JP2003096505A - Hybrid hot press and control method thereof - Google Patents

Hybrid hot press and control method thereof

Info

Publication number
JP2003096505A
JP2003096505A JP2001290890A JP2001290890A JP2003096505A JP 2003096505 A JP2003096505 A JP 2003096505A JP 2001290890 A JP2001290890 A JP 2001290890A JP 2001290890 A JP2001290890 A JP 2001290890A JP 2003096505 A JP2003096505 A JP 2003096505A
Authority
JP
Japan
Prior art keywords
heating
temperature
mold
processed product
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001290890A
Other languages
Japanese (ja)
Other versions
JP4656785B2 (en
Inventor
Kazuhiko Katsumata
和彦 勝俣
Koichi Fujita
浩一 藤田
Isao Imai
功 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO TWENTY ONE KK
IHI Corp
Original Assignee
ECO TWENTY ONE KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO TWENTY ONE KK, IHI Corp filed Critical ECO TWENTY ONE KK
Priority to JP2001290890A priority Critical patent/JP4656785B2/en
Publication of JP2003096505A publication Critical patent/JP2003096505A/en
Application granted granted Critical
Publication of JP4656785B2 publication Critical patent/JP4656785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid hot press and a control method thereof in which a flat sheet-like work is uniformly heated at a desired treatment temperature for a predetermined time to perform the sintering or the heat treatment, and the entire treatment time can be considerably shortened. SOLUTION: This hybrid hot press comprises a plurality of molds 11, a radiation heater 12 having a plurality of heaters 12a, a plurality of soaking plates 14 which directly hold the flat sheet-like work 3 and is vertically movable in a mold space, an intermediate heating unit 16 held between mold assemblies, an end heating body 18 to vertically hold the entire mold assemblies, and an electric heating device 20 which holds the entire mold assemblies by a pair of electrodes 20a and electrically heat a space therebetween. The entire work is uniformly heated in a short time by electrically heating the heaters 16 and 18 and the work 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モールドに充填し
た平板状の処理品(例えば原料粉末)の急速加熱と均一
加熱が可能なハイブリッドホットプレスとその制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid hot press capable of rapid heating and uniform heating of a flat plate-shaped processed product (for example, raw material powder) filled in a mold and a control method therefor.

【0002】[0002]

【従来の技術】セラミックスや金属、炭化物、窒化物な
どの導電性物体の原料粉末を、モールドに充填して加熱
し一対のパンチで加圧して焼結体の製造が行われる。こ
の焼結体を製造する焼結装置は加熱方式によりいくつか
の方式に分類される。
2. Description of the Related Art A raw material powder for a conductive material such as ceramics, metals, carbides and nitrides is filled in a mold, heated, and pressed by a pair of punches to produce a sintered body. Sintering devices for producing this sintered body are classified into several types depending on the heating type.

【0003】ヒータ加熱方式はモールドの周囲に抵抗加
熱ヒータなどのヒータを配置しモールドを表面から加熱
し、この中の原料粉末を間接的に加熱する方式であり、
セラミックスと導電性物質の両方の焼結に適用でき広く
用いられている。誘導加熱方式は、モールドを電磁誘導
により直接加熱する加熱方式であり、ヒータ加熱方式に
比較し、焼結体の加熱速度が速い利点がある。通電方式
は一対のパンチを電極として原料粉末に通電し、原料粉
末の抵抗熱で加熱する方式である。なお通電方式につい
ては、特開昭64−55303,特開平5−7080
4,特開平5−117707に開示されている。
The heater heating method is a method of arranging a heater such as a resistance heater around the mold to heat the mold from the surface and indirectly heat the raw material powder therein.
It is widely used because it can be applied to the sintering of both ceramics and conductive materials. The induction heating method is a heating method in which the mold is directly heated by electromagnetic induction, and has an advantage that the heating speed of the sintered body is faster than the heater heating method. The energization method is a method in which the raw material powder is energized by using a pair of punches as electrodes and heated by resistance heat of the raw material powder. The energization method is described in JP-A-64-55303 and JP-A-5-7080.
4, disclosed in JP-A-5-117707.

【0004】近年の焼結体大型化に伴いモールドやパン
チなどの被加熱物も大型化している。また、特に半導体
等の製造のために、薄くて大きい円板状の多結晶材料
(例えば厚さ1mm×直径100mm程度)を均一かつ
高温(例えば450℃以上)に加熱・焼結して熱伝導率
の低い低伝導材料を製造することが求められることがあ
る。すなわち、電子材料などの機能性材料では、後工程
を簡単化するため、焼結厚さを極力薄くする必要があ
る。また材料によっては熱伝導性が極端に悪いものもあ
る。
Along with the recent increase in the size of the sintered body, the objects to be heated such as molds and punches are also increasing in size. In addition, especially for the production of semiconductors, thin and large disk-shaped polycrystalline materials (for example, thickness 1 mm x diameter 100 mm) are uniformly heated and sintered at high temperature (for example, 450 ° C or higher) to conduct heat. It may be required to produce low conductivity low conductivity materials. That is, in the case of a functional material such as an electronic material, it is necessary to make the sintered thickness as thin as possible in order to simplify the post-process. In addition, some materials have extremely poor thermal conductivity.

【0005】かかる多結晶焼結材料は、結晶粒子の大き
さや粒子界面の特性に代表される材料微構造により特性
が大きく左右される。そのため、低熱伝導材料を得るた
めには、結晶粒子をできるだけ小さくする必要があり、
そこで、できるだけ早い昇温速度が必要になる。また、
昇温速度のバラツキにより結晶粒子の大きさにバラツキ
が生じるため、かかる多結晶材料を均質にするために、
全体を均一に加熱する必要がある。
The characteristics of such a polycrystalline sintered material are greatly influenced by the size of crystal grains and the material microstructure represented by the characteristics of the grain interface. Therefore, in order to obtain a low thermal conductivity material, it is necessary to make the crystal particles as small as possible,
Therefore, a temperature rising rate as fast as possible is required. Also,
Since the size of the crystal particles varies due to the variation in the temperature rising rate, in order to make such a polycrystalline material uniform,
It is necessary to heat the whole uniformly.

【0006】しかし、上述したヒータ加熱方式では、モ
ールドへのエネルギ伝達は主としてヒータ表面温度とヒ
ータを囲む断熱囲壁の内壁温度できまり、ヒータ材およ
び断熱囲壁材の耐熱性には限界があるため、エネルギ伝
達には限界がある。そのため、ある限度以上に加熱時間
は短縮できず、かつ外部から加熱されるため被加熱物が
大型化するほど中心部との温度差が大きく均一加熱がで
きない問題点があった。また、誘導加熱方式では、モー
ルドは直接加熱できるが、被加熱物の材料特性によりモ
ールドとの間に温度差が生じるため、ヒータ加熱方式と
同様に均一加熱ができない問題点があった。更に、大型
で高価な加高周波電力発生装置が必要であり、加熱時間
を短縮するには電源設備に費用がかかりすぎる問題点が
あった。
However, in the above-mentioned heater heating method, energy transfer to the mold is mainly determined by the heater surface temperature and the inner wall temperature of the heat insulating enclosure surrounding the heater, and the heat resistance of the heater material and the heat insulating enclosure material is limited. There is a limit to energy transfer. Therefore, there is a problem in that the heating time cannot be shortened beyond a certain limit, and since the object to be heated becomes large in size, the temperature difference from the central portion becomes large and uniform heating cannot be performed. Further, in the induction heating method, the mold can be heated directly, but there is a problem that uniform heating cannot be performed as in the heater heating method because a temperature difference occurs between the mold and the mold due to the material characteristics of the object to be heated. Further, a large and expensive high-frequency high-frequency power generator is required, and there is a problem that power supply equipment is too expensive to shorten the heating time.

【0007】一方、通電方式は原料粉末を直接加熱する
ため加熱時間は比較的短いが、原料粉末の種類により加
熱条件が異なり、操業が難しい。また温度は原料粉末の
中心温度が最も高くなる傾向にあり、焼結体温度制御が
難しい。特に薄くて大きい円板状の多結晶材料の場合に
は、材料自体の発熱が少ないため高速加熱ができず、ま
た材料が薄いために、均一加熱が困難である問題点があ
った。
On the other hand, in the energization method, since the raw material powder is directly heated, the heating time is relatively short, but the heating conditions differ depending on the type of the raw material powder, which makes operation difficult. In addition, the center temperature of the raw material powder tends to be the highest, and it is difficult to control the temperature of the sintered body. In particular, in the case of a thin and large disc-shaped polycrystalline material, there is a problem that uniform heating is difficult because the material itself has a small amount of heat generation and thus cannot be heated at a high speed.

【0008】言い換えれば、従来のヒータ加熱方式、誘
導加熱方式及び通電方式の焼結装置では、熱伝導性が極
端に悪い材料で焼結厚さを薄くする場合に、急速加熱と
均一加熱の両立できず、そのため、被処理物の温度分布
が悪化し、製品としての歩留りが低下していた。
In other words, in the conventional heater heating system, induction heating system and energization system sintering apparatus, both rapid heating and uniform heating can be achieved when the sintering thickness is made thin with a material having extremely poor thermal conductivity. Therefore, the temperature distribution of the object to be treated is deteriorated, and the yield as a product is reduced.

【0009】かかる問題点を解決するために、本発明の
出願人は先に「ハイブリッド焼結装置とその方法」を創
案し出願した(特開2000−226603)。この装
置及び方法は、図5に模式的に示すように、モールド1
を囲むヒータ2を有しモールドを表面からヒータ加熱す
るヒータ加熱装置5と、モールド1の焼結空間に充填さ
れた原料粉末3(処理品)を直接挟持する上下の均熱板
6と、上下均熱板を上下から挟持する上下の通電発熱体
7と、上下の通電発熱体を一対の電極4で挟持しその間
を通電加熱する通電加熱装置8とを備え、ヒータによる
輻射加熱と通電加熱を併用して、均熱板を均熱に高速加
熱し、その間の原料粉末を加熱・焼結するものである。
この発明により、熱伝導率が低く、厚さが薄い焼結材で
あっても急速加熱及び均一加熱が可能となった。以下、
かかる輻射加熱と通電加熱を併用する焼結装置を「ハイ
ブリッドホットプレス」と呼ぶ。
In order to solve such a problem, the applicant of the present invention previously created and applied for "hybrid sintering apparatus and method" (Japanese Patent Laid-Open No. 2000-226603). This apparatus and method are shown in FIG.
A heater heating device 5 for heating the mold from the surface, which has a heater 2 surrounding it, upper and lower heat equalizing plates 6 for directly sandwiching the raw material powder 3 (processed product) filled in the sintering space of the mold 1, and upper and lower plates. The upper and lower energization heating elements 7 sandwiching the soaking plate from above and below, and the energization heating device 8 sandwiching the upper and lower energization heating elements between the pair of electrodes 4 and energizing and heating the space between them are provided with radiant heating and energization heating by a heater. In combination, the soaking plate is uniformly heated at high speed, and the raw material powder in the meantime is heated and sintered.
According to the present invention, rapid heating and uniform heating are possible even with a sintered material having a low thermal conductivity and a thin thickness. Less than,
Such a sintering apparatus that uses both radiant heating and electric heating is called a "hybrid hot press".

【0010】[0010]

【発明が解決しようとする課題】外部からのヒータ加熱
のみによる従来のホットプレス装置では、プレス系の外
部にヒータを設置し、輻射加熱により外面から加熱す
る。そのため、一般的に内外温度差が発生するため、処
理温度付近までゆっくり加熱し、また長時間保持して、
内外面の達成温度が均一化される程度の保持時間をかけ
て焼結や熱処理をしている。
In the conventional hot press apparatus which only heats the heater from the outside, a heater is installed outside the press system and the outer surface is heated by radiant heating. Therefore, in general, a difference in temperature between the inside and the outside occurs, so slowly heat to near the processing temperature and hold for a long time.
Sintering and heat treatment are performed for a holding time such that the achieved temperatures of the inner and outer surfaces are made uniform.

【0011】そのため、ヒータ加熱のみによる従来のホ
ットプレス装置では、上述したように、薄くて大きい平
板状の粉末材料(例えば厚さ1mm×直径100mm程
度)を均一かつ高温に加熱・焼結して熱伝導率の低い低
伝導材料を製造し、かつ所望の特性を得るために、早い
昇温速度で全体を均一に加熱することが困難であり、処
理時間が非常に長くなる問題点があった。
Therefore, as described above, in the conventional hot pressing apparatus using only the heater heating, a thin and large flat plate-like powder material (for example, thickness 1 mm × diameter 100 mm) is uniformly heated and sintered at high temperature. In order to manufacture a low-conductivity material having a low thermal conductivity and obtain desired characteristics, it is difficult to uniformly heat the whole at a high temperature rising rate, and there is a problem that the processing time becomes very long. .

【0012】すなわち、平板状の粉末材料を所定の処理
温度(例えば約470℃)に均一に(内外面の最大温度
差が例えば5℃以内)に加熱してこれを所定時間(例え
ば5分間)だけ保持して、所望の特性の材料を得る場合
でも、この処理温度に達するまでに温度差を均等にする
ために長時間を必要としていた。
That is, the flat powder material is uniformly heated to a predetermined processing temperature (for example, about 470 ° C.) (the maximum temperature difference between the inner and outer surfaces is within 5 ° C.), and this is heated for a predetermined time (for example, 5 minutes). Even when the material having the desired characteristics is obtained by holding only for a long time, it takes a long time to equalize the temperature difference before reaching the processing temperature.

【0013】また、上述した従来のハイブリッドホット
プレスを用いた場合でも、薄くて大きい平板状の粉末材
料を均一に加熱して焼結又は熱処理するために、同様に
処理温度に達するまでに温度差を均等にするために長時
間を必要としていた。また、この場合、従来のハイブリ
ッドホットプレスでは、多結晶材料を1枚ずつ処理する
必要があるため、生産性が極めて低い問題点があった。
Even when the above-mentioned conventional hybrid hot press is used, since a thin and large flat plate-shaped powder material is uniformly heated and sintered or heat-treated, a temperature difference is similarly reached until the processing temperature is reached. It took a long time to even out. Further, in this case, in the conventional hybrid hot press, since it is necessary to process the polycrystalline material one by one, there is a problem that productivity is extremely low.

【0014】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、薄く
て大きい平板状の処理品を所望の処理温度で均一に所定
時間加熱して焼結又は熱処理することができ、かつ同時
に複数枚の処理が可能であり、更に全体の処理時間を大
幅に短縮することができ、これにより、処理品の特性を
向上させ、歩留りを高め、かつ生産性を高めることがで
きるハイブリッドホットプレスとその制御方法を提供す
ることにある。
The present invention was created to solve such problems. That is, an object of the present invention is that a thin and large flat plate-shaped processed product can be uniformly heated at a desired processing temperature for a predetermined time to be sintered or heat-treated, and a plurality of processes can be performed at the same time. An object of the present invention is to provide a hybrid hot press and a control method therefor capable of significantly shortening the entire processing time, thereby improving the characteristics of processed products, increasing the yield, and increasing the productivity.

【0015】[0015]

【課題を解決するための手段】本発明によれば、上下に
貫通するモールド空間(11a)を有し鉛直かつ直列に
配置された複数のモールド(11)と、各モールドをそ
れぞれ独立に囲む複数のヒータ(12a)を有し各モー
ルドを外表面から輻射加熱する輻射加熱装置(12)
と、各モールドの焼結空間に水平に位置決めされた平板
状の処理品(3)を直接挟持しかつモールド空間を上下
動可能な複数の均熱板(14)と、モールド、処理品及
び均熱板からなるモールド組立体の間に均熱板を介して
挟持された中間発熱体(16)と、前記モールド組立体
全体を均熱板を介して上下に挟持する上下の端部発熱体
(18)と、前記モールド組立体全体を一対の電極(2
0a)で挟持しその間を通電加熱する通電加熱装置(2
0)とを備えたハイブリッドホットプレスであって、前
記中間発熱体(16)と上下の端部発熱体(18)は、
接触抵抗の大きい導電性平板の積層体であり、かつ各モ
ールド組立体を上下から加熱する発熱量Q1がほぼ同一
となるように各積層体全体の接触抵抗が設定されてお
り、前記複数のヒータ(12a)は、各モールドを外表
面から輻射加熱する加熱量Q2がほぼ同一となるように
各ヒータの発熱量が設定されている、ことを特徴とする
ハイブリッドホットプレスが提供される。
According to the present invention, a plurality of molds (11) arranged vertically and in series having a mold space (11a) penetrating vertically and a plurality of molds surrounding each mold independently. Radiant heating device (12) having a heater (12a) for radiantly heating each mold from the outer surface
And a plurality of heat equalizing plates (14) for directly sandwiching the flat plate-shaped processed product (3) horizontally positioned in the sintering space of each mold and capable of moving the mold space up and down, the mold, the processed product and the uniformizing plate. An intermediate heating element (16) sandwiched between the mold assemblies composed of heat plates via the heat equalizing plate, and upper and lower end heating elements (which sandwich the entire mold assembly above and below via the heat equalizing plate ( 18) and a pair of electrodes (2
0a) and an electric heating device (2
0) and the intermediate heating element (16) and the upper and lower end heating elements (18),
The contact resistance of the entire laminated body is set such that the laminated body is a conductive flat plate having a large contact resistance, and the heat generation amount Q1 for vertically heating each mold assembly is substantially the same. (12a) is a hybrid hot press characterized in that the heat generation amount of each heater is set so that the heat amount Q2 for radiantly heating each mold from the outer surface is substantially the same.

【0016】上記本発明の構成によれば、複数のモール
ド(11)内に平板状の処理品(3)が均熱板(14)
に挟持されたモールド組立体の各モールドに独立にヒー
タ(12a)が設けられ、かつ各モールド組立体の上下
に中間発熱体(16)と端部発熱体(18)が位置する
ので、ヒータ(12a)と発熱体(16,18)によ
り、複数のモールド組立体を同時に昇温して複数の処理
品を同時に処理して、その生産性を高めることができ
る。また、各発熱体(16,18)が、接触抵抗の大き
い導電性平板の積層体なので、ヒータ(12a)で外部
への放熱を防止して、薄くて大きい平板状の処理品を均
一に加熱することができる。
According to the above-mentioned structure of the present invention, the flat plate-like processed product (3) is placed in the plurality of molds (11) soaking plate (14).
A heater (12a) is provided independently for each mold of the mold assembly sandwiched between the heaters, and an intermediate heating element (16) and an end heating element (18) are located above and below each mold assembly. By 12a) and the heating elements (16, 18), it is possible to raise the temperature of a plurality of mold assemblies at the same time and process a plurality of processed products at the same time, thereby improving the productivity. Further, since each heating element (16, 18) is a laminated body of conductive flat plates having a large contact resistance, heat dissipation to the outside is prevented by the heater (12a) and a thin and large flat plate-like processed product is uniformly heated. can do.

【0017】更に、各モールド組立体を上下から加熱す
る発熱量Q1がほぼ同一となるように各積層体全体の接
触抵抗が設定されており、かつ各ヒータ(12a)も、
各モールドを外表面から輻射加熱する加熱量Q2がほぼ
同一となるように各ヒータの発熱量が設定されているの
で、急速加熱しても温度のバラツキが少なく、処理品を
所望の処理温度で均一に所定時間加熱して焼結又は熱処
理することができ、かつ全体の処理時間を大幅に短縮す
ることができ、これにより、処理品の特性を向上させ、
歩留りを高めることができる。
Furthermore, the contact resistance of each laminated body is set so that the heat generation amount Q1 for heating each mold assembly from above and below is almost the same, and each heater (12a) is also
Since the heat generation amount of each heater is set so that the heat amount Q2 for radiantly heating each mold is almost the same, there is little variation in temperature even if it is rapidly heated, and the processed product is kept at the desired processing temperature. It can be uniformly heated for a predetermined time and sintered or heat-treated, and the overall processing time can be significantly shortened, thereby improving the characteristics of the processed product,
The yield can be increased.

【0018】本発明の好ましい実施形態によれば、前記
複数のモールド組立体と複数の発熱体(16,18)を
鉛直かつ同軸に保持するモールド保持装置(22)を備
える。また、前記モールド保持装置(22)は、各モー
ルド空間の下端内面に嵌合する導電性平板(22a)
と、前記各中間発熱体(16)を鉛直に貫通し上端が導
電性平板で保持され下端が均熱板(14)で保持された
中間鉛直ピン(22b)と、前記上下の端部発熱体(1
8)を鉛直に貫通し一端が導電性平板又は均熱板(1
4)で保持され他端が電極(20a)で保持された端部
鉛直ピン(22c)とからなる。
According to a preferred embodiment of the present invention, a mold holding device (22) for holding the plurality of mold assemblies and the plurality of heating elements (16, 18) vertically and coaxially is provided. The mold holding device (22) has a conductive flat plate (22a) fitted to the inner surface of the lower end of each mold space.
An intermediate vertical pin (22b) vertically penetrating each intermediate heating element (16) and having an upper end held by a conductive flat plate and a lower end held by a soaking plate (14); and the upper and lower end heating elements. (1
8) penetrates vertically and has one end made of a conductive flat plate or soaking plate (1
4) and the other end consists of an end vertical pin (22c) held by an electrode (20a).

【0019】かかるモールド保持装置(22)を備える
ことにより、複数のモールド組立体を一対の電極(20
a)で挟持する軸線上に鉛直かつ同軸に保持することが
でき、通電加熱を効率的に行えるとともに、処理品の温
度分布を均一化し、処理品の特性を向上することができ
る。
By including the mold holding device (22), a plurality of mold assemblies can be connected to a pair of electrodes (20).
Since it can be held vertically and coaxially on the axis sandwiched in a), the electric current can be efficiently heated, the temperature distribution of the treated product can be made uniform, and the characteristics of the treated product can be improved.

【0020】また、本発明によれば、上下に貫通するモ
ールド空間(11a)を有するモールド(11)と、モ
ールドを囲むヒータ(12a)を有しモールドを外表面
から輻射加熱する輻射加熱装置(12)と、モールドの
焼結空間に水平に位置決めされた平板状の処理品(3)
を直接挟持しかつモールド空間を上下動可能な均熱板
(14)と、モールド、処理品及び均熱板からなるモー
ルド組立体を挟持する発熱体(16,18)と、モール
ド組立体全体を一対の電極(20a)で挟持しその間を
通電加熱する通電加熱装置(20)とを備えたハイブリ
ッドホットプレスの制御方法であって、モールドの放熱
を輻射加熱で防止しながら、発熱体(16,18)と処
理品(3)の通電加熱により処理品全体を均一に加熱す
る、ことを特徴とするハイブリッドホットプレスの制御
方法が提供される。
Further, according to the present invention, the radiant heating device (radiant heating device (11) having the mold space (11a) penetrating vertically and the heater (12a) surrounding the mold to radiatively heat the mold from the outer surface ( 12) and a flat plate-shaped processed product (3) positioned horizontally in the sintering space of the mold
A soaking plate (14) for directly sandwiching the mold and vertically moving the mold space, a heating element (16, 18) for sandwiching a mold assembly composed of the mold, the processed product and the soaking plate, and the entire mold assembly. A method for controlling a hybrid hot press, comprising: an electric heating device (20) sandwiched between a pair of electrodes (20a) and electrically heating the space between the electrodes (20a). The heating element (16, Provided is a method for controlling a hybrid hot press, characterized in that the whole treated product is heated uniformly by the electric heating of 18) and the treated product (3).

【0021】この方法によれば、モールドの放熱を輻射
加熱で防止しながら、発熱体(16,18)と処理品
(3)の通電加熱により処理品全体を均一に加熱するの
で、薄くて大きい平板状の処理品を均一に加熱すること
ができる。
According to this method, the heat treatment of the mold is prevented by the radiant heating, while the heat treatment of the heating element (16, 18) and the treatment product (3) is uniformly conducted to heat the whole treatment product, so that it is thin and large. It is possible to uniformly heat a flat plate-shaped processed product.

【0022】本発明の好ましい実施形態によれば、通電
により各モールド組立体を上下から加熱する発熱量Q1
がほぼ同一となるように各発熱体の接触抵抗を設定し、
かつ各モールドを外表面から輻射加熱する加熱量Q2が
ほぼ同一となるように各ヒータの発熱量を設定する発熱
量設定ステップ(A)と、モールドの放熱を輻射加熱で
防止しながら、通電による発熱体(16,18)と処理
品(3)の発熱により処理品全体を所定の処理温度まで
均一に加熱するバランス加熱ステップ(E)と、所定の
時間の間、処理品を処理温度に保持するように、通電加
熱を停止してヒータ加熱のみを行う均熱ステップ(F)
とを有する。
According to a preferred embodiment of the present invention, the heat generation amount Q1 for heating each mold assembly from above and below by energizing it.
Set the contact resistance of each heating element so that
In addition, a heat generation amount setting step (A) for setting the heat generation amount of each heater so that the heat amount Q2 for radiantly heating each mold to be substantially the same, and for preventing the heat radiation of the mold by radiant heating, Balance heating step (E) for uniformly heating the entire processed product to a predetermined processing temperature by heat generation of the heating elements (16, 18) and the processed product (3), and maintaining the processed product at the processing temperature for a predetermined time. Soaking step (F) in which energization heating is stopped and only heater heating is performed
Have and.

【0023】更に、ヒータ加熱と通電加熱を併用して、
処理品の中心温度が処理品の性能に影響のでない待機温
度まで急速加熱する急速加熱ステップ(C)と、処理品
の中心温度が前記待機温度に達するまで、通電加熱を停
止してヒータ加熱のみを行う温度調整ステップ(D)と
を有することが好ましい。また、更に、主としてヒータ
加熱により炉内部品を予熱する予備昇温ステップ(B)
を有することが好ましい。
Furthermore, using both heater heating and electric heating,
A rapid heating step (C) of rapidly heating the central temperature of the processed product to a standby temperature that does not affect the performance of the processed product, and stopping the energization heating and heating only the heater until the central temperature of the processed product reaches the standby temperature. It is preferable to have the temperature adjusting step (D) for performing. In addition, a preliminary heating step (B) for preheating the parts in the furnace mainly by heating the heater
It is preferable to have

【0024】また、更に、主としてヒータ加熱により炉
内部品を予熱する予備昇温ステップ(B)と、ヒータ加
熱と通電加熱を併用して、処理品の中心温度が処理品の
性能に影響のでない待機温度まで急速加熱する急速加熱
ステップ(C)と、処理品の中心温度が前記待機温度に
達するまで、通電加熱を停止してヒータ加熱のみを行う
温度調整ステップ(D)とを有してもよい。
Further, by using the preliminary heating step (B) for preheating the parts in the furnace mainly by heating the heater and the heater heating and the electric heating together, the central temperature of the processed product does not affect the performance of the processed product. It also has a rapid heating step (C) of rapidly heating to a standby temperature and a temperature adjustment step (D) of stopping energized heating and performing only heater heating until the central temperature of the processed product reaches the standby temperature. Good.

【0025】上記方法によれば、発熱量設定ステップ
(A)により、通電加熱と輻射加熱のそれぞれにおい
て、複数のモールド組立体をほぼ均等に加熱するように
設定できる。また、予備昇温ステップ(B)により顕熱
の大きい炉内部品を予め予熱することができる。更に、
急速加熱ステップ(C)により処理品に影響を与えない
温度範囲で急速に昇温し、処理サイクルを短縮できる。
また、温度調整ステップ(D)で処理品内に生じた温度
差を処理品に影響を与えない温度で減少させることがで
きる。更に、バランス加熱ステップ(E)で処理品全体
を所定の処理温度まで均一かつ短時間に加熱することが
できる。また、均熱ステップ(F)で処理品全体を所定
の時間の間、処理温度に保持して、所望の焼結又は熱処
理を行うことができる。従って、この方法により、薄く
て大きい平板状の処理品を所望の処理温度で均一に所定
時間加熱して焼結又は熱処理することができ、かつ全体
の処理時間を大幅に短縮することができ、これにより、
処理品の特性を向上させ、歩留りを高めることができ
る。
According to the above method, the plurality of mold assemblies can be set to be heated substantially uniformly in each of the electric heating and the radiant heating by the heat generation amount setting step (A). Further, in the preliminary temperature raising step (B), it is possible to preheat in-furnace components having a large sensible heat in advance. Furthermore,
By the rapid heating step (C), the temperature can be rapidly raised within a temperature range that does not affect the processed product, and the processing cycle can be shortened.
Further, the temperature difference generated in the processed product in the temperature adjusting step (D) can be reduced at a temperature that does not affect the processed product. Furthermore, in the balance heating step (E), the entire processed product can be heated to a predetermined processing temperature uniformly and in a short time. In addition, in the soaking step (F), the entire processed product can be held at the processing temperature for a predetermined time to perform desired sintering or heat treatment. Therefore, according to this method, a thin and large flat plate-shaped processed product can be uniformly sintered for a predetermined time at a desired processing temperature for sintering or heat treatment, and the entire processing time can be significantly shortened. This allows
The characteristics of the processed product can be improved and the yield can be increased.

【0026】また、前記バランス加熱ステップ(E)に
おいて、処理品(3)の中心温度と、モールドの表面温
度とを検出して比較し、中心温度が低いときは通電電流
を増加させ、表面温度が低いときはヒータ電流を増加さ
せる。この方法により、処理品の温度分布を微調整する
ことができる。
In the balance heating step (E), the central temperature of the processed product (3) and the surface temperature of the mold are detected and compared, and when the central temperature is low, the energizing current is increased to increase the surface temperature. When is low, increase the heater current. By this method, the temperature distribution of the processed product can be finely adjusted.

【0027】また、輻射加熱の影響が少なく処理品温度
に近似する温度となるモールド又は均熱板の特定箇所の
温度を測温点として設定し、該測温点の温度と処理品温
度とを予め同時に計測し、昇温過程の温度プロファイル
により相対温度差を把握し、そのデータを校正値として
処理品温度を推定する。この方法により、処理品温度を
直接測定できない場合でも、予め予備試験を行う事よ
り、測定点から処理品温度を推定して正確に処理品の温
度調整ができる。
Further, the temperature of a specific portion of the mold or the soaking plate, which is less affected by radiant heating and is close to the temperature of the processed product, is set as a temperature measuring point, and the temperature at the temperature measuring point and the temperature of the processed product are set. The temperature of the processed product is estimated by simultaneously measuring in advance and grasping the relative temperature difference from the temperature profile in the temperature rising process, and using the data as a calibration value. By this method, even if the temperature of the processed product cannot be directly measured, the temperature of the processed product can be accurately adjusted by estimating the processed product temperature from the measurement point by performing a preliminary test in advance.

【0028】[0028]

【発明の実施の形態】以下本発明の好ましい実施形態に
ついて、図面を参照して説明する。なお、各図におい
て、共通する部分には同一の符号を付し、重複した説明
を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the drawings. In each drawing, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0029】図1は、本発明のハイブリッドホットプレ
スの全体模式図である。一般的にホットプレス成形は、
温度と圧力を同時に作用させる焼結手段であり、ハイブ
リッドホットプレスは、ヒータによる輻射加熱と通電加
熱を併用して加熱する装置である。
FIG. 1 is an overall schematic view of the hybrid hot press of the present invention. Generally, hot press molding is
The hybrid hot press is a sintering means that simultaneously applies temperature and pressure, and the hybrid hot press is an apparatus that heats by using both radiant heating by a heater and electric heating.

【0030】図1に示すように、本発明のハイブリッド
ホットプレス10は、真空チャンバー内の加熱室内に、
モールド11、輻射加熱装置12、均熱板14、中間発
熱体16、端部発熱体18を備え、プレスで処理品3を
加圧しながら、通電加熱装置20の電源と給電部を介し
て処理品に通電し、輻射加熱と通電加熱を併用して処理
品3を加熱するようになっている。
As shown in FIG. 1, the hybrid hot press 10 of the present invention has a heating chamber in a vacuum chamber,
The product includes a mold 11, a radiant heating device 12, a heat equalizing plate 14, an intermediate heating element 16, and an end heating element 18, and pressurizes the processed product 3 with a press, and the processed product through a power supply and a power feeding unit of an electric heating device 20. Is energized to heat the processed product 3 using both radiant heating and electric heating.

【0031】図2は、本発明のハイブリッドホットプレ
スの主要部の構成図である。この図において、二点鎖線
で示す9は、加熱室を構成する断熱壁である。
FIG. 2 is a block diagram of the main part of the hybrid hot press of the present invention. In this figure, 9 indicated by a chain double-dashed line is a heat insulating wall that constitutes a heating chamber.

【0032】図2に示すように、本発明では、複数(こ
の例では3つ)のモールド11はプレスの軸線上に鉛直
かつ直列に配置されている。各モールド11は、耐熱性
材料、例えばグラファイトで構成され、上下に貫通する
断面形状が一定のモールド空間11aを有する。このモ
ールド空間11aは、円筒形であるのが望ましいが、そ
の他の形状、例えば直方体でもよい。また、この実施形
態では、モールド11は、互いに軸方向に嵌合した外側
と内側のモールドからなり、必要に応じて外側と内側の
モールドを交換できるようになっている。
As shown in FIG. 2, in the present invention, a plurality of (three in this example) molds 11 are arranged vertically and in series on the axis of the press. Each mold 11 is made of a heat-resistant material, for example, graphite, and has a mold space 11a that vertically penetrates and has a constant cross-sectional shape. The mold space 11a is preferably cylindrical, but may have another shape, for example, a rectangular parallelepiped. Further, in this embodiment, the mold 11 is composed of an outer mold and an inner mold which are axially fitted to each other, and the outer mold and the inner mold can be exchanged as necessary.

【0033】輻射加熱装置12は、各モールド11をそ
れぞれ独立に囲む複数(この例で3つ)のヒータ12a
(例えば抵抗加熱式の電気ヒータ)を有する。すなわ
ち、各ヒータ12aは、それぞれ対応するモールド11
を外表面から均等に輻射加熱するように構成されてい
る。なお、この場合、別のヒータからも輻射加熱を受け
るようになっていてもよい。
The radiant heating device 12 comprises a plurality (three in this example) of heaters 12a surrounding each mold 11 independently.
(For example, a resistance heating type electric heater). That is, each heater 12a has a corresponding mold 11
Is configured to be uniformly radiantly heated from the outer surface. In this case, the radiant heating may be received from another heater.

【0034】更に、複数のヒータ12aは、各モールド
11を外表面から輻射加熱する加熱量Q2がほぼ同一と
なるように各ヒータの発熱量が設定される。
Further, the heating values of the heaters 12a are set so that the heating values Q2 for radiantly heating the respective molds 11 from the outer surface are substantially the same.

【0035】複数の均熱板14は、モールド空間11a
の断面形状と同一形状の導電性の平板である。この均熱
板は、処理品3よりも熱伝導率及び熱容量が大きく設定
され、処理品の厚さが薄い場合でも厚さ方向に加熱して
均熱化と高速加熱を可能にしている。各均熱板14は、
各モールドの焼結空間11aに水平に位置決めされた平
板状の処理品3を上下から直接挟持し、処理品3と共に
焼結空間11a内を上下動可能になっている。
The plurality of soaking plates 14 are formed in the mold space 11a.
It is a conductive flat plate having the same shape as the sectional shape of. This heat equalizing plate is set to have larger thermal conductivity and heat capacity than the processed product 3, and even in the case where the processed product is thin, it is heated in the thickness direction to enable uniform heating and high-speed heating. Each soaking plate 14 is
The flat plate-shaped processed product 3 horizontally positioned in the sintering space 11a of each mold is directly sandwiched from above and below, and the sintered product can be moved up and down in the sintering space 11a together with the processed product 3.

【0036】平板状の処理品3は、例えばセラミックス
や金属、炭化物、窒化物などの導電性物体の原料粉末で
ある。また、特に薄くて大きい円板状の多結晶材料や、
熱伝導性が極端に悪い材料で焼結厚さを薄くする必要が
あるものでもよい。処理品3は、この例では、1つのモ
ールド11に2枚づつセットしている。しかし、上下の
処理品3で温度差が生じる場合には、モールド毎に1枚
づつとするのがよく、逆に温度分布が問題にならない場
合には、3枚以上をセットしてもよい。
The plate-shaped processed product 3 is a raw material powder of a conductive substance such as ceramics, metal, carbide, or nitride. In addition, especially thin and large disc-shaped polycrystalline material,
It is also possible to use a material that has extremely poor thermal conductivity and that requires a thin sintered thickness. In this example, two processed products 3 are set in one mold 11. However, if there is a temperature difference between the upper and lower processed products 3, it is preferable to set one plate for each mold, and conversely, if the temperature distribution does not matter, three or more plates may be set.

【0037】中間発熱体16は、複数のモールド組立体
の間にその上下端に位置する均熱板14を介して挟持さ
れる。また、上下の端部発熱体18は、前記複数のモー
ルド組立体全体を同様に均熱板14を介して上下に挟持
する。なお、本発明において、「モールド組立体」と
は、モールド11内に処理品3と均熱板14を組込んだ
ものを意味する。
The intermediate heating element 16 is sandwiched between a plurality of mold assemblies via the heat equalizing plates 14 located at the upper and lower ends thereof. Further, the upper and lower end heating elements 18 similarly sandwich the entire plurality of mold assemblies above and below via the soaking plate 14. In addition, in the present invention, the “mold assembly” means the one in which the processed product 3 and the heat equalizing plate 14 are incorporated in the mold 11.

【0038】中間発熱体16と上下の端部発熱体18
は、接触抵抗の大きい導電性平板(例えばグラファイト
板、金属板)の積層体であり、この積層体内を上下に電
流が流れる際に、接触面における接触抵抗により接触面
に均等に発熱するようになっている。また、この例で
は、各モールド組立体を上下から加熱する発熱量Q1が
ほぼ同一となるように各積層体全体の接触抵抗が設定さ
れる。
Intermediate heating element 16 and upper and lower end heating elements 18
Is a laminated body of conductive flat plates (for example, graphite plate, metal plate) having a high contact resistance. When a current flows up and down in the laminated body, the contact resistance at the contact surface uniformly generates heat on the contact surface. Has become. Further, in this example, the contact resistance of each laminated body is set so that the heat generation amount Q1 for heating each mold assembly from above and below is substantially the same.

【0039】通電加熱装置20は、複数のモールド組立
体を上下一対の電極20aで挟持し、その間を通電加熱
する。この電極20aの軸線は、プレスの軸線に一致し
ており、プレスにより電極20aの間のモールド組立
体、中間発熱体16、上下の端部発熱体18の全体を直
列にサンドイッチして一体的に圧縮して通電し、モール
ド組立体内の処理品3と均熱板14を加圧するととも
に、通電加熱する。
The electric heating device 20 holds a plurality of mold assemblies by a pair of upper and lower electrodes 20a, and electrically heats the space between them. The axis of the electrode 20a coincides with the axis of the press, and by pressing, the mold assembly between the electrodes 20a, the intermediate heating element 16, and the upper and lower end heating elements 18 are sandwiched in series and integrated. The compressed product is energized to pressurize the processed product 3 and the soaking plate 14 in the mold assembly and to energize and heat.

【0040】上述した本発明の構成によれば、複数のモ
ールド11内に平板状の処理品3が均熱板14に挟持さ
れたモールド組立体の各モールドに独立にヒータ12a
が設けられ、かつ各モールド組立体の上下に中間発熱体
16と端部発熱体18が位置するので、ヒータ12aと
発熱体16,18により、複数のモールド組立体を同時
に昇温して複数の処理品を同時に処理して、その生産性
を高めることができる。また、各発熱体16,18が、
接触抵抗の大きい導電性平板の積層体なので、ヒータ1
2aで外部への放熱を防止して、薄くて大きい平板状の
処理品を均一に加熱することができる。
According to the above-described structure of the present invention, the heaters 12a are independently provided to the respective molds of the mold assembly in which the flat plate-shaped processed product 3 is sandwiched between the heat equalizing plates 14 in the plurality of molds 11.
Since the intermediate heating element 16 and the end heating element 18 are provided above and below each mold assembly, the heaters 12a and the heating elements 16 and 18 simultaneously raise the temperature of a plurality of mold assemblies to provide a plurality of heating elements. The processed products can be processed at the same time to increase their productivity. In addition, each heating element 16, 18
Since it is a stack of conductive flat plates with high contact resistance, the heater 1
Heat dissipation to the outside can be prevented by 2a, and a thin and large flat plate-like processed product can be uniformly heated.

【0041】更に、各モールド組立体を上下から加熱す
る発熱量Q1がほぼ同一となるように各積層体全体の接
触抵抗が設定されており、かつ各ヒータ12aも、各モ
ールドを外表面から輻射加熱する加熱量Q2がほぼ同一
となるように各ヒータの発熱量が設定されているので、
急速加熱しても温度のバラツキが少なく、処理品を所望
の処理温度で均一に所定時間加熱して焼結又は熱処理す
ることができ、かつ全体の処理時間を大幅に短縮するこ
とができ、これにより、処理品の特性を向上させ、歩留
りを高めることができる。
Furthermore, the contact resistance of each laminated body is set so that the heat generation amount Q1 for heating each mold assembly from above and below is substantially the same, and each heater 12a also radiates each mold from the outer surface. Since the heating value of each heater is set so that the heating amount Q2 for heating is almost the same,
There is little variation in temperature even with rapid heating, the processed product can be uniformly heated at a desired processing temperature for a predetermined time and sintered or heat-treated, and the overall processing time can be greatly shortened. As a result, the characteristics of the processed product can be improved and the yield can be increased.

【0042】図2において、本発明のハイブリッドホッ
トプレス10は、更に、複数のモールド組立体と複数の
発熱体16,18を鉛直かつ同軸に保持するモールド保
持装置22を備える。このモールド保持装置22は、こ
の例では、導電性平板22a、中間鉛直ピン22b、及
び端部鉛直ピン22cからなる。導電性平板22aは、
各モールド空間の下端内面に嵌合する導電性と熱伝導性
の高い平板である。また、中間鉛直ピン22bは、各中
間発熱体16を鉛直に貫通し、上端が導電性平板で保持
され、下端が均熱板14で保持される。更に、端部鉛直
ピン22cは、上下の端部発熱体18を鉛直に貫通し、
一端が導電性平板又は均熱板14で保持され、他端が電
極20aで保持される。
In FIG. 2, the hybrid hot press 10 of the present invention further comprises a mold holding device 22 for holding a plurality of mold assemblies and a plurality of heating elements 16 and 18 vertically and coaxially. In this example, the mold holding device 22 includes a conductive flat plate 22a, an intermediate vertical pin 22b, and an end vertical pin 22c. The conductive flat plate 22a is
It is a flat plate having a high electrical conductivity and a high thermal conductivity that fits on the inner surface of the lower end of each mold space. Further, the intermediate vertical pin 22b vertically penetrates each intermediate heating element 16, the upper end thereof is held by the conductive flat plate, and the lower end thereof is held by the heat equalizing plate 14. Further, the end vertical pins 22c vertically penetrate the upper and lower end heating elements 18,
One end is held by the conductive flat plate or soaking plate 14, and the other end is held by the electrode 20a.

【0043】かかるモールド保持装置22を備えること
により、複数のモールド組立体を一対の電極20aで挟
持する軸線上に鉛直かつ同軸に保持することができ、通
電加熱を効率的に行えるとともに、処理品の温度分布を
均一化し、処理品の特性を向上することができる。
By providing such a mold holding device 22, a plurality of mold assemblies can be held vertically and coaxially on the axis sandwiched by the pair of electrodes 20a, and the electric current can be efficiently heated and the processed product can be processed. It is possible to make the temperature distribution uniform and improve the characteristics of the processed product.

【0044】図3は、本発明の制御方法を示すステップ
図である。この図に示すように、本発明のハイブリッド
ホットプレスの制御方法は、発熱量設定ステップ
(A)、予備昇温ステップ(B)、急速加熱ステップ
(C)、温度調整ステップ(D)、バランス加熱ステッ
プ(E)、均熱ステップ(F)、及び冷却ステップ
(G)からなる。
FIG. 3 is a step diagram showing the control method of the present invention. As shown in this figure, the control method of the hybrid hot press of the present invention comprises a heating value setting step (A), a preliminary heating step (B), a rapid heating step (C), a temperature adjusting step (D), and a balance heating. It comprises a step (E), a soaking step (F), and a cooling step (G).

【0045】発熱量設定ステップ(A)では、通電によ
り各モールド組立体を上下から加熱する発熱量Q1がほ
ぼ同一となるように各発熱体の接触抵抗を設定し、かつ
各モールドを外表面から輻射加熱する加熱量Q2がほぼ
同一となるように各ヒータの発熱量を設定する。この設
定により、バランス加熱ステップ(E)において、輻射
加熱と通電加熱のバランスを取りながら昇温することが
可能となる。
In the calorific value setting step (A), the contact resistance of each heating element is set so that the calorific value Q1 for heating each mold assembly from above and below by energization is almost the same, and each mold is placed from the outer surface. The amount of heat generated by each heater is set so that the amount of heat Q2 for radiant heating is substantially the same. With this setting, in the balance heating step (E), it is possible to raise the temperature while balancing the radiation heating and the electric heating.

【0046】予備昇温ステップ(B)では、主としてヒ
ータ加熱により炉内部品を予熱する。なお、必要により
同程度以下の熱量を通電加熱により付加してもよい。こ
のステップを設けることにより、顕熱の大きい炉内部品
を予め予熱することができ、その後の昇温をスムースに
行うことができる。
In the preliminary heating step (B), the parts in the furnace are preheated mainly by heating with the heater. If necessary, the same or less heat may be added by electric heating. By providing this step, it is possible to preheat the in-furnace component having a large sensible heat in advance, and to perform the subsequent temperature rise smoothly.

【0047】急速加熱ステップ(C)では、ヒータ加熱
(輻射加熱)と通電加熱を併用して、処理品の中心温度
が処理品の性能に影響のでない待機温度まで急速加熱す
る。この急速加熱ステップ(C)により処理品に影響を
与えない温度範囲で急速に昇温し、処理サイクルを短縮
できる。
In the rapid heating step (C), heater heating (radiant heating) and electric heating are used together to rapidly heat the processed product to a standby temperature at which the center temperature of the processed product does not affect the performance of the processed product. By this rapid heating step (C), the temperature can be rapidly raised within a temperature range that does not affect the processed product, and the processing cycle can be shortened.

【0048】温度調整ステップ(D)では、処理品の中
心温度が待機温度に達するまで、通電加熱を停止してヒ
ータ加熱のみを行う。この温度調整ステップ(D)で処
理品内に生じた温度差を処理品に影響を与えない温度で
減少させることができる。
In the temperature adjusting step (D), the energization heating is stopped and only the heater heating is performed until the central temperature of the processed product reaches the standby temperature. In this temperature adjusting step (D), the temperature difference generated in the processed product can be reduced at a temperature that does not affect the processed product.

【0049】バランス加熱ステップ(E)では、モール
ドの放熱を輻射加熱で防止しながら、発熱体16,18
と処理品3の通電加熱により処理品全体を所定の処理温
度まで均一に加熱する。このバランス加熱ステップ
(E)で処理品全体を所定の処理温度まで均一かつ短時
間に加熱することができる。
In the balance heating step (E), the heat radiation of the mold is prevented by radiant heating while the heat generating elements 16, 18 are heated.
By heating the processed product 3 with electricity, the entire processed product is uniformly heated to a predetermined processing temperature. In this balance heating step (E), the entire processed product can be uniformly and quickly heated to a predetermined processing temperature.

【0050】また、このバランス加熱ステップ(E)に
おいて、処理品の温度分布を微調整するために、処理品
3の中心温度と、モールドの表面温度とを検出して比較
し、中心温度が低いときは通電電流を増加させ、表面温
度が低いときはヒータ電流を増加させることが好まし
い。
In the balance heating step (E), in order to finely adjust the temperature distribution of the processed product, the central temperature of the processed product 3 and the surface temperature of the mold are detected and compared, and the central temperature is low. When the surface temperature is low, it is preferable to increase the energizing current, and when the surface temperature is low, the heater current is preferably increased.

【0051】均熱ステップ(F)では、所定の時間の
間、処理品を処理温度に保持するように、通電加熱を停
止してヒータ加熱のみを行う。この均熱ステップ(F)
で処理品全体を所定の時間の間、処理温度に保持して、
所望の焼結又は熱処理を行うことができる。
In the soaking step (F), the energization heating is stopped and only the heater heating is performed so that the processed product is kept at the processing temperature for a predetermined time. This soaking step (F)
Hold the whole processed product at the processing temperature for a predetermined time,
Any desired sintering or heat treatment can be performed.

【0052】冷却ステップ(G)では、ヒータ加熱と通
電加熱の両方を停止して、全体を冷却する。また、必要
に応じて、冷却速度を制御する。
In the cooling step (G), both the heater heating and the electric heating are stopped to cool the whole. Also, the cooling rate is controlled as needed.

【0053】また、処理品温度を直接測定できない場合
には、輻射加熱の影響が少なく処理品温度に近似する温
度となるモールド又は均熱板の特定箇所の温度を測温点
として設定し、この測温点の温度と処理品温度とを予め
同時に計測し、昇温過程の温度プロファイルにより相対
温度差を把握し、そのデータを校正値として処理品温度
を推定することにより、測定点から処理品温度を推定し
て正確に処理品の温度調整ができる。
When the temperature of the processed product cannot be directly measured, the temperature of a specific portion of the mold or the soaking plate, which has a small effect of radiant heating and is close to the temperature of the processed product, is set as the temperature measuring point. By measuring the temperature of the temperature measurement point and the temperature of the processed product in advance at the same time, the relative temperature difference is grasped from the temperature profile during the temperature rise process, and the temperature of the processed product is estimated using that data as a calibration value to determine the processed product from the measured point. The temperature of the processed product can be accurately adjusted by estimating the temperature.

【0054】上述した本発明のハイブリッドホットプレ
スの制御方法は、モールドの放熱を輻射加熱で防止しな
がら、発熱体16,18と処理品3の通電加熱により処
理品全体を均一に加熱する点に大きな特徴があり、これ
により、モールドの放熱を輻射加熱で防止しながら、発
熱体16,18と処理品3の通電加熱により処理品全体
を均一に加熱するので、薄くて大きい平板状の処理品を
均一に加熱することができる。
The control method of the hybrid hot press according to the present invention described above is that the heat treatment of the mold is prevented by the radiant heating, while the heat treatment of the heating elements 16 and 18 and the treatment product 3 is uniformly conducted to heat the entire treatment product. This has a great feature that, while preventing the heat radiation of the mold by radiant heating, the whole processed product is uniformly heated by the electric heating of the heating elements 16 and 18 and the processed product 3, so that a thin and large flat processed product. Can be heated uniformly.

【0055】[0055]

【実施例】図4は、本発明の制御方法による運転パター
ンの実施例である。この図において、横軸は時間、縦軸
は温度である。また、図中の細い直線(折れ線)は目標
(ターゲット)設定温度、太い実線は処理品中心温度、
細い破線は処理品端面温度である。この実施例におい
て、目標の処理温度は、最大温度差5℃以内で約470
℃に約5分間保持する焼結又は熱処理である。なお、図
中の横軸に対応させて、通電加熱とヒータ加熱のON/
OFFを表示している。
EXAMPLE FIG. 4 is an example of an operation pattern according to the control method of the present invention. In this figure, the horizontal axis represents time and the vertical axis represents temperature. Also, the thin straight line (polygonal line) in the figure is the target temperature setting, the thick solid line is the processed product center temperature,
The thin broken line is the end surface temperature of the processed product. In this example, the target processing temperature is about 470 within a maximum temperature difference of 5 ° C.
Sintering or heat treatment of holding at ℃ for about 5 minutes. In addition, ON / OFF of the energization heating and the heater heating is made corresponding to the horizontal axis in the figure.
OFF is displayed.

【0056】この実施例から、予備昇温域(予備昇温ス
テップ(B))では、通電加熱がOFFであるため、処
理品の端面温度が高くなり、中心温度との温度差が生じ
ているのがわかる。また、短時間昇温域(急速加熱ステ
ップ(C))では、通電加熱を併用し、その加熱速度が
速いので、温度分布が逆転し、中心が高く、端面が低く
なる。次の調整域1(温度調整ステップ(D))では、
通電加熱を再びOFFにするので、中心温度は徐々に低
下し、輻射加熱で上昇する端面温度と一致した後、ほぼ
近似した温度で両方とも上昇する。次の調整域2(バラ
ンス加熱ステップ(E))では、バランス加熱により両
方が処理温度まで短時間に昇温する。最後の均熱域(均
熱ステップ(F))では、両者お温度差がほとんど発生
しないまま、所定の温度に保持されて焼結又は熱処理が
されている。
From this embodiment, in the preliminary temperature raising region (preliminary temperature raising step (B)), the energization heating is OFF, so that the end surface temperature of the processed product becomes high and a temperature difference from the center temperature occurs. I understand. In the short-time temperature rise region (rapid heating step (C)), the energization heating is also used and the heating rate is high, so the temperature distribution is reversed, the center is high and the end faces are low. In the next adjustment area 1 (temperature adjustment step (D)),
Since the energization heating is turned off again, the center temperature gradually decreases, and after both match the end surface temperature which rises by radiant heating, both rise at a temperature that is approximately similar. In the next adjustment area 2 (balance heating step (E)), both are heated to the processing temperature in a short time by the balance heating. In the final soaking zone (soaking step (F)), sintering or heat treatment is performed while maintaining a predetermined temperature with almost no temperature difference between the two.

【0057】従って、この実施例からも、モールドの放
熱を輻射加熱で防止しながら、通電加熱により処理品全
体を均一に加熱することで、薄くて大きい平板状の処理
品を短時間に均一に加熱することができることがわか
る。
Therefore, also in this embodiment, the heat treatment of the mold is prevented by the radiant heating, and the whole processed product is uniformly heated by the electric heating, so that the thin and large flat processed product can be made uniform in a short time. It turns out that it can be heated.

【0058】なお、本発明は上述した実施形態及び実施
例に限定されず、本発明の要旨を逸脱しない範囲で種々
に変更できることは勿論である。
The present invention is not limited to the above-described embodiments and examples, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0059】[0059]

【発明の効果】上述した本発明のハイブリッドホットプ
レスとその制御方法は、セラミックスや金属、炭化物、
窒化物などの導電性物体の原料粉末の焼結手段であり、
特に加熱到達温度で性能が決まってしまう物や処理品内
部での温度履歴での差を嫌う物を処理する場合に本発明
のステップ加熱を行うことで処理品内の温度履歴をほぼ
同じにし、最終温度到達温度差を少なくできる特徴を有
する。従って、セラミックスや金属、炭化物、窒化物な
どの導電性物体の原料粉末や、BeとTeを含有する熱
電用材料に適用することができる。
The hybrid hot press and the control method thereof according to the present invention described above are applicable to ceramics, metals, carbides,
A means for sintering raw material powder of a conductive object such as nitride,
Particularly when processing an object whose performance is determined by the temperature reached by heating or an object which dislikes the difference in temperature history inside the processed product, the temperature history within the processed product is made substantially the same by performing step heating of the present invention, It has the feature that the difference in the final temperature can be reduced. Therefore, it can be applied to raw material powders of conductive objects such as ceramics, metals, carbides and nitrides, and thermoelectric materials containing Be and Te.

【0060】すなわち、本発明のハイブリッドホットプ
レスとその制御方法は、薄くて大きい平板状の処理品を
所望の処理温度で均一に所定時間加熱して焼結又は熱処
理することができ、かつ同時に複数枚の処理が可能であ
り、更に全体の処理時間を大幅に短縮することができ、
これにより、処理品の特性を向上させ、歩留りを高め、
かつ生産性を高めることができる等の優れた効果を有す
る。
That is, the hybrid hot press and the control method therefor of the present invention allow a thin and large flat plate-shaped processed product to be uniformly heated for a predetermined time at a desired processing temperature for sintering or heat treatment, and at the same time, a plurality of products can be processed. It is possible to process one sheet, and it is possible to greatly reduce the overall processing time.
As a result, the characteristics of the processed products are improved, the yield is increased,
In addition, it has an excellent effect that productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のハイブリッドホットプレスの全体模式
図である。
FIG. 1 is an overall schematic view of a hybrid hot press of the present invention.

【図2】本発明のハイブリッドホットプレスの主要部の
構成図である。
FIG. 2 is a configuration diagram of a main part of a hybrid hot press of the present invention.

【図3】本発明の制御方法を示すステップ図である。FIG. 3 is a step diagram showing a control method of the present invention.

【図4】本発明の制御方法による運転パターンである。FIG. 4 is an operation pattern according to the control method of the present invention.

【図5】従来のハイブリッドホットプレスの全体模式図
である。
FIG. 5 is an overall schematic view of a conventional hybrid hot press.

【符号の説明】[Explanation of symbols]

1 モールド、2 ヒータ、3 原料粉末(処理品)、
4 電極、5 ヒータ加熱装置、6 均熱板、7 通電
発熱体、8 通電加熱装置、9 断熱壁、10 ハイブ
リッドホットプレス、11 モールド、11a モール
ド空間、12 輻射加熱装置、12a ヒータ、14
均熱板、16 中間発熱体、18 端部発熱体、20
通電加熱装置、20a 電極、22 モールド保持装
置、22a 導電性平板、22b 中間鉛直ピン、22
c 端部鉛直ピン
1 mold, 2 heater, 3 raw material powder (processed product),
4 electrodes, 5 heater heating device, 6 uniform heating plate, 7 energization heating element, 8 energization heating device, 9 heat insulation wall, 10 hybrid hot press, 11 mold, 11a mold space, 12 radiant heating device, 12a heater, 14
Soaking plate, 16 intermediate heating element, 18 end heating element, 20
Electric heating device, 20a electrode, 22 mold holding device, 22a conductive flat plate, 22b intermediate vertical pin, 22
c Vertical pin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27B 5/18 C04B 35/64 C F27D 11/02 E N (72)発明者 勝俣 和彦 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社横浜エンジニアリ ングセンター内 (72)発明者 藤田 浩一 北海道登別市幌別町5−12−2−201 (72)発明者 今井 功 北海道登別市千歳町4−5−225 Fターム(参考) 4K018 AA01 EA04 EA06 EA23 EA24 4K061 AA03 BA02 BA09 DA05 GA02 GA06 4K063 AA07 BA02 BA03 BA04 CA01 CA03 FA02 FA81 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F27B 5/18 C04B 35/64 C F27D 11/02 EN (72) Inventor Kazumata Kazuhiko Isogo, Yokohama City, Kanagawa Prefecture Shin-Nakahara-cho 1-ku Ishi Kawashima Harima Heavy Industries Ltd. Yokohama Engineering Center (72) Inventor Koichi Fujita 5-12-2-201 Horobetsu-cho, Noboribetsu-shi, Hokkaido (72) Isao Imai 4 Chitose-cho, Noboribetsu-shi, Hokkaido −5-225 F term (reference) 4K018 AA01 EA04 EA06 EA23 EA24 4K061 AA03 BA02 BA09 DA05 GA02 GA06 4K063 AA07 BA02 BA03 BA04 CA01 CA03 FA02 FA81

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 上下に貫通するモールド空間(11a)
を有し鉛直かつ直列に配置された複数のモールド(1
1)と、各モールドをそれぞれ独立に囲む複数のヒータ
(12a)を有し各モールドを外表面から輻射加熱する
輻射加熱装置(12)と、各モールドの焼結空間に水平
に位置決めされた平板状の処理品(3)を直接挟持しか
つモールド空間を上下動可能な複数の均熱板(14)
と、モールド、処理品及び均熱板からなるモールド組立
体の間に均熱板を介して挟持された中間発熱体(16)
と、前記モールド組立体全体を均熱板を介して上下に挟
持する上下の端部発熱体(18)と、前記モールド組立
体全体を一対の電極(20a)で挟持しその間を通電加
熱する通電加熱装置(20)とを備えたハイブリッドホ
ットプレスであって、 前記中間発熱体(16)と上下の端部発熱体(18)
は、接触抵抗の大きい導電性平板の積層体であり、かつ
各モールド組立体を上下から加熱する発熱量Q1がほぼ
同一となるように各積層体全体の接触抵抗が設定されて
おり、 前記複数のヒータ(12a)は、各モールドを外表面か
ら輻射加熱する加熱量Q2がほぼ同一となるように各ヒ
ータの発熱量が設定されている、ことを特徴とするハイ
ブリッドホットプレス。
1. A mold space (11a) penetrating vertically.
A plurality of molds (1
1), a radiant heating device (12) having a plurality of heaters (12a) independently surrounding each mold and radiatively heating each mold from the outer surface, and a flat plate horizontally positioned in the sintering space of each mold. Heat-diffusion plates (14) capable of directly sandwiching the shaped product (3) and vertically moving the mold space
And an intermediate heating element (16) sandwiched by a soaking plate between a mold assembly including a mold, a processed product and a soaking plate.
An upper and lower end heating element (18) for vertically sandwiching the entire mold assembly with a soaking plate, and an energization for sandwiching the entire mold assembly with a pair of electrodes (20a) and electrically heating between them. A hybrid hot press comprising a heating device (20), the intermediate heating element (16) and upper and lower end heating elements (18).
Is a laminated body of conductive flat plates having a large contact resistance, and the contact resistance of each laminated body is set so that the heat generation amount Q1 for heating each mold assembly from above and below is substantially the same. The heater (12a) of (1) has a heat generation amount of each heater set so that the heat amount Q2 for radiantly heating each mold from the outer surface is substantially the same.
【請求項2】 前記複数のモールド組立体と複数の発熱
体(16,18)を鉛直かつ同軸に保持するモールド保
持装置(22)を備える、ことを特徴とする請求項1に
記載のハイブリッドホットプレス。
2. The hybrid hot machine according to claim 1, further comprising a mold holding device (22) for holding the plurality of mold assemblies and the plurality of heating elements (16, 18) vertically and coaxially. press.
【請求項3】 前記モールド保持装置(22)は、各モ
ールド空間の下端内面に嵌合する導電性平板(22a)
と、前記各中間発熱体(16)を鉛直に貫通し上端が導
電性平板で保持され下端が均熱板(14)で保持された
中間鉛直ピン(22b)と、前記上下の端部発熱体(1
8)を鉛直に貫通し一端が導電性平板又は均熱板(1
4)で保持され他端が電極(20a)で保持された端部
鉛直ピン(22c)とからなる、ことを特徴とする請求
項2に記載のハイブリッドホットプレス。
3. The mold holding device (22) is a conductive flat plate (22a) fitted to the inner surface of the lower end of each mold space.
An intermediate vertical pin (22b) vertically penetrating each intermediate heating element (16) and having an upper end held by a conductive flat plate and a lower end held by a soaking plate (14); and the upper and lower end heating elements. (1
8) penetrates vertically and has one end made of a conductive flat plate or soaking plate (1
Hybrid hot press according to claim 2, characterized in that it comprises an end vertical pin (22c) which is held by 4) and whose other end is held by an electrode (20a).
【請求項4】 上下に貫通するモールド空間(11a)
を有するモールド(11)と、モールドを囲むヒータ
(12a)を有しモールドを外表面から輻射加熱する輻
射加熱装置(12)と、モールドの焼結空間に水平に位
置決めされた平板状の処理品(3)を直接挟持しかつモ
ールド空間を上下動可能な均熱板(14)と、モール
ド、処理品及び均熱板からなるモールド組立体を挟持す
る発熱体(16,18)と、モールド組立体全体を一対
の電極(20a)で挟持しその間を通電加熱する通電加
熱装置(20)とを備えたハイブリッドホットプレスの
制御方法であって、 モールドの放熱を輻射加熱で防止しながら、発熱体(1
6,18)と処理品(3)の通電加熱により処理品全体
を均一に加熱する、ことを特徴とするハイブリッドホッ
トプレスの制御方法。
4. A mold space (11a) penetrating vertically.
And a radiant heating device (12) having a heater (12a) surrounding the mold to radiatively heat the mold from the outer surface, and a flat plate-like processed product positioned horizontally in the sintering space of the mold. A soaking plate (14) for directly sandwiching (3) and vertically moving a mold space, a heating element (16, 18) for sandwiching a mold assembly including a mold, a processed product and a soaking plate, and a mold assembly. A control method for a hybrid hot press, comprising: an electric heating device (20) for sandwiching the entire three-dimensional body with a pair of electrodes (20a) and electrically heating the space between the electrodes. (1
6, 18) and the treated product (3) are electrically heated to uniformly heat the entire treated product.
【請求項5】 通電により各モールド組立体を上下から
加熱する発熱量Q1がほぼ同一となるように各発熱体の
接触抵抗を設定し、かつ各モールドを外表面から輻射加
熱する加熱量Q2がほぼ同一となるように各ヒータの発
熱量を設定する発熱量設定ステップ(A)と、 モールドの放熱を輻射加熱で防止しながら、通電による
発熱体(16,18)と処理品(3)の発熱により処理
品全体を所定の処理温度まで均一に加熱するバランス加
熱ステップ(E)と、 所定の時間の間、処理品を処理温度に保持するように、
通電加熱を停止してヒータ加熱のみを行う均熱ステップ
(F)とを有する、ことを特徴とする請求項4に記載の
ハイブリッドホットプレスの制御方法。
5. The contact resistance of each heating element is set so that the heating value Q1 for heating each mold assembly from above and below by energization is almost the same, and the heating amount Q2 for radiatively heating each mold from the outer surface is set. The heat generation amount setting step (A) for setting the heat generation amount of each heater to be almost the same, and the heat generation of the heating element (16, 18) and the processed product (3) by energization while preventing radiation of the mold by radiant heating. Balance heating step (E) for uniformly heating the entire processed product to a predetermined processing temperature by heat generation, and for maintaining the processed product at the processing temperature for a predetermined time,
5. A method of controlling a hybrid hot press according to claim 4, further comprising a soaking step (F) of stopping energization heating and performing only heater heating.
【請求項6】 更に、ヒータ加熱と通電加熱を併用し
て、処理品の中心温度が処理品の性能に影響のでない待
機温度まで急速加熱する急速加熱ステップ(C)と、 処理品の中心温度が前記待機温度に達するまで、通電加
熱を停止してヒータ加熱のみを行う温度調整ステップ
(D)とを有する、ことを特徴とする請求項5に記載の
ハイブリッドホットプレスの制御方法。
6. A rapid heating step (C) for rapidly heating the central temperature of the processed product to a standby temperature that does not affect the performance of the processed product by using both heater heating and electric heating, and a central temperature of the processed product. The method for controlling a hybrid hot press according to claim 5, further comprising: a temperature adjusting step (D) in which energization heating is stopped and only heater heating is performed until the temperature reaches the standby temperature.
【請求項7】 更に、主としてヒータ加熱により炉内部
品を予熱する予備昇温ステップ(B)を有する、ことを
特徴とする請求項5に記載のハイブリッドホットプレス
の制御方法。
7. The method for controlling a hybrid hot press according to claim 5, further comprising a preliminary temperature raising step (B) for preheating the parts in the furnace mainly by heating the heater.
【請求項8】 更に、主としてヒータ加熱により炉内部
品を予熱する予備昇温ステップ(B)と、 ヒータ加熱と通電加熱を併用して、処理品の中心温度が
処理品の性能に影響のでない待機温度まで急速加熱する
急速加熱ステップ(C)と、 処理品の中心温度が前記待機温度に達するまで、通電加
熱を停止してヒータ加熱のみを行う温度調整ステップ
(D)とを有する、ことを特徴とする請求項5に記載の
ハイブリッドホットプレスの制御方法。
8. The preheating step (B) for preheating the parts in the furnace mainly by heating with the heater and the combined use of the heater heating and the electric heating, the central temperature of the processed product does not affect the performance of the processed product. A rapid heating step (C) of rapidly heating to a standby temperature, and a temperature adjusting step (D) of stopping energization heating and performing only heater heating until the central temperature of the processed product reaches the standby temperature. The method for controlling a hybrid hot press according to claim 5, which is characterized in that.
【請求項9】 前記バランス加熱ステップ(E)におい
て、処理品(3)の中心温度と、モールドの表面温度と
を検出して比較し、中心温度が低いときは通電電流を増
加させ、表面温度が低いときはヒータ電流を増加させ
る、ことを特徴とする請求項5に記載のハイブリッドホ
ットプレスの制御方法。
9. In the balance heating step (E), the central temperature of the treated product (3) and the surface temperature of the mold are detected and compared, and when the central temperature is low, the energizing current is increased to increase the surface temperature. The method for controlling a hybrid hot press according to claim 5, wherein the heater current is increased when is low.
【請求項10】 輻射加熱の影響が少なく処理品温度に
近似する温度となるモールド又は均熱板の特定箇所の温
度を測温点として設定し、該測温点の温度と処理品温度
とを予め同時に計測し、昇温過程の温度プロファイルに
より相対温度差を把握し、そのデータを校正値として処
理品温度を推定する、ことを特徴とする請求項4乃至9
のいずれかに記載のハイブリッドホットプレスの制御方
法。
10. A temperature of a specific portion of a mold or a soaking plate, which is less affected by radiant heating and is close to a temperature of a processed product, is set as a temperature measuring point, and the temperature at the temperature measuring point and the temperature of the processed product are set. 10. The process temperature is estimated in advance, the relative temperature difference is grasped from the temperature profile in the temperature rising process, and the temperature of the processed product is estimated using the data as a calibration value.
A method for controlling a hybrid hot press according to any one of 1.
JP2001290890A 2001-09-25 2001-09-25 Hybrid hot press and its control method Expired - Lifetime JP4656785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290890A JP4656785B2 (en) 2001-09-25 2001-09-25 Hybrid hot press and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290890A JP4656785B2 (en) 2001-09-25 2001-09-25 Hybrid hot press and its control method

Publications (2)

Publication Number Publication Date
JP2003096505A true JP2003096505A (en) 2003-04-03
JP4656785B2 JP4656785B2 (en) 2011-03-23

Family

ID=19113123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290890A Expired - Lifetime JP4656785B2 (en) 2001-09-25 2001-09-25 Hybrid hot press and its control method

Country Status (1)

Country Link
JP (1) JP4656785B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246992A (en) * 2006-03-16 2007-09-27 Matsumura Seikei:Kk Sintering method and sintering apparatus
JP2013539002A (en) * 2010-07-30 2013-10-17 エルジー イノテック カンパニー リミテッド Hot pressure sintering apparatus and pressure member used therefor
JP2018157130A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Manufacturing method of thermoelectric conversion material
JP2022519008A (en) * 2018-12-21 2022-03-18 ソウル大学校産学協力団 Selective energization sintering equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318007A (en) * 1986-07-08 1988-01-25 Ishikawajima Harima Heavy Ind Co Ltd Hot pressing method
JP2000226603A (en) * 1999-02-03 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd Hybrid sintering device and method therefor
JP2000265201A (en) * 1999-03-17 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Electrically heating type pressurizing sintering apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318007A (en) * 1986-07-08 1988-01-25 Ishikawajima Harima Heavy Ind Co Ltd Hot pressing method
JP2000226603A (en) * 1999-02-03 2000-08-15 Ishikawajima Harima Heavy Ind Co Ltd Hybrid sintering device and method therefor
JP2000265201A (en) * 1999-03-17 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Electrically heating type pressurizing sintering apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246992A (en) * 2006-03-16 2007-09-27 Matsumura Seikei:Kk Sintering method and sintering apparatus
JP2013539002A (en) * 2010-07-30 2013-10-17 エルジー イノテック カンパニー リミテッド Hot pressure sintering apparatus and pressure member used therefor
US9283693B2 (en) 2010-07-30 2016-03-15 Lg Innotek Co., Ltd. Hot press sintering apparatus and press element
JP2018157130A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Manufacturing method of thermoelectric conversion material
JP2022519008A (en) * 2018-12-21 2022-03-18 ソウル大学校産学協力団 Selective energization sintering equipment
JP7187082B2 (en) 2018-12-21 2022-12-12 ソウル大学校産学協力団 Selective current sintering equipment

Also Published As

Publication number Publication date
JP4656785B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4673656B2 (en) Hot press forming equipment
US10442120B2 (en) System for adjusting the equilibrium temperature of an inductively-heated susceptor
TWI573974B (en) Graphite furnaces and methods of making graphite
JP2008522446A5 (en)
JP2010056064A (en) High-frequency induction heating device of ceramic material, and nonpressurized sintering method using the same
KR20160040689A (en) Method and Apparatus of making glass articles
US20120098162A1 (en) Rapid hot pressing using an inductive heater
JP2003096505A (en) Hybrid hot press and control method thereof
KR101959451B1 (en) Method and manufacturing assembly for sintering fuel cell electrodes and impregnating porous electrodes with electrolyte powders by induction heating for mass production
JP6429093B2 (en) Semiconductor crystal processing method and semiconductor crystal processing apparatus
JP4154787B2 (en) Hybrid sintering apparatus and method
JP2009218242A (en) Production method of plasma processing apparatus
JP5946323B2 (en) Forging die equipment
JP4163394B2 (en) Pressurized current sintering apparatus and punch temperature control method thereof
JPH05294643A (en) Molding device for glass optical element
KR101996309B1 (en) Graphite mold jig of high-frequency induction heating type for forming glass
JP2004250303A (en) Molding press apparatus and method of manufacturing glass optical device
CN210045995U (en) High-frequency induction sintering press
KR102115289B1 (en) Heating apparatus for metal plate
CN220172072U (en) Heat treatment device for semiconductor
JPH0839300A (en) Hot press method and hot press device
JPH0822886A (en) Uniform heater
JP3879300B2 (en) Molding heat treatment method
JP7065478B2 (en) Metal sheet metal joining device
JP2004050275A (en) Hybrid hot press

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250