JP4449511B2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP4449511B2
JP4449511B2 JP2004076174A JP2004076174A JP4449511B2 JP 4449511 B2 JP4449511 B2 JP 4449511B2 JP 2004076174 A JP2004076174 A JP 2004076174A JP 2004076174 A JP2004076174 A JP 2004076174A JP 4449511 B2 JP4449511 B2 JP 4449511B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
engine
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004076174A
Other languages
English (en)
Other versions
JP2005264781A (ja
Inventor
太郎 青山
寛真 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004076174A priority Critical patent/JP4449511B2/ja
Publication of JP2005264781A publication Critical patent/JP2005264781A/ja
Application granted granted Critical
Publication of JP4449511B2 publication Critical patent/JP4449511B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関に関する。
近年、エンジンの他に電動機を追加することにより、エンジン出力および/または電動機出力により走行可能としたハイブリッド車両が公知となっている。また、エンジンの作動が不要のとき(例えば、信号待ち、電車通過待ち、人待ちをしているときの車両停止時)にはエンジンを停止して、エンジン作動が必要になったときに再びエンジンを始動(再始動)する自動停止走行モードの車両(エコラン車両)も開発されている。このようなハイブリッド車両およびエコラン車両では、エンジンは必要に応じて間欠的に運転されると共に、効率の高い運転領域を選択して運転することが可能であるため、燃費及び排気浄化性能に優れている。
また、従来より内燃機関、例えばディーゼル機関においてはNOxの発生を抑制するために機関排気通路と機関吸気通路とを排気ガス再循環(以下、EGRと称す)通路により連結し、このEGR通路を介して排気ガス、即ちEGRガスを機関吸気通路内に再循環させるようにしている。この場合、EGRガスは比較的比熱が高く、従って多量の熱を吸収することができるので、EGRガス量を増大するほど、即ちEGR率(EGRガス量/(EGRガス量+吸入空気量))を増大するほど燃焼室内における燃焼温度が低下する。燃焼温度が低下するとNOxの発生量が低下し、従ってEGR率を増大すればするほどNOxの発生量は低下することになる。
ところがディーゼル機関の燃焼の研究の過程においてEGR率を最大許容限界よりも大きくすれば上述の如くスモークが急激に増大するがこのスモークの発生量にはピークが存在し、このピークを越えてEGR率を更に大きくすると今度はスモークが急激に減少しはじめ、アイドリング運転時においてEGR率を70パーセント以上にすると、またEGRガスを強力に冷却した場合にはEGR率をほぼ55パーセント以上にするとスモークがほとんど零になる、即ち煤がほとんど発生しないことが見い出されたのである。また、このときにはNOxの発生量が極めて少量となることも判明している。この後この知見に基づいて煤が発生しない理由について検討が進められ、その結果これまでにない煤およびNOxの同時低減が可能な新たな燃焼(低温燃焼)システムが構築されるに至ったのである。この新たな燃焼(低温燃焼)システムについては後に詳細に説明するが簡単に言うと炭化水素(以下、適宜「HC」と称する)が煤に成長するまでの途中の段階において炭化水素の成長を停止させることを基本としている。
即ち、実験研究を重ねた結果判明したことは燃焼室内における燃焼時の燃料およびその周囲のガス温度が或る温度以下のときには炭化水素の成長が煤に至る前の途中の段階で停止し、燃料およびその周囲のガス温度が或る温度以上になると炭化水素は一気に煤まで成長してしまうということである。この場合、燃料およびその周囲のガス温度は燃料が燃焼した際の燃料周りのガスの吸熱作用が大きく影響しており、燃料燃焼時の発熱量に応じて燃料周りのガスの吸熱量を調整することによって燃料およびその周囲のガス温度を制御することができる。
従って、燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制すれば煤が発生しなくなり、燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制することは燃料周りのガスの吸熱量を調整することによって可能となる。一方、煤に至る前に成長が途中で停止した炭化水素は酸化触媒等を用いた後処理によって容易に浄化することができる。このような新たな低温燃焼システムの基本的な考え方が存在している。
ところで、煤および窒素酸化物(以下、「NOx」と称する)を同時に低減することのできる新たな低温燃焼システムの他に、一酸化炭素(以下、「CO」と称する)、HC、NOxなどの排気ガス中のエミッションを低減できる他の解決法も提案されている。
例えば、内燃機関の排気通路にゼオライトを配置して、排気ガス中のエミッション、特にNOxをトラップすることが提案されている。ところが、NOxは、ゼオライトにトラップされた後であっても、トラップ時よりも高い温度になればゼオライトから脱離する性質を有している。このため、特許文献1および特許文献2においては内燃機関の排気通路に設けられたゼオライトよりも下流に流れる排気ガスを捕集タンクに一時的に捕集することが提案されている。この場合には、ゼオライトよりも下流の排気通路と捕集タンクとが分岐通路によって接続されると共に、捕集タンクが別の通路によって内燃機関の吸気通路まで接続されている。従って、一旦はゼオライトにトラップされたエミッション、特にNOxがゼオライトから脱離する条件が成立した場合には排気ガスを分岐通路に通して捕集タンクに捕集すると共に、所定の条件が成立したときには捕集タンク内の排気ガスを吸気通路に通している。このように排気ガスを捕集タンクに捕集することにより、エミッションを含む排気ガスを内燃機関の外部に流出するのを防止することができる(例えば、特許文献1および特許文献2参照。)。
特開2002−70539号公報 特開2002−147227号公報
しかしながら、特許文献1および特許文献2に記載されるような内燃機関においては、排気ガスを捕集するための捕集タンクおよびこの捕集タンクに排気ガスを導くためのポンプを別途設ける必要がある。そして、この捕集タンクの容量は一時的な排気ガスの全量を捕集するのに十分な容量である必要があるために、捕集タンクは比較的大型である。従って、これら捕集タンクおよびポンプはかなりのスペースを必要とすることとなり、車両搭載性が極めて悪化する。
前述した目的を達成するために1番目に記載の発明によれば、燃焼室から排出された排気通路内の排気ガスを内燃機関のスロットル弁よりも下流の吸気通路に再循環させる排気ガス再循環通路と、前記排気ガス再循環通路を流れる再循環排気ガスの量を制御可能な再循環排気ガス制御弁と、前記排気通路に設けられた酸化機能を有する触媒または該触媒を担持したフィルタとを具備し、前記排気ガス再循環通路が前記触媒またはフィルタの下流から前記スロットル弁よりも下流の前記吸気通路まで延びており、前記内燃機関の始動から前記内燃機関のサイクル数が第一のサイクル数を越える前においては、燃料噴射量が一定であるときの前記内燃機関の動作時よりも始動増量分だけ多く燃料を前記内燃機関の燃料噴射弁から燃焼室内に噴射しつつ、前記スロットル弁を閉鎖すると共に前記再循環排気ガス制御弁を開放し、前記内燃機関の始動後に前記内燃機関のサイクル数が前記第一のサイクル数を越えた場合には前記始動増量分を除いた量の燃料を前記燃焼室内に噴射するようにし、前記内燃機関のサイクル数が前記第一のサイクル数よりも大きい第二のサイクル数を越えた場合には、前記スロットル弁を開放すると共に前記再循環排気ガス制御弁を閉鎖するようにした内燃機関が提供される。
すなわち1番目の発明においては、内燃機関の始動時にスロットル弁を閉鎖すると共に再循環排気ガス制御弁を開放しているときには、スロットル弁の下流における吸気通路と内燃機関の機関本体と排気ガス再循環通路までの排気通路と排気ガス再循環通路とによって閉ループが形成され、この閉ループ内において空気または未燃成分を含んだ排気ガスが循環するようになる。機関始動時の排気ガスにはエミッションが比較的多く含まれているものの、前述した閉ループ内において空気および未燃成分を含んだ排気ガスを循環させることによって、捕集タンク等を必要とすることなしに、これらエミッションを含む排気ガスが機関始動時に内燃機関から外部に流出するのを抑制することが可能となる。さらに、閉ループ内の空気または未燃成分を含んだ比較的高温の排気ガスを循環させることにより可燃混合気を容易に形成できるので、実際に噴射する燃料を従来の場合よりも低減するようにしてもよい。さらに、再循環排気ガスが触媒または触媒を担持したフィルタを通過する際に排気ガス内のエミッション、特にHC、COなどを酸化により浄化すると共に、これら触媒の暖機を行うことも可能となる。触媒は酸化触媒またはNOx触媒を採用することができる。
番目の発明によれば、1番目の発明において、さらに、ターボチャージャを具備し、前記排気ガス再循環通路は前記ターボチャージャの排気タービンの下流側と前記ターボチャージャのコンプレッサの上流側とを接続している。
すなわち番目の発明においては、前述した閉ループがターボチャージャの分だけ大きくなり、エミッションを含んださらに多量の排気ガスが内燃機関から外部に流出するのを抑制することができる。また、多量の排気ガスによって触媒を容易に暖機することができる。
番目の発明によれば、1番目または2番目の発明において、前記内燃機関は、所定の条件が満たされた時に停止されると共に、前記所定の条件が満たされなくなったときに再始動されるようにした。
すなわち番目の発明においては、いわゆるエコラン車両またはハイブリッド車両の場合であっても排気ガスが内燃機関から外部に流出するのを防止することができる。また、閉ループ内において空気および未燃成分を含んだ排気ガスを循環させて触媒暖機を行うことは、エコラン車両またはハイブリッド車両の内燃機関のように比較的頻繁に停止されて触媒温度が低下しやすい場合には特に有利である。
番目の発明によれば、番目の発明において、前記内燃機関の始動後に前記内燃機関のサイクル数が所定の別のサイクル数を越えた場合には、前記触媒を昇温させる昇温制御を行うようにした。
すなわち番目の発明においては、所定の触媒昇温制御を行うことにより、前述した閉ループの内壁などに付着したエミッションを除去することが可能となる。
各発明によれば、エミッションを含む排気ガスが機関始動時に内燃機関から外部に流出するのを抑制することができるという共通の効果を奏しうる。
さらに、排気ガス内のエミッションを酸化により浄化すると共に、これら触媒の暖機を行うことができるという効果を奏しうる。
さらに、番目の発明によれば、さらに多量の排気ガスが内燃機関から外部に流出するのを抑制することができるという効果を奏しうる。
さらに、番目の発明によれば、いわゆるエコラン車両またはハイブリッド車両の場合であっても排気ガスが内燃機関から外部に流出するのを防止することができるという効果を奏しうる。
さらに、番目の発明によれば、所定の触媒昇温制御を行うことにより、前述した閉ループの内壁などに付着したエミッションを除去することができるという効果を奏しうる。
以下、添付図面を参照して本発明の実施形態を説明する。以下の図面において同一の部材には同一の参照符号が付けられている。理解を容易にするために、これら図面は縮尺を適宜変更している。
図1および図2は本発明を筒内噴射式圧縮着火式内燃機関に適用した場合を示しているが本発明は筒内噴射式火花点火ガソリン機関にも適用することができる。図1および図2を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13およびインタークーラ14を介して過給機、例えば排気ターボチャージャ15のコンプレッサ16の出口部に連結される。コンプレッサ16の入口部は吸気ダクト17およびエアフローメータ18を介してエアクリーナ19に連結され、吸気ダクト17内にはステップモータ20により駆動されるスロットル弁21が配置される。
一方、排気ポート10は排気マニホルド22を介して排気ターボチャージャ15の排気タービン23の入口部に連結され、排気タービン23の出口部は排気管26を介してパティキュレートフィルタ(以下、適宜「フィルタ」と称する)24を内臓したケーシング25に連結される。フィルタ24下流の排気管26とスロットル弁21下流の吸気ダクト17とは排気ガス再循環(以下、EGRと称す)通路27を介して互いに連結され、EGR通路27内にはステップモータ28により駆動されるEGR制御弁29が配置される。また、EGR通路27内にはEGR通路27内を流れるEGRガスを冷却するためのEGRクーラ30が配置される。図1に示される実施例では機関冷却水がEGRクーラー30内に導びかれ、機関冷却水によってEGRガスが冷却される。
一方、燃料噴射弁6は燃料供給管31を介して燃料リザーバ、いわゆるコモンレール32に連結される。このコモンレール32内へは電気制御式の吐出量可変な燃料ポンプ33から燃料が供給され、コモンレール32内に供給された燃料は各燃料供給管31を介して燃料噴射弁6に供給される。コモンレール32にはコモンレール32内の燃料圧を検出するための燃料圧センサ34が取付けられ、燃料圧センサ34の出力信号に基づいてコモンレール32内の燃料圧が目標燃料圧となるように燃料ポンプ33の吐出量が制御される。
一方、図1に示される実施例では機関の出力軸に変速機35が連結され、変速機35の出力軸36に電気モータ37が連結される。この場合、変速機35としては、トルクコンバータを具えた通常の自動変速機、各種の無段変速機、或いはクラッチを具えた手動変速機におけるクラッチ操作および変速操作を自動的に行うようにした形式の自動変速機等を用いることができる。
また、変速機35の出力軸36に連結された電気モータ37は機関の駆動力とは別個に駆動力を発生する駆動力発生装置を構成している。図1に示される実施例ではこの電気モータ37は変速機35の出力軸36上に取付けられかつ外周面に複数個の永久磁石を取付けたロータ38と、回転磁界を形成する励磁コイルを巻設したステータ39とを具備した交流同期電動機からなる。ステータ39の励磁コイルはモータ駆動制御回路40に接続され、このモータ駆動制御回路40は直流高電圧を発生するバッテリ41に接続される。このため、図示される内燃機関をハイブリッドエンジンとして使用することが可能である。
電子制御ユニット50はデジタルコンピュータからなり、双方向性バス51によって互いに接続されたROM(リードオンリメモリ)52、RAM(ランダムアクセスメモリ)53、CPU(マイクロプロセッサ)54、入力ポート55および出力ポート56を具備する。エアフローメータ18および燃料圧センサ34の出力信号は夫々対応するAD変換器57を介して入力ポート55に入力される。フィルタ24を内臓したケーシング25にはフィルタ24の温度を検出するための温度センサ43が取付けられ、この温度センサ43の出力信号は対応するAD変換器57を介して入力ポート55に入力される。なお、このような温度センサ43を設けることなく、機関の運転状態とフィルタ24の温度との関係を示すモデルを用いてフィルタ24の温度を推定することもできる。このケーシング25にはフィルタ24の上流側と下流側との圧力差を検出するための差圧センサ61が設けられている。差圧センサ61の出力信号は対応するAD変換器57を介して入力ポート55に入力される。また、入力ポート55には変速機35の変速比又は変速段、および出力軸36の回転数等を表わす種々の信号が入力される。
一方、アクセルペダル44にはアクセルペダル44の踏込み量Lに比例した出力電圧を発生する負荷センサ45が接続され、負荷センサ45の出力電圧は対応するAD変換器57を介して入力ポート55に入力される。更に入力ポート55にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ(いわゆる回転数センサ)46が接続される。一方、フィルタ24を内臓したケーシング25の入口部には排気ガス中に炭化水素、例えば燃料を供給するための炭化水素供給弁42が配置され、出力ポート56は対応する駆動回路58を介して燃料噴射弁6、ステップモータ20および28、燃料ポンプ33、変速機35、モータ駆動制御回路40および炭化水素供給弁42に接続される。
電気モータ37のステータ39の励磁コイルへの電力の供給は通常停止せしめられており、このときロータ38は変速機37の出力軸36と共に回転している。一方、電気モータ37を駆動せしめるときにはバッテリ41の直流高電圧がモータ駆動制御回路40において周波数がfmで電流値がImの三相交流に変換され、この三相交流がステータ39の励磁コイルに供給される。この周波数fmは励磁コイルにより発生する回転磁界をロータ38の回転に同期して回転させるのに必要な周波数であり、この周波数fmは出力軸36の回転数に基づいてCPU54で算出される。モータ駆動制御回路40ではこの周波数fmが三相交流の周波数とされる。
一方、電気モータ37の出力トルクは三相交流の電流値Imにほぼ比例する。この電流値Imは電気モータ37の要求出力トルクに基づきCPU54において算出され、モータ駆動制御回路40ではこの電流値Imが三相交流の電流値とされる。また、車両減速時などにおいては電気モータ37は発電機として作動し、このとき発生した電力がバッテリ41に回生される。電気モータ37を発電機として作動させるべきか否かはCPU54において判断され、電気モータ37を発電機として作動させるべきであると判別されたときにはモータ制御回路40により電気モータ37に発生した電力がバッテリ41に回生されるように制御される。
図3に圧縮着火式内燃機関の別の実施例を示す。この実施例では機関の出力軸47に電気モータ37が連結され、電気モータ37の出力軸に変速機35が連結される。この実施例では電気モータ37のロータ38は機関の出力軸47上に取付けられており、従ってロータ38は常時機関の出力軸47と共に回転する。また、この実施例においても変速機35としては、トルクコンバータを具えた通常の自動変速機、各種の無段変速機、或いはクラッチを具えた手動変速機におけるクラッチ操作および変速操作を自動的に行うようにした形式の自動変速機等を用いることができる。
本発明による実施例では空燃比を目標空燃比とするのに必要な目標吸入空気量GAOが図4(A)に示されるように要求トルクTQおよび機関回転数Nの関数としてマップの形で予めROM52内に記憶されている。また、スロットル弁21の目標開度STが図4(B)に示されるように要求トルクTQおよび機関回転数Nの関数としてマップの形で予めROM52内に記憶されている。一方、EGR制御弁29の開度はエアフローメータ18により検出された吸入空気量が目標吸入空気量GAOとなるように制御される。また、正常時、即ちフィルタ24が目詰まりをしていないときにとるであろうEGR制御弁29の予想基準開度SEOが図5に示されるように要求トルクTQおよび機関回転数Nの関数としてマップの形で予めROM52内に記憶されている。
ところで本発明ではフィルタ24上にはNOx吸蔵剤が担持されている。このNOx吸蔵剤は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少くとも一つと、白金Ptのような貴金属とが担持されている。機関吸気通路、燃焼室5およびフィルタ24上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称するとこのNOx吸蔵剤は排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOxの吸放出作用を行う。
このNOx吸蔵剤を担持したフィルタ24を機関排気通路内に配置すればNOx吸蔵剤は実際にNOxの吸放出作用を行うがこの吸放出作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこの吸放出作用は図6に示すようなメカニズムで行われているものと考えられる。次にこのメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。
図1から図3に示される内燃機関は変速機35、電気モータ37およびバッテリ41を有しているが、以下、これらを有していない一般的な内燃機関の動作について説明する。図6は一般的な内燃機関についての本発明に基づく動作を示すフローチャートである。図6のステップ101においては内燃機関のイグニッションスイッチがON状態になったか否かが判定される。イグニッションスイッチがON状態になっている場合にはステップ102に進む。ステップ102においては、図1に示されるEGR制御弁29が開放される。次いで、ステップ103に進んで、図1に示されるスロットル弁21が閉鎖される。これにより、EGR通路27と、スロットル弁21の下流に位置する吸気ダクト17と、コンプレッサ16と、吸気ダクト13と、サージタンク12と、機関本体1と、排気マニホルド22と、排気タービン23と、EGR通路27までの排気管26とによって閉ループが形成される。そして、スロットル弁21が閉鎖されているために新規の空気は機関本体1に流入せず、始動時に閉ループ内に残存していた空気または未燃成分を含んだ排気ガスのみが機関本体1に流入するようになる。ここで、機関本体1への流入量と機関本体1からの流出量とが同じであるために、排気タービン23から排気管26に流入した排気ガスは排気管26からほとんど流出しない。そして、機関本体1が作動しているために空気および排気ガスは閉ループを繰り返し循環するようになる。
機関本体1には通常は内燃機関が前回始動したときに形成された排気ガスが機関本体1または排気マニホルド22、排気管26などに残存しており、またEGR制御を行った場合には、EGR通路27および機関の吸気系にも排気ガスが残存している。これら排気ガスはエミッション、例えばCO、CH、NOxなどを含んでいる。通常の内燃機関の機関始動時にはフィルタ24に担持された触媒は触媒固有の活性温度に到達していないので、機関本体1を通過した排気ガスがフィルタ24を通過してもエミッションはあまり低下せず、エミッションを含んだ排気ガスは排気管26から外部に流出される。ところが、本発明においては、前述した閉ループにおいて空気または排気ガスの循環を行っているので、このようなエミッションを含んだ排気ガスが排気管26から外部に流出することはほとんどない。また、図1から分かるように前述した閉ループ内にはフィルタ24も含まれているので、機関本体1から流出した比較的高温の排気ガスがフィルタ24を通過するようにもなる。このため、フィルタ24に担持された触媒は通常の場合よりも早期に活性温度に到達し、排気ガス内のエミッションを酸化により低減することができる。
なお、前述したように機関本体1への流入量と機関本体1からの流出量とは同じであるので、図示されるようにEGR通路27よりも下流の排気管26が開放していたとしても、空気または排気ガスが排気管26から外部に流出することはほとんどない。ただし、空気または排気ガスが流出するのを完全に防止するために、EGR通路27よりも下流の排気管26に排気管用開閉弁(図示しない)を設け、排気ガスなどが前述した閉ループを循環するときにこの排気管用開閉弁を閉鎖するようにしてもよい。
ところで、図1などに示されるような内燃機関においては燃料が燃料噴射弁6から燃焼室5内に噴射されている。噴射される燃料は内燃機関が安定動作しているときには一定量である。ところが、機関始動時には燃焼室5などの温度が低いために噴射した燃料の全てが可燃混合気になって燃焼するわけではない。このため、通常は機関始動時における可燃混合気量を維持するために、機関始動時に噴射される燃料の量を安定動作時の燃料の量よりも多くすることが行われている。つまり、機関始動時における燃料の量は始動増量分だけ安定動作時よりも多い。そして、この始動増量分の燃料は、機関本体で全て燃焼することなく、未燃成分として排気ガスと共に排気管26から排出されている。そして、通常の内燃機関の場合には、これら未燃成分によってエミッションは増大している。図示しないガソリンエンジンの場合も同様に、機関始動時には燃料が始動増量分だけ多く吸気ポートに噴射されており、同様にエミッションの増大につながっている。
一方、本発明においては、機関始動時に機関本体1から排出された未燃成分を比較的多く含む排出ガスは、排気マニホルド22、排気タービン23、排気管26、およびEGR通路27を通過して吸気系に再び流入している。そして、未燃成分を多く含んだ排気ガスが閉ループを通って機関本体1への循環を繰り返すと、これら未燃成分の多くは可燃混合気となるので、始動増量分の燃料が無くても十分な量の可燃混合気が得られるようになる。機関始動後に機関本体1から排出されて未燃成分を多く含んだ排気ガスの多くが可燃混合気になったか否かを例えば内燃機関のサイクル数Kによって判断することができる。
ここで再び図6を参照すると、ステップ104において内燃機関のサイクル数Kを電子制御ユニット50を通じてクランク角センサ46から取得する。このサイクル数Kは機関回転数Nに応じて定まり、例えば内燃機関が図示されるような四気筒内燃機関である場合には、機関回転数Nの半分の値がサイクル数Kに相当する。次いで、ステップ105に進み、取得したサイクル数Kが所定のサイクル数KAよりも大きいか否かが判定される。サイクル数KAは、機関始動後に機関本体1から排出された排気ガスが循環して可燃混合気になりうるのに十分な時間に相当するサイクル数である。図7(a)に示されるように、サイクル数KAは、例えば要求負荷Lおよび機関冷却水温度Tなどの関数としてマップの形で予め求められ、電子制御ユニット50のROM52などに記憶されている。図7(a)においては、要求負荷Lと機関冷却水温度Tとの関数としてサイクル数KAを求めているが、他のパラメータ、例えば温度センサ43により検出されるフィルタ24の温度、および前回機関停止からの経過時間などをパラメータとして採用してもよい。また、サイクル数KAとして、スタータを起動していれば機関本体1の複数の燃焼室5内において爆発が連続的に起こるのに十分な時間に相当するサイクル数を採用することもできる。
ステップ105においてサイクル数Kが所定のサイクル数KAよりも大きくないと判定された場合には、ステップ104に進んで処理を繰り返す。一方、サイクル数Kが所定のサイクル数KAよりも大きいと判定された場合には、ステップ106に進む。このときには、十分な量の可燃混合気が気筒内で形成されていると判断されるので、始動増量分の燃料がなくてもよい。従って、ステップ106において燃料弱噴射制御を行い、始動増量分を除いた量の燃料を噴射するようにする。これにより、本発明においては始動増量分の燃料の噴射量を低減することもできる。
さらに、ステップ107に進んで、サイクル数Kを再度取得する。次いで、ステップ108に進んで、このサイクル数Kが所定のサイクル数KBよりも大きいか否かが判定される。サイクル数KBは前述したサイクル数KAよりも大きな値であり、サイクル数KAと同様に、例えば要求負荷Lおよび機関冷却水温度Tなどの関数としてマップの形で予め求められ、電子制御ユニット50のROM52などに記憶されている(図7(b)を参照されたい)。サイクル数KBは、例えば前述した閉ループ内の未燃成分が消費されうる時間に相当するサイクル数である。ステップ108においてサイクル数Kが所定のサイクル数KBよりも大きいと判定された場合にはステップ109に進む。一方、サイクル数が所定のサイクル数KBよりも大きくないと判定された場合には、ステップ107に進み、処理を繰り返す。次いで、ステップ109においてスロットル弁21を開放し、さらにステップ110おいてEGR制御弁29を閉鎖する。これにより、内燃機関は通常の制御で作動するようになる。
なお、図6においてはEGR制御弁29を開放した後にスロットル弁21を閉鎖する(ステップ102およびステップ103)と共に、スロットル弁21を開放した後にEGR制御弁29を閉鎖している(ステップ109およびステップ110)が、これらスロットル弁21およびEGR制御弁29の閉鎖および開放の順番が逆であってもよく、また例えばEGR制御弁29の開放とスロットル弁21の閉鎖とを同時に行うようにしてもよい。
図8は触媒昇温制御を行うためのフローチャートである。図8のフローチャートに示される制御は図6の全てのステップが完了した後に行われるが、図8に示される制御自体を行わないようにしてもよい。図8のステップ111においては、サイクル数Kを再び取得し、ステップ112においてこのサイクル数が所定のサイクル数KCよりも大きいか否かが判定される。サイクル数KCは前述したサイクル数KBよりもさらに大きな値であり、サイクル数KAおよびサイクル数KBと同様に、例えば要求負荷Lおよび機関冷却水温度Tなどの関数としてマップの形で予め求められ、電子制御ユニット50のROM52などに記憶されている(図7(c)を参照されたい)。サイクル数KCは、例えば内燃機関が完爆(スタータがOFF状態であっても燃焼室5内における爆発が連続的に起こる状態)するのに十分な時間に相当するサイクル数である。ステップ112においてサイクル数Kが所定のサイクル数KCよりも大きい場合にはステップ113に進む。サイクル数Kが所定のサイクル数KCよりも大きくない場合にはステップ111に進んで処理を繰り返す。
ステップ113からステップ115において行われる触媒昇温制御は例えば低温燃焼である。ここで、低温燃焼とは、内燃機関の排気側から吸気側へ極めて大量の排気ガスを再循環させることにより、煤の発生量がピークとなる再循環ガス(EGRガス)量よりも燃焼室内のEGRガス量が多く煤がほとんど発生しない燃焼のことをいう。つまり、例えば図1に示されるように排気管26内の排気ガスをEGR通路27に通して吸気ダクト17まで再循環させることにより低温燃焼が行われている。ステップ113においては図4(B)に示すマップからスロットル弁21の目標開度STが算出され、スロットル弁21の開度がこの目標開度とされる。次いでステップ114においては図5に示すマップからEGR制御弁29の目標開度SEOが算出され、EGR制御弁29の開度がこの目標開度SEOとされる。次いで、ステップ115において燃焼室5内がリーン雰囲気となるように燃料の噴射制御が行われ、これにより低温燃焼が行われる。なお、燃料噴射量は図4(B)および図5と同様な燃料噴射量に関するマップから算出される。低温燃焼下ではEGRガスの導入により、ケーシング25内のフィルタ24の温度を例えば約500℃から約600℃程度にまで上昇させられる。これにより、前述した閉ループ、特に排気管26およびEGR通路27等の内壁に付着していたHCなどの未燃成分を燃焼により除去することができる。
次いで、ステップ116に進んで補助噴射制御を行う。なお、この補助噴射制御はステップ113からステップ115までの処理で未燃成分の除去が十分である場合には行わなくてもよい。ステップ116に示される補助噴射制御を行うか否かは、差圧センサ61により検出される圧力変化から判断するようにしてもよい。例えば差圧センサ61により検出されるフィルタ24の上流側と下流側との圧力差が所定の値よりも大きい場合には、PMがフィルタ24に堆積しているものと判断して、補助噴射制御を行う。また、ステップ116に示される補助噴射制御を行うか否かは、温度センサ43により検出される温度変化から判断するようにしてもよい。例えばステップ115の前後において温度センサ43により検出された温度変化が所定の値よりも小さいときには、ステップ115における噴射制御による昇温効果が小さかったと判断して、補助噴射制御を行う。
ステップ116において行われる補助噴射制御は、燃料噴射弁6により行う燃料噴射のメイン噴射Qmを圧縮上死点(TDC)よりもわずかながら遅らせる、つまり遅角側で行う制御、メイン噴射Qmよりも後における排気弁9が開弁する直前の膨張行程で行われるポスト噴射Qpなどが含まれる。メイン噴射Qmの遅れまたはポスト噴射Qpのうちのどちから一方、もしくはメイン噴射Qmの遅れおよびポスト噴射Qpの両方を行うようにしてもよい。いずれの場合にも、フィルタ24の温度を上昇させられ、結果的に閉ループの内壁に付着していたHCなどの未燃成分を燃焼により除去することができる。当然のことながら、他の触媒昇温制御を行うようにしてもよい。また、内燃機関が図1などには示さないガソリンエンジンである場合には、点火時期を遅角側にずらすようにしてもよい。
図9および図10は、図1などに示されるハイブリッドエンジンとしての機能を有する内燃機関をエコラン車両に搭載した場合の動作を示すフローチャートである。これら図面に示されるフローチャートの処理は繰り返し行われるものとする。図9のステップ1020において入力信号の処理をおこなう。次いで、ステップ1030においてはエコラン中であるか否か、すなわち、停止中であるか否かが判定される。なお、エコラン中とは、内燃機関が停止されているために該内燃機関を搭載した車両が完全に停止している場合、および内燃機関は停止されているものの変速機35の変速比設定を通じてバッテリ41により車両自体は電気モータ37からの駆動で進行している場合の両方を含むものとする。そして、ステップ1030においてエコラン中でないと判定された場合にはステップ1040に進み、エコラン条件が成立したか否かを判定する。
ステップ1040におけるエコラン条件とは、車速が0に近い所定値以下であること(車速センサの信号で判定)、フットブレーキがONであること(フットブレーキセンサの信号で判定)、アクセルOFFであること(アクセル開度センサの信号で判定)、内燃機関水温が所定値以上であること(水温センサの信号で判定)等が並列的に成立していることである。
ステップ1040においてエコラン条件が成立していないと判定された場合はステップ1050に進んで、内燃機関の駆動継続を行う。一方、ステップ1040において肯定判定された場合には、ステップ1070に進んで内燃機関を停止する。
一方、ステップ1030においてエコラン中であると判定された場合には、ステップ1080に進んで、エコラン復帰条件、すなわち内燃機関の再始動条件が成立しているか否かが判定される。そして、エコラン復帰条件が成立していない場合にはステップ1110に進んで、内燃機関を停止したままにする。ステップ1080において、エコラン復帰条件が成立していると判定された場合には、ステップ1090に進んでスタータを用いて内燃機関を始動する。次いで、ステップ1100に進む。
ステップ1100に記載される処理Xの詳細は図10に示されている。図10に示されるステップのうちの一部のステップは図6に示されるステップと同一であるので説明を簡略する。図6を参照して説明したのと同様に、ステップ1101においてEGR制御弁29を開放すると共にステップ1102においてスロットル弁21を閉鎖する。次いで、ステップ1103において変速機35の変速比を調整して、内燃機関の負荷が所定の低負荷にされる。そして、ステップ1104においてバッテリ41を用いて電気モータ37を駆動し、内燃機関の元の負荷と所定の低負荷との間の差分を補助する制御が行われる。このため、機関始動時であっても、内燃機関を搭載した車両が所望の速度まで迅速に到達することができる。
ステップ1105からステップ1109までの制御は図6のステップ104から108と同様である。そして、ステップ1110においてスロットル弁21を開放すると共にステップ1111においてEGR制御弁29を閉鎖し、内燃機関を通常制御にする。さらに、ステップ1112において変速機35の変速比を調整して、内燃機関の負荷を所定の低負荷から元負荷まで高くする。このときには、内燃機関のみで所望の速度を維持することができるので、次いでステップ1113において適宜、バッテリ41を充電する制御を行うようにして、図9に示されるフローに戻る。
図9および図10を参照して分かるように、エコラン車両に内燃機関が搭載されている場合には、内燃機関が頻繁に停止(ステップ1070)および始動(ステップ1090)される。このため、従来技術の内燃機関であれば、エミッションの多い排気ガスが比較的頻繁に排出されることとなる。ところが本発明においてはステップ1101においてEGR制御弁29を開放すると共にステップ1102においてスロットル弁21を閉鎖しているので、排気ガスは前述した閉ループを循環して、外部に排出されないようになる。従って、本発明の内燃機関をエコラン車両に搭載することは極めて有利である。
また、機関の停止および始動が頻繁に行われることに伴い、パティキュレートフィルタ24に担持される触媒の温度も上昇および下降を頻繁に繰り返している。従って、触媒が固有の活性温度以下となる状態も多いものの、機関始動時にEGR制御弁29を開放する(ステップ1101)と共にスロットル弁21を閉鎖する(ステップ1102)処理を行っているために、図6を参照して説明したのと同様な理由から触媒は通常の場合よりも早期に活性温度に到達し、これによっても排気ガス内のエミッションを低減することが可能となる。
図11は、他の実施形態の圧縮着火式内燃機関の全体図である。図1および図2で用いられた参照番号と図11において同一の参照番号に対応する部材は図1および図2の場合と同一であるので説明を省略する。図11に示される内燃機関においては、EGR通路の配設構造またはその位置が異なっている。そして、図11においては、排気マニホルド22とインタークーラ14よりも下流の吸気ダクト13とを接続するEGR通路67が設けられており、EGR通路67に設けられたEGR制御弁69はステップモータ68によって作動する。また、インタークーラ70がEGR通路67に設けられている。図11から分かるように、このEGR通路67を流れる排気ガスは、排気ターボチャージャ15の排気タービン23を通過していない。このため、図11に示されるEGR通路67内の圧力は図1に示されるEGR通路27内の圧力よりも高くなっている。
図11に示されるようなEGR通路67を備える内燃機関において、図8を参照して前述したように機関始動時にEGR制御弁69を開放すると共にスロットル弁21を閉鎖する。これにより、機関本体1と、排気マニホルド22と、EGR通路67と、スロットル弁21より下流の吸気ダクト13とによって閉ループが形成され、空気または排気ガスがこの閉ループ内を循環するようになる。従って、前述した実施形態の場合と同様に、エミッションを比較的多く含んだ排気ガスが排気管26から外部に排出されるのを抑制することができる。
なお、図1を参照して説明した閉ループは排気ターボチャージャ15を経由してるので図11の閉ループよりも長く、従って、閉ループの容積は図1の場合の方が大きい。このため、閉ループ内のエミッションの量も図1の場合の方が多くなっている。従って、図1に示される実施形態の方が、図11に示される実施形態よりも多量のエミッションが内燃機関から外部に流出することが抑制される。また、当然のことながら、図1の閉ループ全体における残存酸素量および排気ガスの未燃成分の量はどちらも図11の場合の酸素量および未燃成分の量よりも多いので、図1に示される実施形態においてはEGR制御弁29の開放およびスロットル弁21の閉鎖を行う時間(サイクル数に対応する)を図11の場合よりも長くするのが好ましい。
なお、図11に示される排気ターボチャージャ15が存在しない場合、また図11においてフィルタ24と同等のフィルタ(図示しない)がEGR制御弁69よりも上流のEGR通路67に別途設けられている場合であっても、本発明の範囲に含まれるのは明らかである。
圧縮着火式内燃機関の全体図である。 機関本体の側断面図である。 圧縮着火式内燃機関の別の実施例を示す全体図である。 目標吸入空気量等のマップを示す図である。 EGR制御弁の予測基準開度のマップを示す図である。 一般的な内燃機関についての本発明に基づく動作を示すフローチャートである。 目標サイクル数のマップを示す図である。 触媒昇温制御を行うためのフローチャートである。 エコラン車両の本発明に基づく動作を示すフローチャートである。 エコラン車両の本発明に基づく動作を示すフローチャートである。 他の実施形態の圧縮着火式内燃機関の全体図である。
符号の説明
1…機関本体
5…燃焼室
13…吸気ダクト
15…ターボチャージャ
16…コンプレッサ
17…吸気通路
21…スロットル弁
23…排気タービン
24…パティキュレートフィルタ
26…排気管
27、67…EGR通路(排気ガス再循環通路)
29、69…EGR制御弁(再循環排気ガス制御弁)

Claims (4)

  1. 燃焼室から排出された排気通路内の排気ガスを内燃機関のスロットル弁よりも下流の吸気通路に再循環させる排気ガス再循環通路と、
    前記排気ガス再循環通路を流れる再循環排気ガスの量を制御可能な再循環排気ガス制御弁と、
    前記排気通路に設けられた酸化機能を有する触媒または該触媒を担持したフィルタとを具備し、前記排気ガス再循環通路が前記触媒またはフィルタの下流から前記スロットル弁よりも下流の前記吸気通路まで延びており、
    前記内燃機関の始動から前記内燃機関のサイクル数が第一のサイクル数を越える前においては、燃料噴射量が一定であるときの前記内燃機関の動作時よりも始動増量分だけ多く燃料を前記内燃機関の燃料噴射弁から燃焼室内に噴射しつつ、前記スロットル弁を閉鎖すると共に前記再循環排気ガス制御弁を開放し、
    前記内燃機関の始動後に前記内燃機関のサイクル数が前記第一のサイクル数を越えた場合には前記始動増量分を除いた量の燃料を前記燃焼室内に噴射するようにし、
    前記内燃機関のサイクル数が前記第一のサイクル数よりも大きい第二のサイクル数を越えた場合には、前記スロットル弁を開放すると共に前記再循環排気ガス制御弁を閉鎖するようにした内燃機関。
  2. さらに、ターボチャージャを具備し、前記排気ガス再循環通路は前記ターボチャージャの排気タービンの下流側と前記ターボチャージャのコンプレッサの上流側とを接続している請求項1に記載の内燃機関。
  3. 前記内燃機関は、所定の条件が満たされた時に停止されると共に、前記所定の条件が満たされなくなったときに再始動されるようにした請求項1または2に記載の内燃機関。
  4. 前記内燃機関の始動後に前記内燃機関のサイクル数が所定の別のサイクル数を越えた場合には、前記触媒を昇温させる昇温制御を行うようにした請求項1に記載の内燃機関。
JP2004076174A 2004-03-17 2004-03-17 内燃機関 Expired - Fee Related JP4449511B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076174A JP4449511B2 (ja) 2004-03-17 2004-03-17 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076174A JP4449511B2 (ja) 2004-03-17 2004-03-17 内燃機関

Publications (2)

Publication Number Publication Date
JP2005264781A JP2005264781A (ja) 2005-09-29
JP4449511B2 true JP4449511B2 (ja) 2010-04-14

Family

ID=35089605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076174A Expired - Fee Related JP4449511B2 (ja) 2004-03-17 2004-03-17 内燃機関

Country Status (1)

Country Link
JP (1) JP4449511B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196383A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 内燃機関の排気浄化装置
JP4957343B2 (ja) * 2007-04-11 2012-06-20 トヨタ自動車株式会社 内燃機関のegrシステム
JP2010190143A (ja) * 2009-02-19 2010-09-02 Ihi Corp 内燃機関の過給及び排気浄化システム
JP2010190145A (ja) * 2009-02-19 2010-09-02 Ihi Corp 内燃機関の過給及び排気浄化システム
FR2949507B1 (fr) * 2009-08-25 2015-06-26 Peugeot Citroen Automobiles Sa Procede de detection d'une defaillance d'un filtre a particules et protection d'un moteur thermique
WO2012091014A1 (ja) 2010-12-27 2012-07-05 日産自動車株式会社 内燃エンジンの始動制御方法及び始動制御装置
JP5146560B2 (ja) * 2011-03-28 2013-02-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5742529B2 (ja) * 2011-07-19 2015-07-01 トヨタ自動車株式会社 内燃機関の排気再循環装置

Also Published As

Publication number Publication date
JP2005264781A (ja) 2005-09-29

Similar Documents

Publication Publication Date Title
US6672050B2 (en) Exhaust gas purification device of an engine
JP3334597B2 (ja) 圧縮着火式内燃機関
EP2165059A1 (en) Internal combustion engine exhaust gas control system and control method of internal combustion engine exhaust gas control system
JP2007529670A (ja) 排気ガスターボチャージャを有する内燃機関の動作方法及びその装置
RU2719675C2 (ru) Способы для сокращения выбросов отработавших газов двигателя и твердых частиц и система гибридного транспортного средства
JP3292198B1 (ja) 圧縮着火式内燃機関
JP3783712B2 (ja) ハイブリッド車両における内燃機関の制御方法
JP3334596B2 (ja) 圧縮着火式内燃機関
JP2017505398A (ja) 内燃機関のための排気ライン、及び、かかる排気ラインを備える内燃機関
JP4449511B2 (ja) 内燃機関
JP2008231953A (ja) 内燃機関
JP5519331B2 (ja) 車両の制御装置
JP3997972B2 (ja) 内燃機関の制御装置
EP1219488A2 (en) Air-fuel ratio control in a hybrid vehicle
JP2002285823A (ja) 内燃機関の排気浄化装置
JP2010127146A (ja) 内燃機関の排気浄化装置
JP4042546B2 (ja) 内燃機関の制御装置
JP3551790B2 (ja) 内燃機関
JP3551771B2 (ja) 内燃機関
JP3551797B2 (ja) 内燃機関
JP7435514B2 (ja) 内燃機関の排気浄化システム
JP5677666B2 (ja) 車両の制御装置
JP4013930B2 (ja) 圧縮着火式内燃機関
JP2004300943A (ja) 内燃機関の制御装置
JP3578079B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees