JP4623955B2 - 微細成形炭化ケイ素ナノインプリントスタンプ - Google Patents

微細成形炭化ケイ素ナノインプリントスタンプ Download PDF

Info

Publication number
JP4623955B2
JP4623955B2 JP2003364007A JP2003364007A JP4623955B2 JP 4623955 B2 JP4623955 B2 JP 4623955B2 JP 2003364007 A JP2003364007 A JP 2003364007A JP 2003364007 A JP2003364007 A JP 2003364007A JP 4623955 B2 JP4623955 B2 JP 4623955B2
Authority
JP
Japan
Prior art keywords
layer
mold
substrate
etching
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364007A
Other languages
English (en)
Other versions
JP2004160647A (ja
Inventor
ヘオン・リー
グン−ヨン・ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2004160647A publication Critical patent/JP2004160647A/ja
Application granted granted Critical
Publication of JP4623955B2 publication Critical patent/JP4623955B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/009Manufacturing the stamps or the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/887Nanoimprint lithography, i.e. nanostamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Micromachines (AREA)
  • Ceramic Products (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、概して、炭化ケイ素から硬化ナノインプリントスタンプを形成する方法およびその構造に関する。詳しくは、本発明は、マイクロキャスティング法を用いて硬化ナノインプリントスタンプを形成する方法およびその構造に関する。
ナノインプリンティングリソグラフィは、極小パターン(数十ナノメートル程度)を得るための将来性のある技術である。極小パターンを形成する際の重要なステップは、スタンプで転写したい極小パターンに対して相補形状を成すパターンを有するインプリントスタンプをまず形成することである。
図1aに示すように、従来のナノインプリンティングリソグラフィプロセスは、複数の転写パターン202が形成されたインプリントスタンプ200を使用する。図1bに示すように、転写パターン202は簡単なラインと空間のパターンからなり、複数のライン204はライン間が空間206で分離されている。転写パターン202は基板211によって支持されている。インプリントスタンプ200を特別に設計されたマスク層203に押圧することにより(破線の矢印201を参照)、マスク層203の厚さが転写パターン202(図1aを参照されたい)に応じて変化し、転写パターン202がマスク層203に複製される。
マスク層203は通常、ポリマーなどの材料から形成される。たとえば、マスク層203には、フォトレジスト材料を用いることができる。マスク層203は支持基板205上に堆積される。ステップ・アンド・リピートプロセスを用いて転写パターン202をマスク層203に繰り返し押圧し、マスク層203の全面が覆われるまで転写パターン202をマスク層203に複製する。
図2に示すように、このステップ・アンド・リピートプロセスにより、マスク層203には、転写パターン202に対して相補形状を成す複数の極小の圧痕207ができる。次に、図3に示すように、マスク層203を異方性エッチング(すなわち、極めて方向性の強いエッチング)を施し、マスク層203に極小パターン209を形成する。通常、支持基板205、またはマスク層203と支持基板205との間に設けられたもう1つの層(図示せず)が、異方性エッチングのエッチストップとして機能する。
図4では、各ライン204は、対向する側面204sと、上面204tと、対向する前面204fと、エッジ204eとを有する。各ライン204はライン間が空間206で分離されている。一般に、インプリントスタンプ200はシリコン(Si)などの材料から形成される。たとえば、基板211にはシリコンウェーハを用いることができ、ライン−空間機構(204、206)は、シリコン(Si)やポリシリコン(α−Si)から作成することができる。ナノインプリントスタンプの材料の選択としてシリコンを選択した理由は、シリコンを用いた構造および回路を製造するためのマイクロエレクトロニクスプロセスがしっかりと確立されており、シリコンは手頃な価格で容易に購入することができるからである。
しかしながら、従来のインプリントスタンプ200の欠点の1つは、シリコンが軟らかい物質であるため、マスク層203に押圧するステップの繰り返しにより、破損、損傷および摩耗を受けやすいことである。図4において、ライン204のE−Eの部分は、押圧するステップの繰り返しによる摩耗、破損、および損傷を特に受けやすい。図5は、図4のE−Eの部分の拡大図であり、エッジ204e、上面204t、側面204s、および前面204fが、マスク層203に対してわずか数回押圧しただけで、摩耗Wの影響を特に受けやすいことを示している。
図6において、インプリントスタンプ200をマスク層203に押圧し(201)、ライン形状部204がマスク層203中に位置するようにする。押圧ステップの繰り返しによって、ライン形状部204のエッジ204eと上面204tに、符号Wで示すような摩耗、損傷、および破損が生じる。押圧ステップがわずか10回以下であっても、インプリントスタンプ200は、安定した、反復可能な、正確な転写パターン209を形成することができないところまで磨耗してしまう場合がある。
図7aおよび図7bはライン形状部204の摩耗を示す詳細図であり、ライン形状部204のエッジ204eおよび上面204tの部分はマスク層203と最初に接触する部分であり、押圧方向(201)に対して実質的に垂直な面を有しているので、それらの部分で摩耗が最も深刻であるということを示している。したがって、図8aおよび図8bに示すように、ライン形状部204は、マスク層203に対してわずか数回押圧しただけで、図8aに示す理想的なライン形状204から図8bに示す摩耗したライン形状204へと急激に劣化する。
インプリントスタンプ200の製造は、インプリンティングリソグラフィプロセス全体の中で、最も重要で、最もコストのかかるステップの1つである。従来のインプリントスタンプ200のもう1つの欠点は、インプリントスタンプ200の製造コストを正当化するために必要な回数の押圧ステップを実施する前にインプリントスタンプ200が破損してしまったり、磨耗しきってしまったり、あるいはその両方が生じたりすることが原因で、インプリントスタンプ200の製造コストを回収することができない、ということである。したがって、従来のインプリントスタンプ200は製造が経済的でない。
したがって、本発明の目的の一つは、摩耗、損傷、および破損に耐え得る極小のインプリントスタンプを提供することである。本発明の他の目的は、複数回の押圧ステップにわたって安定した、反復可能な、正確な転写パターン209が維持されるインプリントスタンプを提供し、製造コストを回収できるようにすることである。
本発明の微細成形炭化ケイ素ナノインプリントスタンプは、従来のナノインプリントスタンプに関する上記の欠点および制限を解決する。本発明の微細成形炭化ケイ素ナノインプリントスタンプは、従来のナノインプリントスタンプのシリコン材料と異なり、インプリントスタンプの材料として炭化ケイ素を用いるので、より強く、より丈夫である。
本発明の微細成形炭化ケイ素ナノインプリントスタンプは、耐用時間が長くなる。したがって、本発明の微細成形炭化ケイ素ナノインプリントスタンプは、シリコンから形成される従来のナノインプリントスタンプと異なり、摩耗、破損、あるいは損傷を生じることなく多数の押圧サイクルに耐えることができるので、その製造コストを回収することができる。
本発明の他の態様および利点は、本発明の原理を例として示す添付の図面とともに、以下の詳細な説明から明らかになるであろう。
以下に記載する詳細な説明および図面の幾つかにおいて、同一の構成要素は同一の符号で参照する。
例示目的の図面に示すように、本発明は、微細成形炭化ケイ素ナノインプリントスタンプ、または該炭化ケイ素ナノインプリントスタンプを微細成形する方法として実施される。この微細成形炭化ケイ素ナノインプリントスタンプは、ハンドリング基板と、ハンドリング基板に接続された接着層と、接着層に接続された基礎層とを含み、基礎層は、基準面と、基礎層に接続され基準面から外側に延びる複数の極小形状部とを有する。各極小形状部は、転写形状を画定する外面を有する。基礎層および極小形状部は全体が炭化ケイ素を含む材料から形成され、基礎層と極小形状部は完全に一体に微細成形される。すなわち、それらは単一要素すなわち一体として形成される。
微細成形された炭化ケイ素製の極小形状部は、従来のナノインプリントスタンプのシリコン製の極小形状部よりも耐久性があり、弾性があり、硬いので、費用効率が高い。従って、本発明の微細成形炭化ケイ素ナノインプリントスタンプは、耐用時間が長く、その有効耐用時間が終わる前に製造コストを回収することができる。
本発明の炭化ケイ素(SiC)製の極小形状部はシリコン(Si)単体よりも硬い物質であり、押圧ステップを繰り返す間その転写形状を維持することができ、微細成形炭化ケイ素ナノインプリントスタンプによって転写される媒体に、反復可能な、安定した、寸法の正確な転写を行なうことができるので、本発明の炭化ケイ素ナノインプリントスタンプは従来のシリコン製ナノインプリントスタンプよりも正確である。
図9において、微細成形炭化ケイ素ナノインプリントスタンプ10は、ハンドリング基板15と、ハンドリング基板15に接続された接着層17と、接着層17に接続された基礎層11とを含む。基礎層11は、基準面13と、基礎層に接続され、基準面13から外側に延びる複数の極小形状部12とを有する。極小形状部12は、転写形状を画定する外面を有する。この転写形状は、極小形状部12間で同じものにしてもよいし、異なるものにしてもよい。たとえば、転写形状は極小形状部12の寸法によって決めることができ、極小形状部12の各々の幅W、長さL、および高さHなどにより決めることができる。極小形状部12が長方形の転写形状をもつものとして図示されているが、本発明を本明細書に例示した転写形状に限定されるものとして解釈すべきではなく、転写形状が長方形である必要はない。
図9および図10は、微細成形炭化ケイ素ナノインプリントスタンプ10を用いて媒体(図示せず)に転写すべき転写パターンを画定する極小形状部12を、ベース表面13とともに示す図である。たとえば、極小形状部12間の空間Sは転写パターンの一部とすることができ、極小形状部12と空間Sによって媒体に転写すべきライン−空間パターンを画定するようになっている。
図10は、長方形または正方形の転写形状の場合、極小形状部12の外面が、対向する側面12sと、上面12tと、前面12fと、背面12bと、エッジ12eとを有することを示している。転写形状が長方形や正方形以外の形状である場合、極小形状部12は上記の表面を有しない場合もある。極小形状部12と基礎層11は、完全に一体になっている。すなわち、それらは、以下で説明するマイクロキャスティングプロセスにより一体として形成される単一要素である。極小形状部12と基礎層11はいずれも、炭化ケイ素(SiC)を含む材料から形成される。極小形状部12および基礎層11の材料は主に炭化ケイ素であるが、この炭化ケイ素は他の物質、すなわち微量の他の物質を含んでもよい。たとえば、この炭化ケイ素は、ドーパント物質として窒素(N)原子を含むことができる。
ハンドリング基板15は、限定はしないが、ベアシリコンウェーハ、ポリシリコン(α−Si)コーティングシリコンウェーハ、シリコン酸化物(SiO2)コーティングシリコンウェーハ、窒化ケイ素(Si34)コーティングシリコンウェーハなど、種々の材料から形成することができる。マイクロエレクトロニクスの処理で使用される装置がシリコンウェーハを処理するのに非常に適しており、シリコンウェーハが容易に入手することができる低コストの材料であり、シリコンウェーハがウェーハ接合処理について優れた基板材料であるという理由から、ハンドリング基板15にシリコンウェーハを使用するのはよい選択である。
ハンドリング基板15には種々の材料を用いることができるが、ハンドリング基板15は基礎層11を支持する必要があり、割れや歪みを生じることなく多数回の転写処理に耐えられるものでなければならないので、選択される材料は耐久性のある材料にする必要がある。また、ハンドリング基板15は、基礎層11、極小形状部12、および基準面13を破壊したり損傷させたりすることなく処理装置で取り扱うことができるものでなければならない。
接着層17には、限定はしないが、タングステン(W)、チタン(Ti)、窒化チタン(TiN)、コバルト(Co)、プラチナ(Pt)、金(Au)、金とスズの合金(AuSn)、銀(Ag)、およびそれらの金属をハンドリング基板15のシリコンでケイ化したケイ化物などの材料を用いることができる。たとえば、接着層17には、ケイ化タングステン(WSi2)を用いることができる。以下で説明するように、接着層17は、基礎層11とハンドリングウェーハ15とを機械的に接続するものである。ハンドリング基板15にシリコンを選択した場合、上記物質の中から1つを選択することにより、接着層17とハンドリング基板15との間の境界面に、ケイ化物接合を形成することができる。ウェーハ接合プロセスを用いてハンドリング基板15と基礎層11との間にそのケイ化物接合を形成し、接着層17が接合物質として働くようにすることが好ましい。
極小形状部12、および極小形状部12間の空間Sの実際の寸法は、応用形態によって異なり、極小形状部12および空間Sを画定するために用いられるリソグラフィシステムのリソグラフィ限界によっても異なる。しかしながら、その寸法は約1.0μm未満であり、通常はナノメートルスケールであり、従って約100.0nm未満である。
図11aにおいて、微細成形炭化ケイ素ナノインプリントスタンプ10によって転写される媒体50は、基板51によって支持されたインプリント媒体53を含む。微細成形炭化ケイ素ナノインプリントスタンプ10は、転写先の媒体53と接触された状態で押圧される(破線矢印Uを参照)。たとえば、微細成形炭化ケイ素ナノインプリントスタンプ10および/または媒体50は、互いに接触した状態で押圧することができる。使用する圧力の大きさは応用形態によって異なり、転写先の媒体53の材料によっても異なるであろう。たとえば、転写先の媒体53としては、フォトレジストなどのポリマー材料を用いることができる。
図11bは、転写先の媒体53へ押圧されて接触状態になった微細成形炭化ケイ素ナノインプリントスタンプ10を示している。極小形状部12は、圧力の影響を受け、各々の外面全体にわたって磨耗される。特に、エッジ12e、対向する側面12s、上面12t、前面12f、背面12b、およびベース表面13などの様々な接触点CPの辺りが磨耗する。転写処理中は、約300psi〜約500psi(≒2068kPa〜2758kPa)以上の圧力にするのが一般的である。したがって、極小形状部12が摩耗、破損、または損傷する可能性は、本発明の微細成形炭化ケイ素ナノインプリントスタンプ10の硬い炭化ケイ素材料によって低減されるため、極小形状部12は、全般に摩耗に強く、特に上記の接触点CPの辺りで摩耗に強いものになっている。
図12a〜図18は、炭化ケイ素ナノインプリントスタンプ10を微細成形する方法を示す図であり、基板21の表面21s上に離型層23を形成するステップを含んでいる。離型層23は、限定はしないが、化学蒸着堆積法(CVD)、物理蒸着堆積法(PVD)、およびスパッタリングなどの処理を用いて堆積させることができる。離型層23は、約数μm以下の厚さにすることができる。基板21には、限定はしないが、シリコン(Si)、単結晶シリコン、およびシリコンウェーハなどの材料を用いることができる。離型層23は、限定はしないが、表1に示す材料から形成することができる。
Figure 0004623955
図12bにおいて、離型層23の表面23sに型枠層25を形成する。型枠層25の材料は、容易に堆積させることができ、容易にエッチングすることができ、さらにナノメートルスケールの形状でパターニングできるものでなければならない。型枠層25は実質的に平坦な基板21または離型層23の上に均一な堆積速度で堆積させ、型枠層25の表面25sが平滑で、実質的に平坦になるようにすることが好ましい。型枠層25は、限定はしないが、CVD、PVD、およびスパッタリングなどの処理を用いて堆積させることができる。型枠層25に適した材料としては、限定はしないが、表2に示す材料が挙げられる。
Figure 0004623955
図12cでは、マスク24を用いて型枠層25にリソグラフのパターニングを施した後、エッチングを行い、離型層23まで延びる複数の極小の型穴31を形成している。離型層23の材料は、型枠層25をエッチングするのに使用される物質に対して離型層23がエッチストップとして働くような材料から選択することができる。
たとえば、反応性イオンエッチング(RIE)などの等方性エッチングプロセスを用いて、極小の型穴31を形成することができる。反応性イオンエッチングは、極小の型穴31の垂直な側壁面を形成するのに非常に適していて、極小の型穴31内に形成される極小形状部12の所望の転写形状が長方形または正方形の転写形状である場合に特に適している。
型枠層25のパターニングは、周知のマイクロエレクトロニクス・フォトリソグラフィプロセスを用いて行なうことができる。たとえば、マスク24には、フォトレジスト材料からなるパターニングされた層を用いることができる。図13において、極小の型穴31は、型枠層の上面25sから離型層23の上面23sまで延びている。極小の型穴31の寸法は、同じものにしてもよいし、図13に示すように型穴間で異なるものにしてもよい。極小の型穴31の実際の寸法は、応用形態によって異なり、極小形状部12について上で述べたように、約1.0μm、好ましくは約100nm以下の寸法が、極小の型穴31の通常の値であろう。なぜなら、極小形状部12の転写形状は、極小形状部12を内部に微細成形する極小の型穴31によって決まるからである。
図14aでは、極小の型穴31を炭化ケイ素(SiC)を含む材料で完全に充填している。極小の型穴31を満たしている炭化ケイ素の部分は複数の極小形状部12を形成している一方、炭化ケイ素の残りの部分は極小形状部12に接続された基礎層11を形成している。図14bでは、基礎層11を平坦化し(線F−Fを参照)、実質的に平坦な表面11sを形成している。化学機械平坦化(CMP)などのプロセスを用いて、基礎層11を平坦化し、線F−Fに沿って実質的に平坦な表面を形成することができる。
図15では、基礎層11の平坦な表面11s上に接着層17が形成されている。接着層17は、限定はしないが、CVD、PVD、およびスパッタリングなどの処理を用いて堆積させることができる。接着層17に適した材料としては、限定はしないが、表3に示すような材料が挙げられる。
Figure 0004623955
図16aにおいて、ハンドリング基板15と基板層21に圧力Pおよび熱hを加えることにより、ハンドリング基板15を接着層17に接合する。熱hおよび圧力Pは、接着層17が基礎層11とハンドリング基板15との間に機械的接合を形成するまで加え続ける。この接合を形成するのに必要となる圧力Pおよび熱hの大きさは、応用形態によって異なり、基礎層11、接着層17、およびハンドリング基板15に選択された材料によっても異なるであろう。たとえば、金−スズ(AuSn)合金ウェーハ接合の場合、圧力Pは4インチウェーハの全面にわたって約5,000lbs(即ち、≒64psi(≒441kPa))であり、加える熱hは約320℃である。別の例として、酸化物−酸化物ウェーハ接合の場合、加える熱hは約1100℃であり、圧力Pは約1気圧である(すなわち、圧力は加えない)。ハンドリング基板15に適した材料は、図9および図10を参照して上で説明した材料と同じである。
図16bでは、基板層21の背面21bにリソグラフのパターニングを施した後(たとえば、マスク28を通して)、エッチングを行い、離型層23まで延びる複数のスルーホール22を形成している。たとえば、反応性イオンエッチングを用いて、このスルーホール22を形成することができる。スルーホール22を形成した後、スルーホール22内にエッチング材を注入して離型層をエッチングによって除去し、基板層21を切り離す。離型層23のエッチングには、フッ化水素(HF)溶液または蒸気を用いることができる。たとえば、フッ化水素のエッチング液は、BSG、BPSG、PSG、TEOSなどの物質から形成されたシリコン酸化物(SiO2)製の離型層をエッチングすることができる。
図17では、型枠層25の残りの部分をエッチングして、極小形状部12および基礎層11から型枠層25を除去している。型枠層25のエッチングには、フッ化水素(HF)溶液または蒸気を用いることができる。
図18は、型枠層25を除去した後に残るものが、本発明の微細成形炭化ケイ素ナノインプリントスタンプ10であることを示している。この微細成形炭化ケイ素ナノインプリントスタンプ10は、図11aおよび図11bを参照して先に説明したように、極小形状部12をインプリント媒体53に転写するために繰り返し用いることができる。転写処理の結果、極小形状部12によって、ナノメートルスケールの形状が転写先の媒体53に転写される。
図19a〜図22に示すように、本発明の一実施形態では、上記の離型層23を省略し、代わりに、図19aに示すように基板層21上に型枠層25を直に形成する場合がある。型枠層25の材料は、容易に堆積させることができ、容易にエッチングすることができ、さらにナノメートルスケールの形状をパターニングできるものでなければならない。型枠層25は基板21上に均一な堆積速度で堆積させ、型枠層の表面25sが平滑で、実質的に平坦になるようにすることが好ましい。
図19bでは、その後、型枠層25を上記のようにパターニングおよびエッチングして、基板層21まで延びる複数の極小の型穴31を形成している。基板層21は、型枠層25をエッチングするのに使用される物質に対して、エッチストップとして機能する。基板層21の材料は先に説明したものと同じ材料でよく、型枠層25は表2を参照して上で述べた材料から形成することができる。
図20では、極小の型穴31が基板層21まで延びていて、上で説明したように、極小の型穴31の寸法は、同じものにしてもよいし、型穴間で異なるものにしてもよい。
そして、図14a〜図16を参照して上で説明したのと同じようにして、型枠層25上に、炭化ケイ素を含む材料からなる基礎層11および複数の極小形状部12を形成する。基礎層11を平坦化した後、基礎層11の平坦な表面11s上に接着層17を形成する。次に、図21に示すように、ハンドリング基板15が接着層17に機械的に接合されるまで熱hおよび圧力Pを加えることにより、ハンドリング基板15を接着層17に接合する。接着層17の材料としては、表3を参照して上で述べたものと同じ材料を用いることができる。
図22において、基板層21が型枠層25から除去されるまで基板層21の背面21bを研削することにより、基板層21を型枠層25から除去することができる。たとえば、CMPのようなプロセスを用いて、基板層21を研削して除去することができる。次に、型枠層25を選択的エッチングによって除去し、基礎層11を切り離す。型枠層25のエッチングには、フッ化水素(HF)溶液または蒸気を用いることができる。
代替方法としては、基板層21の背面21bをパターニングし、その後エッチングして、その中に型枠層25まで延びる複数のスルーホール22を形成することにより、基板層21を型枠層25から除去することもできる(図16を参照)。次に、HFなどの選択性エッチング液をスルーホール22に注入し、型枠層25をエッチングすることにより、基板層21と、極小形状部12および基礎層11とを同様に切り離すことができる。図18に示すように、型枠層25を除去した後に残るのは、本発明の微細成形炭化ケイ素ナノインプリントスタンプ10である。
図23a〜図25に示すように、本発明のさらに別の実施形態では、実質的に平坦な表面25sを有する型枠層25にパターニング24を施し(図23aを参照)、その後エッチングし、その中に複数の極小の型穴31を形成する(図23bを参照)。型枠層25は、表2を参照して上で述べた材料から形成することができる。
図23cでは、上記のように極小の型穴31に炭化ケイ素を含む材料を充填することにより、複数の極小形状部12および基礎層11を形成している。その後、基礎層11を平坦化し(破線F−Fを参照)、その上に実質的に平坦な表面11sを形成する(図24を参照)。図24では、上記のように、実質的に平坦な表面11s上に接着層17を形成している。次に、図25aでは、同じく上記のように、熱hおよび圧力Pをかけることにより、ハンドリング基板15を接着層17に接合している。型枠層25が基礎層11から切り離されるまで、すなわち溶解されるまで、型枠層25を選択的にエッチングすることにより、型枠層25を基礎層11から除去することができる。型枠層25の材料の選択的エッチングには、ドライエッチングまたはウエットエッチングなどの選択性エッチングプロセスを用いることができる。代替方法として、図25bでは、型枠層25の背面25bを研削して(たとえば、CMPを用いて)型枠層25の厚さを減らし、型枠層25の薄い層だけが極小形状部12の上面12tを覆うようにしている。基礎層11から型枠層25の残りの部分を選択的に除去するのには、反応性イオンエッチング(RIE)などの選択性エッチングプロセスを用いることができる(図18を参照)。接着層17の材料としては、表3を参照して上で述べたものと同じ材料を用いることができる。また、ハンドリング基板15の材料も、上で述べたものと同じ材料を用いることができる。
本発明のいくつかの実施形態を開示および説明してきたが、本発明が説明および図示された特定の形態や部品配置に限定されることはない。本発明は特許請求の範囲によってのみ限定される。
従来のインプリントスタンプを示す外形図である。 従来の転写パターンを示す平面図である。 図1aの従来のインプリントスタンプによって内部に極小の圧痕が形成された従来のマスク層を示す外形図である。 異方性エッチングステップの後の、図2の従来のマスク層を示す外形図である。 マスク層に押圧される従来のインプリントスタンプを示す側面図である。 従来のインプリントスタンプにおいて摩耗、破損、または損傷を最も受けやすい部分を示す詳細図である。 マスク層に押圧された従来のインプリントスタンプを示す断面図である。 図6の押圧ステップの結果、従来のインプリントスタンプに生じる摩耗を示す図である。 図6の押圧ステップの結果、従来のインプリントスタンプに生じる摩耗を示す図である。 わずか数回の押圧サイクルで従来のインプリントスタンプの摩耗が急激に進行することを示す図である。 わずか数回の押圧サイクルで従来のインプリントスタンプの摩耗が急激に進行することを示す図である。 本発明による複数の炭化ケイ素製極小形状部を有する微細成形炭化ケイ素ナノインプリントスタンプを示す外形図である。 本発明による炭化ケイ素基礎層および複数の炭化ケイ素極小形状部を示す外形図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを用いた転写処理を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを用いた転写処理を示す断面図である。 本発明による微細成形用の型枠を形成する方法の一工程を示す断面図である。 本発明による微細成形用の型枠を形成する方法の一工程を示す断面図である。 本発明による微細成形用の型枠を形成する方法の一工程を示す断面図である。 本発明による複数の極小の型穴を示す上面の外形図である。 本発明による炭化ケイ素ナノインプリントスタンプを微細成形する方法の一工程を示す断面図である。 本発明による炭化ケイ素インプリントスタンプを微細成形する方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを分離する方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを分離する方法の一工程を示す断面図 本発明による微細成形炭化ケイ素ナノインプリントスタンプを分離する方法の一工程を示す断面図である。である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを分離する方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを分離する方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成する代替方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成する代替方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成する代替方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成する代替方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成する代替方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成するさらに別の方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成するさらに別の方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成するさらに別の方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成するさらに別の方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成するさらに別の方法の一工程を示す断面図である。 本発明による微細成形炭化ケイ素ナノインプリントスタンプを形成するさらに別の方法を示す断面図である。
符号の説明
10 本発明による微細成形炭化ケイ素ナノインプリントスタンプ
11 基礎層
12 極小形状部
13 基準面
15 ハンドリング基板
17 接着層
21 基板
22 スルーホール
23 離型層
25 型枠層
50 媒体

Claims (5)

  1. 炭化ケイ素ナノインプリントスタンプ(10)を微細成形する方法であって、
    基板層(21)の上に離型層(23)を形成するステップと、
    前記離型層(23)の上に型枠層(25)を形成するステップと、
    前記型枠層(25)をパターニングした後エッチングして、前記離型層(23)まで延びる極小の型穴(31)を形成するステップと、
    前記極小の型穴(31)に炭化ケイ素を充填することにより、複数の極小形状部(12)と、該極小形状部(12)に接続された基礎層(11)を形成するステップと、
    前記基礎層(11)を平坦化して実質的に平坦な表面(11s)を形成するステップと、
    前記基礎層(11)の平坦な表面(11s)上に接着層(17)を形成するステップと、
    前記接着層(17)が、前記基礎層(11)及びハンドリング基板(15)との間に機械的接合を形成するまで、前記ハンドリング基板(15)及び前記基板層(21)に圧力P及び熱hを加えることにより、前記ハンドリング基板(15)を前記接着層(17)に接合するステップと、
    前記基板層(21)の背面(21b)をパターニングした後エッチングして、前記離型層(23)まで延びる複数のスルーホール(22)を形成するステップと、
    前記スルーホール(22)にエッチング剤を注入し、前記離型層(23)をエッチングして除去することで、前記基板層(21)を切り離すことにより、前記基板層(21)を取り除くステップと、
    前記型枠層(25)をエッチングすることにより、前記極小形状部(12)及び前記基礎層(11)から前記型枠層(25)を除去するステップと、
    からなる方法。
  2. 前記型枠層(25)は、前記型枠層(25)の表面が実質的に平坦な表面(25s)になるように均一な堆積速度で堆積される、請求項1に記載の方法。
  3. 炭化ケイ素ナノプリンティングスタンプ(10)を微細成形する方法であって、
    基板層(21)上に型枠層(25)を形成するステップと、
    前記型枠層(25)をパターニングした後エッチングして、前記基板層(21)まで延びる複数の極小の型穴(31)を形成するステップと、
    前記極小の型穴(31)を炭化ケイ素を含む材料で充填することにより、複数の極小形状部(12)と、基礎層(11)とを形成するステップと、
    前記基礎層(11)を平坦化して実質的に平坦な表面(11s)を形成するステップと、
    前記基礎層(11)の平坦な表面(11s)上に接着層(17)を形成するステップと、
    前記接着層(17)が、前記基礎層(11)及びハンドリング基板(15)との間に機械的接合を形成するまで、前記ハンドリング基板(15)及び前記基板層(21)に圧力P及び熱hを加えることにより、前記ハンドリング基板(15)を前記接層(17)に接合するステップと、
    前記型枠層(25)から前記基板層(21)を除去するステップと、
    前記型枠層(25)をエッチングして、前記極小形状部(12)及び前記基礎層(11)から前記型枠層(25)を除去するステップと
    を含み、
    前記基板層(21)を除去するステップ、および前記型枠層(25)をエッチングして除去するステップは、
    前記基板層(21)の背面(21b)をパターニングした後エッチングして、その中に前記型枠層(25)まで延びる複数のスルーホール(22)を形成するステップと、
    前記スルーホール(22)にエッチング剤を注入して前記型枠層(25)をエッチングで取り除くことにより、前記基板層(21)を切り離すステップと
    を含む方法。
  4. 前記型枠層(25)は、前記型枠層(25)の表面が実質的に平坦な表面(25s)になるように均一な堆積速度で堆積される、請求項3に記載の方法。
  5. 炭化ケイ素ナノインプリントスタンプ(10)を微細成形する方法であって、
    型枠層(25)をパターニングした後エッチングして、その中に複数の極小の型穴(31)を形成するステップと、
    前記型穴(31)に炭化ケイ素を含む物質を充填することにより、複数の極小形状部(12)と、該複数の極小形状部に接続された基礎層(11)とを形成するステップと、
    前記基礎層(11)を平坦化して実質的に平坦な表面(11s)を形成するステップと、
    前記基礎層(11)の平坦な表面(11s)上に接着層(17)を形成するステップと、
    前記接着層(17)が、前記基礎層(11)及びハンドリング基板(15)との間に機械的接合を形成するまで、前記ハンドリング基板(15)及び前記型枠層(25)に圧力P及び熱hを加えることにより、前記ハンドリング基板(15)を前記接着層(17)に接合するステップと、
    前記基礎層(11)から前記型枠層(25)を除去するステップと
    を含み、
    前記型枠層(25)を除去するステップは、前記型枠層(25)を選択的にエッチングすることにより、前記基礎層(11)から前記型枠層(25)を切り離すステップを含み、
    前記型枠層(25)は、前記極小形状部の上面が薄い層で覆われるところまで背面から研削され、前記選択的エッチングは、その後に実施されることからなる方法。
JP2003364007A 2002-10-24 2003-10-24 微細成形炭化ケイ素ナノインプリントスタンプ Expired - Fee Related JP4623955B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/279,643 US6755984B2 (en) 2002-10-24 2002-10-24 Micro-casted silicon carbide nano-imprinting stamp

Publications (2)

Publication Number Publication Date
JP2004160647A JP2004160647A (ja) 2004-06-10
JP4623955B2 true JP4623955B2 (ja) 2011-02-02

Family

ID=32069360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364007A Expired - Fee Related JP4623955B2 (ja) 2002-10-24 2003-10-24 微細成形炭化ケイ素ナノインプリントスタンプ

Country Status (5)

Country Link
US (2) US6755984B2 (ja)
EP (1) EP1413923A3 (ja)
JP (1) JP4623955B2 (ja)
CN (1) CN1499289A (ja)
TW (1) TW200406834A (ja)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6916511B2 (en) * 2002-10-24 2005-07-12 Hewlett-Packard Development Company, L.P. Method of hardening a nano-imprinting stamp
GB0227902D0 (en) * 2002-11-29 2003-01-08 Ingenia Holdings Ltd Template
JP2004241397A (ja) * 2003-01-23 2004-08-26 Dainippon Printing Co Ltd 薄膜トランジスタおよびその製造方法
WO2004086461A2 (en) * 2003-03-21 2004-10-07 North Carolina State University Methods for nanoscale structures from optical lithography and subsequent lateral growth
US20060276043A1 (en) * 2003-03-21 2006-12-07 Johnson Mark A L Method and systems for single- or multi-period edge definition lithography
ITTO20030473A1 (it) * 2003-06-23 2004-12-24 Infm Istituto Naz Per La Fisi Ca Della Mater Procedimento litografico di nanoimpressione che prevede l'utilizzo di uno stampo presentante una regione atta a
EP1694731B1 (en) 2003-09-23 2012-03-28 University Of North Carolina At Chapel Hill Photocurable perfluoropolyethers for use as novel materials in microfluidic devices
KR20120105062A (ko) 2003-12-19 2012-09-24 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 소프트 또는 임프린트 리소그래피를 이용하여 분리된 마이크로- 및 나노- 구조를 제작하는 방법
US9040090B2 (en) * 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
US7060625B2 (en) * 2004-01-27 2006-06-13 Hewlett-Packard Development Company, L.P. Imprint stamp
WO2005084191A2 (en) * 2004-02-13 2005-09-15 The University Of North Carolina At Chapel Hill Functional materials and novel methods for the fabrication of microfluidic devices
US7730834B2 (en) * 2004-03-04 2010-06-08 Asml Netherlands B.V. Printing apparatus and device manufacturing method
CN100555076C (zh) * 2004-07-26 2009-10-28 鸿富锦精密工业(深圳)有限公司 用于纳米压印的压模及其制备方法
US20060105550A1 (en) * 2004-11-17 2006-05-18 Manish Sharma Method of depositing material on a substrate for a device
CN1300635C (zh) * 2004-12-09 2007-02-14 上海交通大学 真空负压纳米压印方法
US7676088B2 (en) 2004-12-23 2010-03-09 Asml Netherlands B.V. Imprint lithography
US20060144814A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US20060144274A1 (en) * 2004-12-30 2006-07-06 Asml Netherlands B.V. Imprint lithography
US7490547B2 (en) * 2004-12-30 2009-02-17 Asml Netherlands B.V. Imprint lithography
US7686970B2 (en) * 2004-12-30 2010-03-30 Asml Netherlands B.V. Imprint lithography
US7354698B2 (en) * 2005-01-07 2008-04-08 Asml Netherlands B.V. Imprint lithography
US7374968B2 (en) * 2005-01-28 2008-05-20 Hewlett-Packard Development Company, L.P. Method of utilizing a contact printing stamp
US8695501B2 (en) * 2005-01-28 2014-04-15 Hewlett-Packard Development Company, L.P. Method of forming a contact printing stamp
US20060169592A1 (en) * 2005-01-31 2006-08-03 Hewlett-Packard Development Company, L.P. Periodic layered structures and methods therefor
CN101156107B (zh) * 2005-02-03 2010-11-24 北卡罗来纳大学查珀尔希尔分校 用于液晶显示器的低表面能聚合物材料
US7922474B2 (en) * 2005-02-17 2011-04-12 Asml Netherlands B.V. Imprint lithography
US7291282B2 (en) * 2005-03-01 2007-11-06 Hewlett-Packard Development Company, L.P. Method of fabricating a mold for imprinting a structure
US7523701B2 (en) * 2005-03-07 2009-04-28 Asml Netherlands B.V. Imprint lithography method and apparatus
TWI280159B (en) * 2005-03-29 2007-05-01 Li Bing Huan Method for fabricating nano-adhesive
US7762186B2 (en) * 2005-04-19 2010-07-27 Asml Netherlands B.V. Imprint lithography
US7611348B2 (en) * 2005-04-19 2009-11-03 Asml Netherlands B.V. Imprint lithography
US7442029B2 (en) 2005-05-16 2008-10-28 Asml Netherlands B.V. Imprint lithography
US7708924B2 (en) * 2005-07-21 2010-05-04 Asml Netherlands B.V. Imprint lithography
US20060267231A1 (en) * 2005-05-27 2006-11-30 Asml Netherlands B.V. Imprint lithography
US7692771B2 (en) * 2005-05-27 2010-04-06 Asml Netherlands B.V. Imprint lithography
WO2006128102A2 (en) * 2005-05-27 2006-11-30 Princeton University Self-repair and enhancement of nanostructures by liquification under guiding conditions
US7418902B2 (en) * 2005-05-31 2008-09-02 Asml Netherlands B.V. Imprint lithography including alignment
US7377764B2 (en) * 2005-06-13 2008-05-27 Asml Netherlands B.V. Imprint lithography
US20070023976A1 (en) * 2005-07-26 2007-02-01 Asml Netherlands B.V. Imprint lithography
WO2007133235A2 (en) * 2005-08-08 2007-11-22 Liquidia Technologies, Inc. Micro and nano-structure metrology
EP2537657A3 (en) 2005-08-09 2016-05-04 The University of North Carolina At Chapel Hill Methods and materials for fabricating microfluidic devices
KR101171190B1 (ko) 2005-11-02 2012-08-06 삼성전자주식회사 표시장치의 제조방법과 이에 사용되는 몰드
US7878791B2 (en) * 2005-11-04 2011-02-01 Asml Netherlands B.V. Imprint lithography
US8011915B2 (en) 2005-11-04 2011-09-06 Asml Netherlands B.V. Imprint lithography
FR2893018B1 (fr) * 2005-11-09 2008-03-14 Commissariat Energie Atomique Procede de formation de supports presentant des motifs, tels que des masques de lithographie.
US20070138699A1 (en) * 2005-12-21 2007-06-21 Asml Netherlands B.V. Imprint lithography
US7517211B2 (en) * 2005-12-21 2009-04-14 Asml Netherlands B.V. Imprint lithography
TW200734197A (en) * 2006-03-02 2007-09-16 Univ Nat Cheng Kung Pattern printing transfer process for macromolecule resist of non-solvent liquid
JP4997811B2 (ja) * 2006-03-31 2012-08-08 大日本印刷株式会社 モールド及びモールドの作製方法
US8015939B2 (en) 2006-06-30 2011-09-13 Asml Netherlands B.V. Imprintable medium dispenser
US8318253B2 (en) * 2006-06-30 2012-11-27 Asml Netherlands B.V. Imprint lithography
WO2008011051A1 (en) * 2006-07-17 2008-01-24 Liquidia Technologies, Inc. Nanoparticle fabrication methods, systems, and materials
KR100889814B1 (ko) 2006-07-25 2009-03-20 삼성전자주식회사 스탬퍼 및 그 제조방법과 스탬퍼를 이용한 기판의 임프린팅공정
KR100831046B1 (ko) * 2006-09-13 2008-05-21 삼성전자주식회사 나노 임프린트용 몰드 및 그 제조 방법
US7388661B2 (en) * 2006-10-20 2008-06-17 Hewlett-Packard Development Company, L.P. Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (NERS)
US7391511B1 (en) 2007-01-31 2008-06-24 Hewlett-Packard Development Company, L.P. Raman signal-enhancing structures and Raman spectroscopy systems including such structures
WO2008118861A2 (en) * 2007-03-23 2008-10-02 The University Of North Carolina At Chapel Hill Discrete size and shape specific organic nanoparticles designed to elicit an immune response
TW200907562A (en) * 2007-05-30 2009-02-16 Molecular Imprints Inc Template having a silicon nitride, silicon carbide or silicon oxynitride film
US7758981B2 (en) * 2007-07-25 2010-07-20 Hitachi Global Storage Technologies Netherlands B.V. Method for making a master disk for nanoimprinting patterned magnetic recording disks, master disk made by the method, and disk imprinted by the master disk
US20090038636A1 (en) * 2007-08-09 2009-02-12 Asml Netherlands B.V. Cleaning method
TWI357886B (en) 2007-08-13 2012-02-11 Epistar Corp Stamp having nanometer scale structure and applica
US7854877B2 (en) 2007-08-14 2010-12-21 Asml Netherlands B.V. Lithography meandering order
US8144309B2 (en) * 2007-09-05 2012-03-27 Asml Netherlands B.V. Imprint lithography
CN101135842B (zh) * 2007-10-25 2011-11-02 复旦大学 一种复制纳米压印模板的方法
CN101487974B (zh) * 2008-01-17 2013-06-12 晶元光电股份有限公司 一种纳米级印模结构及其在发光元件上的应用
EP2252545A2 (en) 2008-03-10 2010-11-24 Yeda Research And Development Company Ltd. Method for fabricating nano-scale patterned surfaces
US7976715B2 (en) * 2008-06-17 2011-07-12 Hitachi Global Storage Technologies Netherlands B.V. Method using block copolymers for making a master mold with high bit-aspect-ratio for nanoimprinting patterned magnetic recording disks
US8119017B2 (en) * 2008-06-17 2012-02-21 Hitachi Global Storage Technologies Netherlands B.V. Method using block copolymers for making a master mold with high bit-aspect-ratio for nanoimprinting patterned magnetic recording disks
US8003236B2 (en) * 2008-06-17 2011-08-23 Hitachi Global Storage Technologies Netherlands B.V. Method for making a master mold with high bit-aspect-ratio for nanoimprinting patterned magnetic recording disks, master mold made by the method, and disk imprinted by the master mold
US9028242B2 (en) * 2008-08-05 2015-05-12 Smoltek Ab Template and method of making high aspect ratio template for lithography and use of the template for perforating a substrate at nanoscale
US8633501B2 (en) 2008-08-12 2014-01-21 Epistar Corporation Light-emitting device having a patterned surface
JP2010157536A (ja) * 2008-12-26 2010-07-15 Nuflare Technology Inc サセプタの製造方法
US8059350B2 (en) * 2009-10-22 2011-11-15 Hitachi Global Storage Technologies Netherlands B.V. Patterned magnetic recording disk with patterned servo sectors having chevron servo patterns
JP5599213B2 (ja) * 2010-03-30 2014-10-01 Hoya株式会社 モールドの製造方法
US8293645B2 (en) 2010-06-30 2012-10-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming photovoltaic cell
CN104597719B (zh) * 2015-01-12 2016-09-14 北京同方生物芯片技术有限公司 基于正性光刻胶的镍阳模具制作方法
DE102016110429A1 (de) 2016-06-06 2017-12-07 Infineon Technologies Ag Energiefilter zum Verarbeiten einer Leistungshalbleitervorrichtung
DE102016110523B4 (de) * 2016-06-08 2023-04-06 Infineon Technologies Ag Verarbeiten einer Leistungshalbleitervorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973495A (en) * 1970-07-31 1976-08-10 Vuestamp International Proprietary Limited Hand stamp
JPH08175099A (ja) * 1994-12-27 1996-07-09 Ogura Print:Kk 転写シート及び転写シート形成方法及び転写シート用ベースフィルム
JPH10133223A (ja) * 1996-10-31 1998-05-22 Denso Corp 積層型液晶セル及びその製造方法
JP2000153630A (ja) * 1998-11-19 2000-06-06 Rohm Co Ltd サーマルプリントヘッド、およびその製造方法
WO2001039986A1 (en) * 1999-11-30 2001-06-07 3M Innovative Properties Company Thermal transfer of microstructured layers
JP2001256644A (ja) * 2000-03-10 2001-09-21 Fuji Photo Film Co Ltd 磁気転写用マスター担体
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
JP2002230847A (ja) * 2001-02-05 2002-08-16 Pioneer Electronic Corp 光ディスクの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199269B1 (en) * 1997-10-23 2001-03-13 International Business Machines Corporation Manipulation of micromechanical objects
US6312612B1 (en) * 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
US20020153625A1 (en) * 2001-02-05 2002-10-24 Pioneer Corporation Stamper-forming electrode material, stamper-forming thin film, and method of manufacturing optical disk
US20030071016A1 (en) * 2001-10-11 2003-04-17 Wu-Sheng Shih Patterned structure reproduction using nonsticking mold

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973495A (en) * 1970-07-31 1976-08-10 Vuestamp International Proprietary Limited Hand stamp
JPH08175099A (ja) * 1994-12-27 1996-07-09 Ogura Print:Kk 転写シート及び転写シート形成方法及び転写シート用ベースフィルム
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
JPH10133223A (ja) * 1996-10-31 1998-05-22 Denso Corp 積層型液晶セル及びその製造方法
JP2000153630A (ja) * 1998-11-19 2000-06-06 Rohm Co Ltd サーマルプリントヘッド、およびその製造方法
WO2001039986A1 (en) * 1999-11-30 2001-06-07 3M Innovative Properties Company Thermal transfer of microstructured layers
JP2001256644A (ja) * 2000-03-10 2001-09-21 Fuji Photo Film Co Ltd 磁気転写用マスター担体
JP2002230847A (ja) * 2001-02-05 2002-08-16 Pioneer Electronic Corp 光ディスクの製造方法

Also Published As

Publication number Publication date
US20040169003A1 (en) 2004-09-02
EP1413923A2 (en) 2004-04-28
CN1499289A (zh) 2004-05-26
US20040081800A1 (en) 2004-04-29
TW200406834A (en) 2004-05-01
EP1413923A3 (en) 2006-05-17
US7080596B2 (en) 2006-07-25
US6755984B2 (en) 2004-06-29
JP2004160647A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4623955B2 (ja) 微細成形炭化ケイ素ナノインプリントスタンプ
TWI300237B (en) Hardened nano-imprinting stamp
JP4005927B2 (ja) スペーサ技術を用いるナノサイズインプリント用スタンプ
US6759180B2 (en) Method of fabricating sub-lithographic sized line and space patterns for nano-imprinting lithography
KR101699060B1 (ko) 기판과 패턴형성된 층 간의 접착을 용이하게 하는 방법
US20120189780A1 (en) Controlling Thickness of Residual Layer
JP2006205352A (ja) Mems構造体の製造方法
KR20080007348A (ko) 서브 마이크론 전사지 전사 리소그래피
US7060625B2 (en) Imprint stamp
JP2011165855A (ja) パターン形成方法
US7462292B2 (en) Silicon carbide imprint stamp
US20150027063A1 (en) Method for fabricating pad conditioning tool
JP2005522689A5 (ja)
CN104714364B (zh) 形成器件图案的方法
US20080121616A1 (en) Spatial-frequency tripling and quadrupling processes for lithographic application
US8979613B2 (en) Nano-fabricated structured diamond abrasive article
JP4845564B2 (ja) パターン転写方法
JP2007320246A (ja) モールド及びモールドの作製方法
KR20140122860A (ko) 접촉 패드의 제조 방법
JP4942131B2 (ja) スタンパ及びそれを用いたナノ構造の転写方法
KR100520488B1 (ko) 나노 임프린팅 스탬프 및 그 제조방법
JP5653574B2 (ja) 金属パターンを有するナノプリントされたデバイスおよび金属パターンをナノプリントする方法
WO2020083330A1 (zh) 半导体器件的制造方法
TW200411732A (en) Reversal imprint technique
Numai et al. Nanoimprint lithography using Novolak-type photoresist and soft mold at room temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4623955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees