JP4502481B2 - Electronic device surface treatment solution - Google Patents

Electronic device surface treatment solution Download PDF

Info

Publication number
JP4502481B2
JP4502481B2 JP2000259058A JP2000259058A JP4502481B2 JP 4502481 B2 JP4502481 B2 JP 4502481B2 JP 2000259058 A JP2000259058 A JP 2000259058A JP 2000259058 A JP2000259058 A JP 2000259058A JP 4502481 B2 JP4502481 B2 JP 4502481B2
Authority
JP
Japan
Prior art keywords
electronic device
surface treatment
aqueous solution
device surface
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000259058A
Other languages
Japanese (ja)
Other versions
JP2002069500A (en
Inventor
英明 高島
茂 加門
建 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kisco Co Ltd
Original Assignee
Kisco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kisco Co Ltd filed Critical Kisco Co Ltd
Priority to JP2000259058A priority Critical patent/JP4502481B2/en
Publication of JP2002069500A publication Critical patent/JP2002069500A/en
Application granted granted Critical
Publication of JP4502481B2 publication Critical patent/JP4502481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、界面活性剤を含む、シリコン表面荒れ及びシリコン腐食なく半導体表面を処理可能な中性またはアルカリ性の水溶液に関するものであり、特に半導体等の電子デバイス製造工程における洗浄技術に属する。
【0002】
【従来の技術】
大規模集積回路(VLSI)を形成するにあたって、回路素子の加工寸法は0.1μm 程度まで縮小しており、ウェーハ上に残存するパーティクルやフォトレジスト残渣は大きな問題である。現在はその除去にアンモニア水やリン酸アンモニウムなどの中性からアルカリ性の水溶液やそれに過酸化水素を添加したものが主に使用されている。
【0003】
また、リソグラフイー後の現像液としては、テトラメチルアンモニウム水溶液が一般的に使用されている。
【0004】
中性からアルカリ性の水溶液は、一般的に基板に対する腐食性を有しており、この作用によりパーティクルやフォトレジスト残渣除去能力を発揮している。しかし、この基板に対する腐食性はシリコンの結晶面によって異なっており、表面粗さを増大する方向に作用し、パターンの微細化が進展するにつれ問題となってきている。また、これらの問題は基板裏面などにも同様に存在する。
【0005】
この対策としては、パーフルオロアルキル系界面活性剤や、脂肪族界面活性剤の導入がまず挙げられるが、これにも泡切れの悪さによる装置操作性の悪化、表面吸着などが原因する洗浄効率の低下、フィルター吸着による目詰まり、金属不純物の混入などの問題点も存在し、使用には困難を要する状態である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、中性からアルカリ性の水溶液のシリコン腐食力を低下させ、同時に除去力を低下させない系を形成することであり、更にフィルターの目詰まり、金属不純物の混入、泡による装置操作性の悪化なども生起させない電子デバイス表面処理液を提供することである。
【0007】
【課題を解決するための手段】
すなわち上記目的は、以下の構成により達成される。
(1) pH5以上の水溶液に、少なくとも2以上の5員環または6員環を有する脂肪族多環式の界面活性剤を25ppm 以上含有し、
前記脂肪族多環式の界面活性剤が胆汁酸である電子デバイス表面処理液。
(2) 前記界面活性剤を、pH8以下で、100〜500ppm 含有する上記(1)の電子デバイス表面処理液。
(3) 前記界面活性剤を、pH8以上で、200〜5000ppm 含有する上記(1)の電子デバイス表面処理液。
(4) 前記水溶液は、pH5以上のリン酸アンモニウム、縮合リン酸アンモニウム、またはリン酸アンモニウムおよび縮合リン酸アンモニウム水溶液である上記(1)〜(3)のいずれかの電子デバイス表面処理液。
(5) 前記水溶液は、アンモニア水である上記(1)〜(3)のいずれかの電子デバイス表面処理液。
(6) 前記水溶液は、テトラメチルアンモニム、またはコリン水溶液である上記(1)〜(3)のいずれかの電子デバイス表面処理液。
(7) 水溶液は、pH5以上のフッ化アンモニウム水溶液である上記(1)〜(3)のいずれかの電子デバイス表面処理液。
(8) 水溶液は、pH5以上のリン酸アミン塩水溶液である上記(1)〜(3)のいずれかの電子デバイス表面処理液。
(9) 脂肪族多環式界面活性剤がコール酸誘導体である上記(1)〜(8)のいずれかの電子デバイス表面処理液。
【0008】
【発明の実施の形態】
本発明の半導体表面処理液は、pH5以上の水溶液に、少なくとも2以上の5員環または6員環を有する脂肪族多環式の界面活性剤を25ppm 以上含有するものである。
【0009】
一般に、半導体表面を洗浄するために用いられる処理液は、シリコンの腐食性を低下させ、処理後の表面状態の平滑度を保持するために、界面活性剤が導入されている。ここで、多くの界面活性剤がシリコンの防食や平滑度の保持に有効であることが報告されているが、金属不純物の多さ、泡切れの悪さ、表面残存などの問題が発生するものが極めて多い。
【0010】
まず金属不純物に関しては、ポリオキシエチレン鎖を構造に含む場合や、フッ素系の界面活性剤は合成過経でナトリウムやカリウムを使用するため、金属不純物の含有量が極めて多い。さらに、これらの化合物に関して、金属除去を試みても構造内にスルホン酸などの強酸を有しているため、イオン交換等の金属不純物除去作業は極めて困難である。
【0011】
これを解決するためには、出来るだけ天然に存在する化合物を利用し、弱酸基を構造内に有することが望ましい。
【0012】
次に、泡切れに関しては、分子量の大きさや分子内のエーテル、アミド、芳香環などの会合性構造が原因して悪化しており、これらの構造を含まないものが望ましい。また、表面残存、フィルター透過性などの面から考えても、ミセルの会合数は小さいほど良いことが予想された。
【0013】
以上の検討結果から、少なくとも2以上の5員環または6員環を有する脂肪族多環式の界面活性剤が有効であることがわかった。
【0014】
すなわち、アルカリ溶液または高温の中性溶液の高いSi腐食を、コール酸等の少なくとも2以上の5員環または6員環を有する脂肪族多環式の界面活性剤50ppm 〜0.5%の添加により効果的に抑制できることが明らかとなった。また、この際、処理後のSi表面は平滑度を保っており、表面荒れを抑制する効果もコール酸等の脂肪族多環式の界面活性剤添加には認められた。さらに、この系では、泡立ちはあるが、泡切れが極めて良好であり、スプレー、ディップどちらの洗浄装置にも適用できる。
【0015】
少なくとも2以上の5員環または6員環を有する脂肪族多環式の界面活性剤は、具体的には脂肪族多環式のアニオン性界面活性剤である胆汁酸類や中性からアルカリ性に溶解する多環式テルペン類を挙げることができる。
【0016】
胆汁酸としては、コール酸、デオキシコール酸、デヒドロコール酸、ケノデオキシコール酸、リトコール酸、タウロコール酸、グリココール酸等が挙げられ、テルペン類としては、アビエチン酸等が挙げられる。
【0017】
これらのなかでも、特に下記構造を有するコール酸誘導体が好ましい。
【0018】
【化1】

Figure 0004502481
【0019】
(式中、Rは、OH、Hまたは=Oを表す)
【0020】
通常、これらの胆汁酸類や多環式テルペン類は、アンモニウム塩、テトラメチルアンモニウム塩、アルカリ金属塩等の塩として添加される。
【0021】
これらの胆汁酸類や多環式テルペン類は、全て天然に存在し、ミセルの会合数は数分子と極めて小さく、金属は酸性下での再沈殿法により充分に精製可能で、泡切れも良好、しかもシリコンに対する防食力はパーフルオロアルキル系や、ポリオキシエチレン系に匹敵している。また、本化合物群は天然に存在するため、環境面でも良好な性質を示し、当然生分解性である上に、変異原性も認められず、廃棄法も簡便である。
【0022】
本発明の脂肪族多環式界面活性剤の添加濃度は、25ppm 以上、好ましくは100ppm 〜0.5%であり、その最適添加量はpHにより異なり、例えばpH8以下では、100〜500ppm が最適、pH8以上では200〜5000ppm が最適である。
【0023】
添加される洗浄用の水溶液としては、pH5以上、特にpH6〜14の水溶液であれば特に限定されるものではなく、通常の半導体洗浄、液晶デバイス洗浄に用いられている洗浄液であればいずれのものにも有効である。
【0024】
具体的には、アンモニア、苛性ソーダ、苛性カリ、ヒドラジン、ヒドロキシルアミン、リン酸アンモニウム、縮合リン酸アンモニウム、フッ化アンモニウム、テトラメチルアンモニウム、コリン、リン酸やクエン酸とのアミン塩等の水溶液が挙げられるが、これらのなかでも特にリン酸アンモニウム、縮合リン酸アンモニウム、アンモニア、フッ化アンモニウム、テトラメチルアンモニウム、コリンが好ましい。
【0025】
これらの溶液の濃度としては、所定の洗浄能力とpHが得られる濃度であればよく、用いる材料により最適な濃度に調整すればよい。具体的には、重量濃度でリン酸アンモニウム(pH6〜10)は0.1〜20%、アンモニア水は0.1〜10%、フッ化アンモニウム(pH5〜9)は、0.05〜5%、テトラメチルアンモニウムは0.5〜10%である。
【0026】
また、本発明の電子デバイス表面処理液は、半導体デバイス製造プロセス、液晶デバイス(LCD)製造プロセス等の電子デバイス製造プロセスにおけるシリコンウェハーやガラス基板等の表面の不純物イオン(例えばNa、K、Ca、Al、Fe、Ni、Cu等の金属イオンや塩素等のハロゲンのイオン)、パーティクル、有機物、酸化膜など、デバイス特性を低下させる原因となる物質を、複雑な工程を経ることなく、単にこの洗浄剤と接触させることで除去することができる。さらに、上記製造プロセスにおいてドライエッチングの際に生成する有機金属や、レジスト除去のための酸素プラズマ灰化処理等によってこの有機金属が変化した金属酸化物などを含有する、ポリマーと称されるエッチング残留物の除去剤として使用することができる。
【0027】
また、被処理体である金属等に残留して金属の腐食等を生じさせる問題もない。
【0028】
すなわち、本発明の電子デバイス表面処理液は、
1)ドライエッチング残留物の除去液、
2)シリコンウェハー等における、金属やハロゲンのイオン等の不純物などの除去を目的とした、いわゆるRCA洗浄に用いる薬液の代替液、
3)ウェハー等のスクラブ洗浄用洗浄液、
4)CMP(化学的機械的ポリッシング)プロセス後のウェハー等の洗浄液、
5)液晶デバイス用ガラス基板の洗浄液、
等の用途で、処理液がシリコン基板と接触する用途に適している。
【0029】
【実施例】
<実施例1>
4wt%のアンモニア水にコール酸アンモニウムを0〜0.5wt%となるように添加して、処理液を調製した。被処理体としては(100)面P伝導型のSiウェーハを0.5wt%のHF水溶液にて予め処理したものを用いた。
【0030】
以上で調製した界面活性剤添加アンモニア水80mlを100mlのPE製ボトルに封入、これを45℃に加温し約2cm角にカットした上記のSiウエーハを浸漬した。1時間、45℃に静置後、ウェーハを取出し観察、また、薬液中のSi濃度をICP−MSにより分析してSiの腐食率を算出した。結果を表1にまとめる。
【0031】
【表1】
Figure 0004502481
【0032】
コール酸アンモニウム無添加のアンモニア水では、Si表面が荒れているのが確認できるが、コール酸アンモニウムを添加した系では全て鏡面が維持されていた。また、Siの腐食率は0.5wt%添加した場合では、無添加と比較し10%程度にまで低下している。この結果から、コール酸アンモニウムはSiの腐食を防止し、表面の平滑度を維持する効果があることがわかる。
【0033】
<実施例2>
5wt%のアンモニアと5wt%の過酸化水素を含む水溶液に、一般的に使用されているPOE型界面活性剤、パーフルオロアルキル型界面活性剤、コール酸をそれぞれ0.1wt%添加した試料を調製した。この試料に実施例1と同様の試験を実施した。
【0034】
POE型界面活性剤や、パーフルオロアルキル型界面活性剤を添加した試料で泡切れが悪く、泡が試料瓶の全体に充満したのに対し、コール酸添加系では泡切れが良好であった。また、処理後のSiの表面状態も鏡面に保たれた上、Siの腐食率も界面活性剤無添加の20%程度であった。
【0035】
<実施例3>
リン酸濃度5wt%でpH7.1のリン酸アンモニウム水溶液にコール酸0wt%、0.025wt%、0.05wt%を添加し試料を調製した。これを用いて実施例1の実験を温度50℃、65℃、75℃の3点で実施した。
【0036】
得られた実験結果を用いてアレニウス式にて解析した結果を表2および図1に示す。
【0037】
【表2】
Figure 0004502481
【0038】
Siの腐食率は0.025wt%の添加で、無添加の10%程度にまで抑制されている。さらにアレニウスプロットの傾きが無添加の系と添加した系でほぼ等しく、頻度因子のみが変化していることから、防食機構は活性イオンの衝突頻度の低下であると考察できた。
【0039】
<実施例4>
リン酸濃度5wt%でpH6.4のリン酸アンモニウム水溶液にコール酸0.05wt%を添加した試料をSi(100)ウェーハにのせ、蒸発乾固した。これを脱イオン水にて充分に洗浄した後、ウェーハ表面に1%アンモニア水をのせ、表面を軽くエッチングし、抽出されたコール酸濃度からウェーハ表面の界面活性剤残存量を測定した。
【0040】
コール酸の測定は酵素比色法を用い、試料は5倍濃縮して測定した。その結果、得られた濃度は検出下限以下であり、表面残存した界面活性剤は、1ng/cm2 以下であった。
【0041】
<実施例5>
水酸化テトラメチルアンモニウムの2.38wt%水溶液にコール酸0.1wt%を添加し試料溶液とした。これを用いて実施例1の実験を45℃で行ったところ、無添加の系ではSi表面の荒れが確認されたのに対し、コール酸を添加した系では鏡面が維持された。また、Siの腐食率も無添加の系の10%程度に抑制していた。
【0042】
<実施例6>
2wt%のフッ酸に12wt%のフッ化アンモニウムを添加した水溶液にコール酸0.05wt%を添加し試料溶液とした。これを用いて実施例1の実験を45℃で行ったところ、無添加の系ではSi表面の荒れが確認されたのに対し、コール酸を添加した系では鏡面が維持された。また、Siの腐食率も無添加系の10%程度に抑制していた。
【0043】
<実施例7>
図2に示すように、Siウェーハ(1)上にSiO2 (2)/TiN(3)/W(4)/SiN(5)膜を5/5/200/200nmの厚みにて積層させ、さらにフォトレジストを積層した。これにリソグラフイー処理にて配線パターンを形成、四フッ化メタンを含む混合ガスを用いてリアクティブイオンエッチングを行った。エッチング後のフォトレジストは酸素を含むプラズマ中に暴露することにより、灰化除去され、得られたパターン付きウェーハを被処理体とした。
【0044】
上記の被処理体中に形成されたパターンの配線側壁には、エッチング時の副生成物であるドライエッチング残渣(9)が付着していた。この残渣(9)を、75℃、30分リン酸濃度5wt%でpH7.1のリン酸アンモニウム水溶液にて処理を行ったところ、レジスト残渣(9)は完全に除去されるが、底面のSi表面が荒れていることが確認された。
【0045】
一方、コール酸0.05wt%を含む同様の薬液にて処理を行ったところ、レジスト残渣(9)が完全に除去されただけでなく、底面のSi表面の荒れも生起しておらず、良好な結果を得た。結果を表3に示す。
【0046】
【表3】
Figure 0004502481
【0047】
<実施例8>
図3に示すように、Siウェーハ(11)上にCoSi(12)/p−SiO2 膜(13)を5/200nmの厚みにて積層させ、さらにフォトレジストを積層した。これにリソグラフイー処理にてホールパターン(14)を形成、四フッ化メタンを含む混合ガスを用いてリアクティブイオンエッチングを行った。エッチング後のフォトレジストは酸素を含むプラズマ中に暴露することにより、灰化除去され、得られたパターン付きウェーハを被処理体とした。
【0048】
上記の被処理体中に形成されたパターンのSiO2 (13)上面、側壁及び底面には、エッチング時の副生成物であるドライエッチング残渣が付着していた。この残渣の除去を、75℃、30分リン酸濃度5wt%でpH7.1のリン酸アンモニウム水溶液にて、実際に処理を行ったところ、レジスト残渣は完全に除去されたが、底面のCoSi(12)に存在する微細な孔(15)から薬液がSi基板にまで達し、断面観察するとV字型にSi基板が腐食(16)されている様子が観察された。
【0049】
一方、コール酸0.05wt%を含む同様の薬液にて処理を行ったところ、レジスト残渣が完全に除去されただけでなく、底面のSi表面のV字型腐食も生起しておらず、良好な結果を得た。
【0050】
<実施例9>
Siウェーハ上にフォトレジストを積層し、これにリソグラフイー処理にてパターンを形成、Asイオンを5×1015 イオン/cm2 注入した。注入後のフォトレジストは酸素を含むプラズマ中に暴露することにより、灰化除去され、得られたウェーハを被処理体とした。
【0051】
上記の被処理体中に形成されたパターンには、フォトレジスト残渣が打ち込み領域の縁に沿って付着していた。この残渣の除去を、75℃、30分リン酸濃度5wt%でpH7.1のリン酸アンモニウム水溶液にて処理を行ったところ、レジスト残渣は完全に除去されるが、底面のSi基板が腐食されている様子が観察された。
【0052】
一方、コール酸0.05wt%を含む同様の薬液にて処理を行ったところ、レジスト残渣が完全に除去されただけでなく、底面のSi表面の腐食も生起しておらず、良好な結果を得た。
【0053】
<実施例10>
図4に示すように、Siウェーハ(31)上にSiN(32)、SiO2 (33)を積層、これにホールパターンを実施例8と同様に形成した。これにCu(34)をホール内にも充填されるようにメッキ処理した。更にシリカあるいはアルミナの砥粒(38)とフェリシアン化カリ等の酸化剤を用いて、SiO2 (33)面が露出するまで研磨し、Cu(34)が充填されたホールパターンを得た。
【0054】
以上の様に形成されたホールパターンには砥粒(38)が残存しており、これを除去するのに、30℃の1wt%アンモニア水中で超音波洗浄すると、表面に残存していた砥粒はほぼ完全に除去できるが、ウェーハ(31)の裏面や端(べベル)のSi露出面が腐食された。
【0055】
1wt%アンモニア水にコール酸0.05wt%を添加した試料にて同様の操作を行うと、砥粒(38)の除去も完全で、べベルや裏面のSi腐食がない良好な結果が得られた。
【0056】
<実施例11>
燐酸アンモニウム水溶液(pH7.1、リン酸=5wt%)にコール酸類(コール酸、デオキシコール酸、デヒドロコール酸)を125〜500ppm添加し、未添加の系とSi腐食性について比較した。ここで、被処理体としてはHF/DIW=1/100にて室温下、10分処理したものを用い、75℃、1時間処理を行っている。結果を表4に示す。
【0057】
【表4】
Figure 0004502481
【0058】
コール酸を添加した系にて処理した場合、全ての被処理体が鏡面状態を維持しており、また80〜95%程度の防食性を示したことがわかる。ここで、最も防食率が高いのは、デオキシコール酸であるが、酸側での使用限界(pH)等の問題もある。
【0059】
【発明の効果】
以上のように本発明によれば、中性からアルカリ性の水溶液のシリコン腐食力を低下させ、同時に除去力を低下させない系を形成することであり、更にフィルターの目詰まり、金属不純物の混入、泡による装置操作性の悪化なども生起させない電子デバイス表面処理液を提供することができる。
【図面の簡単な説明】
【図1】実施例3のサンプルをアレニウス式にて解析した結果をすグラフである。
【図2】実施例7の、Siウェーハ上にSiO2 /TiN/W/SiN膜を有するパターン付きウェーハを被処理体の構造を示す概略断面図である。
【図3】実施例8の、Siウェーハ上にCoSi/p−SiO2 膜を有するパターン付きウェーハを被処理体の構造を示す概略断面図である。
【図4】実施例10の、Siウェーハ上にSiN、SiO2 を有するパターン付きウェーハを被処理体の構造を示す概略断面図である。
【符号の説明】
1 Siウェーハ
2 SiO2
3 TiN
4 W
5 SiN
11 Siウェーハ
12 CoSi
13 p−SiO2
31 Siウェーハ
32 SiN
33 SiO2 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a neutral or alkaline aqueous solution containing a surfactant and capable of treating a semiconductor surface without roughening of the silicon surface and silicon corrosion, and particularly relates to a cleaning technique in a manufacturing process of an electronic device such as a semiconductor.
[0002]
[Prior art]
In forming a large scale integrated circuit (VLSI), the processing dimensions of circuit elements are reduced to about 0.1 μm, and particles and photoresist residues remaining on the wafer are a serious problem. Currently, neutral to alkaline aqueous solutions such as aqueous ammonia and ammonium phosphate and those added with hydrogen peroxide are mainly used for the removal.
[0003]
Further, a tetramethylammonium aqueous solution is generally used as a developer after lithographic.
[0004]
Neutral to alkaline aqueous solutions generally have corrosiveness to the substrate, and this action exhibits the ability to remove particles and photoresist residues. However, the corrosiveness with respect to this substrate differs depending on the crystal plane of silicon, which acts in the direction of increasing the surface roughness, and has become a problem as the miniaturization of patterns progresses. These problems also exist on the back surface of the substrate as well.
[0005]
The countermeasures include the introduction of perfluoroalkyl-based surfactants and aliphatic surfactants, but this also has an effect on cleaning efficiency due to deterioration of device operability due to poor foaming and surface adsorption. There are problems such as reduction, clogging due to filter adsorption, and mixing of metal impurities, which makes it difficult to use.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to form a system that reduces the silicon corrosive force of neutral to alkaline aqueous solutions and at the same time does not reduce the removal power. Further, the filter is clogged, metal impurities are mixed, and the operability of the apparatus due to bubbles is reduced. It is to provide an electronic device surface treatment liquid that does not cause deterioration of the surface.
[0007]
[Means for Solving the Problems]
That is, the above object is achieved by the following configuration.
(1) An aqueous solution having a pH of 5 or higher contains at least 25 ppm of an aliphatic polycyclic surfactant having at least two or more 5-membered or 6-membered rings,
An electronic device surface treatment liquid, wherein the aliphatic polycyclic surfactant is a bile acid.
(2) The electronic device surface treatment liquid according to (1), wherein the surfactant is contained at a pH of 8 or less and 100 to 500 ppm.
(3) The electronic device surface treatment liquid according to (1), wherein the surfactant is contained at a pH of 8 or more and 200 to 5000 ppm.
(4) The electronic device surface treatment liquid according to any one of (1) to (3), wherein the aqueous solution is ammonium phosphate having a pH of 5 or more, condensed ammonium phosphate, or an aqueous solution of ammonium phosphate and condensed ammonium phosphate.
(5) The electronic device surface treatment liquid according to any one of (1) to (3), wherein the aqueous solution is ammonia water.
(6) The electronic device surface treatment liquid according to any one of (1) to (3), wherein the aqueous solution is tetramethylammonium or an aqueous choline solution.
(7) The electronic device surface treatment liquid according to any one of (1) to (3), wherein the aqueous solution is an aqueous ammonium fluoride solution having a pH of 5 or more.
(8) The electronic device surface treatment liquid according to any one of (1) to (3), wherein the aqueous solution is a phosphoric acid amine salt aqueous solution having a pH of 5 or more.
(9) The electronic device surface treatment liquid according to any one of (1) to (8), wherein the aliphatic polycyclic surfactant is a cholic acid derivative.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The semiconductor surface treatment liquid of the present invention contains at least 25 ppm of an aliphatic polycyclic surfactant having at least two or more 5-membered or 6-membered rings in an aqueous solution having a pH of 5 or more.
[0009]
In general, a processing liquid used for cleaning a semiconductor surface is introduced with a surfactant in order to reduce the corrosiveness of silicon and maintain the smoothness of the surface state after the processing. Here, it has been reported that many surfactants are effective in preventing corrosion and maintaining smoothness of silicon, but there are cases where problems such as a large amount of metal impurities, poor foam loss, and surface residuals occur. Very many.
[0010]
First, regarding metal impurities, when polyoxyethylene chains are included in the structure, or fluorine-based surfactants use sodium or potassium in the process of synthesis, the content of metal impurities is extremely high. Further, regarding these compounds, even if an attempt is made to remove the metal, the structure has a strong acid such as sulfonic acid in the structure, and therefore, metal impurity removal work such as ion exchange is extremely difficult.
[0011]
In order to solve this, it is desirable to use a compound existing in nature as much as possible and to have a weak acid group in the structure.
[0012]
Next, bubble breakage is aggravated due to the size of the molecular weight and the associative structure such as ether, amide, and aromatic ring in the molecule, and those not containing these structures are desirable. In addition, it was expected that the smaller the number of micelles associated, the better the surface area, the filter permeability, and the like.
[0013]
From the above examination results, it was found that an aliphatic polycyclic surfactant having at least two or more 5-membered or 6-membered rings is effective.
[0014]
That is, addition of 50 ppm to 0.5% of an aliphatic polycyclic surfactant having at least two or more five-membered or six-membered rings such as cholic acid is caused by high Si corrosion of an alkaline solution or a high-temperature neutral solution. It became clear that it can suppress effectively. At this time, the treated Si surface maintained smoothness, and the effect of suppressing surface roughness was also observed in the addition of an aliphatic polycyclic surfactant such as cholic acid. Furthermore, in this system, although foaming occurs, the foam breakage is extremely good, and it can be applied to both spray and dip cleaning devices.
[0015]
Aliphatic polycyclic surfactants having at least two or more 5-membered or 6-membered rings are specifically dissolved in bile acids and neutral to alkaline, which are aliphatic polycyclic anionic surfactants. And polycyclic terpenes.
[0016]
Examples of bile acids include cholic acid, deoxycholic acid, dehydrocholic acid, chenodeoxycholic acid, lithocholic acid, taurocholic acid, glycocholic acid and the like, and terpenes include abietic acid and the like.
[0017]
Among these, a cholic acid derivative having the following structure is particularly preferable.
[0018]
[Chemical 1]
Figure 0004502481
[0019]
(Wherein R represents OH, H or ═O)
[0020]
Usually, these bile acids and polycyclic terpenes are added as salts such as ammonium salts, tetramethylammonium salts, and alkali metal salts.
[0021]
These bile acids and polycyclic terpenes all exist in nature, the number of micelles associated is very small, a few molecules, the metal can be sufficiently purified by reprecipitation under acidic conditions, and the bubbling is good. Moreover, the anticorrosive power against silicon is comparable to that of perfluoroalkyl and polyoxyethylene. In addition, since this compound group exists in nature, it exhibits good environmental properties, naturally is biodegradable, has no mutagenicity, and is easy to dispose of.
[0022]
The addition concentration of the aliphatic polycyclic surfactant of the present invention is 25 ppm or more, preferably 100 ppm to 0.5%, and the optimum addition amount varies depending on the pH. For example, at pH 8 or less, 100 to 500 ppm is optimum. Above pH 8, 200-5000 ppm is optimal.
[0023]
The aqueous solution for cleaning to be added is not particularly limited as long as it is an aqueous solution having a pH of 5 or more, particularly pH 6 to 14, and any cleaning solution may be used as long as it is used for normal semiconductor cleaning and liquid crystal device cleaning. Also effective.
[0024]
Specific examples include aqueous solutions of ammonia, caustic soda, caustic potash, hydrazine, hydroxylamine, ammonium phosphate, condensed ammonium phosphate, ammonium fluoride, tetramethylammonium, choline, amine salts with phosphoric acid and citric acid, and the like. Of these, ammonium phosphate, condensed ammonium phosphate, ammonia, ammonium fluoride, tetramethylammonium, and choline are particularly preferable.
[0025]
The concentration of these solutions may be any concentration that provides a predetermined cleaning ability and pH, and may be adjusted to an optimum concentration depending on the material used. Specifically, ammonium phosphate (pH 6 to 10) is 0.1 to 20% by weight concentration, ammonia water is 0.1 to 10%, and ammonium fluoride (pH 5 to 9) is 0.05 to 5%. Tetramethylammonium is 0.5 to 10%.
[0026]
In addition, the electronic device surface treatment liquid of the present invention is used for impurity ions (for example, Na, K, Ca, etc.) on the surface of a silicon wafer or glass substrate in an electronic device manufacturing process such as a semiconductor device manufacturing process or a liquid crystal device (LCD) manufacturing process. This cleaning is performed without complicated processes, such as metal ions such as Al, Fe, Ni and Cu, and halogen ions such as chlorine), particles, organic substances, and oxide films, without causing complicated processes. It can be removed by contacting with an agent. Further, an etching residue called a polymer containing an organic metal generated during dry etching in the above manufacturing process or a metal oxide in which the organic metal has been changed by an oxygen plasma ashing process for removing a resist. It can be used as a product removal agent.
[0027]
Further, there is no problem of remaining on the metal to be processed and causing corrosion of the metal.
[0028]
That is, the electronic device surface treatment liquid of the present invention is
1) Liquid for removing dry etching residue,
2) An alternative solution for chemicals used for so-called RCA cleaning for the purpose of removing impurities such as metal and halogen ions in silicon wafers,
3) Cleaning liquid for scrub cleaning of wafers,
4) Cleaning liquid for wafers after CMP (Chemical Mechanical Polishing) process,
5) Cleaning liquid for glass substrates for liquid crystal devices,
For example, it is suitable for applications in which the processing liquid comes into contact with the silicon substrate.
[0029]
【Example】
<Example 1>
A treatment liquid was prepared by adding ammonium cholate to 4 wt% ammonia water so as to be 0 to 0.5 wt%. As the object to be processed, a (100) plane P-conduction type Si wafer previously treated with a 0.5 wt% HF aqueous solution was used.
[0030]
80 ml of the surfactant-added aqueous ammonia prepared above was sealed in a 100 ml PE bottle, which was heated to 45 ° C. and immersed in the Si wafer cut to about 2 cm square. After standing at 45 ° C. for 1 hour, the wafer was taken out and observed, and the Si concentration in the chemical solution was analyzed by ICP-MS to calculate the corrosion rate of Si. The results are summarized in Table 1.
[0031]
[Table 1]
Figure 0004502481
[0032]
In ammonia water without addition of ammonium cholate, it can be confirmed that the Si surface is rough, but in the system to which ammonium cholate was added, all mirror surfaces were maintained. Further, the corrosion rate of Si is reduced to about 10% when 0.5 wt% is added, compared with the case where it is not added. From this result, it is understood that ammonium cholate has an effect of preventing the corrosion of Si and maintaining the smoothness of the surface.
[0033]
<Example 2>
Samples prepared by adding 0.1 wt% of commonly used POE surfactant, perfluoroalkyl surfactant, and cholic acid to an aqueous solution containing 5 wt% ammonia and 5 wt% hydrogen peroxide, respectively. did. The same test as in Example 1 was performed on this sample.
[0034]
The sample to which the POE type surfactant or the perfluoroalkyl type surfactant was added had poor foaming and the foam filled the entire sample bottle, whereas the cholic acid addition system showed good foaming. In addition, the surface state of Si after the treatment was kept in a mirror surface, and the corrosion rate of Si was about 20% with no surfactant added.
[0035]
<Example 3>
Samples were prepared by adding 0 wt%, 0.025 wt%, and 0.05 wt% of cholic acid to an aqueous ammonium phosphate solution having a phosphoric acid concentration of 5 wt% and a pH of 7.1. Using this, the experiment of Example 1 was carried out at three points of temperatures of 50 ° C., 65 ° C., and 75 ° C.
[0036]
The results of analysis using the Arrhenius equation using the obtained experimental results are shown in Table 2 and FIG.
[0037]
[Table 2]
Figure 0004502481
[0038]
The corrosion rate of Si is suppressed to about 10% with no addition and 0.025 wt%. Furthermore, since the slope of the Arrhenius plot was almost the same in the additive-free system and the added system, and only the frequency factor changed, it was considered that the anticorrosion mechanism was a decrease in the collision frequency of the active ions.
[0039]
<Example 4>
A sample obtained by adding 0.05 wt% of cholic acid to an aqueous ammonium phosphate solution having a phosphoric acid concentration of 5 wt% and a pH of 6.4 was placed on a Si (100) wafer and evaporated to dryness. After thoroughly washing with deionized water, 1% ammonia water was placed on the wafer surface, the surface was lightly etched, and the amount of surfactant remaining on the wafer surface was measured from the extracted cholic acid concentration.
[0040]
The measurement of cholic acid was performed using an enzyme colorimetric method, and the sample was concentrated five times. As a result, the concentration obtained was below the lower limit of detection, and the surfactant remaining on the surface was 1 ng / cm 2 or less.
[0041]
<Example 5>
A sample solution was prepared by adding 0.1 wt% of cholic acid to a 2.38 wt% aqueous solution of tetramethylammonium hydroxide. When the experiment of Example 1 was conducted at 45 ° C. using this, the surface of the Si surface was confirmed to be rough in the additive-free system, while the mirror surface was maintained in the system to which cholic acid was added. Moreover, the corrosion rate of Si was suppressed to about 10% of the additive-free system.
[0042]
<Example 6>
A sample solution was prepared by adding 0.05 wt% of cholic acid to an aqueous solution of 12 wt% ammonium fluoride added to 2 wt% hydrofluoric acid. When the experiment of Example 1 was conducted at 45 ° C. using this, the surface of the Si surface was confirmed to be rough in the additive-free system, while the mirror surface was maintained in the system to which cholic acid was added. Moreover, the corrosion rate of Si was suppressed to about 10% of the additive-free system.
[0043]
<Example 7>
As shown in FIG. 2, a SiO 2 (2) / TiN (3) / W (4) / SiN (5) film is laminated on the Si wafer (1) at a thickness of 5/5/200/200 nm. Further, a photoresist was laminated. A wiring pattern was formed thereon by lithographic processing, and reactive ion etching was performed using a mixed gas containing tetrafluoromethane. The etched photoresist was removed by ashing by exposure to oxygen-containing plasma, and the resulting patterned wafer was used as the object to be processed.
[0044]
A dry etching residue (9), which is a by-product during etching, was attached to the wiring sidewall of the pattern formed in the object to be processed. When this residue (9) was treated with an aqueous ammonium phosphate solution having a pH of 7.1 at 75 ° C. for 30 minutes with a phosphoric acid concentration of 5 wt%, the resist residue (9) was completely removed, but the bottom Si It was confirmed that the surface was rough.
[0045]
On the other hand, when the same chemical solution containing 0.05% by weight of cholic acid was used, not only the resist residue (9) was completely removed but also the Si surface on the bottom surface did not become rough, which was good. Results were obtained. The results are shown in Table 3.
[0046]
[Table 3]
Figure 0004502481
[0047]
<Example 8>
As shown in FIG. 3, a CoSi (12) / p-SiO 2 film (13) was laminated at a thickness of 5/200 nm on a Si wafer (11), and a photoresist was further laminated. A hole pattern (14) was formed thereon by lithographic processing, and reactive ion etching was performed using a mixed gas containing tetrafluoromethane. The etched photoresist was removed by ashing by exposure to oxygen-containing plasma, and the resulting patterned wafer was used as the object to be processed.
[0048]
SiO 2 (13) the upper surface of the pattern formed in the workpiece described above, the side wall and a bottom, a dry etching residue was adhered by-product at the time of etching. When this residue was actually treated with an aqueous ammonium phosphate solution having a phosphoric acid concentration of 5 wt% and a pH of 7.1 at 75 ° C. for 30 minutes, the resist residue was completely removed, but CoSi ( The chemical solution reached the Si substrate from the fine holes (15) present in 12), and when the cross section was observed, it was observed that the Si substrate was corroded (16) in a V-shape.
[0049]
On the other hand, when the same chemical solution containing 0.05% by weight of cholic acid was used, not only the resist residue was completely removed, but also V-shaped corrosion of the Si surface at the bottom did not occur, which was good Results were obtained.
[0050]
<Example 9>
A photoresist was laminated on the Si wafer, a pattern was formed thereon by lithographic processing, and As ions were implanted at 5 × 10 15 ions / cm 2 . After the implantation, the photoresist was removed by ashing by exposure to oxygen-containing plasma, and the wafer thus obtained was used as an object to be processed.
[0051]
Photoresist residues adhered to the pattern formed in the object to be processed along the edge of the implantation region. Removal of this residue was performed at 75 ° C. for 30 minutes with a phosphoric acid concentration of 5 wt% and a pH 7.1 ammonium phosphate aqueous solution. The resist residue was completely removed, but the Si substrate on the bottom surface was corroded. Was observed.
[0052]
On the other hand, when the same chemical solution containing 0.05 wt% of cholic acid was used, not only the resist residue was completely removed, but also the Si surface on the bottom surface did not corrode, and good results were obtained. Obtained.
[0053]
<Example 10>
As shown in FIG. 4, SiN (32) and SiO 2 (33) were laminated on the Si wafer (31), and a hole pattern was formed in the same manner as in Example 8. This was plated with Cu (34) so as to fill the hole. Further, using a silica or alumina abrasive grain (38) and an oxidizing agent such as potassium ferricyanide, polishing was performed until the SiO 2 (33) surface was exposed to obtain a hole pattern filled with Cu (34).
[0054]
Abrasive grains (38) remain in the hole pattern formed as described above, and when they are removed by ultrasonic cleaning in 1 wt% ammonia water at 30 ° C., the abrasive grains remaining on the surface are removed. Can be almost completely removed, but the back surface and the Si exposed surface of the edge (bevel) of the wafer (31) were corroded.
[0055]
When the same operation is performed on a sample obtained by adding 0.05 wt% of cholic acid to 1 wt% ammonia water, the removal of the abrasive grains (38) is complete, and good results without Si corrosion on the bevel and the back surface are obtained. It was.
[0056]
<Example 11>
125-500 ppm of cholic acid (cholic acid, deoxycholic acid, dehydrocholic acid) was added to an aqueous ammonium phosphate solution (pH 7.1, phosphoric acid = 5 wt%), and the non-added system was compared with the Si corrosivity. Here, the object to be treated is treated at HF / DIW = 1/100 at room temperature for 10 minutes and treated at 75 ° C. for 1 hour. The results are shown in Table 4.
[0057]
[Table 4]
Figure 0004502481
[0058]
It can be seen that when treated in a system to which cholic acid was added, all the objects to be treated maintained a mirror surface state and exhibited an anticorrosive property of about 80 to 95%. Here, deoxycholic acid has the highest anticorrosion rate, but there are also problems such as the use limit (pH) on the acid side.
[0059]
【The invention's effect】
As described above, according to the present invention, it is possible to form a system that reduces the silicon corrosive power of a neutral to alkaline aqueous solution and at the same time does not decrease the removal power. Further, the filter is clogged, metal impurities are mixed, bubbles are formed. It is possible to provide an electronic device surface treatment liquid that does not cause deterioration of apparatus operability due to the above.
[Brief description of the drawings]
FIG. 1 is a graph showing the result of analyzing the sample of Example 3 by the Arrhenius equation.
2 is a schematic cross-sectional view showing the structure of an object to be processed of a patterned wafer having a SiO 2 / TiN / W / SiN film on a Si wafer in Example 7. FIG.
3 is a schematic cross-sectional view showing the structure of an object to be processed of a patterned wafer having a CoSi / p-SiO 2 film on a Si wafer in Example 8. FIG.
4 is a schematic cross-sectional view showing the structure of an object to be processed of a patterned wafer having SiN and SiO 2 on a Si wafer in Example 10. FIG.
[Explanation of symbols]
1 Si wafer 2 SiO 2
3 TiN
4 W
5 SiN
11 Si wafer 12 CoSi
13 p-SiO 2 film 31 Si wafer 32 SiN
33 SiO 2

Claims (9)

pH5以上の水溶液に、少なくとも2以上の5員環または6員環を有する脂肪族多環式の界面活性剤を25ppm 以上含有し、
前記脂肪族多環式の界面活性剤が胆汁酸である電子デバイス表面処理液。
An aqueous solution having a pH of 5 or more contains at least 25 ppm of an aliphatic polycyclic surfactant having at least two or more 5-membered or 6-membered rings,
An electronic device surface treatment liquid, wherein the aliphatic polycyclic surfactant is a bile acid.
前記界面活性剤を、pH8以下で、100〜500ppm 含有する請求項1の電子デバイス表面処理液。  The electronic device surface treatment liquid according to claim 1, wherein the surfactant is contained at a pH of 8 or less and 100 to 500 ppm. 前記界面活性剤を、pH8以上で、200〜5000ppm 含有する請求項1の電子デバイス表面処理液。  The electronic device surface treatment liquid according to claim 1, wherein the surfactant is contained at a pH of 8 or more and 200 to 5000 ppm. 前記水溶液は、pH5以上のリン酸アンモニウム、縮合リン酸アンモニウム、またはリン酸アンモニウムおよび縮合リン酸アンモニウム水溶液である請求項1〜3のいずれかの電子デバイス表面処理液。  The electronic device surface treatment liquid according to any one of claims 1 to 3, wherein the aqueous solution is ammonium phosphate having a pH of 5 or more, condensed ammonium phosphate, or an aqueous solution of ammonium phosphate and condensed ammonium phosphate. 前記水溶液は、アンモニア水である請求項1〜3のいずれかの電子デバイス表面処理液。  The electronic device surface treatment liquid according to claim 1, wherein the aqueous solution is ammonia water. 前記水溶液は、テトラメチルアンモニム、またはコリン水溶液である請求項1〜3のいずれかの電子デバイス表面処理液。  The electronic device surface treatment liquid according to claim 1, wherein the aqueous solution is tetramethylammonium or a choline aqueous solution. 水溶液は、pH5以上のフッ化アンモニウム水溶液である請求項1〜3のいずれかの電子デバイス表面処理液。  The electronic device surface treatment liquid according to claim 1, wherein the aqueous solution is an aqueous ammonium fluoride solution having a pH of 5 or more. 水溶液は、pH5以上のリン酸アミン塩水溶液である請求項1〜3のいずれかの電子デバイス表面処理液。  The electronic device surface treatment solution according to any one of claims 1 to 3, wherein the aqueous solution is a phosphoric acid amine salt aqueous solution having a pH of 5 or more. 脂肪族多環式界面活性剤がコール酸誘導体である請求項1〜8のいずれかの電子デバイス表面処理液。  The electronic device surface treatment liquid according to claim 1, wherein the aliphatic polycyclic surfactant is a cholic acid derivative.
JP2000259058A 2000-08-29 2000-08-29 Electronic device surface treatment solution Expired - Lifetime JP4502481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259058A JP4502481B2 (en) 2000-08-29 2000-08-29 Electronic device surface treatment solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259058A JP4502481B2 (en) 2000-08-29 2000-08-29 Electronic device surface treatment solution

Publications (2)

Publication Number Publication Date
JP2002069500A JP2002069500A (en) 2002-03-08
JP4502481B2 true JP4502481B2 (en) 2010-07-14

Family

ID=18747280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259058A Expired - Lifetime JP4502481B2 (en) 2000-08-29 2000-08-29 Electronic device surface treatment solution

Country Status (1)

Country Link
JP (1) JP4502481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558850B (en) * 2014-03-29 2016-11-21 精密聚合物股份有限公司 The processing liquid for electronic components and the production method of electronic components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331287A (en) * 1994-06-13 1995-12-19 Dai Ichi Kogyo Seiyaku Co Ltd Cleaning of rosin-type flux residue

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331287A (en) * 1994-06-13 1995-12-19 Dai Ichi Kogyo Seiyaku Co Ltd Cleaning of rosin-type flux residue

Also Published As

Publication number Publication date
JP2002069500A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4224652B2 (en) Resist stripping solution and resist stripping method using the same
US6686322B1 (en) Cleaning agent and cleaning process using the same
KR100746056B1 (en) Substrate surface cleaning liquid mediums and cleaning method
US7621281B2 (en) Cleaning solution for cleaning substrate for semiconductor devices and cleaning method using the same
KR100269013B1 (en) Wafer-cleaning solution and process for the production thereof
KR100620260B1 (en) A cleaning composition and a method for removing residues from a substrate using the same
US6831048B2 (en) Detergent composition
US20100294306A1 (en) Method and solution for cleaning semiconductor device substrate
WO2002094462A1 (en) Method for cleaning surface of substrate
US20060148666A1 (en) Aqueous cleaner with low metal etch rate
JP2003289060A (en) Cleaning liquid for substrate for semiconductor device and cleaning method
US6245155B1 (en) Method for removing photoresist and plasma etch residues
JP4835455B2 (en) Residue removal composition for substrates using titanium
KR100320109B1 (en) Detergent for processes for producing semiconductor devices or producing liquid crystal devices
JP2003068696A (en) Method for cleaning substrate surface
JP4502481B2 (en) Electronic device surface treatment solution
JP2003109930A (en) Cleaning solution and method of cleaning board of semiconductor device
JPH1174180A (en) Manufacture of semiconductor device
JP4300400B2 (en) Resist stripping composition
JP2003316028A (en) Resist residue remover and cleaner
KR20010042461A (en) Method for removing photoresist and plasma etch residues
KR101264439B1 (en) Cleaning solution composition for electronic material and cleaning method using the same
KR100190102B1 (en) Cleaning solution and cleaning method using the same
JPH11305453A (en) Cleaning and removing agent for photoresist ashing residue
WO2001054180A1 (en) Method and detergent for cleansing semiconductor device substrate having transition metal or transition metal compound on surface

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4502481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term