JP3551797B2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP3551797B2
JP3551797B2 JP32395298A JP32395298A JP3551797B2 JP 3551797 B2 JP3551797 B2 JP 3551797B2 JP 32395298 A JP32395298 A JP 32395298A JP 32395298 A JP32395298 A JP 32395298A JP 3551797 B2 JP3551797 B2 JP 3551797B2
Authority
JP
Japan
Prior art keywords
combustion
amount
temperature
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32395298A
Other languages
English (en)
Other versions
JP2000145439A (ja
Inventor
丈和 伊藤
静夫 佐々木
康二 吉▲崎▼
雅人 後藤
宏樹 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32395298A priority Critical patent/JP3551797B2/ja
Priority to DE69930189T priority patent/DE69930189T2/de
Priority to EP99121475A priority patent/EP0997625B1/en
Publication of JP2000145439A publication Critical patent/JP2000145439A/ja
Application granted granted Critical
Publication of JP3551797B2 publication Critical patent/JP3551797B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関に関する。
【0002】
【従来の技術】
従来より内燃機関、例えばディーゼル機関においてはNOの発生を抑制するために機関排気通路と機関吸気通路とを排気ガス再循環(以下、EGRと称す)通路により連結し、このEGR通路を介して排気ガス、即ちEGRガスを機関吸気通路内に再循環させるようにしている。この場合、EGRガスは比較的比熱が高く、従って多量の熱を吸収することができるので、EGRガス量を増大するほど、即ちEGR率(EGRガス量/(EGRガス量+吸入空気量))を増大するほど燃焼室内における燃焼温度が低下する。燃焼温度が低下するとNOの発生量が低下し、従ってEGR率を増大すればするほどNOの発生量は低下することになる。
【0003】
このように従来よりEGR率を増大すればNOの発生量を低下しうることはわかっている。しかしながらEGR率を増大させていくとEGR率が或る限度を越えたときに煤の発生量、即ちスモークが急激に増大し始める。この点に関し従来より、それ以上EGR率を増大すればスモークが限りなく増大していくものと考えられており、従ってスモークが急激に増大し始めるEGR率がEGR率の最大許容限界であると考えられている。
【0004】
従って従来よりEGR率はこの最大許容限界を越えない範囲内に定められている。このEGR率の最大許容限界は機関の形式や燃料によってかなり異なるがおおよそ30パーセントから50パーセントである。従って従来のディーゼル機関ではEGR率は最大でも30パーセントから50パーセント程度に抑えられている。
【0005】
このように従来ではEGR率に対して最大許容限界が存在すると考えられていたので従来よりEGR率はこの最大許容限界を越えない範囲内においてNOおよびスモークの発生量ができるだけ少なくなるように定められていた。しかしながらこのようにしてEGR率をNOおよびスモークの発生量ができるだけ少なくなるように定めてもNOおよびスモークの発生量の低下には限度があり、実際には依然としてかなりの量のNOおよびスモークが発生してしまうのが現状である。
【0006】
ところがディーゼル機関の燃焼の研究の過程においてEGR率を最大許容限界よりも大きくすれば上述の如くスモークが急激に増大するがこのスモークの発生量にはピークが存在し、このピークを越えてEGR率を更に大きくすると今度はスモークが急激に減少しはじめ、アイドリング運転時においてEGR率を70パーセント以上にすると、またEGRガスを強力に冷却した場合にはEGR率をほぼ55パーセント以上にするとスモークがほとんど零になる。即ち煤がほとんど発生しないことが見い出されたのである。また、このときにはNOの発生量が極めて少量となることも判明している。この後この知見に基づいて煤が発生しない理由について検討が進められ、その結果これまでにない煤およびNOの同時低減が可能な新たな燃焼システムが構築されるに至ったのである。この新たな燃焼システムについては後に詳細に説明するが簡単に言うと炭化水素が煤に成長するまでの途中の段階において炭化水素の成長を停止させることを基本としている。
【0007】
即ち、実験研究を重ねた結果判明したことは燃焼室内における燃焼時の燃料およびその周囲のガス温度が或る温度以下のときには炭化水素の成長が煤に至る前の途中の段階で停止し、燃料およびその周囲のガス温度が或る温度以上になると炭化水素は一気に煤まで成長してしまうということである。この場合、燃料およびその周囲のガス温度は燃料が燃焼した際の燃料周りのガスの吸熱作用が大きく影響しており、燃料燃焼時の発熱量に応じて燃料周りのガスの吸熱量を調整することによって燃料およびその周囲のガス温度を制御することができる。
【0008】
従って、燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制すれば煤が発生しなくなり、燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制することは燃料周りのガスの吸熱量を調整することによって可能となる。一方、煤に至る前に成長が途中で停止した炭化水素は酸化触媒等を用いた後処理によって容易に浄化することができる。これが新たな燃焼システムの基本的な考え方である。この新たな燃焼システムを採用した内燃機関については本出願人により既に出願されている(特願平9−305850号)。
【0009】
【発明が解決しようとする課題】
ところでこの新たな燃焼システムでは上述したように煤に至る前に成長が途中で停止した炭化水素は酸化触媒等を用いた後処理によって浄化しているが、例えば酸化触媒等の温度が炭化水素を浄化できる温度、即ち活性温度より低いときには炭化水素を浄化できない。従って完全に炭化水素を浄化できるシステムが必要である。
【0010】
本発明の目的は新たな燃焼システムにおいて完全に炭化水素を浄化できるシステムを構築することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、1番目の発明では、燃焼室内に供給される不活性ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される不活性ガス量を更に増大していくと燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関において、排気ガス中のHCを吸着させるHC吸着剤を機関排気通路内に配置する。
【0012】
即ち、排気ガス中の炭化水素はHC吸着剤に吸着される。
2番目の発明によれば1番目の発明において、燃焼室から排出された排気ガスを機関吸気通路内に再循環させる再循環装置を具備し、上記不活性ガスが再循環排気ガスからなる。
3番目の発明によれば2番目の発明において、排気ガス再循環率がほぼ55パーセント以上である。
【0013】
4番目の発明によれば1番目の発明において、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸収しかつ流入する排気ガスの空燃比が理論空燃比又はリッチになると吸収したNOを放出するNO吸収剤を前記機関排気通路に配置する。
5番目の発明によれば4番目の発明において、前記NO吸収剤が予め定められた温度以上で排気ガス中のHCを酸化する機能を有し、NO吸収剤の温度が前記予め定められた温度より低いときには燃焼室内への燃料の噴射時期を遅らせるようにする。
【0014】
6番目の発明によれば1番目の発明において、煤の発生量がピークとなる不活性ガス量よりも燃焼室内に供給される不活性ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる不活性ガス量よりも燃焼室内に供給される不活性ガス量が少ない第2の燃焼とを選択的に切換える切換手段を具備する。
【0015】
7番目の発明によれば6番目の発明において、機関の運転領域を低負荷側の第1の運転領域と高負荷側の第2の運転領域に分割し、第1の運転領域では第1の燃焼を行い、第2の運転領域では第2の燃焼を行うようにする。
8番目の発明によれば6番目の発明において第1の燃焼が行われているときに前記HC吸着剤に吸着しているHCを除去すべきときには第1の燃焼を第2の燃焼に切り換える。
【0016】
【発明の実施の形態】
図1は本発明を4ストローク圧縮着火式内燃機関に適用した場合を示している。
図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13およびインタークーラ14を介して過給機、例えば排気ターボチャージャ15のコンプレッサ16の出口部に連結される。コンプレッサ16の入口部は空気吸込管17を介してエアクリーナ18に連結され、空気吸込管17内にはステップモータ19により駆動されるスロットル弁20が配置される。また、スロットル弁20上流の空気吸込管17内には吸入空気の質量流量を検出するための質量流量検出器21が配置される。
【0017】
一方、排気ポート10は排気マニホルド22を介して排気ターボチャージャ15の排気タービン23の入口部に連結され、排気タービン23の出口部は排気管24を介して酸化機能を有する触媒25を内蔵した触媒コンバータ26に連結される。排気マニホルド22内には空燃比センサ27が配置される。
触媒コンバータ26の出口部に連結された排気管28とスロットル弁20下流の空気吸込管17とは排気ガス再循環(以下、EGRと称す)通路29を介して互いに連結され、EGR通路29内にはステップモータ30により駆動されるEGR制御弁31が配置される。また、EGR通路29内にはEGR通路29内を流れるEGRガスを冷却するためのインタークーラ32が配置される。図1に示される実施例では機関冷却水がインタークーラ32内に導かれ、機関冷却水によってEGRガスが冷却される。
【0018】
一方、燃料噴射弁6は燃料供給管33を介して燃料リザーバ、いわゆるコモンレール34に連結される。このコモンレール34内へは電気制御式の吐出量可変な燃料ポンプ35から燃料が供給され、コモンレール34内に供給された燃料は各燃料供給管33を介して燃料噴射弁6に供給される。コモンレール34にはコモンレール34内の燃料圧を検出するための燃料圧センサ36が取付けられ、燃料圧センサ36の出力信号に基づいてコモンレール34内の燃料圧が目標燃料圧となるように燃料ポンプ35の吐出量が制御される。
【0019】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。質量流量検出器21の出力信号は対応するAD変換器47を介して入力ポート45に入力され、空燃比センサ27および燃料圧センサ36の出力信号も夫々対応するAD変換器47を介して入力ポート45に入力される。アクセルペダル50にはアクセルペダル50の踏込み量Lに比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。また、入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁制御用ステップモータ19、EGR制御弁制御用ステップモータ30および燃料ポンプ35に接続される。
【0020】
図2は機関低負荷運転時にスロットル弁20の開度およびEGR率を変化させることにより空燃比A/F(図2の横軸)を変化させたときの出力トルクの変化、およびスモーク、HC,CO,NOの排出量の変化を示す実験例を表している。図2からわかるようにこの実験例では空燃比A/Fが小さくなるほどEGR率が大きくなり、理論空燃比(≒14.6)以下のときにはEGR率は65パーセント以上となっている。
【0021】
図2に示されるようにEGR率を増大することにより空燃比A/Fを小さくしていくとEGR率が40パーセント付近となり空燃比A/Fが30程度になったときにスモークの発生量が増大を開始する。次いで、更にEGR率を高め、空燃比A/Fを小さくするとスモークの発生量が急激に増大してピークに達する。次いで更にEGR率を高め、空燃比A/Fを小さくすると今度はスモークが急激に低下し、EGR率を65パーセント以上とし、空燃比A/Fが15.0付近になるとスモークがほぼ零となる。即ち、煤がほとんど発生しなくなる。このとき機関の出力トルクは若干低下し、またNOの発生量がかなり低くなる。一方、このときHC,COの発生量は増大し始める。
【0022】
図3(A)は空燃比A/Fが21付近でスモークの発生量が最も多いときの燃焼室5内の燃焼圧変化を示しており、図3(B)は空燃比A/Fが18付近でスモークの発生量がほぼ零のときの燃焼室5内の燃焼圧の変化を示している。図3(A)と図3(B)とを比較すればわかるようにスモークの発生量がほぼ零である図3(B)に示す場合はスモークの発生量が多い図3(A)に示す場合に比べて燃焼圧が低いことがわかる。
【0023】
図2および図3に示される実験結果から次のことが言える。即ち、まず第1に空燃比A/Fが15.0以下でスモークの発生量がほぼ零のときには図2に示されるようにNOの発生量がかなり低下する。NOの発生量が低下したということは燃焼室5内の燃焼温度が低下していることを意味しており、従って煤がほとんど発生しないときには燃焼室5内の燃焼温度が低くなっていると言える。同じことが図3からも言える。即ち、煤がほとんど発生していない図3(B)に示す状態では燃焼圧が低くなっており、従ってこのとき燃焼室5内の燃焼温度は低くなっていることになる。
【0024】
第2スモークの発生量、即ち煤の発生量がほぼ零になると図2に示されるようにHCおよびCOの排出量が増大する。このことは炭化水素が煤まで成長せずに排出されることを意味している。即ち、燃料中に含まれる図4に示されるような直鎖状炭化水素や芳香族炭化水素は酸素不足の状態で温度上昇せしめられると熱分解して煤の前駆体が形成され、次いで主に炭素原子が集合した固体からなる煤が生成される。この場合、実際の煤の生成過程は複雑であり、煤の前駆体がどのような形態をとるかは明確ではないがいずれにしても図4に示されるような炭化水素は煤の前駆体を経て煤まで成長することになる。従って、上述したように煤の発生量がほぼ零になると図2に示される如くHCおよびCOの排出量が増大するがこのときのHCは煤の前駆体又はその前の状態の炭化水素である。
【0025】
図2および図3に示される実験結果に基づくこれらの考察をまとめると燃焼室5内の燃焼温度が低いときには煤の発生量がほぼ零になり、このとき煤の前駆体又はその前の状態の炭化水素が燃焼室5から排出されることになる。このことについて更に詳細に実験研究を重ねた結果、燃焼室5内における燃料およびその周囲のガス温度が或る温度以下である場合には煤の成長過程が途中で停止してしまい、即ち煤が全く発生せず、燃焼室5内における燃料およびその周囲の温度が或る温度以上になると煤が生成されることが判明したのである。
【0026】
ところで煤の前駆体の状態で炭化水素の生成過程が停止するときの燃料およびその周囲の温度、即ち上述の或る温度は燃料の種類や空燃比圧縮比等の種々の要因によって変化するので何度であるかということは言えないがこの或る温度はNO の発生量と深い関係を有しており、従ってこの或る温度はNO の発生量から或る程度規定することができる。即ち、EGR率が増大するほど燃焼時の燃料およびその周囲のガス温度は低下し、NO の発生量が低下する。このときNO の発生量が10p.p.m 前後又はそれ以下になったときに煤がほとんど発生しなくなる。従って上述の或る温度はNO の発生量が10p.p.m 前後又はそれ以下になったときの温度にほぼ一致する。
【0027】
一旦、煤が生成されるとこの煤は酸化機能を有する触媒を用いた後処理でもって浄化することはできない。これに対して煤の前駆体又はその前の状態の炭化水素は酸化機能を有する触媒を用いた後処理でもって容易に浄化することができる。このように酸化機能を有する触媒による後処理を考えると炭化水素を煤の前駆体又はその前の状態で燃焼室5から排出さるか、或いは煤の形で燃焼室5から排出させるかについては極めて大きな差がある。本発明において採用されている新たな燃焼システムは燃焼室5内において煤を生成させることなく炭化水素を煤の前駆体又はその前の状態の形でもって燃焼室5から排出させ、この炭化水素を酸化機能を有する触媒により酸化せしめることを核としている。酸化機能を有する触媒としては酸化触媒、三元触媒、NO 吸収剤がある。
【0028】
さて、煤が生成される前の状態で炭化水素の成長を停止させるには燃焼室5内における燃焼時の燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に抑制する必要がある。この場合、燃料およびその周囲のガス温度を抑制するには燃料が燃焼した際の燃料周りのガスの吸熱作用が極めて大きく影響することが判明している。
【0029】
即ち、燃料周りに空気しか存在しないと蒸発した燃料はただちに空気中の酸素と反応して燃焼する。この場合、燃料から離れている空気の温度はさほど上昇せず、燃料周りの温度のみが局所的に極めて高くなる。即ち、このときには燃料から離れている空気燃料の燃焼熱の吸熱作用をほとんど行わない。この場合には燃焼温度が局所的に極めて高くなるために、この燃焼熱を受けた未燃炭化水素は煤を生成することになる。
【0030】
一方、多量の不活性ガスと少量の空気の混合ガス中に燃料が存在する場合には若干状況が異なる。この場合には蒸発燃料は周囲に拡散して不活性ガス中に混在する酸素と反応し、燃焼することになる。この場合には燃焼熱は周りの不活性ガスに吸収されるために燃焼温度はさほど上昇しなくなる。即ち、燃焼温度を低く抑えることができることになる。即ち、燃焼温度を抑制するには不活性ガスの存在が重要な役割を果しており、不活性ガスの吸熱作用によって燃焼温度を低く抑えることができることになる。
【0031】
この場合、燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に抑制するにはそうするのに十分な熱量を吸収しうるだけの不活性ガス量が必要となる。従って燃料量が増大すれば必要となる不活性ガス量はそれに伴なって増大することになる。なお、この場合、不活性ガスの比熱が大きいほど吸熱作用が強力となり、従って不活性ガスは比熱の大きなガスが好ましいことになる。この点、COやEGRガスは比較的比熱が大きいので不活性ガスとしてEGRガスを用いることは好ましいと言える。
【0032】
図5は不活性ガスとしてEGRガスを用い、EGRガスの冷却度合を変えたときのEGR率とスモークとの関係を示している。即ち、図5において曲線AはEGRガスを強力に冷却してEGRガス温をほぼ90℃に維持した場合を示しており、曲線Bは小型の冷却装置でEGRガスを冷却した場合を示しており、曲線CはEGRガスを強制的に冷却していない場合を示している。
【0033】
図5の曲線Aで示されるようにEGRガスを強力に冷却した場合にはEGR率が50パーセントよりも少し低いところで煤の発生量がピークとなり、この場合にはEGR率をほぼ55パーセント以上にすれば煤がほとんど発生しなくなる。一方、図5の曲線Bで示されるようにEGRガスを少し冷却した場合にはEGR率が50パーセントよりも少し高いところで煤の発生量がピークとなり、この場合にはEGR率をほぼ65パーセント以上にすれば煤がほとんど発生しなくなる。
【0034】
また、図5の曲線Cで示されるようにEGRガスを強制的に冷却していない場合にはEGR率が55パーセントの付近で煤の発生量がピークとなり、この場合にはEGR率をほぼ70パーセント以上にすれば煤がほとんど発生しなくなる。なお、図5は機関負荷が比較的高いときのスモークの発生量を示しており、機関負荷が小さくなると煤の発生量がピークとなるEGR率は若干低下し、煤がほとんど発生しなくなるEGR率の下限も若干低下する。このような煤がほとんど発生しなくなるEGR率の下限はEGRガスの冷却度合や機関負荷に応じて変化する。
【0035】
図6は不活性ガスとしてEGRガスを用いた場合において燃焼時の燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度にするために必要なEGRガスと空気の混合ガス量、およびこの混合ガス量中の空気の割合、およびこの混合ガス中のEGRガスの割合を示している。なお、図6において縦軸は燃焼室5内に吸入される全吸入ガス量を示しており、鎖線Yは過給が行われないときに燃焼室5内に吸入しうる全吸入ガス量を示している。また、横軸は要求負荷を示している。
【0036】
図6を参照すると空気の割合、即ち混合ガス中の空気量は噴射された燃料を完全に燃焼せしめるのに必要な空気量を示している。即ち、図6に示される場合では空気量と噴射燃料量との比は理論空燃比となっている。一方、図6においてEGRガスの割合、即ち混合ガス中のEGRガス量は噴射燃料が燃焼せしめられたときに燃料およびその周囲のガス温度を煤が形成される温度よりも低い温度にするのに必要最低限のEGRガス量を示している。このEGRガス量はEGR率で表すとほぼ55パーセント以上であり、図6に示す実施例では70パーセント以上である。即ち、燃焼室5内に吸入された全吸入ガス量を図6において実線Xとし、この全吸入ガス量Xのうちの空気量とEGRガス量との割合を図6に示すような割合にすると燃料およびその周囲のガス温度は煤が生成される温度よりも低い温度となり、斯くして煤が全く発生しなくなる。また、このときのNO発生量は10p.p.m 前後、又はそれ以下であり、従ってNOの発生量は極めて少量となる。
【0037】
燃料噴射量が増大すれば燃料が燃焼した際の発熱量が増大するので燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持するためにはEGRガスによる熱の吸収量を増大しなければならない。従って図6に示されるようにEGRガス量は噴射燃料量が増大するにつれて増大せしめなければならない。即ち、EGRガス量は要求負荷が高くなるにつれて増大する必要がある。
【0038】
ところで過給が行われていない場合には燃焼室5内に吸入される全吸入ガス量Xの上限はYであり、従って図6において要求負荷がLよりも大きい領域では要求負荷が大きくなるにつれてEGRガス割合を低下させない限り空燃比を理論空燃比に維持することができない。云い換えると過給が行われていない場合に要求負荷がLよりも大きい領域において空燃比を理論空燃比に維持しようとした場合には要求負荷が高くなるにつれてEGR率が低下し、斯くして要求負荷がLよりも大きい領域では燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持しえなくなる。
【0039】
ところが図1に示されるようにEGR通路29を介して過給機の入口側即ち排気ターボチャージャ15の空気吸込管17内にEGRガスを再循環させると要求負荷がLよりも大きい領域においてEGR率を55パーセント以上、例えば70パーセントに維持することができ、斯くして燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持することができる。即ち、空気吸込管17内におけるEGR率が例えば70パーセントになるようにEGRガスを再循環させれば排気ターボチャージャ15のコンプレッサ16により昇圧された吸入ガスのEGR率も70パーセントとなり、斯くしてコンプレッサ16により昇圧しうる限度まで燃料およびその周囲のガス温度を煤が生成される温度よりも低い温度に維持することができる。従って、低温燃焼を生じさせることのできる機関の運転領域を拡大することができることになる。要求負荷がLよりも大きい領域でEGR率を55パーセント以上にする際にはEGR制御弁31が全開せしめられ、スロットル弁20が若干閉弁せしめられる。
【0040】
前述したように図6は燃料を理論空燃比のもとで燃焼させる場合を示しているが空気量を図6に示される空気量よりも少なくしても、即ち空燃比をリッチにしても煤の発生を阻止しつつNOの発生量を10p.p.m 前後又はそれ以下にすることができ、また空気量を図6に示される空気量よりも多くしても、即ち空燃比の平均値を17から18のリーンにしても煤の発生を阻止しつつNOの発生量を10p.p.m 前後又はそれ以下にすることができる。
【0041】
即ち、空燃比がリッチにされると燃料が過剰となるが燃焼温度が低い温度に抑制されているために過剰な燃料は煤まで成長せず、斯くして煤が生成されることがない。また、このときNOも極めて少量しか発生しない。一方、平均空燃比がリーンのとき、或いは空燃比が理論空燃比のときでも燃焼温度が高くなれば少量の煤が生成されるが本発明では燃焼温度が低い温度に抑制されているので煤は全く生成されない。更に、NOも極めて少量しか発生しない。
【0042】
このように、低温燃焼が行われているときには空燃比にかかわらずに、即ち空燃比がリッチであろうと、理論空燃比であろうと、或いは平均空燃比がリーンであろうと煤が発生されず、NOの発生量が極めて少量となる。従って燃料消費率の向上を考えるとこのとき平均空燃比をリーンにすることが好ましいと言える。
【0043】
ところで燃焼室内における燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制しうるのは燃焼による発熱量が比較的少ない機関中低負荷運転時に限られる。従って本発明による実施例では機関中低負荷運転時には燃焼時の燃料およびその周囲のガス温度を炭化水素の成長が途中で停止する温度以下に抑制して第1の燃焼、即ち低温燃焼を行うようにし、機関高負荷運転時には第2の燃焼、即ち従来より普通に行われている燃焼を行うようにしている。なお、ここで第1の燃焼、即ち低温燃焼とはこれまでの説明から明らかなように煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が多く煤がほとんど発生しない燃焼のことを言い、第2の燃焼、即ち従来より普通に行われている燃焼とは煤の発生量がピークとなる不活性ガス量よりも燃焼室内の不活性ガス量が少ない燃焼のことを言う。
【0044】
図7は第1の燃焼、即ち低温燃焼が行われる第1の運転領域Iと、第2の燃焼、即ち従来の燃焼方法による燃焼が行われる第2の運転領域IIとを示している。なお、図7において縦軸Lはアクセルペダル50の踏込み量、即ち要求負荷を示しており、横軸Nは機関回転数を示している。また、図7においてX(N)は第1の運転領域Iと第2の運転領域IIとの第1の境界を示しており、Y(N)は第1の運転領域Iと第2の運転領域IIとの第2の境界を示している。第1の運転領域Iから第2の運転領域IIへの運転領域の変化判断は第1の境界X(N)に基づいて行われ、第2の運転領域IIから第1の運転領域Iへの運転領域の変化判断は第2の境界Y(N)に基づいて行われる。
【0045】
即ち、機関の運転状態が第1の運転領域Iにあって低温燃焼が行われているときに要求負荷Lが機関回転数Nの関数である第1の境界X(N)を越えると運転領域が第2の運転領域IIに移ったと判断され、従来の燃焼方法による燃焼が行われる。次いで要求負荷Lが機関回転数Nの関数である第2の境界Y(N)よりも低くなると運転領域が第1の運転領域Iに移ったと判断され、再び低温燃焼が行われる。
【0046】
このように第1の境界X(N)と第1の境界X(N)よりも低負荷側の第2の境界Y(N)との二つの境界を設けたのは次の二つの理由による。第1の理由は、第2の運転領域IIの高負荷側では比較的燃焼温度が高く、このとき要求負荷Lが第1の境界X(N)より低くなったとしてもただちに低温燃焼を行えないからである。即ち、要求負荷Lがかなり低くなったとき、即ち第2の境界Y(N)よりも低くなったときでなければただちに低温燃焼が開始されないからである。第2の理由は第1の運転領域Iと第2の運転領域II間の運転領域の変化に対してヒステリシスを設けるためである。
【0047】
ところで機関の運転領域が第1の運転領域Iにあって低温燃焼が行われているときには煤はほとんど発生せず、その代り未燃炭化水素が煤の前駆体又はその前の状態の形でもって燃焼室5から排出される。このとき燃焼室5から排出された未燃炭化水素は後に詳述するパティキュレートフィルタ53に捕集される。
図8は空燃比センサ27の出力を示している。図8に示されるように空燃比センサ27の出力電流Iは空燃比A/Fに応じて変化する。従って空燃比センサ27の出力電流Iから空燃比を知ることができる。
【0048】
次に図9を参照しつつ第1の運転領域Iおよび第2の運転領域IIにおける運転制御について概略的に説明する。
図9は要求負荷Lに対するスロットル弁20の開度、EGR制御弁31の開度、EGR率、空燃比、噴射時期および噴射量を示している。図9に示されるように要求負荷Lの低い第1の運転領域Iではスロットル弁20の開度は要求負荷Lが高くなるにつれて全閉近くから2/3開度程度まで徐々に増大せしめられ、EGR制御弁31の開度は要求負荷Lが高くなるにつれて全閉近くから全開まで徐々に増大せしめられる。また、図9に示される例では第1の運転領域IではEGR率がほぼ70パーセントとされており、空燃比はわずかばかりリーンなリーン空燃比とされている。
【0049】
言い換えると第1の運転領域IではEGR率がほぼ70パーセントとなり、空燃比がわずかばかりリーンなリーン空燃比となるようにスロットル弁20の開度およびEGR制御弁31の開度が制御される。また、第1の運転領域Iでは圧縮上死点TDC前に燃料噴射が行われる。この場合、噴射開始時期θSは要求負荷Lが高くなるにつれて遅くなり、噴射完了時期θEも噴射開始時期θSが遅くなるにつれて遅くなる。
【0050】
なお、アイドリング運転時にはスロットル弁20は全閉近くまで閉弁され、このときEGR制御弁31も全閉近くまで閉弁せしめられる。スロットル弁20を全閉近くまで閉弁すると圧縮始めの燃焼室5内の圧力が低くなるために圧縮圧力が小さくなる。圧縮圧力が小さくなるとピストン4による圧縮仕事が小さくなるために機関本体1の振動が小さくなる。即ち、アイドリング運転時には機関本体1の振動を抑制するためにスロットル弁20が全閉近くまで閉弁せしめられる。
【0051】
一方、機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わるとスロットル弁20の開度が2/3開度程度から全開方向へステップ状に増大せしめられる。このとき図9に示す例ではEGR率がほぼ70パーセントから40パーセント以下までステップ状に減少せしめられ、空燃比がステップ状に大きくされる。即ち、EGR率が多量のスモークを発生するEGR率範囲(図5)を飛び越えるので機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わるときに多量のスモークが発生することがない。
【0052】
第2の運転領域IIでは従来から行われている燃焼が行われる。この第2の運転領域IIではスロットル弁20は一部を除いて全開状態に保持され、EGR制御弁31の開度は要求負荷Lが高くなると次第に小さくされる。また、この運転領域IIではEGR率は要求負荷Lが高くなるほど低くなり、空燃比は要求負荷Lが高くなるほど小さくなる。ただし、空燃比は要求負荷Lが高くなってもリーン空燃比とされる。また、第2の運転領域IIでは噴射開始時期θSは圧縮上死点TDC付近とされる。
【0053】
図10(A)は第1の運転領域Iにおける目標空燃比A/Fを示している。図10(A)において、A/F=15.5,A/F=16,A/F=17,A/F=18で示される各曲線は夫々目標空燃比が15.5,16,17,18であるときを示しており、各曲線間の空燃比は比例配分により定められる。図10(A)に示されるように第1の運転領域Iでは空燃比がリーンとなっており、更に第1の運転領域Iでは要求負荷Lが低くなるほど目標空燃比A/Fがリーンとされる。
即ち、要求負荷Lが低くなるほど燃焼による発熱量が少なくなる。従って要求負荷Lが低くなるほどEGR率を低下させても低温燃焼を行うことができる。EGR率を低下させると空燃比は大きくなり、従って図10(A)に示されるように要求負荷Lが低くなるにつれて目標空燃比A/Fが大きくされる。目標空燃比A/Fが大きくなるほど燃料消費率は向上し、従ってできる限り空燃比をリーンにするために本発明による実施例では要求負荷Lが低くなるにつれて目標空燃比A/Fが大きくされる。
【0054】
なお、図10(A)に示される目標空燃比A/Fは図10(B)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。また、空燃比を図10(A)に示す目標空燃比A/Fとするのに必要なスロットル弁20の目標開度STが図11(A)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されており、空燃比を図10(A)に示す目標空燃比A/Fとするのに必要なEGR制御弁31の目標開度SEが図11(B)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0055】
また、第1の燃焼が行われているときには燃料噴射量Qは要求負荷Lおよび機関回転数Nに基づいて算出される。この燃料噴射量Qは図12に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
図13(A)は第2の燃焼、即ち従来の燃焼方法による普通の燃焼が行われるときの目標空燃比A/Fを示している。なお、図13(A)においてA/F=24,A/F=35,A/F=45,A/F=60で示される各曲線は夫々目標空燃比24,35,45,60を示している。図13(A)に示される目標空燃比A/Fは図13(B)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。また、空燃比を図13(A)に示す目標空燃比A/Fとするのに必要なスロットル弁20の目標開度STが図14(A)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されており、空燃比を図13(A)に示す目標空燃比A/Fとするのに必要なEGR制御弁31の目標開度SEが図14(B)に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
【0056】
また、第2の燃焼が行われているときには燃料噴射量Qは要求負荷Lおよび機関回転数Nに基づいて算出される。この燃料噴射量Qは図15に示されるように要求負荷Lおよび機関回転数Nの関数としてマップの形で予めROM42内に記憶されている。
ところで排気管24には排気ガス中に含まれる未燃炭化水素(HC)を吸着させるHC吸着剤53が配置されている。HC吸着剤53は後述するNO吸収剤がNOを吸放出できる温度、即ち活性温度より低い温度でもHCを吸収することができる。
【0057】
一方、図1においてケーシング26内にはNO吸収剤25が配置されている。NO吸収剤25は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されている。機関吸気通路、燃焼室5およびNO吸収剤25上流の排気通路内に供給された空気および燃料(炭化水素)の比をNO吸収剤25への流入排気ガスの空燃比と称するとこのNO吸収剤25は流入排気ガスの空燃比がリーンのときにはNOを吸収し、流入排気ガスの空燃比が理論空燃比又はリッチになると吸収したNOを放出するNOの吸放出作用を行う。
【0058】
このNO吸収剤25を機関排気通路内に配置すればNO吸収剤25は実際にNOの吸放出作用を行うがこの吸放出作用の詳細なメカニズムについては明らかでない部分もある。しかしながらこの吸放出作用は図16に示すようなメカニズムで行われているものと考えられる。次にこのメカニズムについて担体上に白金PtおよびバリウムBaを担持させた場合を例にとって説明するが他の貴金属、アルカリ金属、アルカリ土類、希土類を用いても同様なメカニズムとなる。
【0059】
図1に示される圧縮着火式内燃機関では通常燃焼室5における空燃比がリーンの状態で燃焼が行われる。このように空燃比がリーンの状態で燃焼が行われている場合には排気ガス中の酸素濃度は高く、このときには図16(A)に示されるようにこれら酸素OがO 又はO2−の形で白金Ptの表面に付着する。一方、流入排気ガス中のNOは白金Ptの表面上でO 又はO2−と反応し、NOとなる(2NO+O→2NO)。次いで生成されたNOの一部は白金Pt上で酸化されつつ吸収剤内に吸収されて酸化バリウムBaOと結合しながら図16(A)に示されるように硝酸イオンNO の形で吸収剤内に拡散する。このようにしてNOがNO吸収剤25内に吸収される。流入排気ガス中の酸素濃度が高い限り白金Ptの表面でNOが生成され、吸収剤のNO吸収能力が飽和しない限りNOが吸収剤内に吸収されて硝酸イオンNO が生成される。
【0060】
一方、流入排気ガスの空燃比がリッチにされると流入排気ガス中の酸素濃度が低下し、その結果白金Ptの表面でのNOの生成量が低下する。NOの生成量が低下すると反応が逆方向(NO →NO)に進み、斯くして吸収剤内の硝酸イオンNO がNOの形で吸収剤から放出される。このときNO吸収剤25から放出されたNOは図16(B)に示されるように流入排気ガス中に含まれる多量の未燃HC,COと反応して還元せしめられる。このようにして白金Ptの表面上にNOが存在しなくなると吸収剤から次から次へとNOが放出される。従って流入排気ガスの空燃比がリッチにされると短時間のうちにNO吸収剤25からNOが放出され、しかもこの放出されたNOが還元されるために大気中にNOが排出されることはない。
【0061】
なお、この場合、流入排気ガスの空燃比を理論空燃比にしてもNO吸収剤25からNOが放出される。しかしながら流入排気ガスの空燃比を理論空燃比にした場合にはNO吸収剤25からNOが徐々にしか放出されないためにNO吸収剤25に吸収されている全NOを放出させるには若干長い時間を要する。
【0062】
上述したようにNO吸収剤25は白金Ptのような貴金属を含んでおり、従ってNO吸収剤25は酸化機能を有している。一方、前述したように機関の運転状態が第1の運転領域Iにあって低温燃焼が行われているときには煤はほとんど発生せず、その代り未燃炭化水素が煤の前駆体又はその前の状態の形でもって燃焼室5から排出される。ところが上述した如くNO吸収剤25はその温度が予め定められた温度、即ち活性温度以上であるときに酸化機能を有しており、従ってNO吸収剤25の温度が活性温度より高いとき燃焼室5から排出された未燃炭化水素はNO吸収剤25により良好に酸化せしめられることになる。しかしながら機関始動時であってアイドリング時のように要求負荷が小さく、低温燃焼が行われるのが好ましいときであってもこのときにはNO吸収剤25の温度がその活性温度より低く、未燃炭化水素を浄化することはできない。しかしながらNO吸収剤25の上流側に配置されたHC吸着剤53はその温度がNO吸収剤25の活性温度以下のときであっても未燃炭化水素を吸着させることができる。即ちNO吸収剤25の温度がその活性温度以上になるまでHC吸着剤53は未燃炭化水素を吸着させておくことができる。従って本発明によれば機関始動時のようにNO吸収剤25の温度がその活性温度より低いときに低温燃焼を行っても未燃炭化水素がNO吸収剤25から下流へ流出することはない。なおHC吸着剤53に吸着している未燃炭化水素は第1の燃焼、即ち低温燃焼が第2の燃焼、即ち通常の燃焼に切り換えられたときに排気ガス中に多量に含まれている酸素と反応してHC吸着剤53から除去される。
【0063】
ところでNO吸収剤25のNO吸収能力には限界があり、NO吸収剤25のNO吸収能力が飽和する前にNO吸収剤25からNOを放出させる必要がある。そのためにはNO吸収剤25に吸収されているNO量を推定する必要がある。そこで本発明による実施例では第1の燃焼が行われているときの単位時間当りのNO吸収量Aを要求負荷Lおよび機関回転数Nの関数として図17(A)に示すようなマップの形で予め求めておき、第2の燃焼が行われているときの単位時間当りのNO吸収量Bを要求負荷Lおよび機関回転数Nの関数として図17(B)に示すようなマップの形で予め求めておき、これら単位時間当りのNO吸収量A,Bを積算することによってNO吸収剤25に吸収されているNO量ΣNOXを推定するようにしている。
【0064】
本発明による実施例ではこのNO吸収量ΣNOXが予め定められた許容最大値を越えたときにNO吸収剤25からNOを放出させるようにしている。次にこのことについて図18を参照しつつ説明する。
図18を参照すると本発明による実施例では二つの許容最大値、即ち許容最大値MAX1と許容最大値MAX2とが設定されている。許容最大値MAX1はNO吸収剤25が吸収しうる最大NO吸収量の30パーセント程度とされており、許容最大値MAX2はNO吸収剤25が吸収しうる最大吸収量の80パーセント程度とされている。第1の燃焼が行われているときにNO吸収量ΣNOXが許容最大値MAX1を越えたときにはNO吸収剤25からNOを放出すべく空燃比がリッチとされ、第2の燃焼が行われているときにNO吸収量ΣNOXが許容最大値MAX1を越えたときには第2の燃焼から第1の燃焼に切換えられたときにNO吸収剤25からNOを放出すべく空燃比がリッチとされ、第2の燃焼が行われているときにNO吸収量ΣNOXが許容最大値MAX2を越えたときにはNO吸収剤25からNOを放出すべく膨張行程の後半又は排気行程中に追加の燃料が噴射される。
【0065】
即ち、図18において期間Xは要求負荷Lが第1の境界X(N)よりも低く、第1の燃焼が行われている場合を示しており、このとき空燃比は理論空燃比よりもわずかばかりリーンなリーン空燃比となっている。第1の燃焼が行われているときにはNOの発生量が極めて少く、従ってこのときには図18に示されるようにNO吸収量ΣNOXは極めてゆっくりと上昇する。第1の燃焼が行われているときにNO吸収量ΣNOXが許容最大値MAX1を越えると空燃比A/Fは一時的にリッチとされ、それによってNO吸収剤25からNOが放出される。このときNO吸収量ΣNOXは零とされる。
【0066】
前述したように第1の燃焼が行われているときには空燃比がリーンであろうと、理論空燃比であろうと、リッチであろうと煤は発生せず、従って第1の燃焼が行われているときにNO吸収剤25からNOを放出すべく空燃比A/Fがリッチとされてもこのとき煤が発生することはない。
次いで時刻tにおいて要求負荷Lが第1の境界X(N)を越えると第1の燃焼から第2の燃焼に切換えられる。図18に示されるように第2の燃焼が行われているときには空燃比A/Fはかなりリーンとなる。第2の燃焼が行われているときには第1の燃焼が行われている場合に比べてNOの発生量が多く、従って第2の燃焼が行われているときにはNO量ΣNOXは比較的急速に上昇する。
【0067】
第2の燃焼が行われているときに空燃比A/Fをリッチにすると多量の煤が発生し、従って第2の燃焼が行われているときに空燃比A/Fをリッチにすることはできない。従って図18に示されるように第2の燃焼が行われているときにNO吸収量ΣNOXが許容最大値MAX1を越えたとしてもNO吸収剤25からNOを放出すべく空燃比A/Fがリッチとされない。この場合には図18の時刻tにおけるように要求負荷Lが第2の境界Y(N)よりも低くなって第2の燃焼から第1の燃焼に切換えられたときにNO吸収剤25からNOを放出すべく空燃比A/Fが一時的にリッチにされる。
【0068】
次いで図18の時刻tにおいて第1の燃焼から第2の燃焼に切換えられ、暫らくの間第2の燃焼が継続したとする。このときNO吸収量ΣNOXが許容最大値MAX1を越え、次いで時刻tにおいて許容最大値MAX2を越えたとするとこのときにはNO吸収剤25からNOを放出すべく膨張行程の後半又は排気行程中に追加の燃料が噴射され、NO吸収剤25に流入する排気ガスの空燃比がリッチとされる。
【0069】
膨張行程の後半又は排気行程中に噴射される追加の燃料は機関出力の発生には寄与せず、従って追加の燃料を噴射する機会はできるだけ少くすることが好ましい。従って第2の燃焼が行われたときにNO吸収量ΣNOXが許容最大値MAX1を越えたときには第2の燃焼から第1の燃焼に切換えられたときに空燃比A/Fを一時的にリッチにし、NO吸収量ΣNOXが許容最大値MAX2を越えた特別の場合に限って追加の燃料を噴射するようにしている。
【0070】
図19はNO吸収剤25からNOを放出すべきときにセットされるNO放出フラグの処理ルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。
図19を参照するとまず初めにステップ100において機関の運転領域が第1の運転領域Iであることを示すフラグIがセットされているか否かが判別される。フラグIがセットされているとき、即ち機関の運転領域が第1の運転領域Iであるときにはステップ101に進んで図17(A)に示すマップから単位時間当りのNO吸収量Aが算出される。次いでステップ102ではNO吸収量ΣNOXにAが加算される。次いでステップ103ではNO吸収量ΣNOXが許容最大値MAX1を越えたか否かが判別される。ΣNOX>MAX1になるとステップ104に進み、第1の燃焼が行われているときにNOを放出すべきことを示すNO放出フラグ1がセットされる。
【0071】
一方、ステップ100においてフラグIがリセットされていると判断されたとき、即ち機関の運転領域が第2の運転領域IIであるときにはステップ106に進んで図17(B)に示すマップから単位時間当りのNO 吸収量Bが算出される。次いでステップ107ではNO 吸収量ΣNOX加算される。次いでステップ108ではNO 吸収量ΣNOXが許容最大値MAX1を越えたか否かが判別される。ΣNOX>MAX1になるとステップ109に進み、第2の燃焼から第1の燃焼に切換えられたときにNO を放出すべきことを示すNO 放出フラグ1がセットされる。
【0072】
ステップ110では、NO 吸収量ΣNOXが許容最大値MAX2を越えたか否かが判別される。ΣNOX>MAX2になるとステップ111に進み、膨張行程の後半又は排気行程中にNO を放出すべきことを示すNO 放出フラグ2がセットされる。
さらにHC吸着剤53が吸着させることができるHCの量には限界がある。そこで本発明による実施例では第1の燃焼が行われているときの単位時間当たりのHC吸着量Cを要求負荷Lおよび機関回転数Nの関数として図20(A)に示すようなマップの形で予め求めておき、第2の燃焼が行われているときの単位時間当たりのHC吸着量Dを要求負荷および機関回転数Nの関数として図20(B)に示すようなマップの形で予め求めておき、これら単位時間当たりのHC吸着量C,Dを積算することによりHC吸着剤53に吸着しているHC量ΣHCを推定するようにしている。
【0073】
本発明の実施例では第1の燃焼が行われているときにHC吸着剤53のHC吸着量が最大値を越えたときには、HCをHC吸着剤53から排除すべく第1の燃焼を第2の燃焼に切換える。第2の燃焼では空燃比がかなりリーンの排気ガスがHC吸着剤53に流入する。従ってHC吸着剤53に吸着しているHCは排気ガス中の過剰な酸素と反応し、HC吸着剤53から除去される。
【0074】
図21はHC吸着剤53からHCを除去すべきときにセットされるHCフラグの処理ルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。
図21を参照するとまず初めにステップ200において機関の運転領域が第1の運転領域Iであることを示すフラグIがセットされているか否かが判別される。フラグIがセットされているとき、即ち機関の運転領域が第1の運転領域Iであるときにはステップ201に進んで図20(A)に示すマップから単位時間当りのHC吸着量Cが算出される。次いでステップ202ではHC吸着量ΣHCにCが加算される。次いでステップ203ではHC吸着量ΣHCが許容最大値MAXを越えたか否かが判別される。ΣHC>MAXになるとステップ104に進んでHCフラグをセットする処理が行われる。
【0075】
一方、ステップ200においてフラグIがリセットされていると判断されたとき、即ち機関の運転領域が第2の運転領域IIであるときにはステップ206に進んで図20(B)に示すマップから単位時間当りのHC吸着量Dが算出される。次いでステップ207ではHC吸着量ΣHCにDが加算される。次いでステップ208ではHC吸着量ΣHCが許容最大値MAXを越えたか否かが判別される。ΣHC>MAXになるとステップ209に進んでHCフラグをセットする処理が行われる。
【0076】
ところでHC吸着剤53とNO吸収剤25との間の機関排気通路24には排気ガスの温度を検出するための温度センサ54が取り付けられる。本実施例では温度センサ54により検出した排気ガスの温度からNO吸収剤25の温度を推定し、NO吸収剤25の温度がその活性温度より低いときであって排気ガスの温度が比較的低い低温燃焼が行われているときには、NO吸収剤25の温度を上昇すべく機関の運転制御を行う。即ち燃料室内に燃料を噴射する時期を遅らせる。これにより排気ガスの温度が高くなり、NO吸収剤25の温度が上昇せしめられる。
【0077】
次に図22および図23を参照しつつ運転制御について説明する。
図22を参照すると、まず初めにステップ300において機関の運転状態が第1の運転領域Iであることを示すフラグIがセットされているか否かが判別される。フラグIがセットされているとき、即ち機関の運転状態が第1の運転領域Iであるときにはステップ301に進んで要求負荷Lが第1の境界X1(N)よりも大きくなったか否かが判別される。L≦X1(N)のときにはステップ302aに進む。
【0078】
ステップ302aではNO吸収剤25の温度Tが予め定められた温度、即ちNO吸収剤25がNOの吸放出を行うことができる温度Tより高いか否かが判別される。ステップ302aにおいてT>Tであるときにはステップ303に進んで低温燃焼が行われる。
即ち、ステップ303では図11(A)に示すマップからスロットル弁20の目標開度STが算出され、スロットル弁20の開度がこの目標開度STとされる。次いでステップ304では図11(B)に示すマップからEGR制御弁31の目標開度SEが算出され、EGR制御弁31の開度がこの目標開度SEとされる。次いでステップ305ではNO放出フラグ1がセットされているか否かが判別される。NO放出フラグ1がセットされていないときにはステップ306に進んで図10に示される空燃比となるように図12のマップから算出された量Qの燃料噴射が行われる。このときリーン空燃比のもとで低温燃焼が行われる。
【0079】
一方、ステップ305においてNO放出フラグ1がセットされていると判別されたときにはステップ307に進んで図12のマップから算出された量Qに図24のマップから算出された増分Qaを加えた量の燃料噴射が行われ、燃焼室5内における平均空燃比をリッチにする噴射制御が行われ、ステップ307aにおいてΣNOXが零とされる。このときNO吸収剤25からNOが放出される。
【0080】
一方、ステップ302aにおいてT≦Tであるときにはステップ302bに進んでHCフラグがセットされているか否かが判別される。ステップ302bにおいてHCフラグがリセットされていると判別されたときにはステップ302cに進んで低温燃焼が行われる。即ち、ステップ302cでは図11(A)に示すマップからスロットル弁20の目標開度STが算出され、スロットル弁20の開度がこの目標開度STとされる。次いでステップ302dにおいて図11(B)に示すマップからEGR制御弁31の目標開度SEが算出され、EGR制御弁31の開度がこの目標開度SEとされる。次いでステップ302eにおいて燃料噴射弁6の開弁時期SIを補正して遅らせる。次いでステップ302fにおいて図10に示される空燃比となるように図12のマップから算出された量Qの燃料噴射が行われる。
【0081】
一方、ステップ01においてL>X(N)になったと判別されたときにはステップ02に進んでフラグIがリセットされ、次いでステップ310に進んで第2の燃焼が行われ、ステップ302bにおいてHCフラグがセットされていると判別されたときにもステップ310に進んで第2の燃焼が行われる。即ち、ステップ310では図14(A)に示すマップからスロットル弁20の目標開度STが算出され、スロットル弁20の開度がこの目標開度STとされる。次いでステップ311では図14(B)に示すマップからEGR制御弁31の目標開度SEが算出され、EGR制御弁31の開度がこの目標開度SEとされる。次いでステップ312ではNO 放出フラグ2がセットされているか否かが判別される。NO 放出フラグ2がセットされていないときにはステップ313に進んで図13に示される空燃比となるように図15のマップから算出された量Qの燃料噴射が行われる。このときリーン空燃比のもとで第2の燃焼が行われる。
【0082】
一方、ステップ312においてNO放出フラグ2がセットされていると判別されたときにはステップ314に進んで図15のマップから算出された量Qの燃料噴射が行われ、機関の膨張行程後半又は排気行程に追加の燃料を噴射し、NO吸収剤25に流入する排気ガスの空燃比がリッチとなるように噴射制御され、それによってNO吸収剤25からNOが放出される。次いでステップ315においてΣNOXが零とされ、ステップ316においてΣHCが零とされる。
【0083】
フラグIがリセットされると次の処理サイクルではステップ300からステップ308に進んで要求負荷Lが第2の境界Y(N)よりも低くなったか否かが判別される。L≧Y(N)のときにはステップ302aに進む。
一方、ステップ308においてL<Y(N)になったと判別されたときにはステップ309に進んでフラグIがセットされる。次いでステップ302aに進む。
【0084】
【発明の効果】
1番目から7番目の発明によれば内燃機関から放出されるHCがHC吸着剤に吸着されるため、HCが大気に放出されることはない。
さらに5番目の発明によればNO吸収剤の温度が予め定められた温度より低いときにはHCはHC吸着剤に吸着されるためHCが大気に流出することはなく、さらにこのときには燃料の噴射時期を遅らせてNO吸収剤の温度を早期に上昇させ、NO吸収剤の温度が予め定められた温度より高くなればHC吸着剤に吸着されているHCの量がその計容量を越えても、NO吸収剤によりHCが浄化される。即ち機関始動直後のように排気ガスの温度が低いときには内燃機関から放出されるHCはHC吸着剤に吸着され、次第に排気ガスの温度が高くなったときにはNO吸収剤の温度がその活性温度を越えるので、たとえHC吸着剤に吸着されているHC量がその許容量を越えたとしても、HC吸着剤から流出したHCはNO吸収剤により浄化される。従ってHC吸着剤およびNO吸収剤の温度に係わらず常にHCの大気への流出を防止できる。
【図面の簡単な説明】
【図1】圧縮着火式内燃機関の全体図である。
【図2】スモークおよびNOの発生量等を示す図である。
【図3】燃焼圧を示す図である。
【図4】燃料分子を示す図である。
【図5】スモークの発生量とEGR率との関係を示す図である。
【図6】噴射燃料量と混合ガス量との関係を示す図である。
【図7】第1の運転領域Iおよび第2の運転領域IIを示す図である。
【図8】空燃比センサの出力を示す図である。
【図9】スロットル弁の開度等を示す図である。
【図10】第1の運転領域Iにおける空燃比等を示す図である。
【図11】スロットル弁等の目標開度のマップを示す図である。
【図12】燃料噴射量のマップを示す図である。
【図13】第2の運転領域における空燃比等を示す図である。
【図14】スロットル弁等の目標開度のマップを示す図である。
【図15】燃料噴射量のマップを示す図である。
【図16】NOの吸放出作用を説明するための図である。
【図17】単位時間当りのNO吸収量のマップを示す図である。
【図18】NO放出制御を説明するための図である。
【図19】NO放出フラグを処理するためのフローチャートである。
【図20】単位時間当りのHC吸着量のマップを示す図である。
【図21】HCフラグを処理するためのフローチャートである。
【図22】機関の運転を制御するためのフローチャートの一部である。
【図23】機関の運転を制御するためのフローチャートの一部である。
【図24】第1の燃焼における噴射燃料量の増分のマップを示す図である。
【符号の説明】
6…燃料噴射弁
15…排気ターボチャージャ
20…スロットル弁
29…EGR通路
31…EGR制御弁

Claims (8)

  1. 燃焼室内に供給される不活性ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される不活性ガス量を更に増大していくと燃焼室内における燃焼時の燃料およびその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関において、排気ガス中のHCを吸着させるHC吸着剤を機関排気通路内に配置した内燃機関。
  2. 燃焼室から排出された排気ガスを機関吸気通路内に再循環させる再循環装置を具備し、上記不活性ガスが再循環排気ガスからなる請求項1に記載の内燃機関。
  3. 排気ガス再循環率がほぼ55パーセント以上である請求項2に記載の内燃機関。
  4. 流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸収しかつ流入する排気ガスの空燃比が理論空燃比又はリッチになると吸収したNOを放出するNO吸収剤を前記機関排気通路に配置した請求項1に記載の内燃機関。
  5. 前記NO吸収剤が予め定められた温度以上で排気ガス中のHCを酸化する機能を有し、NO吸収剤の温度が前記予め定められた温度より低いときには燃焼室内への燃料の噴射時期を遅らせるようにした請求項4に記載の内燃機関。
  6. 煤の発生量がピークとなる不活性ガス量よりも燃焼室内に供給される不活性ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる不活性ガス量よりも燃焼室内に供給される不活性ガス量が少ない第2の燃焼とを選択的に切換える切換手段を具備した請求項1に記載の内燃機関。
  7. 機関の運転領域を低負荷側の第1の運転領域と高負荷側の第2の運転領域に分割し、第1の運転領域では第1の燃焼を行い、第2の運転領域では第2の燃焼を行うようにした請求項6に記載の内燃機関。
  8. 第1の燃焼が行われているときに前記HC吸着剤に吸着しているHCを除去すべきときには第1の燃焼を第2の燃焼に切換える請求項6に記載の内燃機関。
JP32395298A 1998-10-29 1998-11-13 内燃機関 Expired - Fee Related JP3551797B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32395298A JP3551797B2 (ja) 1998-11-13 1998-11-13 内燃機関
DE69930189T DE69930189T2 (de) 1998-10-29 1999-10-28 Brennkraftmaschine
EP99121475A EP0997625B1 (en) 1998-10-29 1999-10-28 An internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32395298A JP3551797B2 (ja) 1998-11-13 1998-11-13 内燃機関

Publications (2)

Publication Number Publication Date
JP2000145439A JP2000145439A (ja) 2000-05-26
JP3551797B2 true JP3551797B2 (ja) 2004-08-11

Family

ID=18160471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32395298A Expired - Fee Related JP3551797B2 (ja) 1998-10-29 1998-11-13 内燃機関

Country Status (1)

Country Link
JP (1) JP3551797B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525871B2 (ja) * 2000-07-21 2004-05-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE602004012778T2 (de) 2003-12-01 2009-04-09 Toyota Jidosha Kabushiki Kaisha Abgasemissions-reinigungsvorrichtung für selbstzündenden verbrennungsmotor
DE102018131536A1 (de) 2018-12-10 2020-06-10 Volkswagen Aktiengesellschaft Verbrennungsmotor und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Also Published As

Publication number Publication date
JP2000145439A (ja) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3116876B2 (ja) 内燃機関
JP3225957B2 (ja) 内燃機関
JPH11107861A (ja) 内燃機関
JP3104692B2 (ja) 内燃機関
JP3092604B2 (ja) 内燃機関
JP3304929B2 (ja) 内燃機関
JP3104674B2 (ja) 圧縮着火式内燃機関
JP3551789B2 (ja) 内燃機関
JP3551790B2 (ja) 内燃機関
JP3551797B2 (ja) 内燃機関
JP3555439B2 (ja) 圧縮着火式内燃機関
JP3551771B2 (ja) 内燃機関
JP3551788B2 (ja) 圧縮着火式内燃機関
JP3405217B2 (ja) 内燃機関
JP3551768B2 (ja) 内燃機関
JP3427754B2 (ja) 内燃機関
JP3551757B2 (ja) 圧縮着火式内燃機関
JP3424552B2 (ja) 圧縮着火式内燃機関
JP3405167B2 (ja) 圧縮着火式内燃機関
JP3344334B2 (ja) 内燃機関
JP3092597B2 (ja) 内燃機関
JP3424554B2 (ja) 内燃機関
JP2005076502A (ja) 内燃機関
JP3551769B2 (ja) 内燃機関
JP3551791B2 (ja) 内燃機関

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees