JP4656785B2 - Hybrid hot press and its control method - Google Patents

Hybrid hot press and its control method Download PDF

Info

Publication number
JP4656785B2
JP4656785B2 JP2001290890A JP2001290890A JP4656785B2 JP 4656785 B2 JP4656785 B2 JP 4656785B2 JP 2001290890 A JP2001290890 A JP 2001290890A JP 2001290890 A JP2001290890 A JP 2001290890A JP 4656785 B2 JP4656785 B2 JP 4656785B2
Authority
JP
Japan
Prior art keywords
heating
mold
temperature
processed product
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001290890A
Other languages
Japanese (ja)
Other versions
JP2003096505A (en
Inventor
和彦 勝俣
浩一 藤田
功 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001290890A priority Critical patent/JP4656785B2/en
Publication of JP2003096505A publication Critical patent/JP2003096505A/en
Application granted granted Critical
Publication of JP4656785B2 publication Critical patent/JP4656785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モールドに充填した平板状の処理品(例えば原料粉末)の急速加熱と均一加熱が可能なハイブリッドホットプレスとその制御方法に関する。
【0002】
【従来の技術】
セラミックスや金属、炭化物、窒化物などの導電性物体の原料粉末を、モールドに充填して加熱し一対のパンチで加圧して焼結体の製造が行われる。この焼結体を製造する焼結装置は加熱方式によりいくつかの方式に分類される。
【0003】
ヒータ加熱方式はモールドの周囲に抵抗加熱ヒータなどのヒータを配置しモールドを表面から加熱し、この中の原料粉末を間接的に加熱する方式であり、セラミックスと導電性物質の両方の焼結に適用でき広く用いられている。誘導加熱方式は、モールドを電磁誘導により直接加熱する加熱方式であり、ヒータ加熱方式に比較し、焼結体の加熱速度が速い利点がある。通電方式は一対のパンチを電極として原料粉末に通電し、原料粉末の抵抗熱で加熱する方式である。なお通電方式については、特開昭64−55303,特開平5−70804,特開平5−117707に開示されている。
【0004】
近年の焼結体大型化に伴いモールドやパンチなどの被加熱物も大型化している。また、特に半導体等の製造のために、薄くて大きい円板状の多結晶材料(例えば厚さ1mm×直径100mm程度)を均一かつ高温(例えば450℃以上)に加熱・焼結して熱伝導率の低い低伝導材料を製造することが求められることがある。すなわち、電子材料などの機能性材料では、後工程を簡単化するため、焼結厚さを極力薄くする必要がある。また材料によっては熱伝導性が極端に悪いものもある。
【0005】
かかる多結晶焼結材料は、結晶粒子の大きさや粒子界面の特性に代表される材料微構造により特性が大きく左右される。そのため、低熱伝導材料を得るためには、結晶粒子をできるだけ小さくする必要があり、そこで、できるだけ早い昇温速度が必要になる。また、昇温速度のバラツキにより結晶粒子の大きさにバラツキが生じるため、かかる多結晶材料を均質にするために、全体を均一に加熱する必要がある。
【0006】
しかし、上述したヒータ加熱方式では、モールドへのエネルギ伝達は主としてヒータ表面温度とヒータを囲む断熱囲壁の内壁温度できまり、ヒータ材および断熱囲壁材の耐熱性には限界があるため、エネルギ伝達には限界がある。そのため、ある限度以上に加熱時間は短縮できず、かつ外部から加熱されるため被加熱物が大型化するほど中心部との温度差が大きく均一加熱ができない問題点があった。
また、誘導加熱方式では、モールドは直接加熱できるが、被加熱物の材料特性によりモールドとの間に温度差が生じるため、ヒータ加熱方式と同様に均一加熱ができない問題点があった。更に、大型で高価な加高周波電力発生装置が必要であり、加熱時間を短縮するには電源設備に費用がかかりすぎる問題点があった。
【0007】
一方、通電方式は原料粉末を直接加熱するため加熱時間は比較的短いが、原料粉末の種類により加熱条件が異なり、操業が難しい。また温度は原料粉末の中心温度が最も高くなる傾向にあり、焼結体温度制御が難しい。特に薄くて大きい円板状の多結晶材料の場合には、材料自体の発熱が少ないため高速加熱ができず、また材料が薄いために、均一加熱が困難である問題点があった。
【0008】
言い換えれば、従来のヒータ加熱方式、誘導加熱方式及び通電方式の焼結装置では、熱伝導性が極端に悪い材料で焼結厚さを薄くする場合に、急速加熱と均一加熱の両立できず、そのため、被処理物の温度分布が悪化し、製品としての歩留りが低下していた。
【0009】
かかる問題点を解決するために、本発明の出願人は先に「ハイブリッド焼結装置とその方法」を創案し出願した(特開2000−226603)。この装置及び方法は、図5に模式的に示すように、モールド1を囲むヒータ2を有しモールドを表面からヒータ加熱するヒータ加熱装置5と、モールド1の焼結空間に充填された原料粉末3(処理品)を直接挟持する上下の均熱板6と、上下均熱板を上下から挟持する上下の通電発熱体7と、上下の通電発熱体を一対の電極4で挟持しその間を通電加熱する通電加熱装置8とを備え、ヒータによる輻射加熱と通電加熱を併用して、均熱板を均熱に高速加熱し、その間の原料粉末を加熱・焼結するものである。この発明により、熱伝導率が低く、厚さが薄い焼結材であっても急速加熱及び均一加熱が可能となった。以下、かかる輻射加熱と通電加熱を併用する焼結装置を「ハイブリッドホットプレス」と呼ぶ。
【0010】
【発明が解決しようとする課題】
外部からのヒータ加熱のみによる従来のホットプレス装置では、プレス系の外部にヒータを設置し、輻射加熱により外面から加熱する。そのため、一般的に内外温度差が発生するため、処理温度付近までゆっくり加熱し、また長時間保持して、内外面の達成温度が均一化される程度の保持時間をかけて焼結や熱処理をしている。
【0011】
そのため、ヒータ加熱のみによる従来のホットプレス装置では、上述したように、薄くて大きい平板状の粉末材料(例えば厚さ1mm×直径100mm程度)を均一かつ高温に加熱・焼結して熱伝導率の低い低伝導材料を製造し、かつ所望の特性を得るために、早い昇温速度で全体を均一に加熱することが困難であり、処理時間が非常に長くなる問題点があった。
【0012】
すなわち、平板状の粉末材料を所定の処理温度(例えば約470℃)に均一に(内外面の最大温度差が例えば5℃以内)に加熱してこれを所定時間(例えば5分間)だけ保持して、所望の特性の材料を得る場合でも、この処理温度に達するまでに温度差を均等にするために長時間を必要としていた。
【0013】
また、上述した従来のハイブリッドホットプレスを用いた場合でも、薄くて大きい平板状の粉末材料を均一に加熱して焼結又は熱処理するために、同様に処理温度に達するまでに温度差を均等にするために長時間を必要としていた。
また、この場合、従来のハイブリッドホットプレスでは、多結晶材料を1枚ずつ処理する必要があるため、生産性が極めて低い問題点があった。
【0014】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、薄くて大きい平板状の処理品を所望の処理温度で均一に所定時間加熱して焼結又は熱処理することができ、かつ同時に複数枚の処理が可能であり、更に全体の処理時間を大幅に短縮することができ、これにより、処理品の特性を向上させ、歩留りを高め、かつ生産性を高めることができるハイブリッドホットプレスとその制御方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明によれば、上下に貫通するモールド空間(11a)を有し鉛直かつ直列に配置された複数のモールド(11)と、各モールドをそれぞれ独立に囲む複数のヒータ(12a)を有し各モールドを外表面から輻射加熱する輻射加熱装置(12)と、各モールドの焼結空間に水平に位置決めされた平板状の処理品(3)を直接挟持しかつモールド空間を上下動可能な複数の均熱板(14)と、モールド、処理品及び均熱板からなるモールド組立体の間に均熱板を介して挟持された中間発熱体(16)と、前記モールド組立体全体を均熱板を介して上下に挟持する上下の端部発熱体(18)と、前記モールド組立体全体を一対の電極(20a)で挟持しその間を通電加熱する通電加熱装置(20)と、前記複数のモールド組立体と複数の発熱体(16,18)を鉛直かつ同軸に保持するモールド保持装置(22)と、を備えたハイブリッドホットプレスであって、
前記モールド保持装置(22)は、各モールド空間の下端内面に嵌合する導電性平板(22a)と、前記各中間発熱体(16)を鉛直に貫通し上端が導電性平板で保持され下端が均熱板(14)で保持された中間鉛直ピン(22b)と、前記上下の端部発熱体(18)を鉛直に貫通し一端が導電性平板又は均熱板(14)で保持され他端が電極(20a)で保持された端部鉛直ピン(22c)とからなり、
前記中間発熱体(16)と上下の端部発熱体(18)は、接触抵抗の大きい導電性平板の積層体であり、かつ各モールド組立体を上下から加熱する発熱量Q1が同一となるように各積層体全体の接触抵抗が設定されており、
前記複数のヒータ(12a)は、各モールドを外表面から輻射加熱する加熱量Q2が同一となるように各ヒータの発熱量が設定されている、ことを特徴とするハイブリッドホットプレスが提供される。
【0016】
上記本発明の構成によれば、複数のモールド(11)内に平板状の処理品(3)が均熱板(14)に挟持されたモールド組立体の各モールドに独立にヒータ(12a)が設けられ、かつ各モールド組立体の上下に中間発熱体(16)と端部発熱体(18)が位置するので、ヒータ(12a)と発熱体(16,18)により、複数のモールド組立体を同時に昇温して複数の処理品を同時に処理して、その生産性を高めることができる。
また、各発熱体(16,18)が、接触抵抗の大きい導電性平板の積層体なので、ヒータ(12a)で外部への放熱を防止して、薄くて大きい平板状の処理品を均一に加熱することができる。
【0017】
更に、各モールド組立体を上下から加熱する発熱量Q1がほぼ同一となるように各積層体全体の接触抵抗が設定されており、かつ各ヒータ(12a)も、各モールドを外表面から輻射加熱する加熱量Q2がほぼ同一となるように各ヒータの発熱量が設定されているので、急速加熱しても温度のバラツキが少なく、処理品を所望の処理温度で均一に所定時間加熱して焼結又は熱処理することができ、かつ全体の処理時間を大幅に短縮することができ、これにより、処理品の特性を向上させ、歩留りを高めることができる。
【0019】
かかるモールド保持装置(22)を備えることにより、複数のモールド組立体を一対の電極(20a)で挟持する軸線上に鉛直かつ同軸に保持することができ、通電加熱を効率的に行えるとともに、処理品の温度分布を均一化し、処理品の特性を向上することができる。
【0020】
また、本発明によれば、上下に貫通するモールド空間(11a)を有するモールド(11)と、モールドを囲むヒータ(12a)を有しモールドを外表面から輻射加熱する輻射加熱装置(12)と、モールドの焼結空間に水平に位置決めされた平板状の処理品(3)を直接挟持しかつモールド空間を上下動可能な均熱板(14)と、モールド、処理品及び均熱板からなるモールド組立体を挟持する発熱体(16,18)と、モールド組立体全体を一対の電極(20a)で挟持しその間を通電加熱する通電加熱装置(20)と、前記複数のモールド組立体と複数の発熱体(16,18)を鉛直かつ同軸に保持するモールド保持装置(22)と、を備えたハイブリッドホットプレスの制御方法であって、
通電により各モールド組立体を上下から加熱する発熱量Q1が同一となるように各発熱体の接触抵抗を設定し、かつ各モールドを外表面から輻射加熱する加熱量Q2が同一となるように各ヒータの発熱量を設定する発熱量設定ステップ(A)と、
モールドの放熱を輻射加熱で防止しながら、通電による発熱体(16,18)と処理品(3)の発熱により処理品全体を所定の処理温度まで均一に加熱するバランス加熱ステップ(E)と、
所定の時間の間、処理品を処理温度に保持するように、通電加熱を停止してヒータ加熱のみを行う均熱ステップ(F)とを有し、
モールドの放熱を輻射加熱で防止しながら、発熱体(16,18)と処理品(3)の通電加熱により処理品全体を均一に加熱する、ことを特徴とするハイブリッドホットプレスの制御方法が提供される。
【0021】
この方法によれば、モールドの放熱を輻射加熱で防止しながら、発熱体(16,18)と処理品(3)の通電加熱により処理品全体を均一に加熱するので、薄くて大きい平板状の処理品を均一に加熱することができる。
【0023】
更に、ヒータ加熱と通電加熱を併用して、処理品の中心温度が処理品の性能に影響のでない待機温度まで急速加熱する急速加熱ステップ(C)と、処理品の中心温度が前記待機温度に達するまで、通電加熱を停止してヒータ加熱のみを行う温度調整ステップ(D)とを有することが好ましい。
また、更に、主としてヒータ加熱により炉内部品を予熱する予備昇温ステップ(B)を有することが好ましい。
【0024】
また、更に、主としてヒータ加熱により炉内部品を予熱する予備昇温ステップ(B)と、ヒータ加熱と通電加熱を併用して、処理品の中心温度が処理品の性能に影響のでない待機温度まで急速加熱する急速加熱ステップ(C)と、処理品の中心温度が前記待機温度に達するまで、通電加熱を停止してヒータ加熱のみを行う温度調整ステップ(D)とを有してもよい。
【0025】
上記方法によれば、発熱量設定ステップ(A)により、通電加熱と輻射加熱のそれぞれにおいて、複数のモールド組立体をほぼ均等に加熱するように設定できる。また、予備昇温ステップ(B)により顕熱の大きい炉内部品を予め予熱することができる。更に、急速加熱ステップ(C)により処理品に影響を与えない温度範囲で急速に昇温し、処理サイクルを短縮できる。また、温度調整ステップ(D)で処理品内に生じた温度差を処理品に影響を与えない温度で減少させることができる。更に、バランス加熱ステップ(E)で処理品全体を所定の処理温度まで均一かつ短時間に加熱することができる。また、均熱ステップ(F)で処理品全体を所定の時間の間、処理温度に保持して、所望の焼結又は熱処理を行うことができる。
従って、この方法により、薄くて大きい平板状の処理品を所望の処理温度で均一に所定時間加熱して焼結又は熱処理することができ、かつ全体の処理時間を大幅に短縮することができ、これにより、処理品の特性を向上させ、歩留りを高めることができる。
【0026】
また、前記バランス加熱ステップ(E)において、処理品(3)の中心温度と、モールドの表面温度とを検出して比較し、中心温度が低いときは通電電流を増加させ、表面温度が低いときはヒータ電流を増加させる。
この方法により、処理品の温度分布を微調整することができる。
【0027】
また、輻射加熱の影響が少なく処理品温度に近似する温度となるモールド又は均熱板の特定箇所の温度を測温点として設定し、該測温点の温度と処理品温度とを予め同時に計測し、昇温過程の温度プロファイルにより相対温度差を把握し、そのデータを校正値として処理品温度を推定する。
この方法により、処理品温度を直接測定できない場合でも、予め予備試験を行う事より、測定点から処理品温度を推定して正確に処理品の温度調整ができる。
【0028】
【発明の実施の形態】
以下本発明の好ましい実施形態について、図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0029】
図1は、本発明のハイブリッドホットプレスの全体模式図である。一般的にホットプレス成形は、温度と圧力を同時に作用させる焼結手段であり、ハイブリッドホットプレスは、ヒータによる輻射加熱と通電加熱を併用して加熱する装置である。
【0030】
図1に示すように、本発明のハイブリッドホットプレス10は、真空チャンバー内の加熱室内に、モールド11、輻射加熱装置12、均熱板14、中間発熱体16、端部発熱体18を備え、プレスで処理品3を加圧しながら、通電加熱装置20の電源と給電部を介して処理品に通電し、輻射加熱と通電加熱を併用して処理品3を加熱するようになっている。
【0031】
図2は、本発明のハイブリッドホットプレスの主要部の構成図である。この図において、二点鎖線で示す9は、加熱室を構成する断熱壁である。
【0032】
図2に示すように、本発明では、複数(この例では3つ)のモールド11はプレスの軸線上に鉛直かつ直列に配置されている。各モールド11は、耐熱性材料、例えばグラファイトで構成され、上下に貫通する断面形状が一定のモールド空間11aを有する。このモールド空間11aは、円筒形であるのが望ましいが、その他の形状、例えば直方体でもよい。
また、この実施形態では、モールド11は、互いに軸方向に嵌合した外側と内側のモールドからなり、必要に応じて外側と内側のモールドを交換できるようになっている。
【0033】
輻射加熱装置12は、各モールド11をそれぞれ独立に囲む複数(この例で3つ)のヒータ12a(例えば抵抗加熱式の電気ヒータ)を有する。すなわち、各ヒータ12aは、それぞれ対応するモールド11を外表面から均等に輻射加熱するように構成されている。なお、この場合、別のヒータからも輻射加熱を受けるようになっていてもよい。
【0034】
更に、複数のヒータ12aは、各モールド11を外表面から輻射加熱する加熱量Q2がほぼ同一となるように各ヒータの発熱量が設定される。
【0035】
複数の均熱板14は、モールド空間11aの断面形状と同一形状の導電性の平板である。この均熱板は、処理品3よりも熱伝導率及び熱容量が大きく設定され、処理品の厚さが薄い場合でも厚さ方向に加熱して均熱化と高速加熱を可能にしている。各均熱板14は、各モールドの焼結空間11aに水平に位置決めされた平板状の処理品3を上下から直接挟持し、処理品3と共に焼結空間11a内を上下動可能になっている。
【0036】
平板状の処理品3は、例えばセラミックスや金属、炭化物、窒化物などの導電性物体の原料粉末である。また、特に薄くて大きい円板状の多結晶材料や、熱伝導性が極端に悪い材料で焼結厚さを薄くする必要があるものでもよい。処理品3は、この例では、1つのモールド11に2枚づつセットしている。しかし、上下の処理品3で温度差が生じる場合には、モールド毎に1枚づつとするのがよく、逆に温度分布が問題にならない場合には、3枚以上をセットしてもよい。
【0037】
中間発熱体16は、複数のモールド組立体の間にその上下端に位置する均熱板14を介して挟持される。また、上下の端部発熱体18は、前記複数のモールド組立体全体を同様に均熱板14を介して上下に挟持する。
なお、本発明において、「モールド組立体」とは、モールド11内に処理品3と均熱板14を組込んだものを意味する。
【0038】
中間発熱体16と上下の端部発熱体18は、接触抵抗の大きい導電性平板(例えばグラファイト板、金属板)の積層体であり、この積層体内を上下に電流が流れる際に、接触面における接触抵抗により接触面に均等に発熱するようになっている。また、この例では、各モールド組立体を上下から加熱する発熱量Q1がほぼ同一となるように各積層体全体の接触抵抗が設定される。
【0039】
通電加熱装置20は、複数のモールド組立体を上下一対の電極20aで挟持し、その間を通電加熱する。この電極20aの軸線は、プレスの軸線に一致しており、プレスにより電極20aの間のモールド組立体、中間発熱体16、上下の端部発熱体18の全体を直列にサンドイッチして一体的に圧縮して通電し、モールド組立体内の処理品3と均熱板14を加圧するとともに、通電加熱する。
【0040】
上述した本発明の構成によれば、複数のモールド11内に平板状の処理品3が均熱板14に挟持されたモールド組立体の各モールドに独立にヒータ12aが設けられ、かつ各モールド組立体の上下に中間発熱体16と端部発熱体18が位置するので、ヒータ12aと発熱体16,18により、複数のモールド組立体を同時に昇温して複数の処理品を同時に処理して、その生産性を高めることができる。
また、各発熱体16,18が、接触抵抗の大きい導電性平板の積層体なので、ヒータ12aで外部への放熱を防止して、薄くて大きい平板状の処理品を均一に加熱することができる。
【0041】
更に、各モールド組立体を上下から加熱する発熱量Q1がほぼ同一となるように各積層体全体の接触抵抗が設定されており、かつ各ヒータ12aも、各モールドを外表面から輻射加熱する加熱量Q2がほぼ同一となるように各ヒータの発熱量が設定されているので、急速加熱しても温度のバラツキが少なく、処理品を所望の処理温度で均一に所定時間加熱して焼結又は熱処理することができ、かつ全体の処理時間を大幅に短縮することができ、これにより、処理品の特性を向上させ、歩留りを高めることができる。
【0042】
図2において、本発明のハイブリッドホットプレス10は、更に、複数のモールド組立体と複数の発熱体16,18を鉛直かつ同軸に保持するモールド保持装置22を備える。このモールド保持装置22は、この例では、導電性平板22a、中間鉛直ピン22b、及び端部鉛直ピン22cからなる。
導電性平板22aは、各モールド空間の下端内面に嵌合する導電性と熱伝導性の高い平板である。また、中間鉛直ピン22bは、各中間発熱体16を鉛直に貫通し、上端が導電性平板で保持され、下端が均熱板14で保持される。更に、端部鉛直ピン22cは、上下の端部発熱体18を鉛直に貫通し、一端が導電性平板又は均熱板14で保持され、他端が電極20aで保持される。
【0043】
かかるモールド保持装置22を備えることにより、複数のモールド組立体を一対の電極20aで挟持する軸線上に鉛直かつ同軸に保持することができ、通電加熱を効率的に行えるとともに、処理品の温度分布を均一化し、処理品の特性を向上することができる。
【0044】
図3は、本発明の制御方法を示すステップ図である。この図に示すように、本発明のハイブリッドホットプレスの制御方法は、発熱量設定ステップ(A)、予備昇温ステップ(B)、急速加熱ステップ(C)、温度調整ステップ(D)、バランス加熱ステップ(E)、均熱ステップ(F)、及び冷却ステップ(G)からなる。
【0045】
発熱量設定ステップ(A)では、通電により各モールド組立体を上下から加熱する発熱量Q1がほぼ同一となるように各発熱体の接触抵抗を設定し、かつ各モールドを外表面から輻射加熱する加熱量Q2がほぼ同一となるように各ヒータの発熱量を設定する。この設定により、バランス加熱ステップ(E)において、輻射加熱と通電加熱のバランスを取りながら昇温することが可能となる。
【0046】
予備昇温ステップ(B)では、主としてヒータ加熱により炉内部品を予熱する。なお、必要により同程度以下の熱量を通電加熱により付加してもよい。このステップを設けることにより、顕熱の大きい炉内部品を予め予熱することができ、その後の昇温をスムースに行うことができる。
【0047】
急速加熱ステップ(C)では、ヒータ加熱(輻射加熱)と通電加熱を併用して、処理品の中心温度が処理品の性能に影響のでない待機温度まで急速加熱する。この急速加熱ステップ(C)により処理品に影響を与えない温度範囲で急速に昇温し、処理サイクルを短縮できる。
【0048】
温度調整ステップ(D)では、処理品の中心温度が待機温度に達するまで、通電加熱を停止してヒータ加熱のみを行う。この温度調整ステップ(D)で処理品内に生じた温度差を処理品に影響を与えない温度で減少させることができる。
【0049】
バランス加熱ステップ(E)では、モールドの放熱を輻射加熱で防止しながら、発熱体16,18と処理品3の通電加熱により処理品全体を所定の処理温度まで均一に加熱する。このバランス加熱ステップ(E)で処理品全体を所定の処理温度まで均一かつ短時間に加熱することができる。
【0050】
また、このバランス加熱ステップ(E)において、処理品の温度分布を微調整するために、処理品3の中心温度と、モールドの表面温度とを検出して比較し、中心温度が低いときは通電電流を増加させ、表面温度が低いときはヒータ電流を増加させることが好ましい。
【0051】
均熱ステップ(F)では、所定の時間の間、処理品を処理温度に保持するように、通電加熱を停止してヒータ加熱のみを行う。この均熱ステップ(F)で処理品全体を所定の時間の間、処理温度に保持して、所望の焼結又は熱処理を行うことができる。
【0052】
冷却ステップ(G)では、ヒータ加熱と通電加熱の両方を停止して、全体を冷却する。また、必要に応じて、冷却速度を制御する。
【0053】
また、処理品温度を直接測定できない場合には、輻射加熱の影響が少なく処理品温度に近似する温度となるモールド又は均熱板の特定箇所の温度を測温点として設定し、この測温点の温度と処理品温度とを予め同時に計測し、昇温過程の温度プロファイルにより相対温度差を把握し、そのデータを校正値として処理品温度を推定することにより、測定点から処理品温度を推定して正確に処理品の温度調整ができる。
【0054】
上述した本発明のハイブリッドホットプレスの制御方法は、モールドの放熱を輻射加熱で防止しながら、発熱体16,18と処理品3の通電加熱により処理品全体を均一に加熱する点に大きな特徴があり、これにより、モールドの放熱を輻射加熱で防止しながら、発熱体16,18と処理品3の通電加熱により処理品全体を均一に加熱するので、薄くて大きい平板状の処理品を均一に加熱することができる。
【0055】
【実施例】
図4は、本発明の制御方法による運転パターンの実施例である。この図において、横軸は時間、縦軸は温度である。また、図中の細い直線(折れ線)は目標(ターゲット)設定温度、太い実線は処理品中心温度、細い破線は処理品端面温度である。この実施例において、目標の処理温度は、最大温度差5℃以内で約470℃に約5分間保持する焼結又は熱処理である。なお、図中の横軸に対応させて、通電加熱とヒータ加熱のON/OFFを表示している。
【0056】
この実施例から、予備昇温域(予備昇温ステップ(B))では、通電加熱がOFFであるため、処理品の端面温度が高くなり、中心温度との温度差が生じているのがわかる。また、短時間昇温域(急速加熱ステップ(C))では、通電加熱を併用し、その加熱速度が速いので、温度分布が逆転し、中心が高く、端面が低くなる。次の調整域1(温度調整ステップ(D))では、通電加熱を再びOFFにするので、中心温度は徐々に低下し、輻射加熱で上昇する端面温度と一致した後、ほぼ近似した温度で両方とも上昇する。次の調整域2(バランス加熱ステップ(E))では、バランス加熱により両方が処理温度まで短時間に昇温する。最後の均熱域(均熱ステップ(F))では、両者お温度差がほとんど発生しないまま、所定の温度に保持されて焼結又は熱処理がされている。
【0057】
従って、この実施例からも、モールドの放熱を輻射加熱で防止しながら、通電加熱により処理品全体を均一に加熱することで、薄くて大きい平板状の処理品を短時間に均一に加熱することができることがわかる。
【0058】
なお、本発明は上述した実施形態及び実施例に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0059】
【発明の効果】
上述した本発明のハイブリッドホットプレスとその制御方法は、セラミックスや金属、炭化物、窒化物などの導電性物体の原料粉末の焼結手段であり、特に加熱到達温度で性能が決まってしまう物や処理品内部での温度履歴での差を嫌う物を処理する場合に本発明のステップ加熱を行うことで処理品内の温度履歴をほぼ同じにし、最終温度到達温度差を少なくできる特徴を有する。従って、セラミックスや金属、炭化物、窒化物などの導電性物体の原料粉末や、BeとTeを含有する熱電用材料に適用することができる。
【0060】
すなわち、本発明のハイブリッドホットプレスとその制御方法は、薄くて大きい平板状の処理品を所望の処理温度で均一に所定時間加熱して焼結又は熱処理することができ、かつ同時に複数枚の処理が可能であり、更に全体の処理時間を大幅に短縮することができ、これにより、処理品の特性を向上させ、歩留りを高め、かつ生産性を高めることができる等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明のハイブリッドホットプレスの全体模式図である。
【図2】本発明のハイブリッドホットプレスの主要部の構成図である。
【図3】本発明の制御方法を示すステップ図である。
【図4】本発明の制御方法による運転パターンである。
【図5】従来のハイブリッドホットプレスの全体模式図である。
【符号の説明】
1 モールド、2 ヒータ、3 原料粉末(処理品)、
4 電極、5 ヒータ加熱装置、6 均熱板、
7 通電発熱体、8 通電加熱装置、9 断熱壁、
10 ハイブリッドホットプレス、
11 モールド、11a モールド空間、
12 輻射加熱装置、12a ヒータ、
14 均熱板、16 中間発熱体、18 端部発熱体、
20 通電加熱装置、20a 電極、
22 モールド保持装置、22a 導電性平板、
22b 中間鉛直ピン、22c 端部鉛直ピン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hybrid hot press capable of rapid heating and uniform heating of a plate-like processed product (for example, raw material powder) filled in a mold and a control method thereof.
[0002]
[Prior art]
A sintered compact is manufactured by filling a raw material powder of a conductive object such as ceramics, metal, carbide, or nitride into a mold, heating it, and pressing it with a pair of punches. Sintering apparatuses for manufacturing this sintered body are classified into several systems depending on the heating system.
[0003]
The heater heating method is a method in which a heater such as a resistance heater is placed around the mold, the mold is heated from the surface, and the raw material powder in this is indirectly heated, for sintering both ceramics and conductive materials. Applicable and widely used. The induction heating method is a heating method in which the mold is directly heated by electromagnetic induction, and has an advantage that the sintered body is heated faster than the heater heating method. The energization method is a method in which a raw material powder is energized with a pair of punches as electrodes and heated by the resistance heat of the raw material powder. The energization method is disclosed in JP-A 64-55303, JP-A 5-70804, and JP-A 5-117707.
[0004]
With the increase in size of sintered bodies in recent years, heated objects such as molds and punches are also increasing in size. Especially for the manufacture of semiconductors, etc., heat conduction is achieved by heating and sintering a thin and large disk-shaped polycrystalline material (eg, 1 mm thick × 100 mm in diameter) uniformly and at a high temperature (eg, 450 ° C. or higher). It may be required to produce a low conductivity, low conductivity material. That is, in a functional material such as an electronic material, it is necessary to make the sintered thickness as thin as possible in order to simplify the post-process. Some materials have extremely poor thermal conductivity.
[0005]
Such a polycrystalline sintered material is greatly influenced by the material microstructure represented by the size of the crystal grains and the characteristics of the grain interface. Therefore, in order to obtain a low thermal conductivity material, it is necessary to make the crystal particles as small as possible, and therefore, a temperature increase rate as fast as possible is required. Moreover, since the size of the crystal particles varies due to the variation in the heating rate, it is necessary to uniformly heat the whole in order to make the polycrystalline material homogeneous.
[0006]
However, in the heater heating method described above, energy transfer to the mold is mainly due to the heater surface temperature and the inner wall temperature of the heat insulating enclosure surrounding the heater, and the heat resistance of the heater material and the heat insulating enclosure material is limited. There are limits. For this reason, the heating time cannot be shortened beyond a certain limit, and since the object to be heated is increased in size, the temperature difference from the central portion increases and uniform heating cannot be achieved.
In addition, in the induction heating method, the mold can be directly heated, but there is a problem that a uniform temperature cannot be obtained as in the heater heating method because a temperature difference is generated between the mold and the material due to the material characteristics of the object to be heated. In addition, a large and expensive high-frequency power generator is required, and there is a problem that the power supply equipment is too expensive to shorten the heating time.
[0007]
On the other hand, since the energization method directly heats the raw material powder, the heating time is relatively short, but the heating conditions differ depending on the type of the raw material powder, and the operation is difficult. Further, the temperature tends to be the highest at the center temperature of the raw material powder, and it is difficult to control the temperature of the sintered body. In particular, in the case of a thin and large disk-like polycrystalline material, there is a problem that high-speed heating cannot be performed because the material itself generates little heat, and uniform heating is difficult because the material is thin.
[0008]
In other words, in the conventional heater heating method, induction heating method and energization method sintering apparatus, when the sintered thickness is reduced with a material having extremely poor thermal conductivity, rapid heating and uniform heating cannot be compatible, For this reason, the temperature distribution of the object to be processed has deteriorated and the yield as a product has been reduced.
[0009]
In order to solve such problems, the applicant of the present invention previously created and applied for “hybrid sintering apparatus and method” (Japanese Patent Laid-Open No. 2000-226603). As schematically shown in FIG. 5, this apparatus and method include a heater heating device 5 having a heater 2 surrounding the mold 1 and heating the mold from the surface, and a raw material powder filled in the sintering space of the mold 1. 3 (processed product) is directly sandwiched between the upper and lower heating plates 6, the upper and lower heating plates 7 holding the upper and lower heating plates from above and below, and the upper and lower heating plates are sandwiched between the pair of electrodes 4 and energized between them. An electric heating device 8 for heating is provided, and radiation heating by the heater and electric heating are used together to heat the soaking plate at high speed soaking, and the raw material powder in between is heated and sintered. According to the present invention, rapid heating and uniform heating are possible even with a sintered material having a low thermal conductivity and a small thickness. Hereinafter, a sintering apparatus that uses both radiant heating and current heating is referred to as “hybrid hot press”.
[0010]
[Problems to be solved by the invention]
In a conventional hot press apparatus using only heater heating from outside, a heater is installed outside the press system and heated from the outside by radiant heating. For this reason, a difference in temperature between the inside and outside is generally generated, so it is heated slowly to near the processing temperature and held for a long time, and the sintering and heat treatment are performed over a holding time that makes the achieved temperature of the inside and outside surfaces uniform. is doing.
[0011]
Therefore, in a conventional hot press apparatus that only uses heater heating, as described above, a thin and large flat plate-like powder material (for example, about 1 mm in thickness × 100 mm in diameter) is heated and sintered uniformly and at a high temperature to obtain thermal conductivity. In order to produce a low-conductivity material having a low temperature and to obtain desired characteristics, it is difficult to uniformly heat the whole at a high rate of temperature rise, and the processing time is very long.
[0012]
That is, the flat powder material is heated uniformly to a predetermined processing temperature (for example, about 470 ° C.) (the maximum temperature difference between the inner and outer surfaces is within 5 ° C., for example) and held for a predetermined time (for example, 5 minutes). Even when a material having desired characteristics is obtained, it takes a long time to equalize the temperature difference until the processing temperature is reached.
[0013]
Even in the case of using the above-described conventional hybrid hot press, in order to uniformly heat and sinter or heat-treat a thin and large flat plate-like powder material, the temperature difference is equally made to reach the processing temperature. It took a long time to do.
In this case, the conventional hybrid hot press has a problem that productivity is extremely low because it is necessary to process the polycrystalline materials one by one.
[0014]
The present invention has been made to solve such problems. That is, the object of the present invention is to allow a thin and large flat processed product to be uniformly heated at a desired processing temperature for a predetermined time to be sintered or heat treated, and to simultaneously process a plurality of sheets. It is an object of the present invention to provide a hybrid hot press and a control method thereof that can significantly reduce the entire processing time, thereby improving the characteristics of processed products, increasing the yield, and increasing the productivity.
[0015]
[Means for Solving the Problems]
  According to the present invention, a plurality of molds (11) having a mold space (11a) penetrating vertically is arranged vertically and in series, and a plurality of heaters (12a) independently surrounding each mold is provided. A plurality of radiant heating devices (12) that radiately heat the mold from the outer surface and a plate-like processed product (3) that is positioned horizontally in the sintering space of each mold and that can move up and down the mold space. A soaking plate (14), an intermediate heating element (16) sandwiched between the mold assembly comprising a mold, a processed product, and a soaking plate, and a soaking plate. An upper and lower end heating element (18) sandwiched up and down via an electric current, and an energization heating device (20) that energizes and heats the entire mold assembly with a pair of electrodes (20a),A mold holding device (22) for holding the plurality of mold assemblies and the plurality of heating elements (16, 18) vertically and coaxially;A hybrid hot press equipped with
  The mold holding device (22) includes a conductive flat plate (22a) fitted to the inner surface of the lower end of each mold space and the intermediate heating element (16) vertically, the upper end is held by the conductive flat plate, and the lower end is The intermediate vertical pin (22b) held by the heat equalizing plate (14) and the upper and lower end heating elements (18) penetrate vertically, and one end is held by the conductive flat plate or the heat equalizing plate (14) and the other end. Consists of an end vertical pin (22c) held by an electrode (20a),
  The intermediate heating element (16) and the upper and lower end heating elements (18) are laminates of conductive flat plates having a large contact resistance, and a heating value Q1 for heating each mold assembly from above and below is high.SameThe contact resistance of each entire laminate is set so that
  The plurality of heaters (12a) has a heating amount Q2 for radiatively heating each mold from the outer surface.SameThere is provided a hybrid hot press characterized in that the heating value of each heater is set so that
[0016]
According to the configuration of the present invention, a heater (12a) is independently provided in each mold of a mold assembly in which a plate-shaped processed product (3) is sandwiched by a soaking plate (14) in a plurality of molds (11). Since the intermediate heating element (16) and the end heating element (18) are positioned above and below each mold assembly, a plurality of mold assemblies are formed by the heater (12a) and the heating elements (16, 18). It is possible to increase the productivity by simultaneously raising the temperature and processing a plurality of processed products at the same time.
In addition, since each heating element (16, 18) is a laminated body of conductive flat plates having a large contact resistance, the heater (12a) prevents heat radiation to the outside and uniformly heats a thin and large flat processed product. can do.
[0017]
Furthermore, the contact resistance of each entire laminate is set so that the heating value Q1 for heating each mold assembly from above and below is substantially the same, and each heater (12a) also radiates and heats each mold from the outer surface. Since the heating value of each heater is set so that the heating amount Q2 to be almost the same, there is little temperature variation even when rapidly heating, and the processed product is uniformly heated at a desired processing temperature for a predetermined time to be baked. As a result, the entire processing time can be greatly shortened, thereby improving the characteristics of the processed product and increasing the yield.
[0019]
By providing such a mold holding device (22), it is possible to hold a plurality of mold assemblies vertically and coaxially on the axis line sandwiched between the pair of electrodes (20a), to efficiently conduct energization heating, and to perform processing. The temperature distribution of the product can be made uniform, and the properties of the processed product can be improved.
[0020]
  Moreover, according to this invention, the mold (11) which has the mold space (11a) penetrated up and down, and the radiation heating apparatus (12) which has the heater (12a) surrounding a mold and radiates and heats a mold from the outer surface, The plate-shaped processed product (3) positioned horizontally in the sintering space of the mold is directly sandwiched and the soaking plate (14) capable of moving up and down the mold space, and the mold, the processing product and the soaking plate are included. A heating element (16, 18) for sandwiching the mold assembly, an energization heating device (20) for sandwiching the entire mold assembly with a pair of electrodes (20a) and energizing and heating between them,A mold holding device (22) for holding the plurality of mold assemblies and the plurality of heating elements (16, 18) vertically and coaxially;A control method for a hybrid hot press comprising:
  The contact resistance of each heating element is set so that the heat generation amount Q1 for heating each mold assembly from above and below by energization is the same, and the heating amount Q2 for radiation heating each mold from the outer surface is the same. A heating value setting step (A) for setting the heating value of the heater;
  A balance heating step (E) for uniformly heating the entire processed product to a predetermined processing temperature by heat generation of the heating element (16, 18) and the processed product (3) by energization while preventing heat radiation of the mold by radiation heating;
  A soaking step (F) in which the energization heating is stopped and only the heater heating is performed so as to keep the processed product at the processing temperature for a predetermined time,
  Provided is a control method for a hybrid hot press, wherein the entire processed product is uniformly heated by energization heating of the heating elements (16, 18) and the processed product (3) while preventing heat radiation of the mold by radiation heating. Is done.
[0021]
According to this method, the entire processed product is uniformly heated by energization heating of the heating elements (16, 18) and the processed product (3) while preventing the heat radiation of the mold by radiation heating. The treated product can be heated uniformly.
[0023]
Furthermore, a rapid heating step (C) in which the center temperature of the processed product is rapidly heated to a standby temperature where the center temperature of the processed product does not affect the performance of the processed product by using both heater heating and energization heating, and the center temperature of the processed product becomes the standby temperature. It is preferable to have a temperature adjustment step (D) in which energization heating is stopped and only heater heating is performed until the temperature reaches.
Furthermore, it is preferable to have a preliminary heating step (B) for preheating the in-furnace components mainly by heater heating.
[0024]
Furthermore, the preliminary temperature rising step (B) for preheating the in-furnace parts mainly by heating with the heater, and heating and energization heating are used together until the standby temperature at which the center temperature of the processed product does not affect the performance of the processed product. A rapid heating step (C) for rapid heating and a temperature adjustment step (D) for performing only the heater heating by stopping energization heating until the center temperature of the processed product reaches the standby temperature may be included.
[0025]
According to the above method, the heat generation amount setting step (A) can be set so that the plurality of mold assemblies are heated almost uniformly in each of energization heating and radiation heating. Further, the in-furnace part having a large sensible heat can be preheated in advance by the preliminary heating step (B). Furthermore, the rapid heating step (C) can rapidly raise the temperature within a temperature range that does not affect the processed product, thereby shortening the processing cycle. Further, the temperature difference generated in the processed product in the temperature adjustment step (D) can be reduced at a temperature that does not affect the processed product. Further, in the balance heating step (E), the entire processed product can be uniformly heated to a predetermined processing temperature in a short time. Further, in the soaking step (F), the entire processed product can be held at the processing temperature for a predetermined time to perform desired sintering or heat treatment.
Therefore, by this method, it is possible to heat and sinter or heat-treat a thin and large flat processed product uniformly at a desired processing temperature for a predetermined time, and to greatly reduce the entire processing time, Thereby, the characteristic of a processed product can be improved and a yield can be improved.
[0026]
In the balance heating step (E), the center temperature of the processed product (3) and the surface temperature of the mold are detected and compared. When the center temperature is low, the energizing current is increased, and when the surface temperature is low. Increases the heater current.
By this method, the temperature distribution of the processed product can be finely adjusted.
[0027]
In addition, the temperature at a specific location on the mold or soaking plate that is less affected by radiant heating and approximates the temperature of the processed product is set as a temperature measuring point, and the temperature at the temperature measuring point and the temperature of the processed product are measured in advance simultaneously Then, the relative temperature difference is grasped from the temperature profile in the temperature rising process, and the temperature of the processed product is estimated using the data as a calibration value.
By this method, even when the temperature of the processed product cannot be directly measured, the temperature of the processed product can be accurately adjusted by estimating the processed product temperature from the measurement point by conducting a preliminary test in advance.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0029]
FIG. 1 is an overall schematic diagram of a hybrid hot press according to the present invention. In general, hot press molding is a sintering means in which temperature and pressure are applied simultaneously, and hybrid hot press is a device that uses both radiant heating and electric heating by a heater in combination.
[0030]
As shown in FIG. 1, the hybrid hot press 10 of the present invention includes a mold 11, a radiant heating device 12, a soaking plate 14, an intermediate heating element 16, and an end heating element 18 in a heating chamber in a vacuum chamber. While pressurizing the processed product 3 with a press, the processed product 3 is energized through a power source and a power supply unit of the energization heating device 20, and the processed product 3 is heated by using both radiation heating and energizing heating.
[0031]
FIG. 2 is a configuration diagram of a main part of the hybrid hot press of the present invention. In this figure, 9 shown with a dashed-two dotted line is the heat insulation wall which comprises a heating chamber.
[0032]
As shown in FIG. 2, in the present invention, a plurality of (three in this example) molds 11 are arranged vertically and in series on the axis of the press. Each mold 11 is made of a heat resistant material such as graphite, and has a mold space 11a having a constant cross-sectional shape penetrating vertically. The mold space 11a is preferably cylindrical, but may have other shapes such as a rectangular parallelepiped.
In this embodiment, the mold 11 is composed of an outer mold and an inner mold fitted together in the axial direction, and the outer mold and the inner mold can be exchanged as necessary.
[0033]
The radiant heating device 12 includes a plurality (three in this example) of heaters 12a (for example, resistance heating type electric heaters) that surround each mold 11 independently. That is, each heater 12a is configured to radiately heat the corresponding mold 11 from the outer surface. In this case, the radiant heating may be received from another heater.
[0034]
Further, the heating amount of each heater is set so that the heating amount Q2 for radiatively heating each mold 11 from the outer surface is substantially the same for the plurality of heaters 12a.
[0035]
The plurality of soaking plates 14 are conductive flat plates having the same shape as the cross-sectional shape of the mold space 11a. This heat equalizing plate is set to have a higher thermal conductivity and heat capacity than the processed product 3, and even in the case where the processed product is thin, it is heated in the thickness direction to enable temperature equalization and high-speed heating. Each soaking plate 14 directly sandwiches the flat processed product 3 positioned horizontally in the sintering space 11a of each mold from above and below, and can move up and down in the sintering space 11a together with the processed product 3. .
[0036]
The plate-like processed product 3 is a raw material powder of a conductive object such as ceramics, metal, carbide, or nitride. Further, a thin and large disk-like polycrystalline material or a material having extremely poor thermal conductivity and a material whose sintering thickness needs to be thin may be used. In this example, two processed products 3 are set in one mold 11. However, when a temperature difference occurs between the upper and lower processed products 3, one sheet is preferably provided for each mold. Conversely, when the temperature distribution does not become a problem, three or more sheets may be set.
[0037]
The intermediate heating element 16 is sandwiched between a plurality of mold assemblies via a soaking plate 14 located at the upper and lower ends thereof. In addition, the upper and lower end heating elements 18 sandwich the whole of the plurality of mold assemblies in the same manner through the heat equalizing plate 14.
In the present invention, the “mold assembly” means that the processed product 3 and the soaking plate 14 are assembled in the mold 11.
[0038]
The intermediate heating element 16 and the upper and lower end heating elements 18 are laminated bodies of conductive flat plates (for example, a graphite plate and a metal plate) having a large contact resistance. When current flows up and down in the laminated body, The contact resistance generates heat evenly on the contact surface. Further, in this example, the contact resistance of the entire laminate is set so that the calorific values Q1 for heating the mold assemblies from above and below are substantially the same.
[0039]
The energization heating device 20 sandwiches a plurality of mold assemblies with a pair of upper and lower electrodes 20a and energizes and heats them. The axis of the electrode 20a coincides with the axis of the press. By pressing, the mold assembly, the intermediate heating element 16, and the upper and lower end heating elements 18 between the electrodes 20a are sandwiched in series and integrated. The compressed product is energized to pressurize the processed product 3 and the soaking plate 14 in the mold assembly, and to heat the product.
[0040]
According to the above-described configuration of the present invention, the heater 12a is provided independently for each mold of the mold assembly in which the plate-like processed product 3 is sandwiched between the heat equalizing plates 14 in the plurality of molds 11, and each mold assembly is provided. Since the intermediate heating element 16 and the end heating element 18 are positioned above and below the solid body, the heater 12a and the heating elements 16 and 18 are used to simultaneously heat the plurality of mold assemblies and simultaneously process the plurality of processed products, The productivity can be increased.
In addition, since each of the heating elements 16 and 18 is a laminate of conductive flat plates having a large contact resistance, the heater 12a can prevent heat radiation to the outside and uniformly heat a thin and large flat plate-like processed product. .
[0041]
Further, the contact resistance of the entire laminate is set so that the calorific value Q1 for heating each mold assembly from above and below is substantially the same, and each heater 12a is also heated to radiately heat each mold from the outer surface. Since the amount of heat generated by each heater is set so that the amount Q2 is substantially the same, there is little temperature variation even when rapidly heated, and the processed product is uniformly heated at a desired processing temperature for a predetermined time to be sintered or Heat treatment can be performed, and the entire processing time can be greatly shortened, whereby the characteristics of the processed product can be improved and the yield can be increased.
[0042]
In FIG. 2, the hybrid hot press 10 of the present invention further includes a mold holding device 22 that holds a plurality of mold assemblies and a plurality of heating elements 16 and 18 vertically and coaxially. In this example, the mold holding device 22 includes a conductive flat plate 22a, an intermediate vertical pin 22b, and an end vertical pin 22c.
The conductive flat plate 22a is a flat plate having high conductivity and high thermal conductivity that is fitted to the inner surface of the lower end of each mold space. Further, the intermediate vertical pin 22 b penetrates each intermediate heating element 16 vertically, the upper end is held by the conductive flat plate, and the lower end is held by the soaking plate 14. Further, the end vertical pin 22c vertically penetrates the upper and lower end heating elements 18, one end is held by the conductive flat plate or the soaking plate 14, and the other end is held by the electrode 20a.
[0043]
By providing such a mold holding device 22, a plurality of mold assemblies can be held vertically and coaxially on the axis line sandwiched between the pair of electrodes 20 a, and the current heating can be efficiently performed, and the temperature distribution of the processed product Can be made uniform and the characteristics of the processed product can be improved.
[0044]
FIG. 3 is a step diagram showing the control method of the present invention. As shown in this figure, the control method of the hybrid hot press of the present invention includes a calorific value setting step (A), a preliminary heating step (B), a rapid heating step (C), a temperature adjustment step (D), and balance heating. It consists of a step (E), a soaking step (F), and a cooling step (G).
[0045]
In the heating value setting step (A), the contact resistance of each heating element is set so that the heating value Q1 for heating each mold assembly from above and below by energization is substantially the same, and each mold is radiantly heated from the outer surface. The heating value of each heater is set so that the heating amount Q2 is substantially the same. With this setting, in the balance heating step (E), it is possible to raise the temperature while balancing radiant heating and energization heating.
[0046]
In the preliminary heating step (B), the in-furnace components are preheated mainly by heating the heater. If necessary, the same amount of heat or less may be applied by energization heating. By providing this step, the in-furnace parts having large sensible heat can be preheated in advance, and the subsequent temperature increase can be performed smoothly.
[0047]
In the rapid heating step (C), heater heating (radiant heating) and energization heating are used together to rapidly heat the center temperature of the processed product to a standby temperature that does not affect the performance of the processed product. By this rapid heating step (C), the temperature is rapidly raised in a temperature range that does not affect the processed product, and the processing cycle can be shortened.
[0048]
In the temperature adjustment step (D), the heating is stopped and only the heater is heated until the center temperature of the processed product reaches the standby temperature. The temperature difference generated in the processed product in this temperature adjustment step (D) can be reduced at a temperature that does not affect the processed product.
[0049]
In the balance heating step (E), the entire processed product is uniformly heated to a predetermined processing temperature by energization heating of the heating elements 16 and 18 and the processed product 3 while preventing heat radiation of the mold by radiation heating. In this balance heating step (E), the entire processed product can be heated uniformly to a predetermined processing temperature in a short time.
[0050]
In this balance heating step (E), in order to finely adjust the temperature distribution of the processed product, the center temperature of the processed product 3 and the surface temperature of the mold are detected and compared. It is preferable to increase the heater current when the current is increased and the surface temperature is low.
[0051]
In the soaking step (F), energization heating is stopped and only heater heating is performed so as to keep the processed product at the processing temperature for a predetermined time. In this soaking step (F), the entire processed product can be maintained at the processing temperature for a predetermined time to perform desired sintering or heat treatment.
[0052]
In the cooling step (G), both heater heating and energization heating are stopped to cool the whole. Further, the cooling rate is controlled as necessary.
[0053]
If the temperature of the processed product cannot be measured directly, set the temperature at a specific location on the mold or soaking plate that is less affected by radiant heating and approximates the temperature of the processed product as the temperature measuring point. The temperature of the product and the temperature of the processed product are measured simultaneously in advance, the relative temperature difference is ascertained from the temperature profile during the temperature rising process, and the processed product temperature is estimated using the data as a calibration value, thereby estimating the processed product temperature from the measurement point Thus, the temperature of the processed product can be adjusted accurately.
[0054]
The above-described control method of the hybrid hot press of the present invention is characterized in that the entire processed product is uniformly heated by energization heating of the heating elements 16 and 18 and the processed product 3 while preventing heat radiation of the mold by radiation heating. Yes, the entire processed product is uniformly heated by energization heating of the heating elements 16 and 18 and the processed product 3 while preventing heat radiation of the mold by radiant heating, so that a thin and large flat processed product can be uniformly formed. Can be heated.
[0055]
【Example】
FIG. 4 is an example of an operation pattern according to the control method of the present invention. In this figure, the horizontal axis represents time and the vertical axis represents temperature. In the figure, the thin straight line (broken line) is the target set temperature, the thick solid line is the center temperature of the processed product, and the thin broken line is the end surface temperature of the processed product. In this embodiment, the target processing temperature is a sintering or heat treatment that is held at about 470 ° C. for about 5 minutes within a maximum temperature difference of 5 ° C. In addition, ON / OFF of energization heating and heater heating is displayed corresponding to the horizontal axis in the figure.
[0056]
From this example, it can be seen that in the preliminary temperature increase region (preliminary temperature increase step (B)), since the energization heating is OFF, the end surface temperature of the processed product becomes high and a temperature difference from the center temperature occurs. . Further, in the short-time temperature rise region (rapid heating step (C)), the electric heating is used together and the heating rate is fast, so the temperature distribution is reversed, the center is high, and the end face is low. In the next adjustment zone 1 (temperature adjustment step (D)), since the energization heating is turned off again, the center temperature gradually decreases, and after matching with the end face temperature rising by radiant heating, both at approximately approximate temperatures Both rise. In the next adjustment zone 2 (balance heating step (E)), both are heated to the processing temperature in a short time by balance heating. In the last soaking zone (soaking step (F)), sintering or heat treatment is performed while maintaining a predetermined temperature with almost no temperature difference between the two.
[0057]
Therefore, from this example as well, thin and large flat processed products can be uniformly heated in a short time by uniformly heating the entire processed product by energizing heating while preventing heat radiation of the mold by radiation heating. You can see that
[0058]
Note that the present invention is not limited to the above-described embodiments and examples, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
[0059]
【The invention's effect】
The above-described hybrid hot press of the present invention and its control method are sintering means for raw material powders of conductive objects such as ceramics, metals, carbides, nitrides, etc. When processing a product that dislikes the difference in temperature history inside the product, the temperature history in the processed product can be made substantially the same by performing the step heating of the present invention, and the difference in the final temperature arrival temperature can be reduced. Accordingly, the present invention can be applied to raw material powders for conductive objects such as ceramics, metals, carbides, and nitrides, and thermoelectric materials containing Be and Te.
[0060]
That is, the hybrid hot press of the present invention and the control method thereof can sinter or heat-treat a thin and large flat plate-shaped processed product uniformly at a desired processing temperature for a predetermined time and simultaneously process a plurality of sheets. In addition, the overall processing time can be significantly shortened, and this has excellent effects such as improving the characteristics of the processed product, increasing the yield, and increasing the productivity.
[Brief description of the drawings]
FIG. 1 is an overall schematic view of a hybrid hot press of the present invention.
FIG. 2 is a configuration diagram of a main part of the hybrid hot press of the present invention.
FIG. 3 is a step diagram illustrating a control method of the present invention.
FIG. 4 is an operation pattern according to the control method of the present invention.
FIG. 5 is an overall schematic diagram of a conventional hybrid hot press.
[Explanation of symbols]
1 mold, 2 heater, 3 raw material powder (processed product),
4 electrodes, 5 heater heating device, 6 soaking plate,
7 energization heating element, 8 energization heating device, 9 heat insulation wall,
10 Hybrid hot press,
11 mold, 11a mold space,
12 radiation heating device, 12a heater,
14 soaking plate, 16 intermediate heating element, 18 end heating element,
20 electric heating device, 20a electrode,
22 mold holding device, 22a conductive plate,
22b Intermediate vertical pin, 22c End vertical pin

Claims (7)

上下に貫通するモールド空間(11a)を有し鉛直かつ直列に配置された複数のモールド(11)と、各モールドをそれぞれ独立に囲む複数のヒータ(12a)を有し各モールドを外表面から輻射加熱する輻射加熱装置(12)と、各モールドの焼結空間に水平に位置決めされた平板状の処理品(3)を直接挟持しかつモールド空間を上下動可能な複数の均熱板(14)と、モールド、処理品及び均熱板からなるモールド組立体の間に均熱板を介して挟持された中間発熱体(16)と、前記モールド組立体全体を均熱板を介して上下に挟持する上下の端部発熱体(18)と、前記モールド組立体全体を一対の電極(20a)で挟持しその間を通電加熱する通電加熱装置(20)と、前記複数のモールド組立体と複数の発熱体(16,18)を鉛直かつ同軸に保持するモールド保持装置(22)と、を備えたハイブリッドホットプレスであって、
前記モールド保持装置(22)は、各モールド空間の下端内面に嵌合する導電性平板(22a)と、前記各中間発熱体(16)を鉛直に貫通し上端が導電性平板で保持され下端が均熱板(14)で保持された中間鉛直ピン(22b)と、前記上下の端部発熱体(18)を鉛直に貫通し一端が導電性平板又は均熱板(14)で保持され他端が電極(20a)で保持された端部鉛直ピン(22c)とからなり、
前記中間発熱体(16)と上下の端部発熱体(18)は、接触抵抗の大きい導電性平板の積層体であり、かつ各モールド組立体を上下から加熱する発熱量Q1が同一となるように各積層体全体の接触抵抗が設定されており、
前記複数のヒータ(12a)は、各モールドを外表面から輻射加熱する加熱量Q2が同一となるように各ヒータの発熱量が設定されている、ことを特徴とするハイブリッドホットプレス。
A plurality of molds (11) vertically arranged in series having a mold space (11a) penetrating vertically and a plurality of heaters (12a) surrounding each mold independently are radiated from the outer surface. A radiant heating device (12) for heating and a plurality of soaking plates (14) capable of directly sandwiching a plate-like processed product (3) positioned horizontally in the sintering space of each mold and moving up and down the mold space And an intermediate heating element (16) sandwiched between a mold assembly comprising a mold, a processed product, and a soaking plate via a soaking plate, and the entire mold assembly is sandwiched up and down via a soaking plate. Upper and lower end heating elements (18), an energization heating device (20) for sandwiching the entire mold assembly between a pair of electrodes (20a) and energizing and heating between the electrodes, and the plurality of mold assemblies and a plurality of heat generation The body (16, 18) Straight and mold holding apparatus for holding the coaxial and (22), a hybrid hot press with,
The mold holding device (22) includes a conductive flat plate (22a) fitted to the inner surface of the lower end of each mold space and the intermediate heating element (16) vertically, the upper end is held by the conductive flat plate, and the lower end is The intermediate vertical pin (22b) held by the heat equalizing plate (14) and the upper and lower end heating elements (18) penetrate vertically, and one end is held by the conductive flat plate or the heat equalizing plate (14) and the other end. Consists of an end vertical pin (22c) held by an electrode (20a),
The intermediate heating element (16) and the upper and lower end heating elements (18) are laminates of conductive flat plates having a large contact resistance, and the heating value Q1 for heating each mold assembly from above and below is the same. The contact resistance of each laminate is set to
The hybrid hot press characterized in that the plurality of heaters (12a) are configured such that the heating amount of each heater is set so that the heating amount Q2 for radiatively heating each mold from the outer surface is the same .
上下に貫通するモールド空間(11a)を有するモールド(11)と、モールドを囲むヒータ(12a)を有しモールドを外表面から輻射加熱する輻射加熱装置(12)と、モールドの焼結空間に水平に位置決めされた平板状の処理品(3)を直接挟持しかつモールド空間を上下動可能な均熱板(14)と、モールド、処理品及び均熱板からなるモールド組立体を挟持する発熱体(16,18)と、モールド組立体全体を一対の電極(20a)で挟持しその間を通電加熱する通電加熱装置(20)と、前記複数のモールド組立体と複数の発熱体(16,18)を鉛直かつ同軸に保持するモールド保持装置(22)と、を備えたハイブリッドホットプレスの制御方法であって、
通電により各モールド組立体を上下から加熱する発熱量Q1が同一となるように各発熱体の接触抵抗を設定し、かつ各モールドを外表面から輻射加熱する加熱量Q2が同一となるように各ヒータの発熱量を設定する発熱量設定ステップ(A)と、
モールドの放熱を輻射加熱で防止しながら、通電による発熱体(16,18)と処理品(3)の発熱により処理品全体を所定の処理温度まで均一に加熱するバランス加熱ステップ(E)と、
所定の時間の間、処理品を処理温度に保持するように、通電加熱を停止してヒータ加熱のみを行う均熱ステップ(F)とを有し、
モールドの放熱を輻射加熱で防止しながら、発熱体(16,18)と処理品(3)の通電加熱により処理品全体を均一に加熱する、ことを特徴とするハイブリッドホットプレスの制御方法。
A mold (11) having a mold space (11a) penetrating vertically, a heater (12a) surrounding the mold, a radiant heating device (12) for radiatively heating the mold from the outer surface, and a horizontal space in the mold sintering space A flat plate-shaped processed product (3) positioned on the plate and a soaking plate (14) capable of moving up and down in the mold space, and a heating element for clamping a mold assembly comprising the mold, the processing product and the soaking plate (16, 18), an energizing heating device (20) for sandwiching the entire mold assembly between a pair of electrodes (20a) and energizing and heating between the electrodes, and the plurality of mold assemblies and a plurality of heating elements (16, 18). A mold holding device (22) for holding the substrate vertically and coaxially, and a control method for a hybrid hot press comprising:
The contact resistance of each heating element is set so that the heat generation amount Q1 for heating each mold assembly from above and below by energization is the same, and the heating amount Q2 for radiation heating each mold from the outer surface is the same. A heating value setting step (A) for setting the heating value of the heater;
A balance heating step (E) for uniformly heating the entire processed product to a predetermined processing temperature by heat generation of the heating element (16, 18) and the processed product (3) by energization while preventing heat radiation of the mold by radiation heating;
A soaking step (F) in which the energization heating is stopped and only the heater heating is performed so as to keep the processed product at the processing temperature for a predetermined time,
A control method for a hybrid hot press, characterized in that the entire treated product is uniformly heated by energization heating of the heating elements (16, 18) and the treated product (3) while preventing radiation of the mold by radiation heating.
更に、ヒータ加熱と通電加熱を併用して、処理品の中心温度が処理品の性能に影響のでない待機温度まで急速加熱する急速加熱ステップ(C)と、
処理品の中心温度が前記待機温度に達するまで、通電加熱を停止してヒータ加熱のみを行う温度調整ステップ(D)とを有する、ことを特徴とする請求項2に記載のハイブリッドホットプレスの制御方法。
In addition, a rapid heating step (C) in which the center temperature of the processed product is rapidly heated to a standby temperature that does not affect the performance of the processed product by using both heater heating and electric heating,
The control of the hybrid hot press according to claim 2, further comprising: a temperature adjustment step (D) in which the energization heating is stopped and only the heater heating is performed until the center temperature of the processed product reaches the standby temperature. Method.
更に、主としてヒータ加熱により炉内部品を予熱する予備昇温ステップ(B)を有する、ことを特徴とする請求項2に記載のハイブリッドホットプレスの制御方法。  The method for controlling a hybrid hot press according to claim 2, further comprising a preliminary heating step (B) for preheating the in-furnace parts mainly by heating with a heater. 更に、主としてヒータ加熱により炉内部品を予熱する予備昇温ステップ(B)と、
ヒータ加熱と通電加熱を併用して、処理品の中心温度が処理品の性能に影響のでない待機温度まで急速加熱する急速加熱ステップ(C)と、
処理品の中心温度が前記待機温度に達するまで、通電加熱を停止してヒータ加熱のみを行う温度調整ステップ(D)とを有する、ことを特徴とする請求項2に記載のハイブリッドホットプレスの制御方法。
Furthermore, a preliminary heating step (B) for preheating the furnace components mainly by heating the heater,
A rapid heating step (C) in which the center temperature of the processed product is rapidly heated to a standby temperature that does not affect the performance of the processed product by using both heater heating and electric heating;
The control of the hybrid hot press according to claim 2, further comprising: a temperature adjustment step (D) in which the energization heating is stopped and only the heater heating is performed until the center temperature of the processed product reaches the standby temperature. Method.
前記バランス加熱ステップ(E)において、処理品(3)の中心温度と、モールドの表面温度とを検出して比較し、中心温度が低いときは通電電流を増加させ、表面温度が低いときはヒータ電流を増加させる、ことを特徴とする請求項2に記載のハイブリッドホットプレスの制御方法。  In the balance heating step (E), the center temperature of the processed product (3) and the surface temperature of the mold are detected and compared. When the center temperature is low, the energizing current is increased, and when the surface temperature is low, the heater is heated. The method for controlling a hybrid hot press according to claim 2, wherein the current is increased. 輻射加熱の影響が少なく処理品温度に近似する温度となるモールド又は均熱板の特定箇所の温度を測温点として設定し、該測温点の温度と処理品温度とを予め同時に計測し、昇温過程の温度プロファイルにより相対温度差を把握し、そのデータを校正値として処理品温度を推定する、ことを特徴とする請求項2乃至のいずれかに記載のハイブリッドホットプレスの制御方法。Set the temperature of a specific part of the mold or soaking plate that is less affected by radiant heating and approximate the temperature of the processed product as a temperature measuring point, and measure the temperature of the temperature measuring point and the temperature of the processed product simultaneously in advance, The method for controlling a hybrid hot press according to any one of claims 2 to 6, wherein a relative temperature difference is grasped from a temperature profile in a temperature raising process, and a processed product temperature is estimated using the data as a calibration value.
JP2001290890A 2001-09-25 2001-09-25 Hybrid hot press and its control method Expired - Lifetime JP4656785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290890A JP4656785B2 (en) 2001-09-25 2001-09-25 Hybrid hot press and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290890A JP4656785B2 (en) 2001-09-25 2001-09-25 Hybrid hot press and its control method

Publications (2)

Publication Number Publication Date
JP2003096505A JP2003096505A (en) 2003-04-03
JP4656785B2 true JP4656785B2 (en) 2011-03-23

Family

ID=19113123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290890A Expired - Lifetime JP4656785B2 (en) 2001-09-25 2001-09-25 Hybrid hot press and its control method

Country Status (1)

Country Link
JP (1) JP4656785B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246992A (en) * 2006-03-16 2007-09-27 Matsumura Seikei:Kk Sintering method and sintering apparatus
US9283693B2 (en) 2010-07-30 2016-03-15 Lg Innotek Co., Ltd. Hot press sintering apparatus and press element
JP2018157130A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Manufacturing method of thermoelectric conversion material
KR102024680B1 (en) * 2018-12-21 2019-09-24 서울대학교산학협력단 Sintering apparatus for selectively applyung electric current

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226603A (en) * 1999-02-03 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd Hybrid sintering device and method therefor
JP2000265201A (en) * 1999-03-17 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Electrically heating type pressurizing sintering apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318007A (en) * 1986-07-08 1988-01-25 Ishikawajima Harima Heavy Ind Co Ltd Hot pressing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226603A (en) * 1999-02-03 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd Hybrid sintering device and method therefor
JP2000265201A (en) * 1999-03-17 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Electrically heating type pressurizing sintering apparatus

Also Published As

Publication number Publication date
JP2003096505A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US8823404B2 (en) Evaluation device and evaluation method for substrate mounting apparatus and evaluation substrate used for the same
KR100948587B1 (en) High frequency inductive heating appatratus of ceramic material and non-pressing sintering method using the same
TWI573974B (en) Graphite furnaces and methods of making graphite
KR20160040689A (en) Method and Apparatus of making glass articles
JP4666903B2 (en) Wafer support member
JP4656785B2 (en) Hybrid hot press and its control method
US20120098162A1 (en) Rapid hot pressing using an inductive heater
KR101959451B1 (en) Method and manufacturing assembly for sintering fuel cell electrodes and impregnating porous electrodes with electrolyte powders by induction heating for mass production
US20050184054A1 (en) Ceramics heater for semiconductor production system
JP5222588B2 (en) Method for manufacturing plasma processing apparatus
JP4154787B2 (en) Hybrid sintering apparatus and method
JP4698097B2 (en) Wafer support member
JP5946323B2 (en) Forging die equipment
KR101996309B1 (en) Graphite mold jig of high-frequency induction heating type for forming glass
JP4163394B2 (en) Pressurized current sintering apparatus and punch temperature control method thereof
CN220172072U (en) Heat treatment device for semiconductor
JP2004010384A (en) Press-forming method and press-forming apparatus
JP2017143199A (en) Method and device for processing semiconductor crystal material
JPH06345541A (en) Microwave sintering method and furnace therefor
JP2004250303A (en) Molding press apparatus and method of manufacturing glass optical device
JPH05294643A (en) Molding device for glass optical element
CN216565626U (en) Uniform heating device suitable for cone shell
WO2018135038A1 (en) Heat generating body and vacuum heat treatment device
JP2004260097A (en) Method for thermally processing semiconductor
JPH0839300A (en) Hot press method and hot press device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250