる風Wの風下側で前方(船首方向)となる側の吸気孔24で吸気することにより、ドジャー支持体1の前方側の流速を後方側の流速よりも大きくして、前方方向の揚力を発生させる。   In the case of the intake control type alone, the auxiliary propulsion force Ta is generated by controlling the intake air in the leeward intake hole 24 of the wind W that is blowing in without rotating around the dodger support 1. That is, in the case of the front, by controlling the intake air as shown in FIG. 12, the resistance is reduced and the auxiliary propulsion force Ta is generated, and in other cases, the front side (the bow direction) on the leeward side of the wind W that blows in. By inhaling through the intake hole 24 on the side to be, the flow velocity on the front side of the dodger support 1 is made larger than the flow velocity on the rear side, and lift in the forward direction is generated.

図14にフィン移動型と吸気制御型を併用した場合を示す。この場合は、柱状補助推進力発生体を、甲板81上に立設した柱状のドジャー支持体1と、このドジャー支持体1の後部側に設けた水平断面が三角形等の空気流を制御するためのフィン30とから構成する。このドジャー支持体1の水平断面は、円形状や楕円形状や翼形状等で形成される。また、このフィン30はドジャー支持体1の上下方向に沿って単体又は複数の集合体で設けられ、また外周のドジャー支持体1の周方向に移動可能に設ける。   FIG. 14 shows a case where the fin movement type and the intake control type are used together. In this case, the columnar auxiliary propulsive force generator is controlled by a columnar dodger support 1 erected on the deck 81 and a horizontal cross section provided on the rear side of the dodger support 1 to control an air flow such as a triangle. The fin 30 is configured. The horizontal section of the dodger support 1 is formed in a circular shape, an elliptical shape, a wing shape, or the like. The fins 30 are provided as a single body or a plurality of aggregates along the vertical direction of the dodger support 1, and are provided so as to be movable in the circumferential direction of the outer dodger support 1.

このフィン30を周方向に移動させることにより、気流の流れを変化させて補助推進力を発生させる。なお、ドジャー支持体1の断面が円形状の場合には、フィン30のみを移動するように構成してもよいが、断面が他の楕円形状や翼形状の場合には、フィン30をドジャー支持体1に固定し、ドジャー支持体1全体をフィン30と共に回転移動するように構成する。この回転のための構造は円筒回転型と同様な構造を採用できる。   By moving the fins 30 in the circumferential direction, the flow of the airflow is changed to generate an auxiliary propulsive force. In addition, when the cross section of the dodger support body 1 is circular, you may comprise only the fin 30. However, when the cross section is another elliptical shape or a wing shape, the fin 30 is supported by the dodger. It fixes to the body 1, and it comprises so that the whole dodger support body 1 may rotate and move with the fin 30. FIG. The structure for this rotation can adopt the same structure as that of the cylindrical rotation type.

また、更に、吸気制御を併用して補助推進力Taを増加するために、ドジャー支持体1の前後方向の中間部から後部の円周方向の所定の範囲において、フィン30を挟んで左右にスリット状や円形や楕円形等の吸気孔24を複数設ける。この吸気孔24から、外部の空気Cで示すように吸引し、この外気Cを、ドジャー支持体1の内部を経由して、船体内部に吸入するように、吸入ポンプ5が設けられる。   Further, in order to increase the auxiliary propulsive force Ta by using the intake control together, in the predetermined range in the circumferential direction from the middle part in the front-rear direction of the dodger support body 1 to the left and right with the fins 30 interposed therebetween A plurality of intake holes 24 having a shape, a circle, an ellipse or the like are provided. A suction pump 5 is provided so that the air is sucked from the intake hole 24 as indicated by the external air C, and the outside air C is sucked into the hull through the dodger support 1.

更に、図15に示すように、吸気孔24をフィン30を挟んで左右の2群に分けると共に、このそれぞれの吸気孔群の一方で外気Cを吸入し、他方では外気Cを吸入しないように、ドジャー支持体1の内部に左右を分割する隔壁42と、それぞれの通路をそれぞれ単独で開閉するための蓋部41、41を有する封鎖弁40が設けられる。   Further, as shown in FIG. 15, the intake holes 24 are divided into two groups on the left and right sides with the fins 30, and outside air C is sucked in one of the respective intake hole groups and outside air C is not sucked in the other. In the interior of the dodger support 1, a partition wall 42 that divides the left and right sides, and a closing valve 40 having lid portions 41 and 41 for opening and closing the respective passages are provided.

また、回転円筒型と吸気制御型の併用の場合と同様に、風向風速センサ6が取り付けられると共に、図9に示すように、この風向風速センサ6の信号eを受けて、フィン30の位置移動と吸入ポンプ5による吸気量を制御する制御部7が設けられる。なお、風向と風速と、フィン30の位置、外気の吸入量などは予め実験等により求めておき、制御データとして制御部7に記憶しておく。   Further, as in the case of the combined use of the rotary cylinder type and the intake control type, the wind direction / wind speed sensor 6 is attached and, as shown in FIG. And a control unit 7 for controlling the intake amount by the suction pump 5. Note that the wind direction and speed, the position of the fins 30, the amount of outside air sucked, and the like are obtained in advance by experiments or the like and stored in the control unit 7 as control data.

このフィン移動型と吸気制御型との併用の場合は、図16に示すように右舷前方から風Wを受ける場合には、風Wの風下方向に抗力Rが発生するが、図17に示すようにフィン30を矢印のように右側後方に移動させることにより、フィン30の翼端位置を右側後方に配置して、左側の流速を増加し、船首方向成分を有する左前方向の揚力Fを発生できる。   In the case of the combined use of the fin movement type and the intake control type, when the wind W is received from the starboard front as shown in FIG. 16, the drag R is generated in the leeward direction of the wind W, but as shown in FIG. When the fin 30 is moved rearward to the right side as indicated by the arrow, the wing tip position of the fin 30 is disposed rearward on the right side, the flow velocity on the left side is increased, and the left front lift F having a bow direction component can be generated. .

また、図18に示すように、フィン30を周方向に移動せずに、フィン30の左側(船首方向側)の吸気孔24からのみ吸気することにより、左側のみ流速を増加し、圧力を低くして、船首方向成分を有する左前方向の揚力Fを発生できる。あるいは、図19に示すように、フィン30の周方向の移動と共に、フィン30の左側(船首方向側)の吸気孔24からのみ吸気することにより、左側のみ流速を増加し、圧力を低くして、船首方向成分を有する左前方向の揚力Fを発生できる。なお、左舷前方から風を受ける場合も同様にして、船首方向成分を有する右前方向の揚力を発生できる。   In addition, as shown in FIG. 18, without moving the fin 30 in the circumferential direction, the air is sucked only from the intake hole 24 on the left side (the bow direction side) of the fin 30, thereby increasing the flow velocity only on the left side and reducing the pressure. Thus, it is possible to generate a left front lift F having a bow direction component. Alternatively, as shown in FIG. 19, as the fins 30 move in the circumferential direction, the air flow is increased only on the left side by lowering the pressure by sucking only from the intake holes 24 on the left side (the bow direction side) of the fins 30. A lift F in the left front direction having a bow direction component can be generated. Similarly, when receiving wind from the front of the port, it is possible to generate lift in the right front direction having a bow direction component.

なお、フィン30を周方向に移動する代わりに、又は、移動可能とすると共に、フィン30の突出方向を風の流れる方向に対して変化できるように構成し、このフィンの角度変化により、揚力を発生したり、発生する揚力を大きくすることもできる。   The fin 30 can be moved instead of moving in the circumferential direction, and the projecting direction of the fin 30 can be changed with respect to the wind flow direction. It is possible to increase the lift force generated or generated.

以上、本発明のドジャー支持構造体1で使用できる柱状補助推進力発生体を例示したが。本発明では、これらに限定されず、風力から有効な補助推進力を得ることができる柱状構造物であれば、これを本発明のドジャー支持構造体として使用できる。   As described above, the columnar auxiliary propulsive force generator that can be used in the dodger support structure 1 of the present invention has been exemplified. In this invention, it is not limited to these, If it is a columnar structure which can obtain effective auxiliary | assistant propulsive force from a wind force, this can be used as a dodger support structure of this invention.

本発明に係る第1の実施の形態の船舶の船橋とドジャー支持構造体の位置関係を示す部分平面図である。It is a fragmentary top view which shows the positional relationship of the bridge of the ship of 1st Embodiment which concerns on this invention, and a dodger support structure. 本発明に係る第2の実施の形態の船舶の船橋の整流面の配置を示す部分平面図である。It is a fragmentary top view which shows arrangement | positioning of the rectification | straightening surface of the bridge of the ship of 2nd Embodiment which concerns on this invention. 相対風向と補助推進力との関係を示す図である。It is a figure which shows the relationship between a relative wind direction and auxiliary | assistant thrust. 従来技術における船舶の船橋とドジャー支持構造体の位置関係を示す部分平面図である。It is a fragmentary top view which shows the positional relationship of the ship's bridge in a prior art, and a dodger support structure. 船舶の船橋とドジャー支持構造体の位置関係を示す正面図である。It is a front view which shows the positional relationship of a ship's bridge and a dodger support structure. 回転円筒型の柱状補助推進力発生体の構成を示す図である。It is a figure which shows the structure of a rotation cylindrical type columnar auxiliary | assistant thrust generation body. 回転円筒型の柱状補助推進力発生体による推力の発生を説明するための回転無しの場合の流れを模式的に示す図である。It is a figure which shows typically the flow in the case of no rotation for demonstrating generation | occurrence | production of the thrust by a rotating cylindrical columnar auxiliary | assistant thrust generation body. 回転円筒型の柱状補助推進力発生体による推力の発生を説明するための回転有りの場合の流れを模式的に示す図である。It is a figure which shows typically the flow in the case of rotation for demonstrating generation | occurrence | production of the thrust by the column-shaped auxiliary | assistant thrust generation body of a rotation cylindrical type. 柱状補助推進力発生体における制御を説明するための図である。It is a figure for demonstrating the control in a columnar auxiliary | assistant thrust generation body. 左舷側の風に対する回転円筒型の柱状補助推進力発生体による推力の発生を示す図である。It is a figure which shows generation | occurrence | production of the thrust by the rotating cylindrical columnar auxiliary | assistant thrust generation body with respect to the port side wind. 右舷側の風に対する回転円筒型の柱状補助推進力発生体による推力の発生を示す図である。It is a figure which shows generation | occurrence | production of the thrust by the rotating cylindrical columnar auxiliary | assistant thrust generation body with respect to the starboard side wind. 正面からの風に対する吸気による推力の発生を説明するための図で、吸気無しの流れを模式的に示す図である。It is a figure for demonstrating generation | occurrence | production of the thrust by the intake with respect to the wind from a front, and is a figure which shows typically the flow without intake. 正面からの風に対する吸気による推力の発生を説明するための図で、吸気 有りの流れを模式的に示す図である。It is a figure for demonstrating generation | occurrence | production of the thrust by the intake with respect to the wind from a front, and is a figure which shows typically the flow with intake. フィン移動型の柱状補助推進力発生体の構成を示す図である。It is a figure which shows the structure of a fin movement type columnar auxiliary | assistant thrust generation body. ドジャー支持体の内部と封鎖弁の構成を示す図である。It is a figure which shows the inside of a dodger support body, and the structure of a sealing valve. フィン移動型の柱状補助推進力発生体による推力の発生を説明するための図で、フィンを移動しない場合の流れを模式的に示す図である。It is a figure for demonstrating generation | occurrence | production of the thrust by a fin movement type columnar auxiliary | assistant thrust generation body, and is a figure which shows typically the flow when not moving a fin. フィン移動型の柱状補助推進力発生体による推力の発生を説明するための図で、フィンを移動した場合の流れを模式的に示す図である。It is a figure for demonstrating generation | occurrence | production of the thrust by a fin movement type columnar auxiliary | assistant thrust generation body, and is a figure which shows typically the flow at the time of moving a fin. フィン移動型の柱状補助推進力発生体による推力の発生を説明するための図で、フィンを移動せずに吸気した場合の流れを模式的に示す図である。It is a figure for demonstrating generation | occurrence | production of the thrust by a fin movement type columnar auxiliary | assistant thrust generation body, and is a figure which shows typically the flow at the time of sucking in without moving a fin. フィン移動型の柱状補助推進力発生体による推力の発生を説明するための図で、フィンを移動すると共に吸気した場合の流れを模式的に示す図である。It is a figure for demonstrating generation | occurrence | production of the thrust by a fin movement type | formula columnar auxiliary | assistant thrust generation body, and is a figure which shows typically the flow at the time of moving a fin and inhaling.

符号の説明Explanation of symbols

1 ドジャー支持体
1As,1Ap,1Bs,1Bp,1Xs,1Xp ドジャー支持構造体
10 回転駆動装置
11 駆動歯車
20 回転円筒体
24 吸気孔
30 フィン
60s,60p ドジャー
70,70B 船橋
70f 船橋の前面
71p 船橋の左舷側の角部
71s 船橋の右舷側の角部
71Bp 船橋の最前部の左舷側の角部
71Bs 船橋の最前部の右舷側の角部
72p,72s 整流面
73p,73s 整流面の後端部
74 操舵室
80A,80B,80X 船舶
81 甲板
82s,82p 舷側
A 気流
B 剥離領域
C 空気
C.L. 船体中心線
e 信号
F 揚力
R1 抗力
R2 抗力
Ta 補助推進力
W 風
α 相対風向
β 整流面の船体中心線に対する角度
γ 変更された風向
δ ドジャー支持構造体の配置範囲に関係する角度
DESCRIPTION OF SYMBOLS 1 Dodger support body 1As, 1Ap, 1Bs, 1Bp, 1Xs, 1Xp Dodger support structure 10 Rotation drive device 11 Drive gear 20 Rotation cylindrical body 24 Intake hole 30 Fin 60s, 60p Dodger 70, 70B Bridge 70f Front of bridge 71p Port side corner 71s Starboard side corner 71Bp Port side foremost port corner 71Bs Starboard side starboard side corner of the bridge 72p, 72s Rectifier surface 73p, 73s Rear end of the rectifier surface 74 Wheelhouse 80A, 80B, 80X Ship 81 Deck 82s, 82p Mineral side A Airflow B Separation area C Air C. L. Hull Center Line e Signal F Lift R1 Drag R2 Drag Ta Auxiliary Propulsion W Wind α Relative Wind Direction β Angle of Rectification Surface to Hull Center Line γ Changed Wind Direction δ Angle related to Dodger Support Structure Arrangement Range

Claims (4)

甲板上に設けられた船橋の操舵室から左右両方向に延びたドジャーを支持するドジャー支持構造体を、風力によって船舶を推進するための補助推進力を発生する柱状補助推進力発生体で形成した船舶において、
前記ドジャー支持構造体を、船橋の前面より前方に配置したことを特徴とする船舶。
A ship formed by a columnar auxiliary propulsion generator that generates an auxiliary propulsive force for propelling the ship by wind power, with the dodger support structure supporting the dodger extending in both the left and right directions from the wheelhouse of the bridge provided on the deck In
A ship characterized in that the dodger support structure is disposed in front of a front surface of a bridge.
相対風向について、船体中心線に対して前方から後方に吹く風の角度をゼロとし、左舷側を−とし、右舷側を+とし、かつ、風が直線上を吹くと仮定したときに、右舷側の前記ドジャー支持構造体を、少なくとも100度〜140度の相対風向の風が前記船橋に遮られずに到達できる範囲に配置し、かつ、左舷側の前記ドジャー支持構造体を、少なくとも−100度〜−140度の相対風向の風が前記船橋に遮られずに到達できる範囲に配置したことを特徴とする請求項1記載の船舶。 For the relative wind direction, the angle of the wind blowing from the front to the rear with respect to the hull center line to zero, the port side - and to, to the starboard side + and, and, when the wind is assumed to blow in a straight line, the starboard side The dodger support structure is disposed in a range in which a wind having a relative wind direction of at least 100 degrees to 140 degrees can reach without being blocked by the bridge, and the dodger support structure on the port side is at least −100 degrees. The ship according to claim 1, wherein the ship is arranged in a range in which a wind having a relative wind direction of about −140 degrees can be reached without being blocked by the bridge. 甲板上に設けられた船橋の操舵室から左右両方向に延びたドジャーを支持するドジャー支持構造体を、風力によって船舶を推進するための補助推進力を発生する柱状補助推進力発生体で形成した船舶において、
前記船橋の前方両側の角部に、前方から吹き込む風の流れを船体中心線に対して傾斜させる整流面を設けると共に、前記ドジャー支持構造体を、船橋の前面より後方に配置し、前記柱状補助推進力発生体として、円筒回転型、フィン移動型、吸気制御型のいずれか、あるいはそれらを併用した柱状補助推進力発生体を採用したことを特徴とする船舶。
A ship formed by a columnar auxiliary propulsion generator that generates an auxiliary propulsive force for propelling the ship by wind power, with the dodger support structure supporting the dodger extending in both the left and right directions from the wheelhouse of the bridge provided on the deck In
The corners on both sides of the front of the bridge are provided with rectifying surfaces that incline the flow of wind blowing from the front with respect to the center line of the hull, and the dodger support structure is arranged behind the front of the bridge, and the columnar auxiliary A marine vessel characterized by adopting a cylindrical auxiliary propulsion generator or a columnar auxiliary propulsion generator using a combination of a cylindrical rotating type, a fin moving type, and an intake control type as a propulsive force generator .
配置の角度について、船体中心線に対して前方から後方への角度をゼロとし、左舷側を−とし、右舷側を+としたときに、前記船橋の右舷側の前記整流面の船体中心線に対する角度を、30度以上にし、左舷側の前記整流面の船体中心線に対する角度を、−30度以下にすると共に、前後方向に関して、前記ドジャー支持構造体の後端部の位置と、前記整流面の後端部の位置との距離を、0から前記ドジャー支持構造体の直径の2倍の範囲内とすることを特徴とする請求項3記載の船舶。 Regarding the angle of arrangement, when the angle from the front to the rear with respect to the hull centerline is zero, the port side is-, and the starboard side is +, the starboard side of the bridge is on the rectifying surface with respect to the hull center line. The angle is set to 30 degrees or more, and the angle of the rectifying surface on the port side with respect to the hull center line is set to -30 degrees or less, and the position of the rear end portion of the dodger support structure in the front-rear direction, and the rectifying surface The ship according to claim 3, wherein a distance from the position of the rear end portion is within a range from 0 to twice the diameter of the dodger support structure .
JP2005229599A 2005-08-08 2005-08-08 Ship Expired - Fee Related JP4678727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229599A JP4678727B2 (en) 2005-08-08 2005-08-08 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229599A JP4678727B2 (en) 2005-08-08 2005-08-08 Ship

Publications (2)

Publication Number Publication Date
JP2007045223A JP2007045223A (en) 2007-02-22
JP4678727B2 true JP4678727B2 (en) 2011-04-27

Family

ID=37848435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229599A Expired - Fee Related JP4678727B2 (en) 2005-08-08 2005-08-08 Ship

Country Status (1)

Country Link
JP (1) JP4678727B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5215453B2 (en) * 2011-12-09 2013-06-19 常石造船株式会社 Air supply structure to the engine room of a ship
KR101552925B1 (en) 2014-02-06 2015-09-14 현대중공업 주식회사 Ship which load cargo and method of loading

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225271A (en) * 2004-02-10 2005-08-25 Mitsui Eng & Shipbuild Co Ltd Dodger support structure for generating auxiliary propulsive force for vessel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095398U (en) * 1983-12-08 1985-06-28 日本鋼管株式会社 Ship accommodation structure
JPS62160987A (en) * 1986-01-09 1987-07-16 Mitsubishi Heavy Ind Ltd Ship with cylindrical rotor for wind force propulsion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225271A (en) * 2004-02-10 2005-08-25 Mitsui Eng & Shipbuild Co Ltd Dodger support structure for generating auxiliary propulsive force for vessel

Also Published As

Publication number Publication date
JP2007045223A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
CN105980246B (en) Steering device
US9816464B2 (en) Thrust vector control
JP2009280067A (en) Low fuel consumption type transport ship
US20090130927A1 (en) Kort nozzle
JP4273168B1 (en) Thrust generator
JP4678727B2 (en) Ship
JP4811903B2 (en) Ship rudder device
US7090549B2 (en) System to propel an air powered boat
JP4246082B2 (en) Dodger support structure for generating auxiliary propulsion for ships
JP2015116850A5 (en)
JP6638941B2 (en) Ship rudder with stern fins
JP2011098666A (en) Sailing trading vessel
ES2356628T3 (en) DEVICE IN A PROPULSION SYSTEM.
JP6026161B2 (en) Ship
JP5763479B2 (en) Arrangement method of sail of machine sailing merchant ship and machine sailing merchant ship
JPH0840362A (en) Shake reducing device for water jet propulsion ship
JP2010234924A (en) Rudder for vessel and the vessel
JP3136506U (en) Ship with stern fins
JP3886049B2 (en) Valve, rudder, ship
JP2532236Y2 (en) Underwater jet pump jet propulsion device
JPS6325195A (en) Rigid sail device
JP2012116329A (en) Ship propulsion device
TW202023899A (en) sailboat
JP2007230509A (en) Pod propeller and ship equipped with the same
JP2000085677A (en) Wind pressure resistance reducing device for ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110127

R150 Certificate of patent or registration of utility model

Ref document number: 4678727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees