JP4616599B2 - Fluid composition, electrode formed using the same, and wiring pattern - Google Patents

Fluid composition, electrode formed using the same, and wiring pattern Download PDF

Info

Publication number
JP4616599B2
JP4616599B2 JP2004257667A JP2004257667A JP4616599B2 JP 4616599 B2 JP4616599 B2 JP 4616599B2 JP 2004257667 A JP2004257667 A JP 2004257667A JP 2004257667 A JP2004257667 A JP 2004257667A JP 4616599 B2 JP4616599 B2 JP 4616599B2
Authority
JP
Japan
Prior art keywords
weight
metal
fluid composition
particles
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004257667A
Other languages
Japanese (ja)
Other versions
JP2006073436A (en
Inventor
雅則 友成
一十三 佐渡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2004257667A priority Critical patent/JP4616599B2/en
Publication of JP2006073436A publication Critical patent/JP2006073436A/en
Application granted granted Critical
Publication of JP4616599B2 publication Critical patent/JP4616599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属コロイド粒子を配合した流動性組成物、及びその流動性組成物を用いて形成した電極並びに配線パターンに関する。   The present invention relates to a fluid composition containing metal colloid particles, an electrode formed using the fluid composition, and a wiring pattern.

平均粒子径が1〜100nm程度の金属粒子は金属コロイド粒子と呼ばれ、導電性が非常に高く、可視光を透過する性質を有しており、例えば、金属コロイド粒子を配合したコーティング剤や塗料等の流動性組成物を塗布することで、ブラウン管、液晶ディスプレイ等の透明性部材の電磁波遮蔽に適用されている。また、近年、銀、銅等のコロイド粒子を配合したペースト、インキ、塗料等の流動性組成物を用いて、微細な電極を形成する技術が提案されている。これは、前記流動性組成物を、スクリーン印刷、インクジェット印刷等の手法で基板上に回路や電極のパターンを塗布した後、加熱して金属コロイド粒子を融着させるもので、特に、プリント配線基板の製造に応用されつつある。例えば、金属コロイド粒子に化学吸着性を有する官能基を含む有機化合物で被覆し、この金属コロイド粒子の分散液を用いて配線を形成する技術(特許文献1参照)が知られている。   Metal particles having an average particle diameter of about 1 to 100 nm are called metal colloid particles, and have a very high conductivity and a property of transmitting visible light. For example, coating agents and paints containing metal colloid particles By applying a fluid composition such as CRT, it is applied to electromagnetic wave shielding of transparent members such as cathode ray tubes and liquid crystal displays. In recent years, a technique for forming a fine electrode by using a fluid composition such as paste, ink, paint, or the like containing colloidal particles such as silver and copper has been proposed. This is because the flowable composition is applied with a circuit or electrode pattern on the substrate by a method such as screen printing or ink jet printing, and then heated to melt the metal colloidal particles. It is being applied to the manufacture of For example, a technique is known in which metal colloidal particles are coated with an organic compound containing a functional group having chemical adsorption properties, and wiring is formed using a dispersion of the metal colloidal particles (see Patent Document 1).

金属コロイド粒子は、微粒子であるが故に表面エネルギーが大きく、凝集し易いため、金属コロイド粒子の表面に、通常、保護コロイドと呼ばれる表面保護剤を被着させ、その立体障害的な効果により、分散安定化させている。特許文献1記載の技術においても、化学吸着性を有する官能基を含む有機化合物が、保護コロイドとして作用している。   Since the metal colloidal particles are fine particles, they have a large surface energy and are easy to agglomerate. Therefore, a surface protective agent called a protective colloid is usually applied to the surface of the metal colloidal particles and dispersed due to its steric hindrance effect. Stabilized. Also in the technique described in Patent Document 1, an organic compound containing a functional group having a chemical adsorption property acts as a protective colloid.

WO01/070435号パンフレットWO01 / 070435 pamphlet

前記流動性組成物は、できる限り塗布物の熱収縮を抑制するため、一般的に、バインダーを用いず、しかも、金属コロイド粒子を高濃度に配合している。このような組成の流動性組成物は、高濃度であるが故に、金属コロイド粒子の粒子間距離が小さく、粒子間相互作用が強く働き、保護コロイドによっても相互作用を抑制し難く、また、通常の塗料やインキのように、バインダーの吸着による安定化効果が期待できないので、分散安定性が損なわれ易い。このため、製造直後では保護コロイドの作用により分散安定性が良いが、製造後長期間経過すると、例えば、1〜2ケ月の期間保管すると、金属コロイド粒子が異常成長した粒子塊が多数発生し、これを用いると、導電性の低下などを生じ、特に、微細な回路や電極のパターンを基板上に形成する際に配線の断絶、混線といった大きな障害を引き起こすことになる。   In order to suppress the heat shrinkage of the coated material as much as possible, the flowable composition generally does not use a binder and contains metal colloid particles in a high concentration. Since the fluid composition having such a composition has a high concentration, the inter-particle distance of the metal colloid particles is small, the inter-particle interaction works strongly, and it is difficult to suppress the interaction even by the protective colloid. Since the stabilizing effect due to the adsorption of the binder cannot be expected as in the case of paints and inks, the dispersion stability tends to be impaired. For this reason, the dispersion stability is good due to the action of the protective colloid immediately after the production, but when a long period of time elapses after the production, for example, when stored for a period of 1 to 2 months, a large number of particle masses in which the metal colloid particles have grown abnormally, When this is used, the conductivity is lowered, and particularly, when a fine circuit or electrode pattern is formed on the substrate, a great obstacle such as disconnection of wiring or cross-connection is caused.

本発明者らは、鋭意研究を重ねた結果、金属コロイド粒子が高濃度に配合され、実質的にバインダーを含まない流動性組成物において、還元性物質を添加することにより、金属コロイド粒子が異常成長した粒子塊の発生を防止し、優れた長期的安定性が得られることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have found that the colloidal metal particles are abnormal due to the addition of the reducing substance in the fluid composition containing the colloidal metal particles at a high concentration and containing substantially no binder. The inventors have found that the generation of grown particle agglomerates can be prevented and that excellent long-term stability can be obtained, and the present invention has been completed.

即ち、本発明は、少なくとも金属コロイド粒子と分散媒と還元性物質とを混合してなり、金属コロイド粒子の含有量が少なくとも5重量%であり、該金属コロイド粒子100重量部に対して還元性物質を0.1〜50重量部配合してなることを特徴とする流動性組成物であり、前記流動性組成物を用いて形成されることを特徴とする電極または配線パターンである。   That is, the present invention is a mixture of at least metal colloid particles, a dispersion medium, and a reducing substance, and the content of the metal colloid particles is at least 5% by weight, and is reducible with respect to 100 parts by weight of the metal colloid particles. A fluid composition comprising 0.1 to 50 parts by weight of a substance, wherein the electrode or wiring pattern is formed using the fluid composition.

本発明の流動性組成物は長期間保管した後に使用しても、導電性等の性能が優れ、均一な塗布物を形成し易く、特に、プリント配線基板等の微細電極及び配線パターンの形成などに利用できる。   Even if the fluid composition of the present invention is used after being stored for a long period of time, it is excellent in performance such as conductivity, and it is easy to form a uniform coated material, in particular, formation of fine electrodes such as printed wiring boards and wiring patterns, etc. Available to:

本発明は、少なくとも金属コロイド粒子と分散媒と還元性物質とを混合してなるインキ、塗料、ペースト等の流動性組成物であって、金属コロイド粒子の配合量が少なくとも5重量%の高濃度にあり、好ましくは10重量%以上、より好ましくは15重量%以上であり、還元性物質の配合量は金属コロイド粒子100重量部に対して0.1〜50重量部の範囲、好ましくは0.3〜30重量部の範囲、より好ましくは0.5〜10重量部の範囲、更に好ましくは0.5〜5重量部の範囲である。好ましい実施態様は、金属コロイド粒子を含む分散媒に少なくとも還元性物質を混合してなる流動性組成物であり、金属コロイド粒子、還元性物質の配合量は前記範囲である。分散媒中の金属コロイド粒子は経時的に酸化され、金属コロイド粒子から金属イオンが溶出し易くなり、溶出した金属イオンが金属コロイド粒子を粒成長させ、粒子塊を形成するのではないかと推測される。本発明では、還元性物質を配合することにより、金属コロイド粒子の酸化を防止することで、粒子塊の生成を防ぎ、流動性組成物の長期的な安定性を向上させたものである。   The present invention relates to a fluid composition such as an ink, a paint, or a paste obtained by mixing at least metal colloid particles, a dispersion medium, and a reducing substance, and a high concentration in which the amount of the metal colloid particles is at least 5% by weight. The amount of the reducing substance is preferably in the range of 0.1 to 50 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the metal colloid particles. The range is 3 to 30 parts by weight, more preferably 0.5 to 10 parts by weight, and still more preferably 0.5 to 5 parts by weight. A preferred embodiment is a fluid composition obtained by mixing at least a reducing substance in a dispersion medium containing metal colloid particles, and the compounding amount of the metal colloid particles and the reducing substance is in the above range. The metal colloid particles in the dispersion medium are oxidized over time, making it easier for metal ions to elute from the metal colloid particles, and it is speculated that the eluted metal ions will grow the metal colloid particles and form a particle lump. The In the present invention, by adding a reducing substance, the colloidal metal particles are prevented from being oxidized, thereby preventing the formation of particle lumps and improving the long-term stability of the fluid composition.

本発明で用いる金属コロイド粒子には特に制限はなく、1種を用いても良いし、2種以上の金属コロイド粒子を混合して用いても良い。また、金属コロイド粒子を構成する金属にも特に制限はなく、1種の金属で構成されても、2種以上の金属の合金で構成されても良い。金属コロイド粒子を構成する金属は、周期表VIII族(鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)及びIB族(銅、銀、金)からなる群より選ばれる少なくとも1種であれば、導電性が高いので好ましく、中でも金、銀、白金、パラジウム、銅は特に導電性が高くより好ましく、電極や配線パターン形成用の流動性組成物に用いるには、導電性とコストのバランスから銀または銅が特に好ましい。金属コロイド粒子の平均粒子径は、1〜100nm程度の一般的なものを用いることができ、より微細な電極、配線パターンを得るためには、5〜50nmの範囲の平均粒子径を有する金属コロイド粒子を用いるのが好ましい。導電性が安定した電極、配線パターンを得るには、一回の塗工で膜厚の厚い塗布物を形成するのが望ましいので、金属コロイド粒子はより高濃度で配合されるのが好ましく、その含有量は前記のように5重量%以上であれば良く、10重量%以上であればより好ましく、15重量%以上であれば更に好ましい。金属コロイド粒子は、予め金属コロイド粒子を分散媒に分散させた所謂金属コロイド溶液として用いることもできる。   There is no restriction | limiting in particular in the metal colloid particle used by this invention, 1 type may be used and 2 or more types of metal colloid particles may be mixed and used. Moreover, there is no restriction | limiting in particular also in the metal which comprises a metal colloid particle, It may be comprised by 1 type of metals, or may be comprised by the alloy of 2 or more types of metals. The metal constituting the metal colloidal particles is at least one selected from the group consisting of Group VIII (iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum) and Group IB (copper, silver, gold). If it is a seed, it is preferable because it has high conductivity, and gold, silver, platinum, palladium, and copper are particularly preferable because of high conductivity, and in order to use it as a fluid composition for forming electrodes and wiring patterns, From the balance of cost, silver or copper is particularly preferable. The average particle diameter of the metal colloid particles can be a general one of about 1 to 100 nm, and in order to obtain finer electrodes and wiring patterns, the metal colloid having an average particle diameter in the range of 5 to 50 nm It is preferable to use particles. In order to obtain electrodes and wiring patterns with stable conductivity, it is desirable to form a thick coating by a single coating, so the metal colloid particles are preferably blended at a higher concentration. The content may be 5% by weight or more as described above, more preferably 10% by weight or more, and further preferably 15% by weight or more. The metal colloid particles can also be used as a so-called metal colloid solution in which the metal colloid particles are previously dispersed in a dispersion medium.

金属コロイド粒子は、その表面に保護コロイドを有していると、保護コロイドの作用により、分散媒中に更に安定した状態で分散できるので好ましい。保護コロイドとしては公知の化合物を用いることができ、例えば、クエン酸及びその誘導体、アニリン及びその誘導体、硫黄化合物等が挙げられ、これらから選ばれる1種以上を用いることができる。本発明では、金属コロイド粒子の保護効果が高い硫黄化合物を用いるのが好ましく、具体的に、(1)チオール類((a)酸チオール類(例えば、メルカプト酢酸、メルカプトプロピオン酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等)、(b)脂肪族チオール類(例えば、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、アリルメルカプタン、ジメチルメルカプタン、メルカプトエタノール、アミノエチルメルカプタン、チオジエチルアミン等)、(c)脂環式チオール類(例えば、シクロヘキシルチオール等)、(d)芳香族チオール類(例えば、チオフェノール等)、(2)チオグリコール類(例えば、チオジエチレングリコール、チオジグリコール酸、エチレンチオグリコール等)、(3)チオアミド類(例えば、チオホルムアミド等)、(4)ジチオール類、(5)チオン類、(6)ポリチオール類、(7)チオ炭酸類、(8)チオ尿素類、(9)複素環式硫黄化合物、(10)チアゾール類、(11)硫化水素及びそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。硫黄化合物がチオール類であればより好ましく、メルカプト酢酸、メルカプトプロピオン酸、メルカプトエタノールから選ばれる少なくとも1種であれば、更に好ましい。保護コロイドは金属コロイド粒子1重量部に対し、0.05〜1.5重量部の範囲で被着されていれば、所望の保護効果が得られるので好ましい。   It is preferable that the metal colloid particles have a protective colloid on the surface because the colloidal particles can be dispersed in a more stable state in the dispersion medium by the action of the protective colloid. As the protective colloid, known compounds can be used, and examples thereof include citric acid and derivatives thereof, aniline and derivatives thereof, sulfur compounds and the like, and one or more selected from these can be used. In the present invention, it is preferable to use a sulfur compound having a high protective effect on metal colloidal particles. Specifically, (1) thiols ((a) acid thiols (for example, mercaptoacetic acid, mercaptopropionic acid, thiodipropionic acid) , Mercaptosuccinic acid, thioacetic acid, etc.), (b) aliphatic thiols (for example, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, allyl mercaptan, dimethyl mercaptan, mercaptoethanol, aminoethyl mercaptan, (C) alicyclic thiols (eg, cyclohexyl thiol), (d) aromatic thiols (eg, thiophenol), (2) thioglycols (eg, thiodiethylene glycol, thiodi) Glycolic acid, ethylene Oglycol, etc.), (3) thioamides (eg, thioformamide, etc.), (4) dithiols, (5) thiones, (6) polythiols, (7) thiocarbonates, (8) thioureas, (9) Heterocyclic sulfur compounds, (10) thiazoles, (11) hydrogen sulfide and derivatives thereof may be used, and one or more of these may be used. More preferably, it is at least one selected from mercaptoacetic acid, mercaptopropionic acid, and mercaptoethanol, and the protective colloid is in the range of 0.05 to 1.5 parts by weight with respect to 1 part by weight of the metal colloid particles. If it is applied, a desired protective effect is obtained, which is preferable.

金属コロイド粒子は、公知の方法を用いて製造することができ、例えば、(1)金属を真空中で蒸発させて、気相中から金属コロイド粒子を凝結させる方法、(2)金属化合物溶液に還元剤を添加して、液相中から金属コロイド粒子を析出させる方法などを用いることができ、(2)の方法では廉価に金属コロイド粒子が得られるため、より好ましい方法である。(2)の方法において、金属コロイド粒子を製造するための原料である金属化合物は、例えば、前記金属の塩化物、硫酸塩、硝酸塩、炭酸塩等を用いることができる。金属化合物を溶解する媒液には、水またはアルコール等の有機溶媒、あるいはこれら2種以上の混合溶媒を用いることができ、金属化合物の媒液中の濃度は、金属化合物が溶解する範囲であれば特に制約はないが、工業的には5ミリモル/リットル以上とすることが好ましい。水性の金属コロイド粒子を製造するには、金属化合物が水溶性のものであれば好ましいが、水に難溶であっても、金属成分と可溶性の錯体を形成する塩素イオンやアンモニア等を含む化合物を加えて用いることもできる。   The metal colloidal particles can be produced by using a known method. For example, (1) a method in which a metal is evaporated in a vacuum and the metal colloid particles are condensed from a gas phase, and (2) a metal compound solution is prepared. A method of adding a reducing agent and precipitating metal colloidal particles from the liquid phase can be used, and the method (2) is a more preferable method because metal colloidal particles can be obtained at low cost. In the method (2), as the metal compound that is a raw material for producing the metal colloid particles, for example, the metal chloride, sulfate, nitrate, carbonate and the like can be used. An organic solvent such as water or alcohol, or a mixed solvent of two or more of these can be used for the medium solution for dissolving the metal compound, and the concentration of the metal compound in the medium solution is within a range in which the metal compound is dissolved. Although there is no particular restriction, it is preferably 5 mmol / liter or more industrially. In order to produce aqueous metal colloidal particles, it is preferable if the metal compound is water-soluble, but even if it is sparingly soluble in water, a compound containing chloride ions, ammonia, etc. that forms a soluble complex with the metal component Can also be used.

還元剤としては公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその金属塩、次亜リン酸及び次亜リン酸ナトリウム等のその金属塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。還元反応は任意の温度で行うことができ、水性媒液中で行う場合には、5〜90℃の範囲の温度であれば、反応が進み易いので好ましい。還元剤の添加量は金属に還元できる範囲であれば適宜設定することができ、金属化合物1モルに対して、0.2〜50モルであることが好ましい。添加量が0.2モル未満では還元反応が十分に進行し難いため好ましくなく、50モルを超えると生成した金属コロイド粒子の分散が不安定になり易いため好ましくない。   As the reducing agent, known ones can be used, for example, hydrazine, hydrazine reducing agents such as hydrazine compounds such as hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate, sodium borohydride, sodium sulfite, sodium bisulfite, Metal salts such as sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and sodium phosphite, metal salts such as hypophosphorous acid and sodium hypophosphite, aldehydes, alcohols, amines And saccharides may be used, and one or more of these may be used. The reduction reaction can be carried out at any temperature, and when carried out in an aqueous medium, a temperature in the range of 5 to 90 ° C. is preferred because the reaction can proceed easily. The addition amount of the reducing agent can be appropriately set as long as it can be reduced to a metal, and is preferably 0.2 to 50 mol with respect to 1 mol of the metal compound. If the addition amount is less than 0.2 mol, it is not preferable because the reduction reaction is unlikely to proceed sufficiently, and if it exceeds 50 mol, the dispersion of the generated metal colloid particles tends to become unstable, which is not preferable.

金属化合物と還元剤の混合液のpHを8〜14の範囲に調整すると、金属化合物が媒液中に均一に分散し、還元反応が生じ易いので好ましい。更に好ましいpHの範囲は8〜13であり、8〜12であれば一層好ましい。具体的には、例えば、金属化合物を含む媒液のpHを調整した後、金属化合物を還元しても良く、あるいは、還元剤を混合した後、pHを調整しても良い。pH調整には、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物や炭酸塩、アンモニア等のアンモニウム化合物、アミン類等の塩基性化合物を用いることができる。このようにして得られた金属コロイド粒子は、媒液のpHを5以下にすると容易に凝集するので、吸引ろ過、沈降分離等の比較的簡単な操作でろ別できる。より好ましいpHの範囲は、0〜5である。ろ別した金属コロイド粒子は常法により洗浄することができ、可溶性塩類や残存する還元剤を十分に除去できる。pH調整には、例えば、塩酸、硫酸、硝酸等の無機酸、ギ酸、酢酸、プロピオン酸等の有機酸等の酸性化合物を用いることができる。   It is preferable to adjust the pH of the mixed solution of the metal compound and the reducing agent to a range of 8 to 14 because the metal compound is uniformly dispersed in the medium and a reduction reaction is likely to occur. A more preferable pH range is 8 to 13, and 8 to 12 is more preferable. Specifically, for example, after adjusting the pH of the liquid medium containing the metal compound, the metal compound may be reduced, or after mixing the reducing agent, the pH may be adjusted. For pH adjustment, for example, a basic compound such as an alkali metal or alkaline earth metal hydroxide or carbonate such as sodium hydroxide, potassium hydroxide or calcium hydroxide, an ammonium compound such as ammonia, or an amine is used. be able to. The metal colloidal particles thus obtained easily aggregate when the pH of the liquid medium is 5 or less, and can be filtered by a relatively simple operation such as suction filtration or sedimentation separation. A more preferable pH range is 0-5. The colloidal metal colloid particles can be washed by a conventional method, and soluble salts and remaining reducing agent can be sufficiently removed. For pH adjustment, for example, an inorganic compound such as hydrochloric acid, sulfuric acid or nitric acid, or an acidic compound such as organic acid such as formic acid, acetic acid or propionic acid can be used.

金属コロイド粒子の表面に保護コロイドを被着するには、金属コロイド粒子を分散した媒液中に保護コロイドを添加し混合して被着するか、あるいは、保護コロイドの存在下に金属化合物と還元剤とを反応して保護コロイドが被着した金属コロイド粒子を製造することもできる。後者の方法では還元反応の際に保護コロイドが存在しているため、より高度に分散した金属コロイド粒子が得られるため好ましい方法である。   In order to deposit the protective colloid on the surface of the metal colloidal particles, the protective colloid is added to the liquid medium in which the metal colloidal particles are dispersed and mixed or deposited, or the metal colloid is reduced with the metal in the presence of the protective colloid. It is also possible to produce metal colloidal particles on which a protective colloid is deposited by reacting with an agent. The latter method is a preferable method because protective colloid is present during the reduction reaction, and thus highly dispersed metal colloidal particles can be obtained.

金属コロイド粒子を分散させる分散媒としては、用いる金属コロイド粒子との親和性に応じて適宜選択し、例えば、水、アルコール類、ケトン類等の親水性有機溶媒、直鎖状炭化水素類、環状炭化水素類、芳香族炭化水素類等の疎水性有機溶媒等を用いることができ、これらから選ばれる1種を用いても、または相溶性を有する2種以上を混合分散媒として用いても良く、あるいは、親水性有機溶媒を相溶化剤として用いて水と疎水性有機溶媒を混合して用いることもできる。前記の銀、銅のような親水性の金属からなる金属コロイド粒子を用いるのであれば、水または水を主体とする親水性有機溶媒との混合分散媒を用いることが好ましい。この場合、水は、通常、分散媒中に50重量%以上、好ましくは80重量%以上含まれていれば良い。また、水は表面張力が大きいので、必要に応じて、比誘電率が35以上、好ましくは35〜200の範囲の、沸点が100℃以上、好ましくは100〜250℃の範囲の有機溶媒を添加すると、加熱焼成時に塗布物にシワや縮み等の表面欠陥が生じ難く、均一で密度の高い塗布物が得られ易いので好ましい。このような有機溶媒としてN−メチルホルムアミド(比誘電率190、沸点197℃)、ジメチルスルホキシド(比誘電率45、沸点189℃)、エチレングリコール(比誘電率38、沸点226℃)、4−ブチロラクトン(比誘電率39、沸点204℃)、アセトアミド(比誘電率65、沸点222℃)、1,3−ジメチル−2−イミダゾリジノン(比誘電率38、沸点226℃)、ホルムアミド(比誘電率111、沸点210℃)、N−メチルアセトアミド(比誘電率175、沸点205℃)、フルフラール(比誘電率40、沸点161℃)等が挙げられ、これらから選ばれる1種以上を用いることができる。中でも、表面張力が50×10−3N/m以下のN−メチルホルムアミド(表面張力38×10−3N/m)、ジメチルスルホキシド(表面張力43×10−3N/m)、エチレングリコール(表面張力48×10−3N/m)、4−ブチロラクトン(表面張力44×10−3N/m)、アセトアミド(表面張力39×10−3N/m)、1,3−ジメチル−2−イミダゾリジノン(表面張力41×10−3N/m)等であれば、更に効果が高く好ましい。これらの高比誘電率、高沸点の有機溶媒は、水を除く分散媒中に20〜100重量%の範囲で含まれているのが好ましく、40〜100重量%の範囲が更に好ましい。 The dispersion medium for dispersing the metal colloid particles is appropriately selected according to the affinity with the metal colloid particles to be used. For example, hydrophilic organic solvents such as water, alcohols and ketones, linear hydrocarbons, cyclic Hydrophobic organic solvents such as hydrocarbons and aromatic hydrocarbons can be used, and one type selected from these may be used, or two or more types having compatibility may be used as a mixed dispersion medium. Alternatively, water and a hydrophobic organic solvent can be mixed and used using a hydrophilic organic solvent as a compatibilizing agent. If metal colloidal particles made of a hydrophilic metal such as silver or copper are used, it is preferable to use water or a mixed dispersion medium with a hydrophilic organic solvent mainly composed of water. In this case, water is usually contained in the dispersion medium in an amount of 50% by weight or more, preferably 80% by weight or more. Moreover, since water has a large surface tension, an organic solvent having a relative dielectric constant of 35 or more, preferably 35 to 200, and a boiling point of 100 ° C. or more, preferably 100 to 250 ° C., is added as necessary. Then, it is preferable because surface defects such as wrinkles and shrinkage are not easily generated in the coating during heating and baking, and a uniform and high-density coating is easily obtained. Examples of such organic solvents include N-methylformamide (dielectric constant 190, boiling point 197 ° C.), dimethyl sulfoxide (dielectric constant 45, boiling point 189 ° C.), ethylene glycol (relative dielectric constant 38, boiling point 226 ° C.), 4-butyrolactone. (Relative permittivity 39, boiling point 204 ° C.), acetamide (relative permittivity 65, boiling point 222 ° C.), 1,3-dimethyl-2-imidazolidinone (relative permittivity 38, boiling point 226 ° C.), formamide (relative permittivity 111, boiling point 210 ° C.), N-methylacetamide (relative dielectric constant 175, boiling point 205 ° C.), furfural (relative dielectric constant 40, boiling point 161 ° C.) and the like, and one or more selected from these can be used. . Among them, N-methylformamide (surface tension 38 × 10 −3 N / m) having a surface tension of 50 × 10 −3 N / m or less, dimethyl sulfoxide (surface tension 43 × 10 −3 N / m), ethylene glycol ( Surface tension 48 × 10 −3 N / m), 4-butyrolactone (surface tension 44 × 10 −3 N / m), acetamide (surface tension 39 × 10 −3 N / m), 1,3-dimethyl-2- Imidazolidinone (surface tension 41 × 10 −3 N / m) or the like is more effective and preferable. These organic solvents having a high relative dielectric constant and a high boiling point are preferably contained in the dispersion medium excluding water in the range of 20 to 100% by weight, and more preferably in the range of 40 to 100% by weight.

本発明の流動性組成物に配合する還元性物質は、水溶液中での酸化還元電位が、流動性組成物中に含まれる金属コロイド粒子の酸化還元電位よりも、低い値(貴な値)を示す還元性を有する公知のものが好ましい。例えば、(1)ヒドラジンまたはその水和物、(2)ヒドラジン系化合物(例えば、塩酸ヒドラジン、硫酸ヒドラジン等)、(3)アルデヒド類((a)脂肪族アルデヒド類(例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、イソブチルアルデヒド等)、(b)芳香族アルデヒド類(例えば、ベンズアルデヒド等)、(c)複素環式アルデヒド類等)、(4)アミン類((a)1級アミン類(例えば、ブチルアミン、エチルアミン、プロピルアミン、エチレンジアミン等)、(b)2級アミン類(例えば、ジブチルアミン、ジエチルアミン、ジプロピルアミン等)、(c)3級アミン類(例えば、トリブチルアミン、トリエチルアミン、トリプロピルアミン等)等)、(5)アミノアルデヒド類(例えば、アミノアセトアルデヒド等)、(6)アルカノールアミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン等)、(7)還元糖(例えば、ショ糖、トレパース、マルトース、ラクトース等)、(8)水素化合物(例えば、水素化ホウ素ナトリウム等)、(9)低次無機酸素酸(例えば、亜硫酸、亜硝酸、次亜硝酸、亜リン酸、次亜リン酸等)及びその水化物(例えば、亜硫酸水素)またはそれらの塩(例えば、ナトリウム等のアルカリ金属塩)等が挙げられ、これらから選ばれる1種以上を用いることができる。還元性物質が、ヒドラジンまたはその水和物、アルデヒド類、アミン類、アミノアルデヒド類、アルカノールアミン類、還元糖から選ばれる1種以上であれば、加熱焼成により容易に分解し、電極中に導電性を阻害するような成分がほとんど残留しないので好ましく、中でも、ヒドラジンまたはその水和物、アルデヒド類から選ばれる1種以上であれば、常温またはそれ以下の温度下でも還元力が強く、分散安定化の効果が高いのでより好ましい。アルデヒド類の中では脂肪族アルデヒド類、芳香族アルデヒド類が効果が高いので好ましく、脂肪族アルデヒド類が特に好ましい。還元性物質の使用量は、金属コロイド粒子100重量部に対し0.1〜50重量部の範囲であるのが好ましく、この範囲より少ないと、所望の効果が得られ難く、この範囲より多くしても更なる効果は得られ難く経済的でない。より好ましい範囲は、0.3〜30重量部であり、更に好ましい範囲は、0.5〜10重量部である。   The reducing substance blended in the fluid composition of the present invention has a value (noble value) in which the oxidation-reduction potential in the aqueous solution is lower than the oxidation-reduction potential of the metal colloid particles contained in the fluid composition. Known ones having the reducing properties shown are preferred. For example, (1) hydrazine or a hydrate thereof, (2) hydrazine compounds (eg, hydrazine hydrochloride, hydrazine sulfate, etc.), (3) aldehydes ((a) aliphatic aldehydes (eg, formaldehyde, acetaldehyde, propion) Aldehyde, butyraldehyde, isobutyraldehyde, etc.), (b) aromatic aldehydes (eg, benzaldehyde, etc.), (c) heterocyclic aldehydes, etc.), (4) amines ((a) primary amines (eg, Butylamine, ethylamine, propylamine, ethylenediamine, etc.), (b) secondary amines (eg, dibutylamine, diethylamine, dipropylamine, etc.), (c) tertiary amines (eg, tributylamine, triethylamine, tripropyl) Amine) etc.), (5) aminoaldehydes (eg aminoacetoal) Hydride etc.), (6) alkanolamines (eg ethanolamine, diethanolamine, triethanolamine etc.), (7) reducing sugars (eg sucrose, treperth, maltose, lactose etc.), (8) hydrogen compounds (eg (9) low-order inorganic oxygen acids (for example, sulfurous acid, nitrous acid, hyponitrous acid, phosphorous acid, hypophosphorous acid, etc.) and their hydrates (for example, hydrogen sulfite) or the like (For example, alkali metal salts such as sodium) and the like, and one or more selected from these can be used. If the reducing substance is at least one selected from hydrazine or hydrates thereof, aldehydes, amines, amino aldehydes, alkanolamines, and reducing sugars, it is easily decomposed by heating and baking, and conductive in the electrode. It is preferable because there is hardly any remaining component that inhibits the properties, and in particular, one or more selected from hydrazine, hydrates thereof, and aldehydes has a strong reducing power at room temperature or lower and is stable in dispersion. This is more preferable because of its high effect. Among the aldehydes, aliphatic aldehydes and aromatic aldehydes are preferable because of their high effects, and aliphatic aldehydes are particularly preferable. The amount of the reducing substance used is preferably in the range of 0.1 to 50 parts by weight with respect to 100 parts by weight of the metal colloid particles. If the amount is less than this range, it is difficult to obtain the desired effect, and the amount is larger than this range. However, it is difficult to obtain further effects and it is not economical. A more preferable range is 0.3 to 30 parts by weight, and a further preferable range is 0.5 to 10 parts by weight.

本発明の流動性組成物は、前記の金属コロイド粒子と分散媒と還元性物質とを公知の方法により混合して製造することができ、例えば、撹拌混合、コロイドミル等の湿式粉砕混合などの方法を用いることができる。混合の手順としては、金属コロイド粒子と分散媒と還元性物質のそれぞれを同時期に混合しても良いが、金属コロイド粒子を分散媒に分散したものをまず調製するか、あるいは、予め調製した金属コロイド溶液を用いて、それに還元性物質を添加し混合するのが良い。   The fluid composition of the present invention can be produced by mixing the metal colloidal particles, the dispersion medium, and the reducing substance by a known method, such as stirring and mixing, and wet pulverization and mixing such as a colloid mill. The method can be used. As a mixing procedure, the metal colloid particles, the dispersion medium, and the reducing substance may be mixed at the same time, but the metal colloid particles dispersed in the dispersion medium are first prepared or prepared in advance. It is preferable to add and mix a reducing substance into the metal colloid solution.

本発明の流動性組成物には、前記の金属コロイド粒子、分散媒、還元性物質の他に、界面活性剤、分散剤、増粘剤、可塑剤、防カビ剤等の添加剤を、適宜配合することもできる。界面活性剤は、金属コロイド粒子の分散安定性を更に高める作用や、流動性組成物のレオロジー特性を制御し、塗工性を改良する作用を有するので好ましく、例えば、第4級アンモニウム塩等のカチオン系、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等のアニオン系、エーテル型、エーテルエステル型、エステル型、含窒素型等のノニオン系等の公知のものを用いることができ、これらから選ばれる1種以上を用いることができる。界面活性剤の配合量は、金属コロイド粒子の種類等によって異なるので、塗料組成に応じて適宜設定するが、一般的には金属コロイド粒子1重量部に対し、0.01〜0.5重量部の範囲が好ましい。また、必要に応じ、本発明の効果を阻害しない範囲で、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイミドトリアジン樹脂、フラン樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコン樹脂等の有機系の硬化性バインダーが含まれていても良い。硬化性バインダーの配合量は使用場面に応じて適宜設定でき、電極や配線パターンを形成する場合は、硬化性バインダーを配合しないか、あるいは、金属コロイド粒子1重量部に対し、0〜0.1重量%の範囲配合するのが適当である。   In addition to the metal colloid particles, the dispersion medium, and the reducing substance, additives such as a surfactant, a dispersant, a thickener, a plasticizer, and an antifungal agent are appropriately added to the fluid composition of the present invention. It can also be blended. The surfactant is preferable because it has an effect of further improving the dispersion stability of the metal colloid particles and an effect of controlling the rheological properties of the fluid composition and improving the coating property. For example, a quaternary ammonium salt or the like is used. Use of known anions such as cationic, carboxylate, sulfonate, sulfate ester, phosphate ester, nonionics such as ether type, ether ester type, ester type, nitrogen-containing type, etc. One or more selected from these can be used. The blending amount of the surfactant varies depending on the type of metal colloid particles and the like, and is appropriately set according to the coating composition. Generally, 0.01 to 0.5 parts by weight with respect to 1 part by weight of the metal colloid particles. The range of is preferable. In addition, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleimide triazine resin, furan resin as long as the effects of the present invention are not impaired. Organic curable binders such as urea resin, polyurethane resin, melamine resin, and silicon resin may be included. The blending amount of the curable binder can be appropriately set according to the use scene. When forming an electrode or a wiring pattern, the curable binder is not blended, or 0 to 0.1 to 1 part by weight of the metal colloid particles. It is appropriate to blend in the range of% by weight.

本発明の電極、配線パターンは、前記流動性組成物を、例えば、スクリーン印刷、インクジェット印刷等の方法により、基板に塗布後、加熱焼成して得られるものであり、流動性組成物中に金属コロイド粒子が高度に分散しているので、欠陥がほとんどなく均一な組成で、電気特性が優れている。この電極は、プリント配線基板の回路や、その他の微細な導電部材として用いることができる。   The electrode and the wiring pattern of the present invention are obtained by applying the fluid composition to a substrate by a method such as screen printing or ink jet printing, followed by heating and baking, and a metal in the fluid composition. Since the colloidal particles are highly dispersed, it has a uniform composition with few defects and excellent electrical characteristics. This electrode can be used as a circuit of a printed wiring board and other fine conductive members.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

金属コロイド粒子の調製
金属化合物として硝酸銀50g、保護コロイドとして硫黄化合物3−メルカプトプロピオン酸1.6gを純水220ミリリットルに溶解し、28%アンモニア水70ミリリットルを加え、pHを11.6の溶液を調整した。一方、還元剤として水素化ホウ素ナトリウム2.1gを、28%アンモニア水4ミリリットルを加えた295ミリリットルの純水に溶解した。両者を30分間かけて600ミリリットルの純水中に撹拌しながら同時に滴下し、硝酸銀を還元して、3−メルカプトプロピオン酸を表面に被着した銀コロイド粒子を媒液中に生成した。次いで、得られた銀コロイド粒子の媒液を、硝酸(30%)を用いて媒液のpHを2.5に調整し、銀コロイド粒子を沈降させ、真空ろ過機で銀コロイド粒子をろ別し、ろ液の比導電率が10μS/cm以下になるまで水洗した後、水中に再分散して、水性銀コロイド溶液(銀コロイド粒子を50重量%含有)を得た。
Preparation of metal colloidal particles 50 g of silver nitrate as the metal compound and 1.6 g of the sulfur compound 3-mercaptopropionic acid as the protective colloid are dissolved in 220 ml of pure water, 70 ml of 28% ammonia water is added, and a solution with a pH of 11.6 is added. It was adjusted. On the other hand, 2.1 g of sodium borohydride as a reducing agent was dissolved in 295 ml of pure water to which 4 ml of 28% ammonia water was added. Both were dripped simultaneously in 600 milliliters of pure water over 30 minutes, silver nitrate was reduced, and silver colloidal particles having 3-mercaptopropionic acid deposited on the surface were produced in the medium. Next, the medium liquid of the obtained silver colloid particles is adjusted to pH 2.5 with nitric acid (30%), the silver colloid particles are settled, and the silver colloid particles are filtered by a vacuum filter. The filtrate was washed with water until the specific conductivity of the filtrate became 10 μS / cm or less, and then re-dispersed in water to obtain an aqueous silver colloid solution (containing 50% by weight of silver colloid particles).

実施例1〜3、比較例1
前記の銀コロイド溶液を用いて、表1に示す処方により本発明及び比較対象の流動性組成物を得た。それぞれを、試料A〜Dとする。
Examples 1-3, Comparative Example 1
Using the silver colloid solution, fluid compositions of the present invention and comparison targets were obtained according to the formulations shown in Table 1. Each is designated as Samples A to D.

Figure 0004616599
*)銀コロイド粒子1重量部に対し、保護コロイドとしてメルカプトプロピオン酸を
0.03重量部含む。
**)分散剤(有効成分40重量%:ビックケミー社製)


Figure 0004616599
*) 0.03 part by weight of mercaptopropionic acid is contained as a protective colloid with respect to 1 part by weight of silver colloidal particles.
**) Dispersant (active ingredient 40% by weight: manufactured by Big Chemie)


評価1
実施例1〜3、比較例1の流動性組成物(試料A〜D)を製造直後、製造後1ヶ月及び2ヶ月貯蔵したものについて、#16バーコーターでガラス板上に塗布し風乾した後、70℃の温度で10分間予備加熱し、更に150℃の温度で30分間焼きつけた。得られた塗布物の外観を目視で判定し、体積抵抗率を、ロレスタ−GP型低抵抗率計(三菱化学社製)を用いて測定した。結果を表2に示す。表2中の外観の「○」は良好な金属光沢があることを、「△」は若干の金属光沢があることを、「×」は白濁していることを示す。また、試料A、Dのそれぞれの塗布物の表面状態を、走査型電子顕微鏡で撮影した。本発明の流動性組成物は、貯蔵後もほとんど塗布物の外観及び導電性が低下せず、安定性が優れていることが判る。
Evaluation 1
After applying the fluid compositions (Samples A to D) of Examples 1 to 3 and Comparative Example 1 immediately after production and 1 month and 2 months after production on a glass plate with an # 16 bar coater and air-drying And preheating at a temperature of 70 ° C. for 10 minutes and further baking at a temperature of 150 ° C. for 30 minutes. The appearance of the obtained coated product was visually determined, and the volume resistivity was measured using a Loresta-GP type low resistivity meter (manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 2. “◯” in the appearance in Table 2 indicates that there is a good metallic luster, “Δ” indicates that there is a slight metallic luster, and “×” indicates that it is cloudy. Moreover, the surface state of each coating material of sample A and D was image | photographed with the scanning electron microscope. It can be seen that the flowable composition of the present invention is excellent in stability with almost no decrease in the appearance and conductivity of the coated product even after storage.

Figure 0004616599
Figure 0004616599

本発明の流動性組成物は、長期間保管しても優れた導電性等の性能が得られる塗膜を形成できるため、均一な電極や配線を形成し易く、特に、プリント配線基板等の微細電極、配線パターンの形成などに利用できる。   Since the fluid composition of the present invention can form a coating film that exhibits excellent conductivity and the like even when stored for a long period of time, it is easy to form uniform electrodes and wiring. It can be used for forming electrodes and wiring patterns.

図1は実施例1で得られた流動性組成物(試料A)を、製造直後に評価1の方法で得た塗布物表面の電子顕微鏡写真(倍率7300倍)である。FIG. 1 is an electron micrograph (magnification: 7300 times) of the surface of a coated material obtained by the method of Evaluation 1 immediately after production of the fluid composition (sample A) obtained in Example 1. 図2は実施例1で得られた流動性組成物(試料A)を、製造後2ヶ月貯蔵した後、評価1の方法で得た塗布物表面の電子顕微鏡写真(倍率7300倍)である。FIG. 2 is an electron micrograph (magnification: 7300 times) of the surface of the coated material obtained by the method of Evaluation 1 after the fluid composition (sample A) obtained in Example 1 was stored for 2 months after production. 図3は比較例1で得られた流動性組成物(試料D)を、製造直後に評価1の方法で得た塗布物表面の電子顕微鏡写真(倍率7300倍)である。FIG. 3 is an electron micrograph (magnification: 7300 times) of the surface of a coated product obtained by the method of Evaluation 1 immediately after production of the fluid composition (sample D) obtained in Comparative Example 1. 図4は比較例1で得られた流動性組成物(試料D)を、製造後1ヶ月貯蔵した後、評価1の方法で得た塗布物表面の電子顕微鏡写真(倍率7300倍)である。FIG. 4 is an electron micrograph (magnification: 7300 times) of the coated surface obtained by the method of Evaluation 1 after the fluid composition (sample D) obtained in Comparative Example 1 was stored for 1 month after production. 図5は比較例1で得られた流動性組成物(試料D)を、製造後2ヶ月貯蔵した後、評価1の方法で得た塗布物表面の電子顕微鏡写真(倍率7300倍)である。FIG. 5 is an electron micrograph (magnification: 7300 times) of the surface of the coated material obtained by the method of Evaluation 1 after the fluid composition (Sample D) obtained in Comparative Example 1 was stored for 2 months after production.

Claims (6)

少なくとも金属コロイド粒子と分散媒と、ヒドラジンまたはその水和物、ヒドラジン化合物、アルデヒド類から選ばれる少なくとも1種の還元性物質との混合物である流動性組成物であって、
該分散媒が、N−メチルホルムアミド、ジメチルスルホキシド、4−ブチロラクトン、アセトアミド、1,3−ジメチル−2−イミダゾリジノンから選ばれる少なくとも1種の有機溶媒と水を含み、
該水は、前記分散媒100重量%に対し少なくとも50重量%であり、
前記金属コロイド粒子の含有量が前記組成物100重量%に対して少なくとも5重量%であり、
該金属コロイド粒子100重量部に対して前記還元性物質を0.1〜50重量部配合してなり、
実質的にバインダーを含有しないことを特徴とする流動性組成物。
A fluid composition comprising a mixture of at least metal colloidal particles, a dispersion medium, and at least one reducing substance selected from hydrazine or a hydrate thereof, a hydrazine compound, and aldehydes ,
The dispersion medium contains at least one organic solvent selected from N-methylformamide, dimethyl sulfoxide, 4-butyrolactone, acetamide, 1,3-dimethyl-2-imidazolidinone and water,
The water is at least 50% by weight with respect to 100% by weight of the dispersion medium,
At least 5 wt.% Content to the composition 100% by weight of the metal colloid particles,
Ri Na and said reducing substance incorporated 0.1 to 50 parts by weight per 100 parts by weight of the metal colloid particles,
A flowable composition characterized by containing substantially no binder .
金属コロイド粒子がその表面に硫黄化合物を有することを特徴とする請求項1記載の流動性組成物。 2. The fluid composition according to claim 1, wherein the metal colloid particles have a sulfur compound on the surface thereof. 金属コロイド粒子が銀または銅のコロイド粒子であることを特徴とする請求項1又は2に記載の流動性組成物。 The fluid composition according to claim 1 or 2 , wherein the metal colloidal particles are silver or copper colloidal particles. 請求項1〜3のいずれかに記載の流動性組成物を塗布して形成されることを特徴とする微細な導電部材として用いる電極。 An electrode used as a fine conductive member formed by applying the fluid composition according to any one of claims 1 to 3 . 請求項1〜3のいずれかに記載の流動性組成物を用いて形成されることを特徴とする配線パターン。 It forms using the fluid composition in any one of Claims 1-3, The wiring pattern characterized by the above-mentioned. 少なくとも金属コロイド粒子と分散媒を含有する混合物に少なくとも還元性物質を混合する工程を有する流動性組成物の製造方法であって、A method for producing a fluid composition comprising a step of mixing at least a reducing substance into a mixture containing at least metal colloid particles and a dispersion medium,
前記金属コロイド粒子の含有量が流動性組成物100重量%に対して少なくとも5重量%であり、The content of the metal colloidal particles is at least 5% by weight with respect to 100% by weight of the flowable composition;
前記還元性物質がヒドラジンまたはその水和物、ヒドラジン化合物、アルデヒド類から選ばれる少なくとも1種であり、The reducing substance is at least one selected from hydrazine or a hydrate thereof, a hydrazine compound, and aldehydes;
該還元性物質を前記金属コロイド粒子100重量部に対して0.1〜50重量部配合してなり、0.1 to 50 parts by weight of the reducing substance is blended with respect to 100 parts by weight of the metal colloid particles,
流動性組成物中の分散媒が、N−メチルホルムアミド、ジメチルスルホキシド、4−ブチロラクトン、アセトアミド、1,3−ジメチル−2−イミダゾリジノンから選ばれる少なくとも1種の有機溶媒と水を含み、The dispersion medium in the flowable composition contains at least one organic solvent selected from N-methylformamide, dimethyl sulfoxide, 4-butyrolactone, acetamide, 1,3-dimethyl-2-imidazolidinone and water,
該水は流動性組成物中の分散媒100重量%に対し少なくとも50重量%であり、The water is at least 50% by weight with respect to 100% by weight of the dispersion medium in the flowable composition;
前記工程において、実質的にバインダーを混合しない流動性組成物の製造方法。A method for producing a flowable composition wherein substantially no binder is mixed in the step.
JP2004257667A 2004-09-03 2004-09-03 Fluid composition, electrode formed using the same, and wiring pattern Active JP4616599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257667A JP4616599B2 (en) 2004-09-03 2004-09-03 Fluid composition, electrode formed using the same, and wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257667A JP4616599B2 (en) 2004-09-03 2004-09-03 Fluid composition, electrode formed using the same, and wiring pattern

Publications (2)

Publication Number Publication Date
JP2006073436A JP2006073436A (en) 2006-03-16
JP4616599B2 true JP4616599B2 (en) 2011-01-19

Family

ID=36153815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257667A Active JP4616599B2 (en) 2004-09-03 2004-09-03 Fluid composition, electrode formed using the same, and wiring pattern

Country Status (1)

Country Link
JP (1) JP4616599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983707A (en) * 2015-01-27 2016-10-05 昆明冶金高等专科学校 Method for preparing high-purity rhenium powder from rhenium-containing high-arsenic copper sulfide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096771B2 (en) * 2007-03-23 2012-12-12 三菱製紙株式会社 Conductive expression method
JP2009138165A (en) * 2007-12-10 2009-06-25 Seiko Epson Corp Ink for forming conductor pattern, conductor pattern, and wiring substrate
JP5087384B2 (en) * 2007-12-14 2012-12-05 三菱製紙株式会社 Manufacturing method of conductive member and conductive member
JP2016136595A (en) * 2015-01-23 2016-07-28 住友電工プリントサーキット株式会社 Manufacturing method for board for printed wiring plate, board for printed wiring plate and printed wiring plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612912A (en) * 1991-11-19 1994-01-21 Kao Corp Conductive paste and conductive coating film
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
JP2002324966A (en) * 2001-04-24 2002-11-08 Harima Chem Inc Method for forming circuit pattern utilizing ink-jet printing method
JP2004143325A (en) * 2002-10-25 2004-05-20 Bando Chem Ind Ltd Electroconductive ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612912A (en) * 1991-11-19 1994-01-21 Kao Corp Conductive paste and conductive coating film
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
JP2002324966A (en) * 2001-04-24 2002-11-08 Harima Chem Inc Method for forming circuit pattern utilizing ink-jet printing method
JP2004143325A (en) * 2002-10-25 2004-05-20 Bando Chem Ind Ltd Electroconductive ink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983707A (en) * 2015-01-27 2016-10-05 昆明冶金高等专科学校 Method for preparing high-purity rhenium powder from rhenium-containing high-arsenic copper sulfide
CN105983707B (en) * 2015-01-27 2019-02-15 昆明冶金高等专科学校 A method of high-purity rhenium powder is prepared from rhenium-containing high arsenic-and copper-bearing sulfide

Also Published As

Publication number Publication date
JP2006073436A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP5393451B2 (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP5294851B2 (en) Method for producing nickel fine particles
JP5373031B2 (en) Copper fine particles and method for producing the same
US9580811B2 (en) Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP5596609B2 (en) Metal colloid solution and paint using the same
US20040221685A1 (en) Method for manufacturing nano-scaled copper powder by wet reduction process
JP2006265585A (en) Method for producing copper powder and copper powder
KR101236246B1 (en) Copper powder
JP4616599B2 (en) Fluid composition, electrode formed using the same, and wiring pattern
JP5944668B2 (en) Method for producing sintered metal copper film
JP4176627B2 (en) Colloidal metal particles, method for producing the same, fluid composition containing the same, and electrode formed using the fluid composition
JP2005235533A (en) Metal particle dispersion liquid and circuit forming method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R151 Written notification of patent or utility model registration

Ref document number: 4616599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250