JP2006171336A - Transparent electrode member for image display, and the image display device - Google Patents

Transparent electrode member for image display, and the image display device Download PDF

Info

Publication number
JP2006171336A
JP2006171336A JP2004363408A JP2004363408A JP2006171336A JP 2006171336 A JP2006171336 A JP 2006171336A JP 2004363408 A JP2004363408 A JP 2004363408A JP 2004363408 A JP2004363408 A JP 2004363408A JP 2006171336 A JP2006171336 A JP 2006171336A
Authority
JP
Japan
Prior art keywords
electrode body
conductive layer
transparent electrode
transparent
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363408A
Other languages
Japanese (ja)
Inventor
Takashi Takayama
隆司 高山
Hidemi Ito
秀己 伊藤
Hitoshi Masago
均 真砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004363408A priority Critical patent/JP2006171336A/en
Publication of JP2006171336A publication Critical patent/JP2006171336A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent electrode member for image display that is superior in transparency and flexibility and an image display device that uses the transparent electrode member. <P>SOLUTION: A transparent conductive layer 22, including ultra-thin conductive fibers 25, is formed on one face of a transparent base material 21 to obtain the transparent electrode member. Ultra-thin conductive fibers in the conductive layer 22 are dispersed, without coagulating and are brought into contact with each other, or are dispersed separately, individually or as bundles of a plurality of fibers and are brought into contact with each other. Carbon nanotubes are preferably used as the ultra-thin conductive fibers, and the surface resistivity is set to ≤10<SP>4</SP>Ω/square. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、透明性が高く、着色も少なく、耐屈曲性に優れた透明導電層を有する画像表示用透明電極体、および、それを用いた画像表示装置に関する。   The present invention relates to a transparent electrode body for image display having a transparent conductive layer having high transparency, little coloring, and excellent bending resistance, and an image display apparatus using the same.

画像表示装置は、テレビ、パソコン、携帯電話、カーナビゲーション、車両や船舶、航空機などの計器盤、各種機器の計器盤、画像看板、その他のディスプレイに使用され、近年更にその他の用途に拡大が図られている。   Image display devices are used for TVs, personal computers, mobile phones, car navigation, instrument panels for vehicles, ships, aircraft, etc., instrument panels for various equipment, image signboards, and other displays. It has been.

このような画像表示装置の透明電極体として、ポリエチレンテレフタレートフィルムに酸化インジウム−酸化スズ(ITO)が蒸着された電極体が一般に用いられており、またプラスチックフィルム基材の表面に酸化インジウムや酸化錫や酸化亜鉛などから成膜された導電性薄膜を形成した導電性部材も知られているし(特許文献1)、更に脂肪族ポリイミドに酸化インジウムなどの金属酸化物の透明導電層を設けた透明導電性フィルムも知られている(特許文献2)。
特開平2002−42560号公報 特開平2003−141936号公報
As a transparent electrode body of such an image display device, an electrode body in which indium oxide-tin oxide (ITO) is deposited on a polyethylene terephthalate film is generally used, and indium oxide or tin oxide is formed on the surface of a plastic film substrate. There is also known a conductive member formed with a conductive thin film formed from zinc oxide or the like (Patent Document 1), and a transparent conductive layer of a metal oxide such as indium oxide on an aliphatic polyimide. A conductive film is also known (Patent Document 2).
Japanese Patent Laid-Open No. 2002-42560 Japanese Patent Laid-Open No. 2003-141936

しかしながら、上記のITOや酸化錫などを用いた透明導電性電極体は、透明導電層がITOなどであるために耐屈曲性に劣り、湾曲した画像表示装置を作製する際に、当該電極体を曲げるとクラックが生じて表面抵抗率が変化し、電極体としての機能を果たせなくなるという問題を有していた。さらに、電極体に衝撃力が加わった時に押圧が電極体の一箇所に加わり局所的に凹むために、当該部分の電極体にクラックが生じるという問題もあった。
また、ITOからなる透明電極体は、スパッタリングなどのバッチ式の製法であるために生産性が悪く、コストが高いという問題もあった。
However, the transparent conductive electrode body using the above-described ITO or tin oxide is inferior in bending resistance because the transparent conductive layer is made of ITO or the like. When bent, there is a problem that cracks are generated, the surface resistivity changes, and the function as an electrode body cannot be performed. Furthermore, when an impact force is applied to the electrode body, the pressure is applied to one part of the electrode body and locally dents, so that there is a problem that a crack is generated in the electrode body in that portion.
Moreover, since the transparent electrode body made of ITO is a batch type manufacturing method such as sputtering, there is a problem that productivity is low and cost is high.

本発明は上記の問題に対処するためになされたもので、ITO透明電極体に代わる新規な透明電極体を提供し、湾曲した画像表示装置にも使用でき、また衝撃が加わってもクラックを生ぜずに使用できる画像表示用透明電極体を提供することを解決課題としている。
また、コストが安く経済的で透明な画像表示用透明電極体と、それを用いた画像表示装置を提供することも解決課題としている。
The present invention has been made to address the above-described problems, and provides a novel transparent electrode body that replaces the ITO transparent electrode body. The present invention can be used for a curved image display device and also generates cracks even when an impact is applied. An object of the present invention is to provide a transparent electrode body for image display that can be used without any problems.
Another object of the present invention is to provide a transparent electrode body for image display that is inexpensive and economical, and an image display device using the transparent electrode body.

上記目的を達成するため、本発明の第一の画像表示用透明電極体は、透明な基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成されていることを特徴とするものである。   In order to achieve the above object, the first transparent electrode body for image display of the present invention is characterized in that a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a transparent substrate. Is.

また、本発明の第二の画像表示用透明電極体は、透明な基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電極体であって、上記極細導電繊維が凝集することなく分散して互いに接触していることを特徴とするものである。   Further, the second transparent electrode body for image display of the present invention is an electrode body in which a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a transparent substrate, and the ultrafine conductive fibers are Dispersed without agglomeration and in contact with each other.

また、本発明の第三の画像表示用透明電極体は、透明な基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電極体であって、上記極細導電繊維が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、分散して互いに接触していることを特徴とするものである。   The third transparent electrode body for image display of the present invention is an electrode body in which a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a transparent substrate, and the ultrafine conductive fibers are It is characterized by being dispersed and in contact with each other in a state of being separated one by one or in a state where a bundle of a plurality of bundles is separated one by one.

本発明において、極細導電繊維としてはカーボンナノチューブが好ましく用いられ、これらが1本ずつ分離した状態で分散して互いに接触し、或は、複数本集まって束になった状態で1束ずつ分散して互いに接触していることが好ましい。また、導電層の表面抵抗率は10Ω/□以下の導電性を有していることが好ましく、また550nm波長の光線透過率が75%以上であることも好ましい。そして、この導電層は、曲率半径3mmで曲げた後の表面抵抗率の増大が1.3倍以下であることが好ましい。 In the present invention, carbon nanotubes are preferably used as the ultrafine conductive fibers, and these are dispersed in a state of being separated one by one and are in contact with each other, or a plurality of bundles are dispersed in a bundle in a bundled state. Are preferably in contact with each other. The surface resistivity of the conductive layer is preferably 10 4 Ω / □ or less, and the light transmittance at a wavelength of 550 nm is preferably 75% or more. The conductive layer preferably has a surface resistivity increase of 1.3 times or less after being bent with a curvature radius of 3 mm.

また、本発明の画像表示装置は、上記の各透明電極体を電極基板として用いたことを特徴とするものである。   The image display apparatus of the present invention is characterized in that each of the transparent electrode bodies is used as an electrode substrate.

なお、本発明で「凝集することなく」とは、導電層を光学顕微鏡で観察し、平均径が0.5μm以上の凝集塊がないことを意味する用語である。また、「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語である。さらに、「導電性」とは、JIS K 7194(ASTM D 991)で測定し、表面抵抗率が10Ω/□以下であることを意味する用語である。 In the present invention, “without agglomeration” is a term that means that the conductive layer is observed with an optical microscope and there is no aggregate having an average diameter of 0.5 μm or more. The term “contact” is a term that means both the case where the ultrafine conductive fibers are actually in contact with each other and the case where the ultrafine conductive fibers are close to each other with a small gap that allows conduction. Further, “conductive” is a term that means that the surface resistivity is 10 4 Ω / □ or less as measured by JIS K 7194 (ASTM D 991).

本発明の第一の画像表示用透明電極体は、極細導電繊維により導電層が形成されているので、表面抵抗率を10Ω/□以下に、且つ導電層の光線透過率を75%以上に容易にコントロールできる。また、耐屈曲性に優れるために、画像表示用透明電極体を湾曲させても表面抵抗率が殆ど変化することがなく、湾曲した画像表示装置に用いることができる。また、電極体が局所的に凹んでもクラックを生じることがなくて、運搬や組み込み工程での作業性を向上させることができるし、これを組み込んだ画像表示装置を湾曲することもできる。 In the first transparent electrode body for image display of the present invention, since the conductive layer is formed of ultrafine conductive fibers, the surface resistivity is 10 4 Ω / □ or less, and the light transmittance of the conductive layer is 75% or more. Easy to control. In addition, since it has excellent bending resistance, the surface resistivity hardly changes even when the transparent electrode body for image display is curved, and can be used for a curved image display device. Moreover, even if the electrode body is locally dented, cracks do not occur, the workability in the transporting and assembling process can be improved, and an image display device incorporating this can be curved.

そして、極細導電繊維がカーボンナノチューブであると、該カーボンナノチューブが細くて長いので、これら相互の接触がさらに良好に確保でき、さらに高い透明性を付与することが可能となるし、耐屈曲性も良好となり、曲率半径の小さな湾曲にも対応することも可能となる。   And, if the ultrafine conductive fiber is a carbon nanotube, the carbon nanotube is thin and long, so that the mutual contact can be ensured better, higher transparency can be imparted, and flex resistance is also improved. As a result, it is possible to cope with a curve having a small radius of curvature.

本発明の第二の画像表示用透明電極体は、導電層に含まれる極細導電繊維が凝集することなく分散して互いに接触しているので、該繊維が凝集していない分だけ、極細導電繊維が解けて相互の十分な導通を確保できる。そのため、極細導電繊維量を少なくしても従来と同じ導電性を確保でき、極細導電繊維量が減少した分だけ透明性を向上させることができる。このように、極細導電繊維量を少なくしても導電層の表面抵抗率を10Ω/□以下にでき、同時に光線透過率を75%以上とすることができるので、透明性に優れた画像表示用透明電極体とすることができる。 In the second transparent electrode body for image display according to the present invention, the ultrafine conductive fibers contained in the conductive layer are dispersed without being aggregated and are in contact with each other. It is possible to secure sufficient continuity between each other. Therefore, even if the amount of the ultrafine conductive fiber is reduced, the same conductivity as the conventional one can be ensured, and the transparency can be improved by the amount of the decrease in the amount of the ultrafine conductive fiber. Thus, even if the amount of ultrafine conductive fibers is reduced, the surface resistivity of the conductive layer can be made 10 4 Ω / □ or less, and the light transmittance can be made 75% or more at the same time. It can be set as the transparent electrode body for a display.

本発明の第三の画像表示用透明電極体は、導電層に含まれる極細導電繊維が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触しているので、分散した1本若しくは1束の極細導電繊維相互の接触機会が多くなり、十分な導通を確保でき良好な導電性と透明性を得ることができる。そのため極細導電繊維量を少なくしても導電層の表面抵抗率が10Ω/□以下で、光線透過率が75%以上の電極体とすることが容易になる。 The third transparent electrode body for image display of the present invention is in a state where the ultrafine conductive fibers contained in the conductive layer are separated one by one, or in a state where a plurality of bundles are bundled and separated one by one. Since they are dispersed and in contact with each other, there are many opportunities for mutual contact between one or a bundle of ultrafine conductive fibers, and sufficient electrical conduction can be ensured and good conductivity and transparency can be obtained. Therefore, even if the amount of ultrafine conductive fibers is reduced, it becomes easy to obtain an electrode body having a surface resistivity of 10 4 Ω / □ or less and a light transmittance of 75% or more.

以下、図面を参照して本発明の代表的な実施形態を詳述するが、本発明はこれに限定されるものではない。   Hereinafter, representative embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

図1は本発明の透明導電層を有する透明電極体を用いた有機EL(エレクトロルミネッセンス)ディスプレイ装置の基本的な構成を示す断面図、図2は同ディスプレイ装置に使用する透明電極体の一実施形態を示す断面図、図3(a)は同透明電極体の導電層内部における極細導電繊維の分散状態を示す模式断面図、図3(b)は同導電層表面における極細導電繊維の他の分散状態を示す模式断面図、図4は同導電層を平面から見た極細導電繊維の分散状態を示す模式平面図である。   FIG. 1 is a sectional view showing a basic configuration of an organic EL (electroluminescence) display device using a transparent electrode body having a transparent conductive layer of the present invention, and FIG. 2 is an embodiment of a transparent electrode body used in the display device. 3A is a schematic cross-sectional view showing the dispersion state of the ultrafine conductive fibers inside the conductive layer of the transparent electrode body, and FIG. 3B is another view of the ultrafine conductive fibers on the surface of the conductive layer. FIG. 4 is a schematic cross-sectional view showing the dispersion state, and FIG. 4 is a schematic plan view showing the dispersion state of the ultrafine conductive fibers when the conductive layer is seen from the plane.

図1に例示する有機ELディスプレイ装置は、ガラスや透明樹脂などからなる透明基板1と、陽極となる透明電極体2と、正孔輸送層3と、発光層4と、電子輸送層5と、陰極となる金属薄膜電極体6とから構成されている。このような有機ELディスプレイ装置は、陽極透明電極体2と陰極金属薄膜電極体6とに数V(ボルト)の直流電圧を印加すると、陽極透明電極2から正孔輸送層3に注入された正孔が発光層4に侵入すると共に、陰極金属薄膜電極6からは電子が発光層4の中を拡散、移動して、発光層4の内部で正孔と結合し電気的に中和され、その際、エネルギーを放出する。このエネルギーにより発光層4に含まれる発光材料や蛍光材料が一重項励起状態に励起されるが、直ちに基底状態に戻ると共に蛍光の形で光が放出されるのである。   An organic EL display device illustrated in FIG. 1 includes a transparent substrate 1 made of glass, a transparent resin, or the like, a transparent electrode body 2 to be an anode, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, It is comprised from the metal thin film electrode body 6 used as a cathode. In such an organic EL display device, when a DC voltage of several volts (volts) is applied to the anode transparent electrode body 2 and the cathode metal thin film electrode body 6, the positive electrode injected into the hole transport layer 3 from the anode transparent electrode 2 is obtained. As the holes enter the light emitting layer 4, electrons diffuse and move from the cathode metal thin film electrode 6 through the light emitting layer 4, and combine with holes inside the light emitting layer 4 to be electrically neutralized. When releasing energy. This energy causes the light emitting material and the fluorescent material contained in the light emitting layer 4 to be excited to a singlet excited state, but immediately returns to the ground state and emits light in the form of fluorescence.

なお、陽極透明電極体2と陰極金属薄膜電極体6とは、夫々がパターン化された電極体であってもよいし、或は、どちらか一方の電極はパターン化し他方の電極を全面電極にしてもよいし、或は、両方の電極を共に全面電極にしてもよく、必要とされる電極構成に応じて作製される。   The anode transparent electrode body 2 and the cathode metal thin film electrode body 6 may be patterned electrode bodies, or one of the electrodes may be patterned to make the other electrode the entire surface electrode. Alternatively, both electrodes may be full-surface electrodes, and are produced according to the required electrode configuration.

上記の有機ELディスプレイ装置において、これを構成する透明基板1がガラスや樹脂板であること、正孔輸送層3がジアミン系化合物などを含んで製されていること、発光層4がキノリノールアルミニウム錯体などを含んで製されていること、電子輸送層5が1,2,4−トリアゾール誘導体などを含んで製されていること、陰極金属薄膜電極体6が合成樹脂フィルム61にアルミニウムの蒸着などで形成した金属薄膜62とで構成されていることなどは公知であるので説明を省略する。さらに、正孔輸送層3と発光層4と電子輸送層5との合計厚みが数100nmであることも公知である。   In the organic EL display device, the transparent substrate 1 constituting the organic EL display device is made of glass or a resin plate, the hole transport layer 3 is made of a diamine compound, and the light emitting layer 4 is a quinolinol aluminum complex. The electron transport layer 5 is made of a 1,2,4-triazole derivative, and the cathode metal thin film electrode body 6 is deposited on the synthetic resin film 61 by aluminum deposition or the like. Since it is well-known that it is comprised with the formed metal thin film 62, description is abbreviate | omitted. Furthermore, it is also known that the total thickness of the hole transport layer 3, the light emitting layer 4, and the electron transport layer 5 is several hundred nm.

この有機ELディスプレイ装置に使用している透明電極体2は、図2に拡大して示すように、透明合成樹脂などの透明材よりなる基材21の片方の表面に、極細導電繊維25を含んだ透明導電層22を積層形成して一体としたものである。なお、透明導電層22を透明基材21の両面に積層形成してもよい。   The transparent electrode body 2 used in this organic EL display device includes an ultrafine conductive fiber 25 on one surface of a base material 21 made of a transparent material such as a transparent synthetic resin, as shown in an enlarged view in FIG. The transparent conductive layer 22 is laminated and integrated. Note that the transparent conductive layer 22 may be laminated on both surfaces of the transparent substrate 21.

透明電極体2を構成する基材21としては、透明性を有する熱可塑性樹脂、熱や紫外線や電子線や放射線などで硬化する硬化性樹脂などが使用されている。前記透明熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン等のビニル系樹脂、ニトロセルロース、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、ポリエチレンナフタレート、ポリアリレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、ポリエーテルサルフォン、ポリエーテルエーテルケトン、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが使用され、前記透明硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂などが使用される。   As the base material 21 constituting the transparent electrode body 2, a transparent thermoplastic resin, a curable resin that is cured by heat, ultraviolet rays, electron beams, radiation, or the like is used. Examples of the transparent thermoplastic resin include olefin resins such as polyethylene, polypropylene, and cyclic polyolefin, vinyl resins such as polyvinyl chloride, polymethyl methacrylate, and polystyrene, cellulose resins such as nitrocellulose and triacetyl cellulose, polycarbonate, Ester resins such as polyethylene terephthalate, polydimethylcyclohexane terephthalate, polyethylene naphthalate, polyarylate, aromatic polyester, ABS resin, polyether sulfone, polyether ether ketone, copolymer resins of these resins, A mixed resin or the like is used, and examples of the transparent curable resin include an epoxy resin, a polyimide resin, and an acrylic resin.

上記樹脂のうちでも、80%以上、好ましくは85%以上の全光線透過率と、4%以下のヘーズを備えた基材21を得ることができる樹脂が特に好ましく使用される。このような樹脂としては、環状ポリオレフィン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン、トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、或はその共重合体樹脂、これらの混合樹脂、硬化型アクリル樹脂が用いられる。   Among the above resins, a resin that can obtain the substrate 21 having a total light transmittance of 80% or more, preferably 85% or more and a haze of 4% or less is particularly preferably used. Examples of such resins include cyclic polyolefin, polyvinyl chloride, polymethyl methacrylate, polystyrene, triacetyl cellulose, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate, or copolymer resins thereof, mixed resins thereof, and curable acrylics. Resin is used.

これらの樹脂からなる基材21は、透明基板1に支持されているので、その厚みを厚くする必要はなく、30〜1000μm程度とされている。この基材21を含む透明電極体2或は有機ELディスプレイ装置を巻いたり湾曲させるためには、この厚みを30〜500μm、更に好ましくは50〜200μmとするのが望ましい。
なお、上記合成樹脂製基材21には可塑剤、安定剤、紫外線吸収剤等が適宜配合され、成形性、熱安定性、耐候性等が高められる。
Since the base material 21 made of these resins is supported by the transparent substrate 1, it is not necessary to increase the thickness thereof, and is about 30 to 1000 μm. In order to roll or curve the transparent electrode body 2 or the organic EL display device including the base material 21, it is desirable that the thickness is 30 to 500 μm, more preferably 50 to 200 μm.
In addition, a plasticizer, a stabilizer, an ultraviolet absorber, and the like are appropriately blended with the synthetic resin base material 21 to enhance moldability, thermal stability, weather resistance, and the like.

この樹脂製基材21の片面に形成された導電層22は、極細導電繊維25を含んだ透明層であって、その表面抵抗率が10Ω/□以下で、550nm波長の光線透過率が75%以上となるように調整されている。そのためには、上記極細導電繊維25が凝集することなく分散して互いに接触していることが好ましい。換言すれば、極細導電繊維25が絡み合うことなく1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、分散して互いに接触するようになされている。 The conductive layer 22 formed on one surface of the resin base material 21 is a transparent layer containing ultrafine conductive fibers 25, and has a surface resistivity of 10 4 Ω / □ or less and a light transmittance of 550 nm wavelength. It is adjusted to be 75% or more. For this purpose, it is preferable that the ultrafine conductive fibers 25 are dispersed without contacting each other and are in contact with each other. In other words, in a state where the ultrafine conductive fibers 25 are separated one by one without being entangled, or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed and brought into contact with each other. Yes.

導電層22が主に極細導電繊維25と透明なバインダーとで形成されていると、図3(a)に示すように、極細導電繊維25はバインダーの内部に上記の分散状態で分散して互いに接触しているか、或は図3(b)に示すように、極細導電繊維25の一部がバインダー中に入り込み他の部分がバインダー表面から突出ないし露出して上記分散状態で分散して互いに接触しているか、或は一部の極細導電繊維25が図3(a)のようにバインダーの内部に、他の極細導電繊維25が図3(b)のように表面から突出ないし露出している状態で分散していることとなる。     When the conductive layer 22 is mainly formed of ultrafine conductive fibers 25 and a transparent binder, as shown in FIG. 3 (a), the ultrafine conductive fibers 25 are dispersed in the above dispersion state inside the binder. As shown in FIG. 3B, a part of the ultrafine conductive fiber 25 enters the binder and the other part protrudes or is exposed from the surface of the binder and dispersed in the dispersed state to contact each other. Or some of the fine conductive fibers 25 protrude or are exposed from the surface of the binder as shown in FIG. 3 (a) and the other fine conductive fibers 25 as shown in FIG. 3 (b). It will be distributed in the state.

これらの極細導電繊維25の平面から見た分散状態を図4に模式概略的に示す。この図4から理解されるように、極細導電繊維25は多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく即ち凝集することなく、単純に交差した状態で導電層22の内部に或は表面に分散され、それぞれの交点で接触している。   The dispersion state seen from the plane of these ultrafine conductive fibers 25 is schematically shown in FIG. As can be understood from FIG. 4, the ultrafine conductive fibers 25 are slightly bent but separated one by one or one bundle, and do not intricately entangle with each other, that is, do not agglomerate. Dispersed within or on the surface of the layer 22 is in contact at each intersection.

このように分散していると、凝集している場合に比べて、極細導電繊維25が解れて広範囲に存在しているので、これら繊維同士の接触する機会が著しく増加し、その結果導通して導電性を著しく高めることができる。従来の極細導電繊維が凝集した、即ち0.5μm以上の凝集塊を有する導電層と同じ10Ω/□以下の導電性を得るためには、接触点(導通の密度)を従来のものと同じにすればよいのであるから、上記分散状態にすることで極細導電繊維25の量を減少させても同じ接触機会を得ることができ、その分、極細導電繊維25の量を少なくすることができるのである。その結果、透明性を阻害する極細導電繊維25の量が少なくなった分だけ透明性が向上するし、また、導電層22を薄くすることもでき、一層透明性を向上させることができる。 When dispersed in this manner, compared to the case where the fibers are aggregated, the ultrafine conductive fibers 25 are present in a wide range, so that the chance of contact between these fibers is remarkably increased. The conductivity can be significantly increased. In order to obtain the same conductivity of 10 4 Ω / □ or less as that of the conductive layer in which the conventional ultrafine conductive fibers are aggregated, that is, having an aggregate of 0.5 μm or more, the contact point (conduction density) is changed to the conventional one. Since it should just be made the same, even if it reduces the quantity of the ultrafine conductive fiber 25 by making it into the said dispersion state, the same contact opportunity can be obtained, and the amount of the ultrafine conductive fiber 25 can be reduced correspondingly. It can be done. As a result, the transparency is improved by the amount of the ultrafine conductive fiber 25 that hinders the transparency, and the conductive layer 22 can be made thinner, so that the transparency can be further improved.

なお、極細導電繊維25は完全に1本ずつ或は1束ずつ分離して分散している必要はなく、一部に絡み合った小さな凝集塊があっても良いが、その大きさは平均径が0.5μm以上でないことが好ましい。   The ultrafine conductive fibers 25 do not need to be separated and dispersed completely one by one or one bundle, and there may be small agglomerates that are intertwined with each other. It is preferably not 0.5 μm or more.

一方、従来と同じ量の極細導電繊維25を導電層22に含ませると、上記分散状態にすることで、繊維同士の接触機会を得ることができる。そのため、導電性を著しく向上させることができるので、10Ω/□以下の導電性を容易に得ることができる。
さらに、極細導電繊維25を導電層22に含ませて該導電層22の厚みを5〜500nmと薄くすると、厚み方向に分散していた極細導電繊維25が濃縮され、これら相互の接触する機会が増加するので、一層導電性を高めることが可能となる。従って、導電層22の厚みを上記の範囲で薄くすることが好ましく、更に好ましくは10〜400nmにすることが望ましい。
On the other hand, when the conductive layer 22 contains the same amount of ultrafine conductive fibers 25 as in the prior art, a contact opportunity between the fibers can be obtained by making the dispersion state. Therefore, since the conductivity can be remarkably improved, a conductivity of 10 4 Ω / □ or less can be easily obtained.
Furthermore, if the fine conductive fibers 25 are included in the conductive layer 22 and the thickness of the conductive layer 22 is reduced to 5 to 500 nm, the fine conductive fibers 25 dispersed in the thickness direction are concentrated, and there is an opportunity to contact each other. Since it increases, it becomes possible to further improve electroconductivity. Therefore, the thickness of the conductive layer 22 is preferably reduced within the above range, and more preferably 10 to 400 nm.

このように、極細導電繊維25が導電層22内で多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく即ち凝集することなく分散された状態で接触していると、該導電層22を曲げたりしても、極細導電繊維25が伸びるために切断することが殆どない。そのため、透明電極体2を湾曲させても、或は局所的な凹みが生じても、該導電層22にクラックや剥離を生じることがなく、表面抵抗率が大きく増大したり、断線を生じることのない信頼性、耐久性に優れた透明電極体2とすることができる。後述する実施例からわかるように、本発明の透明電極体2は、曲率半径3mmで曲げても、或は曲率半径1mmで曲げても元の1.3倍以下しか増加しないことが確認されている。   In this way, the fine conductive fibers 25 are slightly bent in the conductive layer 22 but are separated one by one or one bundle and are in contact with each other without being intertwined in a complicated manner, that is, without agglomeration. Even when the conductive layer 22 is bent, the fine conductive fibers 25 are stretched so that they are hardly cut. Therefore, even if the transparent electrode body 2 is curved or a local dent is generated, the conductive layer 22 is not cracked or peeled off, and the surface resistivity is greatly increased or a disconnection is caused. It can be set as the transparent electrode body 2 excellent in the reliability and durability which there is no. As can be seen from the examples to be described later, it was confirmed that the transparent electrode body 2 of the present invention increases only 1.3 times or less even when it is bent with a radius of curvature of 3 mm or even with a radius of curvature of 1 mm. Yes.

導電層22に使用される極細導電繊維25としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維などの、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである極細導電繊維が好ましく用いられる。これらの極細導電繊維25は、これが凝集することなく1本ずつ或は1束ずつ分散することにより、該導電層22の表面抵抗率が10Ω/□以下でその光線透過率が75%以上のものが得られる。 Examples of the ultrafine conductive fiber 25 used for the conductive layer 22 include carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, graphite fibrils and other ultrafine carbon fibers, platinum, gold, silver, nickel, silicon and other metal nanotubes, Ultrafine metal fibers such as nanowires, metal oxide nanotubes such as zinc oxide, and ultrafine metal oxide fibers such as nanowires are 0.3 to 100 nm in diameter and 0.1 to 20 μm in length, preferably length. An ultrafine conductive fiber having a thickness of 0.1 to 10 μm is preferably used. These ultrafine conductive fibers 25 are dispersed one by one or one bundle without agglomeration, so that the surface resistivity of the conductive layer 22 is 10 4 Ω / □ or less and the light transmittance is 75% or more. Can be obtained.

これらの極細導電繊維25の中でも、カーボンナノチューブは、直径が極めて細く0.3〜80nmであるので、1本ずつ或は1束ずつ分散することで該カーボンナノチューブが光透過を阻害することが少なくなり、より透明な導電層22を得るうえで特に好ましい。   Among these ultrafine conductive fibers 25, the carbon nanotubes are extremely thin and have a diameter of 0.3 to 80 nm. Therefore, the carbon nanotubes hardly disturb light transmission by being dispersed one by one or one bundle. It is particularly preferable for obtaining a more transparent conductive layer 22.

これらの極細導電繊維25は、導電層22の内部に、或は表面に、凝集することなく、1本ずつ或は1束ずつ分散し、互いに接触して導通性を確保している。そのため、極細導電繊維25を導電層22に15〜450mg/mの目付け量含ませることで、その表面抵抗率を10〜10Ω/□の範囲内で自由にコントロールすることができる。該目付け量は、導電層22の表面を電子顕微鏡で観察し、表面面積に占める極細導電繊維の面積割合を測定し、これに厚みと極細導電繊維の比重(極細導電繊維がカーボンナノチューブである場合は、グラファイトの文献値2.1〜2.3の平均値2.2を採用)を掛けることで計算した値である。 These ultrafine conductive fibers 25 are dispersed one by one or one bundle at a time without agglomerating inside or on the surface of the conductive layer 22 and contact with each other to ensure electrical conductivity. Therefore, the surface resistivity can be freely controlled within the range of 10 0 to 10 4 Ω / □ by including the ultrafine conductive fiber 25 in the conductive layer 22 in a basis weight of 15 to 450 mg / m 2 . The basis weight is obtained by observing the surface of the conductive layer 22 with an electron microscope, measuring the area ratio of the ultrafine conductive fiber in the surface area, and measuring the thickness and the specific gravity of the ultrafine conductive fiber (when the ultrafine conductive fiber is a carbon nanotube) Is a value calculated by multiplying the literature value 2.1 to 2.3 of graphite by an average value 2.2).

ここで、凝集をしていないとは、前記の如く、導電層を光学顕微鏡で観察し、凝集している塊があれば、その長径と短径とを測定し、その平均値が0.5μm以上の塊がないことを意味する用語である。   Here, “not agglomerated” means that, as described above, the conductive layer is observed with an optical microscope, and if there is an agglomerated mass, its major axis and minor axis are measured, and the average value is 0.5 μm. It is a term that means there are no more lumps.

上記カーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがある。   The carbon nanotube includes a multi-walled carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. Single-walled carbon nanotubes.

前者の多層カーボンナノチューブは、中心軸線の周りに多層に重なって構成されたものと、渦巻き状に多層に形成されているものとがある。そのなかでも、好ましい多層カーボンナノチューブは、2〜30層、より好ましくは2〜15層重なったものである。該多層カーボンナノチューブは1本づつ分離した状態で分散しているものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散している場合もある。   The former multi-walled carbon nanotube includes a multi-layered structure around a central axis and a multi-walled carbon nanotube formed in a spiral shape. Among them, preferred multi-walled carbon nanotubes are those with 2 to 30 layers, more preferably 2 to 15 layers. Most of the multi-walled carbon nanotubes are dispersed in a state of being separated one by one, but the two- to three-layer carbon nanotubes may be dispersed in a bundle.

一方、後者の単層カーボンナノチューブは、中心軸線の周りに円筒状に閉じた単層のチューブである。このような単層カーボンナノチューブは単独で存在することはなく、2本以上が束になった状態で存在し、その束が1束ずつ分離して、束同士が複雑に絡み合うことなく、単純に交差した状態で導電層の内部若しくは表面に分散され、それぞれの交点で接触している。そして、好ましくは10〜50本の単層カーボンナノチューブが集まって束になったものが用いられる。   On the other hand, the latter single-walled carbon nanotube is a single-walled tube closed in a cylindrical shape around the central axis. Such single-walled carbon nanotubes do not exist alone, exist in a bundle of two or more, the bundles are separated one by one, and the bundles are not intertwined in a complicated manner. In a crossed state, the conductive layer is dispersed inside or on the surface and is in contact at each intersection. Preferably, a bundle of 10 to 50 single-walled carbon nanotubes is used.

上記のように、極細導電繊維25が絡み合うことなく凝集せずに導電層22中に分散してお互いに接触すると、導電層22の厚みを薄くしても、カーボンナノチューブ相互の十分な導通が確保されるため、極細導電繊維25の目付け量を15〜450mg/mとし、導電層22の厚みを5〜500nmと薄くしても、カーボンナノチューブが解れているので相互の十分な導通が確保され、表面抵抗率を10Ω/□以下にすることが容易であり、良好な導電性を発揮する。そして、極細導電繊維25が解れて凝集塊がなくなり光透過を阻害しないので透明性が良好になると共に、導電層22の厚みを薄くしてカーボンナノチューブの目付け量を少なくした分だけ透明性が向上するようになる。 As described above, when the fine conductive fibers 25 are not entangled and dispersed in the conductive layer 22 without being agglomerated, sufficient conduction between the carbon nanotubes is ensured even if the thickness of the conductive layer 22 is reduced. Therefore, even if the basis weight of the ultrafine conductive fiber 25 is 15 to 450 mg / m 2 and the thickness of the conductive layer 22 is as thin as 5 to 500 nm, the carbon nanotubes are released, so that sufficient mutual conduction is ensured. It is easy to make the surface resistivity 10 4 Ω / □ or less, and good electrical conductivity is exhibited. And since the ultrafine conductive fiber 25 is unwound and aggregates disappear and light transmission is not hindered, the transparency is improved, and the transparency is improved by reducing the thickness of the conductive layer 22 and reducing the weight of the carbon nanotubes. To come.

極細導電繊維25を多量に導電層22内に含有し、より良好な導電性及び透明性を発現させるには、極細導電繊維25の分散性を高め、さらに作製した塗液の粘度を下げて塗液のレベリング性を向上させ、薄い導電層22を形成することが重要であり、そのためには、分散剤を併用することが重要である。このような分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン−ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤などが好ましく用いられる。
なお、この導電層22には紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させても良い。
In order to make the conductive layer 22 contain a large amount of ultrafine conductive fibers 25 and to develop better conductivity and transparency, the dispersibility of the ultrafine conductive fibers 25 is increased, and the viscosity of the prepared coating liquid is lowered to be applied. It is important to improve the leveling property of the liquid and form the thin conductive layer 22, and for that purpose, it is important to use a dispersant together. As such a dispersant, a polymer dispersant such as an alkyl ammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer, a polyoxyethylene-polyoxypropylene copolymer, a coupling agent, or the like is preferably used. It is done.
The conductive layer 22 may be appropriately added with additives such as an ultraviolet absorber, a surface modifier, and a stabilizer to improve weather resistance and other physical properties.

導電層22に使用するバインダーとしては、透明な熱可塑性樹脂、特にポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、弗化ビニリデンが、また熱や紫外線や電子線や放射線などで硬化する透明な硬化性樹脂、特にメラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコーン樹脂などが使用され、これらのバインダーと上記極細導電繊維25とからなる導電層22が透明層となるようにされる。なお、これらのバインダーにはコロイダルシリカのような無機材を添加してもよい。特に、基材21を形成する透明熱可塑性樹脂と同種の透明な熱可塑性樹脂、又は相溶性のある異種の透明な熱可塑性樹脂が、互いの積層性に優れ好ましく使用される。   The binder used for the conductive layer 22 is a transparent thermoplastic resin, particularly polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, and vinylidene fluoride. In addition, transparent curable resins that are cured by heat, ultraviolet rays, electron beams, radiation, etc., especially silicone resins such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, acrylic modified silicate, etc. are used. The conductive layer 22 composed of the conductive fibers 25 is made to be a transparent layer. Note that an inorganic material such as colloidal silica may be added to these binders. In particular, a transparent thermoplastic resin of the same type as that of the transparent thermoplastic resin forming the substrate 21 or a compatible different type of transparent thermoplastic resin is preferably used because of excellent lamination properties.

上述したように、導電層22における極細導電繊維25の目付け量を15〜450mg/mとし、導電層22の厚みを5〜500nmと薄くして、極細導電繊維25を凝集することなく1本ずつ或は1束ずつ分散させることで、表面抵抗率が10Ω/□以下の良好な導電性及び75%以上の透明性が発現される。より好ましい極細導電繊維25の目付け量は40〜400mg/m、導電層22の厚みは10〜400nmである。なお、カーボンナノチューブの他に導電性金属酸化物などの導電性金属酸化物の粉末を30〜50質量%程度含有させてもよい。 As described above, the basis weight of the ultrafine conductive fiber 25 in the conductive layer 22 is 15 to 450 mg / m 2 , the thickness of the conductive layer 22 is thinned to 5 to 500 nm, and one ultrafine conductive fiber 25 is not agglomerated. By dispersing one by one or one bundle at a time, good conductivity with a surface resistivity of 10 4 Ω / □ or less and transparency of 75% or more are exhibited. More preferably, the basis weight of the ultrafine conductive fiber 25 is 40 to 400 mg / m 2 , and the thickness of the conductive layer 22 is 10 to 400 nm. In addition to the carbon nanotubes, a conductive metal oxide powder such as a conductive metal oxide may be contained in an amount of about 30 to 50% by mass.

上記導電層22は、極細導電繊維25が上記の如く分散して色相に影響をあまり与えないため、黄色味や青色味に偏ることがない。従って、発光層4から放出される光の色調を変えることがなく、画像表示装置の表示色相を正確に表現することができる。
例えば、上記導電層22を上記の樹脂製基材21の片面に形成した透明電極体2は、JIS Z8729に定められたL表色系の透過色度におけるaが−2.5〜2.5及びbが−2.5〜8.0の範囲であることが好ましい。更に好ましくは、aが−1.0〜1.0及びbが−1.0〜6.0の範囲である。また、JIS K7103に基づく透明電極体2の黄色度(YI)を15以下、より好ましくは10以下の範囲にすることも望ましい。
このような導電層22を有する透明電極体2を用いると、これを透過する光の色調を変えることがないため、画像表示装置の表示色相を正確に表現することができるという効果を有する。
The conductive layer 22 is not biased to yellow or blue because the fine conductive fibers 25 are dispersed as described above and do not affect the hue so much. Therefore, the display hue of the image display device can be accurately expressed without changing the color tone of the light emitted from the light emitting layer 4.
For example, the transparent electrode body 2 formed on one surface of the conductive layer 22 of the resin substrate 21, a * in transmission chromaticity of L * a * b * color system defined in JIS Z8729 -2 0.5 to 2.5 and b * are preferably in the range of -2.5 to 8.0. More preferably, a * is in the range of -1.0 to 1.0 and b * is in the range of -1.0 to 6.0. It is also desirable to set the yellowness (YI) of the transparent electrode body 2 based on JIS K7103 to 15 or less, more preferably 10 or less.
When the transparent electrode body 2 having such a conductive layer 22 is used, the color tone of light transmitted through the transparent electrode body 2 is not changed, so that the display hue of the image display device can be accurately expressed.

以上のような透明電極体2は、例えば次の方法で効率良く量産することができる。第一の方法は、導電層形成用の前記バインダーを揮発性溶剤に溶解した溶液に極細導電繊維25を均一に分散させて塗液を調製し、この塗液を基材21の片面に塗布、固化させて導電層22を形成することにより画像表示用透明電極体2を製造する方法である。
第二の方法は、基材21と同種の熱可塑性樹脂フィルム又は相溶性のある異種の熱可塑性樹脂フィルムの片面に、上記塗液を塗布、固化させて導電層22を形成した導電性フィルムを作製し、この導電性フィルムを基材21の片面に重ねて熱プレスやロールプレスで熱圧着することにより画像表示用透明電極体2を製造する方法である。
さらに他の方法は、ポリエチレンテレフタレートなどの剥離フィルムに上記塗料を塗布、固化させて導電層22を形成し、必要であればさらに接着層を形成して転写フィルムを作製し、この転写フィルムを基材21の片面に重ねて圧着して導電層22若しくは接着層と導電層22とを転写することにより画像表示用透明電極体2を製造する方法である。
The transparent electrode body 2 as described above can be mass-produced efficiently by the following method, for example. The first method is to prepare a coating liquid by uniformly dispersing the ultrafine conductive fibers 25 in a solution in which the binder for forming a conductive layer is dissolved in a volatile solvent, and apply this coating liquid to one side of the substrate 21. This is a method for producing the transparent electrode body 2 for image display by solidifying and forming the conductive layer 22.
In the second method, a conductive film in which the conductive layer 22 is formed by applying and solidifying the above coating liquid on one surface of a thermoplastic resin film of the same type as the base material 21 or a different type of compatible thermoplastic resin film. This is a method for producing the transparent electrode body 2 for image display by producing and laminating this conductive film on one surface of the substrate 21 and thermocompression bonding with a hot press or a roll press.
Still another method is to apply the above-mentioned paint to a release film such as polyethylene terephthalate and solidify it to form the conductive layer 22, and if necessary, further form an adhesive layer to produce a transfer film. In this method, the transparent electrode body 2 for image display is manufactured by transferring the conductive layer 22 or the adhesive layer and the conductive layer 22 by overlapping and pressing on one surface of the material 21.

上記製造方法において、第一の方法は、電極体2の厚さが30〜300μmと薄いものを作製するのに適しており、第二、第三の方法は300〜1000μmと厚いものを作製するのに適している。
なお、その他の公知の製法によっても製造されることは言うまでもない。
In the above manufacturing method, the first method is suitable for producing a thin electrode body 2 with a thickness of 30 to 300 μm, and the second and third methods produce a thick one with a thickness of 300 to 1000 μm. Suitable for
Needless to say, it is also produced by other known production methods.

このようにして得られた透明電極体2は、環状に巻いて輸送されても、上記の如く耐屈曲性に優れるので、小さな径に巻いてもクラックが発生することがなく、作業性や輸送性に優れる。また、この際に、透明電極体2に衝撃力が加わり、局所的に凹んでもクラックが発生することもないので、取り扱い性に優れる。   The transparent electrode body 2 obtained in this way is excellent in bending resistance as described above even if it is rolled and transported in a ring shape, so that cracks do not occur even if it is wound to a small diameter, and workability and transportation are improved. Excellent in properties. Further, at this time, an impact force is applied to the transparent electrode body 2, and cracking does not occur even if the transparent electrode body 2 is locally recessed.

このような透明電極体2は、基板1にアクリル系などの透明接着剤などで積層されて、或は基板1に載置されて画像表示装置に提供される。そして、透明基板1が湾曲している場合は、この湾曲面に沿って透明電極体2を湾曲させながら積層乃至載置すればよく、この場合においても透明電極体2にクラックなどの発生が生じることがない。
さらに、透明基板1が合成樹脂板であると、透明電極他体を積層した後であっても、当該積層体を湾曲させることができる。
Such a transparent electrode body 2 is laminated on the substrate 1 with a transparent adhesive such as acrylic, or placed on the substrate 1 and provided to the image display device. If the transparent substrate 1 is curved, the transparent electrode body 2 may be stacked or placed while the transparent electrode body 2 is curved along the curved surface. In this case, the transparent electrode body 2 is also cracked. There is nothing.
Furthermore, when the transparent substrate 1 is a synthetic resin plate, the laminated body can be curved even after the transparent electrode other body is laminated.

図5は、本発明の他の実施形態を示す有機EL(エレクトロルミネッセンス)ディスプレイ装置の基本的な構成を示す断面図である。図5に例示する有機ELディスプレイ装置は、図1の有機ELディスプレイ装置と異なり透明基板1を使用していおらず、透明電極体2と、正孔輸送層3と、発光層4と、電子輸送層5と、金属薄膜電極体6とから構成されている。   FIG. 5 is a cross-sectional view showing a basic configuration of an organic EL (electroluminescence) display device showing another embodiment of the present invention. The organic EL display device illustrated in FIG. 5 does not use the transparent substrate 1 unlike the organic EL display device of FIG. 1, and has a transparent electrode body 2, a hole transport layer 3, a light emitting layer 4, and an electron transport. It is composed of a layer 5 and a metal thin film electrode body 6.

このような有機ELディスプレイ装置は、ガラスなどの基板1を用いていないので剛性を有さず、また、有機ELディスプレイ装置を湾曲させても問題を生じることがない。そのため、有機ELディスプレイ装置を巻いて運搬できるし、湾曲した基板に載置乃至支持させることもできるし、他の適当な支持体に載置乃至支持できるし、円筒状の有機ELディスプレイ装置とすることもできる。   Such an organic EL display device does not have rigidity because it does not use the substrate 1 such as glass, and there is no problem even if the organic EL display device is curved. Therefore, the organic EL display device can be wound and transported, can be mounted or supported on a curved substrate, can be mounted or supported on another appropriate support, and can be a cylindrical organic EL display device. You can also.

この実施形態の有機ELディスプレイ装置を構成する陽極透明電極体2、正孔輸送層3、発光層4、電子輸送層5、陰極金属薄膜電極体6は、前記図1に示したものと同じであるので説明を省略する。   The anode transparent electrode body 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5 and the cathode metal thin film electrode body 6 constituting the organic EL display device of this embodiment are the same as those shown in FIG. Since there is, explanation is omitted.

図6は、本発明の他の実施形態を示す有機EL(エレクトロルミネッセンス)ディスプレイ装置の基本的な構成を示す断面図である。図6に例示する有機ELディスプレイ装置は、図1の有機ELディスプレイ装置と異なり透明基板1を使用していおらず、厚みの厚い透明合成樹脂製基材21aと導電層22とからなる陽極透明電極体2aと、正孔輸送層3と、発光層4と、電子輸送層5と、陰極金属薄膜電極体6とから構成されている。   FIG. 6 is a cross-sectional view showing a basic structure of an organic EL (electroluminescence) display device showing another embodiment of the present invention. The organic EL display device illustrated in FIG. 6 does not use the transparent substrate 1 unlike the organic EL display device of FIG. 1, and is an anode transparent electrode comprising a thick transparent synthetic resin base material 21 a and a conductive layer 22. It consists of a body 2a, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a cathode metal thin film electrode body 6.

この透明電極体2aは、前記厚みの薄い基材21に使用された透明合成樹脂から製されていて、その厚みを1.0〜3.0mm程度にして剛性を付与した基材21aと、前記導電層22とを積層したものである。   The transparent electrode body 2a is made of the transparent synthetic resin used for the thin base material 21, and has a base material 21a having a thickness of about 1.0 to 3.0 mm and imparted rigidity, The conductive layer 22 is laminated.

このような透明電極体2aは、基材21aも導電層22も共に湾曲することができるので、当該電極体2aも導電層22にクラックを生じさせることなく湾曲させることができ、湾曲した有機ELディスプレイ装置を作製するうえで好ましく用いられる。   Since such a transparent electrode body 2a can bend both the base material 21a and the conductive layer 22, the electrode body 2a can also be bent without causing cracks in the conductive layer 22, and the curved organic EL It is preferably used for manufacturing a display device.

その他の構成である導電層22、正孔輸送層3、発光層4、電子輸送層5、金属薄膜電極体6とは、前記図1に示したものと同じであるので説明を省略する。   The other configurations of the conductive layer 22, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the metal thin film electrode body 6 are the same as those shown in FIG.

上記各実施形態では、基板1に、基材21と導電層22とからなる電極体2を積層乃至載置したが、基板1に直接導電層22を塗布などの方法を用いて形成して透明電極体2としてもよい。この場合は、導電層22のみによって透明電極体2が構成されることとなる。
さらに、各実施形態は有機ELディスプレイ装置を例示して説明したが、当然ながら、他の画像表示装置、例えば液晶ディスプレイ装置などにも、本発明の透明電極体を使用できることは言うまでもない。液晶ディスプレイ装置の場合、透明電極として両側に本発明の透明電極体を使用することができるが、どちらか一方の透明電極体に本発明の透明電極体を使用し、他方の透明電極体にITO電極体を使用してもよい。
In each of the above embodiments, the electrode body 2 composed of the base material 21 and the conductive layer 22 is laminated or placed on the substrate 1. However, the conductive layer 22 is directly formed on the substrate 1 by using a method such as coating. The electrode body 2 may be used. In this case, the transparent electrode body 2 is constituted only by the conductive layer 22.
Furthermore, although each embodiment illustrated and demonstrated the organic EL display apparatus, it cannot be overemphasized that the transparent electrode body of this invention can be used also for other image display apparatuses, for example, a liquid crystal display apparatus. In the case of a liquid crystal display device, the transparent electrode body of the present invention can be used on both sides as a transparent electrode, but the transparent electrode body of the present invention is used for one of the transparent electrode bodies and the other transparent electrode body is made of ITO. An electrode body may be used.

次に、本発明の更に具体的な実施例を挙げる。   Next, more specific examples of the present invention will be given.

[実施例1]
溶媒としてのイソプロピルアルコール/水混合物(混合比3:1)中に単層カーボンナノチューブ(文献Chemical Physics Letters,323(2000)P580−585に基づき合成した物、直径1.3〜1.8nm)と分散剤としてのポリオキシエチレン-ポリオキシプロピレン共重合物を加えて均一に混合、分散させ、単層カーボンナノチューブを0.003質量%、分散剤を0.05質量%含む塗液を調整した。
[Example 1]
Single-walled carbon nanotubes (based on the literature Chemical Physics Letters, 323 (2000) P580-585, diameter 1.3-1.8 nm) in isopropyl alcohol / water mixture (mixing ratio 3: 1) as solvent A polyoxyethylene-polyoxypropylene copolymer as a dispersant was added and mixed and dispersed uniformly to prepare a coating solution containing 0.003% by mass of single-walled carbon nanotubes and 0.05% by mass of a dispersant.

この塗液を、市販の厚さ100μmのポリエチレンテレフタレートフィルム(全光線透過率94.5%、ヘーズ1.5%)の表面に塗布して乾燥後、更に、メチルイソブチルケトンで600分の1に希釈した熱硬化性のウレタンアクリレート溶液を塗布して乾燥することにより導電層を形成し、導電性透明ポリエチレンテレフタレートフィルムを得た。   This coating solution was applied to the surface of a commercially available 100 μm thick polyethylene terephthalate film (total light transmittance 94.5%, haze 1.5%), dried, and further reduced to 1/600 with methyl isobutyl ketone. A conductive layer was formed by applying a diluted thermosetting urethane acrylate solution and drying to obtain a conductive transparent polyethylene terephthalate film.

このフィルムの導電層を走査電子顕微鏡(日立製作所社製S800)で観察してカーボンナノチューブの面積割合を測定したところ70.3%であった。また、導電層の厚さは47nmであった。このことより、導電層の単層カーボンナノチューブの目付け量は面積割合70.3%と厚み47nmと比重(2.2)を掛け合せた72.7mg/mであった。 When the conductive layer of this film was observed with a scanning electron microscope (S800, manufactured by Hitachi, Ltd.) and the area ratio of the carbon nanotubes was measured, it was 70.3%. The thickness of the conductive layer was 47 nm. From this, the basis weight of the single-walled carbon nanotube of the conductive layer was 72.7 mg / m 2 obtained by multiplying the area ratio 70.3%, the thickness 47 nm and the specific gravity (2.2).

この導電性透明ポリエチレンテレフタレートフィルムの表面抵抗率を三菱化学社製のロレスターで測定したところ、表1に示すように、表面抵抗率が5.4×10Ω/□であつた。
また、この導電性フィルムの全光線透過率とヘーズとを、ASTM D1003に準拠して、スガ試験機社製の直読ヘーズコンピューターHGM−2DPで測定したところ、表1に示すように、全光線透過率が90.5%、ヘーズが1.8 %であった。
また、この導電性フィルムの導電層の550nm波長の光線透過率を、島津製作所製島津自記分光光度計UV−3100PCを用いて、導電層付きフィルムと元のポリエチレンテレフタレートフィルムとの波長550nmにおける差で測定し、それらの差を導電層の光線透過率した。この光線透過率は、表1に示すように、90.5%であった。
When the surface resistivity of this conductive transparent polyethylene terephthalate film was measured with a Lorester manufactured by Mitsubishi Chemical Corporation, as shown in Table 1, the surface resistivity was 5.4 × 10 2 Ω / □.
Further, the total light transmittance and haze of this conductive film were measured with a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. in accordance with ASTM D1003. The rate was 90.5% and haze was 1.8%.
In addition, the light transmittance of the conductive layer of this conductive film at a wavelength of 550 nm is determined by the difference in wavelength at 550 nm between the film with the conductive layer and the original polyethylene terephthalate film using Shimadzu's self-recording spectrophotometer UV-3100PC. The difference was measured as the light transmittance of the conductive layer. As shown in Table 1, the light transmittance was 90.5%.

更に、この導電性フィルムの導電層を光学顕微鏡で観察したところ、0.5μ以上の凝集塊は存在しておらず、単層カーボンナノチューブの分散が十分に行われていた。そして、多数のカーボンナノチューブが1束ずつ分離した状態で均一に分散し、単純に交差した状態で接触していることがわかった。   Furthermore, when the conductive layer of this conductive film was observed with an optical microscope, there was no aggregate of 0.5 μm or more, and the single-walled carbon nanotubes were sufficiently dispersed. Then, it was found that a large number of carbon nanotubes were uniformly dispersed in a state where they were separated one by one, and simply contacted in a crossed state.

また、この導電性フィルムの色相を調べるために、JIS Z8722に基づく日本電色工業株式会社製の色差計 ZE−2000を用いて、導電層付きフィルムの色相を測定した。表1に示すように、この導電層付きフィルムは、L: 92.42、a:−0.15、b:1.52、YI:3.13であった。 Moreover, in order to investigate the hue of this electroconductive film, the hue of the film with a conductive layer was measured using the color difference meter ZE-2000 by Nippon Denshoku Industries Co., Ltd. based on JISZ8722. As shown in Table 1, this film with a conductive layer had L * : 92.42, a * : -0.15, b * : 1.52, and YI: 3.13.

また、この導電性フィルムを屈曲させたときの表面抵抗率の変化を調べるために、フィルムを3mm、1mmの線材に沿わせ1分間保持した後、沿わせた部分を含んだ表面抵抗率を測定した。その屈曲させる前の表面抵抗率を1(100%)としたときの表面抵抗率の増大率は、表1に記載したように、それぞれ1.15倍、1.16倍であった。   In addition, in order to investigate the change in surface resistivity when this conductive film is bent, the film is held along a 3 mm, 1 mm wire for 1 minute, and then the surface resistivity including the aligned portion is measured. did. As shown in Table 1, the increase rate of the surface resistivity when the surface resistivity before bending was 1 (100%) was 1.15 times and 1.16 times, respectively.

[実施例2]
実施例1で用いた塗液を、実施例1で使用したポリエチレンテレフタレートフィルムの表面に塗布して乾燥することにより導電層を形成し、該導電層中のカーボンナノチューブの目付け量が50mg/mである導電性透明ポリエチレンテレフタレートフィルムを得た。
[Example 2]
The coating liquid used in Example 1 was applied to the surface of the polyethylene terephthalate film used in Example 1 and dried to form a conductive layer. The basis weight of the carbon nanotubes in the conductive layer was 50 mg / m 2. A conductive transparent polyethylene terephthalate film was obtained.

この導電性透明ポリエチレンテレフタレートフィルムフィルムの表面抵抗率を、実施例1と同様にして測定したところ、表1に併記するように、表面抵抗率が9.55×10Ω/□であつた。
また、この導電性フィルムの全光線透過率とヘーズとを、実施例1と同様にして測定したところ、表1に併記するように、全光線透過率が87.9%、ヘーズが2.5%であった。
また、このフィルムの導電層の550nm波長の光線透過率を、実施例1と同様にして測定したところ、表1に併記するように、93.0%であった。
また、このフィルムの屈曲させた後の表面抵抗率を、実施例1と同様にして測定したところ、曲率半径3mmで約1.11倍の、また1mmで1.08倍の増加でしかなかった。
When the surface resistivity of this conductive transparent polyethylene terephthalate film was measured in the same manner as in Example 1, as shown in Table 1, the surface resistivity was 9.55 × 10 2 Ω / □.
Further, the total light transmittance and haze of this conductive film were measured in the same manner as in Example 1. As shown in Table 1, the total light transmittance was 87.9% and the haze was 2.5. %Met.
Further, the light transmittance at a wavelength of 550 nm of the conductive layer of this film was measured in the same manner as in Example 1. As a result, it was 93.0%.
Further, the surface resistivity of the film after bending was measured in the same manner as in Example 1. As a result, the curvature radius was about 1.11 times when the radius of curvature was 3 mm, and it was only 1.08 times when 1 mm. .

[実施例3]
実施例1で用いた塗液を、実施例1で使用したポリエチレンテレフタレートフィルムの表面に塗布して乾燥することにより導電層を形成し、該導電層中のカーボンナノチューブの目付け量が267mg/mである導電性透明ポリエチレンテレフタレートフィルムを得た。
[Example 3]
The coating liquid used in Example 1 was applied to the surface of the polyethylene terephthalate film used in Example 1 and dried to form a conductive layer. The basis weight of the carbon nanotubes in the conductive layer was 267 mg / m 2. A conductive transparent polyethylene terephthalate film was obtained.

この導電性透明ポリエチレンテレフタレートフィルムフィルムの表面抵抗率を、実施例1と同様にして測定したところ、表1に併記するように、表面抵抗率が86.0Ω/□であつた。
また、この導電性フィルムの全光線透過率とヘーズとを、実施例1と同様にして測定したところ、表1に併記するように、全光線透過率が69.9%、ヘーズが5.4%であった。
また、このフィルムの導電層の550nm波長の光線透過率を、実施例1と同様にして測定したところ、表1に併記するように、76.0%であった。 また、このフィルムの屈曲させた後の表面抵抗率を、実施例1と同様にして測定したところ、曲率半径3mmで約1.14倍の、1mmで1.18倍の増加でしかなかった。
The surface resistivity of the conductive transparent polyethylene terephthalate film was measured in the same manner as in Example 1. As shown in Table 1, the surface resistivity was 86.0Ω / □.
The total light transmittance and haze of this conductive film were measured in the same manner as in Example 1. As shown in Table 1, the total light transmittance was 69.9% and the haze was 5.4. %Met.
Further, the light transmittance at a wavelength of 550 nm of the conductive layer of this film was measured in the same manner as in Example 1. As a result, it was 76.0% as shown in Table 1. Further, the surface resistivity of the film after bending was measured in the same manner as in Example 1. As a result, the curvature radius was about 1.14 times at a radius of 3 mm, and only 1.18 times at 1 mm.

[比較例1]
市販している東洋紡績株式会社製のITOフィルム400Rを用いて、表面抵抗率、全光線透過率とヘーズ、色相、屈曲させたときの表面抵抗の変化を、実施例1と同様にして測定し、その結果を表1に併記した。
[Comparative Example 1]
Using a commercially available ITO film 400R manufactured by Toyobo Co., Ltd., surface resistivity, total light transmittance and haze, hue, and changes in surface resistance when bent were measured in the same manner as in Example 1. The results are also shown in Table 1.

Figure 2006171336
Figure 2006171336

表1からわかるように、実施例1〜3は表面抵抗率が86〜955Ω/□であり、比較例1のITO皮膜と同程度の抵抗率を有し、画像表示用電極体として必要な表面抵抗率を有していることがわかる。しかも、全光線透過率は69.9〜87.9%、ヘーズは1.8〜5.4%であり、実用上問題のない透明性を有していることがわかる。特に、比較例1のITO被膜と同程度の表面抵抗率を示す実施例1は、略同じ全光線透過率とヘーズを有し、何ら遜色ない光学特性を有していることもわかる。   As can be seen from Table 1, Examples 1 to 3 have a surface resistivity of 86 to 955 Ω / □, a resistivity comparable to that of the ITO film of Comparative Example 1, and a surface necessary as an electrode body for image display. It can be seen that it has a resistivity. In addition, the total light transmittance is 69.9 to 87.9%, and the haze is 1.8 to 5.4%. In particular, it can also be seen that Example 1, which exhibits the same surface resistivity as the ITO film of Comparative Example 1, has substantially the same total light transmittance and haze, and has optical characteristics that are comparable to each other.

さらに、実施例1の色相は、aが−0.15、bが1.52YIが3.13であり、比較例1のaが−0.32、bが2.82、YIが5.57であるので、実施例1がより色差が小さく、ITO被膜よりも黄色味を呈していないことがわかる。そのため、実施例1のフィルムを画像表示装置の透明電極体として使用しても、これを透過する光の色相を変えることなく表示できることがわかる。しかし、比較例1のITOフィルムは黄色を帯びているので色相が変化して表示される恐れがあり、色補正を行う別のフィルムを必要とすることとなる。 Furthermore, the hue of Example 1 is that a * is −0.15, b * is 1.52YI is 3.13, and a * of Comparative Example 1 is −0.32, b * is 2.82, YI. Is 5.57, it can be seen that Example 1 has a smaller color difference and is less yellow than the ITO coating. Therefore, even if the film of Example 1 is used as the transparent electrode body of the image display device, it can be seen that display can be performed without changing the hue of light transmitted through the film. However, since the ITO film of Comparative Example 1 is yellowish, the hue may change and be displayed, and another film that performs color correction is required.

さらに、各実施例の導電性フィルムは、沿わせる線材の曲率半径が3mm、さらには1mmの場合でも1.3倍以下であることがわかる。このことより、各実施例のフィルムを湾曲させても表面抵抗率の増加を小さくでき、湾曲した画像表示装置の透明電極体として使用できることがわかる。さらに、曲率半径が小さくても表面抵抗率の増加率が少ないので、透明電極体に衝撃が加わって局所的な凹みが生じても、表面抵抗率が増加せずに実使用上問題のない抵抗率を保持し、透明電極体として使用できることがわかる。   Furthermore, it turns out that the conductive film of each Example is 1.3 times or less even when the curvature radius of the wire to be laid is 3 mm, and further 1 mm. From this, it can be seen that even if the film of each example is curved, the increase in surface resistivity can be reduced, and it can be used as a transparent electrode body of a curved image display device. Furthermore, even if the radius of curvature is small, the rate of increase in surface resistivity is small, so even if impact is applied to the transparent electrode body and local dents occur, the resistance does not increase and the surface resistivity does not cause any problems in practical use. It can be seen that it can be used as a transparent electrode body.

本発明の透明導電層を有する透明電極体を用いた有機EL(エレクトロルミネッセンス)ディスプレイ装置の基本的な構成を示す断面図である。It is sectional drawing which shows the fundamental structure of the organic electroluminescent (electroluminescent) display apparatus using the transparent electrode body which has a transparent conductive layer of this invention. 同ディスプレイ装置に使用する透明電極体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the transparent electrode body used for the display apparatus. (a)は同透明電極体の導電層内部における極細導電繊維の分散状態を示す模式断面図、(b)は同導電層表面における極細導電繊維の他の分散状態を示す模式断面図である。(A) is a schematic cross section which shows the dispersion | distribution state of the ultrafine conductive fiber in the inside of the conductive layer of the transparent electrode body, (b) is a schematic cross section which shows the other dispersion state of the ultrafine conductive fiber in the surface of the same conductive layer. 同導電層を平面から見た極細導電繊維の分散状態を示す模式平面図である。It is a schematic plan view which shows the dispersion | distribution state of the ultrafine conductive fiber which looked at the same conductive layer from the plane. 本発明の透明導電層を有する透明電極体を用いた他の実施形態を示す有機ELディスプレイ装置の基本的な構成を示す断面図である。It is sectional drawing which shows the fundamental structure of the organic electroluminescent display apparatus which shows other embodiment using the transparent electrode body which has a transparent conductive layer of this invention. 本発明の透明導電層を有する透明電極体を用いた更に他の実施形態を示す有機ELディスプレイ装置の基本的な構成を示す断面図である。It is sectional drawing which shows the basic composition of the organic electroluminescent display apparatus which shows other embodiment using the transparent electrode body which has a transparent conductive layer of this invention.

符号の説明Explanation of symbols

1 透明基板
2 透明電極体
21 陽極透明電極体
22 陰極透明電極体
23 基材
24 導電層
25 極細導電繊維
3 正孔輸送層
4 発光層
5 電子輸送層
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent electrode body 21 Anode transparent electrode body 22 Cathode transparent electrode body 23 Base material 24 Conductive layer 25 Extra fine conductive fiber 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer

Claims (8)

透明な基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成されていることを特徴とする画像表示用透明電極体。   A transparent electrode body for image display, wherein a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a transparent substrate. 透明な基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電極体であって、上記極細導電繊維が凝集することなく分散して互いに接触していることを特徴とする画像表示用透明電極体。   An electrode body in which a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a transparent substrate, wherein the ultrafine conductive fibers are dispersed without agglomeration and are in contact with each other A transparent electrode body for image display. 透明な基材の少なくとも片面に、極細導電繊維を含んだ透明な導電層が形成された電極体であって、上記極細導電繊維が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していることを特徴とする画像表示用透明電極体。   An electrode body in which a transparent conductive layer containing ultrafine conductive fibers is formed on at least one surface of a transparent substrate, and the ultrafine conductive fibers are separated one by one, or a plurality are collected into a bundle. A transparent electrode body for displaying an image, wherein the bundles are dispersed in contact with each other in a separated state. 上記極細導電繊維がカーボンナノチューブであることを特徴とする請求項1ないし請求項3のいずれかに記載の画像表示用透明電極体。   The transparent electrode body for image display according to any one of claims 1 to 3, wherein the ultrafine conductive fiber is a carbon nanotube. 上記導電層が10Ω/□以下の表面抵抗率を備えていることを特徴とする請求項1ないし請求項4のいずれかに記載の画像表示用透明電極体。 The transparent electrode body for image display according to any one of claims 1 to 4, wherein the conductive layer has a surface resistivity of 10 4 Ω / □ or less. 上記導電層が10Ω/□以下の表面抵抗率を備えており、その550nm波長の光線透過率が75%以上であることを特徴とする請求項1ないし請求項5のいずれかに記載の画像表示用透明電極体。 6. The conductive layer according to claim 1, wherein the conductive layer has a surface resistivity of 10 4 Ω / □ or less, and a light transmittance at a wavelength of 550 nm is 75% or more. Transparent electrode body for image display. 上記導電層が、曲率半径3mmで曲げた後の表面抵抗率の増大が1.3倍以下であることを特徴とする請求項1ないし請求項6のいずれかに記載の画像表示用透明電極体。   7. The transparent electrode body for image display according to claim 1, wherein an increase in surface resistivity after the conductive layer is bent with a radius of curvature of 3 mm is 1.3 times or less. . 請求項1〜7のいずれかに記載の透明電極体を用いたことを特徴とする画像表示装置。   An image display device using the transparent electrode body according to claim 1.
JP2004363408A 2004-12-15 2004-12-15 Transparent electrode member for image display, and the image display device Pending JP2006171336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363408A JP2006171336A (en) 2004-12-15 2004-12-15 Transparent electrode member for image display, and the image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363408A JP2006171336A (en) 2004-12-15 2004-12-15 Transparent electrode member for image display, and the image display device

Publications (1)

Publication Number Publication Date
JP2006171336A true JP2006171336A (en) 2006-06-29

Family

ID=36672176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363408A Pending JP2006171336A (en) 2004-12-15 2004-12-15 Transparent electrode member for image display, and the image display device

Country Status (1)

Country Link
JP (1) JP2006171336A (en)

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010329A (en) * 2006-06-30 2008-01-17 Takiron Co Ltd Conductive synthetic resin rod body, and its manufacturing method
JP2008051241A (en) * 2006-08-25 2008-03-06 Takiron Co Ltd Conductive synthetic resin molding and conductive roll using the same
JP2008052870A (en) * 2006-08-28 2008-03-06 Takiron Co Ltd Liquid crystal wave front aberration correcting element, and optical pickup using and optical medium driving device using the element
KR100816815B1 (en) 2007-02-09 2008-03-26 주식회사 나모텍 Substrate for display device using carbon nanotube and method for manufacturing the same
KR100833975B1 (en) 2007-04-17 2008-05-30 황장환 Oled and method for fabricating the same
JP2008243567A (en) * 2007-03-27 2008-10-09 Takiron Co Ltd Functional thin film element, display, light control body, photoelectromotive force module, ionization potential control method of conductive layer, and manufacturing method of functional thin film element
JP2008297196A (en) * 2007-05-30 2008-12-11 Samsung Electronics Co Ltd Carbon nanotube having improved conductivity, process of preparing the same, and electrode comprising the carbon nanotube
JP2009018947A (en) * 2007-07-10 2009-01-29 National Institute Of Advanced Industrial & Technology Carbon nanotube thin film
KR100883737B1 (en) * 2007-01-17 2009-02-12 삼성전자주식회사 Transparent carbon nanotube electrode with net shape carbon nanotube film and preparation method thereof
WO2009035059A1 (en) * 2007-09-12 2009-03-19 Kuraray Co., Ltd. Electroconductive film, electroconductive member, and process for producing electroconductive film
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
JP2009146898A (en) * 2007-12-12 2009-07-02 Qinghua Univ Electron element
WO2009113342A1 (en) * 2008-03-14 2009-09-17 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
JP2009218595A (en) * 2008-03-07 2009-09-24 Qinghua Univ Photovoltaic device
JP2009253289A (en) * 2008-04-03 2009-10-29 Qinghua Univ Photovoltaic device
JP2009260355A (en) * 2008-04-18 2009-11-05 Qinghua Univ Photovoltaic cell
JP2009260356A (en) * 2008-04-18 2009-11-05 Qinghua Univ Photovoltaic cell
JP2009544058A (en) * 2006-07-17 2009-12-10 ユニダイム Transparent conductive nanostructured film pixel electrode and manufacturing method thereof
JP2010043237A (en) * 2008-08-14 2010-02-25 Korea Electrotechnology Research Inst Carbon nanotube-coated transparent conductive polycarbonate film and touch panel using the same
JP2010061874A (en) * 2008-09-01 2010-03-18 Sumitomo Chemical Co Ltd Organic electroluminescent element and its manufacturing method
WO2010032721A1 (en) * 2008-09-19 2010-03-25 コニカミノルタホールディングス株式会社 Organic electroluminescent element
JP2010102969A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
US7727578B2 (en) 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
JP2010146813A (en) * 2008-12-17 2010-07-01 Sumitomo Chemical Co Ltd Organic electroluminescent element
JP2010525527A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション High contrast transparent conductor and method of forming the same
JP2010192117A (en) * 2009-02-13 2010-09-02 Sumitomo Chemical Co Ltd Organic electroluminescent element, and manufacturing method thereof
JP2010192118A (en) * 2009-02-13 2010-09-02 Sumitomo Chemical Co Ltd Method of manufacturing organic electroluminescent element
JP2010192144A (en) * 2009-02-16 2010-09-02 Sumitomo Chemical Co Ltd Organic electroluminescent element
WO2010106899A1 (en) * 2009-03-17 2010-09-23 コニカミノルタホールディングス株式会社 Transparent conductive film and method for manufacturing transparent conductive film
JP2010212096A (en) * 2009-03-11 2010-09-24 Konica Minolta Holdings Inc Conductive film and method of manufacturing the same, and organic electroluminescent element
JP2010267395A (en) * 2009-05-12 2010-11-25 Konica Minolta Holdings Inc Transparent conductive film and method for manufacturing transparent conductive film and transparent electrode for electronic device
JP2010537392A (en) * 2007-08-27 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Identification mark having electroluminescent effect and method for producing the same
WO2011013618A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Organic electroluminescence element
JP2011029120A (en) * 2009-07-29 2011-02-10 Sumitomo Chemical Co Ltd Light-emitting device
JP2011029118A (en) * 2009-07-29 2011-02-10 Sumitomo Chemical Co Ltd Method of manufacturing organic el element
US7960027B2 (en) 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8138568B2 (en) 2006-10-17 2012-03-20 Samsung Electronics Co., Ltd. Transparent carbon nanotube electrode using conductive dispersant and production method thereof
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
CN102550125A (en) * 2009-09-30 2012-07-04 住友化学株式会社 Light emitting device
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
WO2012117812A1 (en) * 2011-03-03 2012-09-07 パナソニック株式会社 Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
JP2013016314A (en) * 2011-07-01 2013-01-24 Nissha Printing Co Ltd Foldable transparent conductive layer
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
JP2013211272A (en) * 2013-05-17 2013-10-10 Nissha Printing Co Ltd Method of manufacturing conductive pattern coating body
JP5326093B2 (en) * 2006-11-22 2013-10-30 日本電気株式会社 Semiconductor device and manufacturing method thereof
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
JP5370151B2 (en) * 2008-02-29 2013-12-18 東レ株式会社 Substrate with transparent conductive film, method for producing the same, and touch panel using the same
WO2014015284A1 (en) * 2012-07-20 2014-01-23 The Regents Of The University Of California High efficiency organic light emitting devices
US8785939B2 (en) 2006-07-17 2014-07-22 Samsung Electronics Co., Ltd. Transparent and conductive nanostructure-film pixel electrode and method of making the same
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US9824789B2 (en) 2010-09-24 2017-11-21 The Regents Of The University Of California Method for producing nanowire-polymer composite electrodes
JP2020021700A (en) * 2018-08-03 2020-02-06 ナガセケムテックス株式会社 Transparent conductive laminate
JP2020024916A (en) * 2018-08-03 2020-02-13 ナガセケムテックス株式会社 Transparent conductive laminate and method for producing transparent conductive laminate
CN110797139A (en) * 2018-08-03 2020-02-14 长濑化成株式会社 Transparent conductive laminate and method for producing transparent conductive laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042560A (en) * 2000-07-31 2002-02-08 Toppan Printing Co Ltd Conductive member, display device using it, and manufacturing method thereof
JP2002346996A (en) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd Method of manufacturing carbon nanotube structure as well as carbon nanotube structure and carbon nanotube device using the same
JP2004202948A (en) * 2002-12-26 2004-07-22 Research Laboratory Of Plastics Technology Co Ltd Laminate
WO2004069737A2 (en) * 2003-01-30 2004-08-19 Eikos, Inc. Articles with dispersed conductive coatings
JP2004526838A (en) * 2001-03-26 2004-09-02 エイコス・インコーポレーテッド Carbon nanotube-containing coating
JP2004253796A (en) * 2003-01-31 2004-09-09 Takiron Co Ltd Electromagnetic wave shielding structure
WO2006030981A1 (en) * 2004-09-17 2006-03-23 National Institute Of Advanced Industrial Scienceand Technology Transparent conductive carbon nanotube film and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042560A (en) * 2000-07-31 2002-02-08 Toppan Printing Co Ltd Conductive member, display device using it, and manufacturing method thereof
JP2004526838A (en) * 2001-03-26 2004-09-02 エイコス・インコーポレーテッド Carbon nanotube-containing coating
JP2002346996A (en) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd Method of manufacturing carbon nanotube structure as well as carbon nanotube structure and carbon nanotube device using the same
JP2004202948A (en) * 2002-12-26 2004-07-22 Research Laboratory Of Plastics Technology Co Ltd Laminate
WO2004069737A2 (en) * 2003-01-30 2004-08-19 Eikos, Inc. Articles with dispersed conductive coatings
JP2004253796A (en) * 2003-01-31 2004-09-09 Takiron Co Ltd Electromagnetic wave shielding structure
WO2006030981A1 (en) * 2004-09-17 2006-03-23 National Institute Of Advanced Industrial Scienceand Technology Transparent conductive carbon nanotube film and method for producing same

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014212117A (en) * 2005-08-12 2014-11-13 カンブリオステクノロジーズ コーポレイション Nanowire-based transparent conductor
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8618531B2 (en) 2005-08-12 2013-12-31 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
JP2008010329A (en) * 2006-06-30 2008-01-17 Takiron Co Ltd Conductive synthetic resin rod body, and its manufacturing method
US8785939B2 (en) 2006-07-17 2014-07-22 Samsung Electronics Co., Ltd. Transparent and conductive nanostructure-film pixel electrode and method of making the same
JP2009544058A (en) * 2006-07-17 2009-12-10 ユニダイム Transparent conductive nanostructured film pixel electrode and manufacturing method thereof
JP2008051241A (en) * 2006-08-25 2008-03-06 Takiron Co Ltd Conductive synthetic resin molding and conductive roll using the same
JP2008052870A (en) * 2006-08-28 2008-03-06 Takiron Co Ltd Liquid crystal wave front aberration correcting element, and optical pickup using and optical medium driving device using the element
US8174667B2 (en) 2006-10-12 2012-05-08 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8760606B2 (en) 2006-10-12 2014-06-24 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2014003298A (en) * 2006-10-12 2014-01-09 Cambrios Technologies Corp Transparent conductor of nanowire base and application of the same
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2016012726A (en) * 2006-10-12 2016-01-21 カンブリオス テクノロジーズ コーポレイション Transparent conductor of nanowire base and application of the same
EP1914781B1 (en) * 2006-10-17 2014-01-01 Samsung Electronics Co., Ltd. Transparent carbon nanotube electrode using conductive dispersant and production method thereof
US8603836B2 (en) 2006-10-17 2013-12-10 Samsung Electronics Co., Ltd. Transparent carbon nanotube electrode using conductive dispersant and production method thereof
US8138568B2 (en) 2006-10-17 2012-03-20 Samsung Electronics Co., Ltd. Transparent carbon nanotube electrode using conductive dispersant and production method thereof
JP5326093B2 (en) * 2006-11-22 2013-10-30 日本電気株式会社 Semiconductor device and manufacturing method thereof
KR100883737B1 (en) * 2007-01-17 2009-02-12 삼성전자주식회사 Transparent carbon nanotube electrode with net shape carbon nanotube film and preparation method thereof
US8840954B2 (en) 2007-01-17 2014-09-23 Samsung Electronics Co., Ltd. Transparent carbon nanotube electrode with net-like carbon nanotube film and preparation method thereof
US8021747B2 (en) 2007-01-17 2011-09-20 Samsung Electronics Co., Ltd. Transparent carbon nanotube electrode with net-like carbon nanotube film and preparation method thereof
KR100816815B1 (en) 2007-02-09 2008-03-26 주식회사 나모텍 Substrate for display device using carbon nanotube and method for manufacturing the same
JP2008243567A (en) * 2007-03-27 2008-10-09 Takiron Co Ltd Functional thin film element, display, light control body, photoelectromotive force module, ionization potential control method of conductive layer, and manufacturing method of functional thin film element
KR100833975B1 (en) 2007-04-17 2008-05-30 황장환 Oled and method for fabricating the same
JP2010525527A (en) * 2007-04-20 2010-07-22 カンブリオス テクノロジーズ コーポレイション High contrast transparent conductor and method of forming the same
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
JP2008297196A (en) * 2007-05-30 2008-12-11 Samsung Electronics Co Ltd Carbon nanotube having improved conductivity, process of preparing the same, and electrode comprising the carbon nanotube
JP2009018947A (en) * 2007-07-10 2009-01-29 National Institute Of Advanced Industrial & Technology Carbon nanotube thin film
JP2010537392A (en) * 2007-08-27 2010-12-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Identification mark having electroluminescent effect and method for producing the same
JPWO2009035059A1 (en) * 2007-09-12 2010-12-24 株式会社クラレ Conductive film, conductive member, and method of manufacturing conductive film
WO2009035059A1 (en) * 2007-09-12 2009-03-19 Kuraray Co., Ltd. Electroconductive film, electroconductive member, and process for producing electroconductive film
JP2009070660A (en) * 2007-09-12 2009-04-02 Kuraray Co Ltd Transparent conductive film and its manufacturing method
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
JP4648451B2 (en) * 2007-12-12 2011-03-09 ツィンファ ユニバーシティ Electronic element
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
JP2009146898A (en) * 2007-12-12 2009-07-02 Qinghua Univ Electron element
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US7727578B2 (en) 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US7960027B2 (en) 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
JP5370151B2 (en) * 2008-02-29 2013-12-18 東レ株式会社 Substrate with transparent conductive film, method for producing the same, and touch panel using the same
JP2009218595A (en) * 2008-03-07 2009-09-24 Qinghua Univ Photovoltaic device
US8796537B2 (en) 2008-03-07 2014-08-05 Tsinghua University Carbon nanotube based solar cell
JPWO2009113342A1 (en) * 2008-03-14 2011-07-21 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
WO2009113342A1 (en) * 2008-03-14 2009-09-17 コニカミノルタホールディングス株式会社 Dye-sensitized solar cell
US8263860B2 (en) 2008-04-03 2012-09-11 Tsinghua University Silicon photovoltaic device with carbon nanotube cable electrode
JP2009253289A (en) * 2008-04-03 2009-10-29 Qinghua Univ Photovoltaic device
US8895841B2 (en) 2008-04-18 2014-11-25 Tsinghua University Carbon nanotube based silicon photovoltaic device
JP2009260356A (en) * 2008-04-18 2009-11-05 Qinghua Univ Photovoltaic cell
JP2009260355A (en) * 2008-04-18 2009-11-05 Qinghua Univ Photovoltaic cell
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
JP2010043237A (en) * 2008-08-14 2010-02-25 Korea Electrotechnology Research Inst Carbon nanotube-coated transparent conductive polycarbonate film and touch panel using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
JP2010061874A (en) * 2008-09-01 2010-03-18 Sumitomo Chemical Co Ltd Organic electroluminescent element and its manufacturing method
WO2010032721A1 (en) * 2008-09-19 2010-03-25 コニカミノルタホールディングス株式会社 Organic electroluminescent element
US8304984B2 (en) 2008-09-19 2012-11-06 Konica Minolta Holdings, Inc. Organic electroluminescent element
JPWO2010032721A1 (en) * 2008-09-19 2012-02-09 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP2010102969A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2010146813A (en) * 2008-12-17 2010-07-01 Sumitomo Chemical Co Ltd Organic electroluminescent element
JP2010192117A (en) * 2009-02-13 2010-09-02 Sumitomo Chemical Co Ltd Organic electroluminescent element, and manufacturing method thereof
JP2010192118A (en) * 2009-02-13 2010-09-02 Sumitomo Chemical Co Ltd Method of manufacturing organic electroluminescent element
JP2010192144A (en) * 2009-02-16 2010-09-02 Sumitomo Chemical Co Ltd Organic electroluminescent element
JP2010212096A (en) * 2009-03-11 2010-09-24 Konica Minolta Holdings Inc Conductive film and method of manufacturing the same, and organic electroluminescent element
WO2010106899A1 (en) * 2009-03-17 2010-09-23 コニカミノルタホールディングス株式会社 Transparent conductive film and method for manufacturing transparent conductive film
JP2010267395A (en) * 2009-05-12 2010-11-25 Konica Minolta Holdings Inc Transparent conductive film and method for manufacturing transparent conductive film and transparent electrode for electronic device
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
JP2011029118A (en) * 2009-07-29 2011-02-10 Sumitomo Chemical Co Ltd Method of manufacturing organic el element
JP2011029120A (en) * 2009-07-29 2011-02-10 Sumitomo Chemical Co Ltd Light-emitting device
WO2011013618A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Organic electroluminescence element
US8552637B2 (en) 2009-07-30 2013-10-08 Sumitomo Chemical Company, Limited Organic electroluminescence element having a conductive resin layer and method for manufacturing the same
US8829500B2 (en) 2009-09-30 2014-09-09 Sumitomo Chemical Company, Limited Light emitting device
CN102550125A (en) * 2009-09-30 2012-07-04 住友化学株式会社 Light emitting device
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
US9824789B2 (en) 2010-09-24 2017-11-21 The Regents Of The University Of California Method for producing nanowire-polymer composite electrodes
WO2012117812A1 (en) * 2011-03-03 2012-09-07 パナソニック株式会社 Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same
JP2013016314A (en) * 2011-07-01 2013-01-24 Nissha Printing Co Ltd Foldable transparent conductive layer
WO2014015284A1 (en) * 2012-07-20 2014-01-23 The Regents Of The University Of California High efficiency organic light emitting devices
JP2013211272A (en) * 2013-05-17 2013-10-10 Nissha Printing Co Ltd Method of manufacturing conductive pattern coating body
JP2020021700A (en) * 2018-08-03 2020-02-06 ナガセケムテックス株式会社 Transparent conductive laminate
JP2020024916A (en) * 2018-08-03 2020-02-13 ナガセケムテックス株式会社 Transparent conductive laminate and method for producing transparent conductive laminate
CN110797139A (en) * 2018-08-03 2020-02-14 长濑化成株式会社 Transparent conductive laminate and method for producing transparent conductive laminate
JP7359588B2 (en) 2018-08-03 2023-10-11 ナガセケムテックス株式会社 Transparent conductive laminate and method for producing transparent conductive laminate

Similar Documents

Publication Publication Date Title
JP2006171336A (en) Transparent electrode member for image display, and the image display device
JP4471346B2 (en) Electromagnetic shield
US7956287B2 (en) Transparent conductive formed article for a touch panel and touch panel
US10306752B2 (en) Transparent conductor and device
JP3903159B2 (en) Method for producing conductive molded body
TWI487125B (en) Composite transparent conductors and methods of forming the same
US20060257638A1 (en) Articles with dispersed conductive coatings
US20150010695A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
JP2006035771A (en) Conductive layer transfer sheet
JP2006049843A (en) Antistatic molding for image display apparatus
US20140320458A1 (en) Touch-sensitive display device
KR102375891B1 (en) Transparent electrodes and electronic decives including the same
JP2009211978A (en) Transparent conductive film, and optical device using the same
JP2005277405A (en) Optically transparent antinoise formed body for image display device
JP2006035773A (en) Self-adhesive conductive molding
JP2018107138A (en) Method for producing transparent conductive body
TW201331031A (en) Conductive laminate and display formed using the same
JP5002778B2 (en) Method for producing transparent conductive film substrate and method for producing transparent laminate
JP2017228353A (en) Transparent conductive film
JP2013206675A (en) Conductive laminate and touch panel
US10474309B2 (en) Conductive element, input device, and electronic apparatus
TWM556395U (en) Conductive film substrate, touch screen sensor and module
JP2015037045A (en) Transparent conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121003