JP4443667B2 - Continuous sintering furnace and operation method thereof - Google Patents

Continuous sintering furnace and operation method thereof Download PDF

Info

Publication number
JP4443667B2
JP4443667B2 JP11424999A JP11424999A JP4443667B2 JP 4443667 B2 JP4443667 B2 JP 4443667B2 JP 11424999 A JP11424999 A JP 11424999A JP 11424999 A JP11424999 A JP 11424999A JP 4443667 B2 JP4443667 B2 JP 4443667B2
Authority
JP
Japan
Prior art keywords
sintering
sintered
gas
chamber
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11424999A
Other languages
Japanese (ja)
Other versions
JP2000309805A (en
Inventor
弘司 窪
英俊 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP11424999A priority Critical patent/JP4443667B2/en
Publication of JP2000309805A publication Critical patent/JP2000309805A/en
Application granted granted Critical
Publication of JP4443667B2 publication Critical patent/JP4443667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属を加熱処理し焼結させる連続式焼結炉およびその運転方法に関するものである。
【0002】
【従来の技術】
炭素鋼(Fe-C、Fe-C-Cu)の粉末冶金製品であるタイミングベルトプーリ、カムシャフトプーリ・スプロケットなどの輸送機械部品などは、例えば鉄粉、炭素粉末、およびワックス(ステアリン酸亜鉛など)を混合しプレス成形した後、焼結炉中で焼結する方法によって製造されている。
上記プレス成形品(被焼結品)を焼結炉中で焼結する際には、炉内温度、炉内雰囲気を最適化することによって、被焼結品からのワックスの除去、被焼結品の表面酸化物の還元除去、炭素含有量の調整、および硬さ等の品質調整が行われる。
【0003】
図6は、上記被焼結品を焼結するために用いられる連続式焼結炉の一例を示すもので、ここに示す連続式焼結炉10は、被焼結品Sの搬入口2および搬出口8を備えたマッフルを内蔵する焼結炉本体1と、被焼結品Sを焼結炉本体1内で搬入口2から搬出口8に向けて搬送する搬送手段9と、被焼結品S表面の酸化物を還元する水素を焼結炉本体1内に供給する水素供給手段となる[水素+窒素]ガス供給管路23'と、水素により被焼結品S表面の酸化物が還元される際に生成する水を低減させるプロパンガスなどの炭化水素ガスを焼結炉本体1内に供給する炭化水素供給手段となる[炭化水素+窒素]ガス供給管路22'を備えて構成されている。
【0004】
焼結炉本体1は、搬送手段9により搬送される被焼結品Sを予備的に加熱する予熱室3と、予熱室3を経た被焼結品Sを焼結する焼結室4と、焼結室4を経た被焼結品Sを冷却する第1および第2の水冷室5、6と、カーテン室7を備えている。
【0005】
[水素+窒素]ガス供給管路23'は、第1水冷室5と第2水冷室6の間の位置に接続され、図示せぬ供給源から供給された[水素+窒素]ガスを上記接続位置から焼結炉本体1内に供給することができるようになっている。
[炭化水素+窒素]ガス供給管路22'は、焼結室4と第1水冷室5の間の位置に接続され、図示せぬ供給源から供給された[炭化水素+窒素]ガスを上記接続位置から焼結炉本体1内に供給することができるようになっている。
【0006】
上記焼結炉10は、次のようにして使用することができる。
[水素+窒素]ガス供給管路23'を通して[水素+窒素]ガスを焼結炉本体1内に供給するとともに、[炭化水素+窒素]ガス供給管路22'を通して[炭化水素+窒素]ガスを一定流量で焼結炉本体1内に供給する。
供給管路23'を通して焼結炉本体1内に供給された[水素+窒素]ガスの大部分は搬入口2方向に向かって流れ、他部は搬出口8方向に向かって流れる。また供給管路22'を通して焼結炉本体1内に供給された[炭化水素+窒素]ガスは主に搬入口2方向に向かって流れる。
【0007】
次いで、被焼結品Sを搬入口2を通して焼結炉本体1内に搬入する。搬入された被焼結品Sは、搬送手段9によって予熱室3内に搬入され、ここで加熱されワックスが蒸発除去された後、焼結室4内に搬入され、さらに加熱され焼結処理される。
このようにして得られた焼結品は、第1および第2の水冷室5、6において冷却され、カーテン室7を経て搬出口8から搬出される。
続いて、搬入口2を通して順次新たな被焼結品を焼結炉本体1内に搬入し、上記操作と同様にしてこれら被焼結品に順次焼結処理を施す。
【0008】
焼結室4における加熱処理の際には、被焼結品Sの表面酸化物は、上記[水素+窒素]ガス供給管路23'を通して焼結炉本体1内に供給された水素によって還元される。この還元反応の際には酸化物中の酸素と上記水素が化合し水が生成する。
生成した水分は被焼結品S中の炭素と反応して一酸化炭素と水素を生成する。この際、被焼結品Sは脱炭され炭素含有量が低下する。
上記脱炭量は上記炭化水素(プロパンなど)ガスの供給によって低く抑えられる。これは、炭化水素ガスと上記水が反応し水の量が少なくなり、上記脱炭反応が抑制されるためである。
【0009】
【発明が解決しようとする課題】
上記操作によって複数の被焼結品Sを連続的に焼結処理する際には、被焼結品Sの形状、大きさ等によって、焼結炉本体1内において上記表面酸化物の還元反応により生じる水分量が増減するため、上記脱炭量が増減し、得られる焼結品中の炭素含有量が大きく変動し品質が不安定となることがある。
本発明は、上記事情に鑑みてなされたもので、焼結品の品質を高く維持することが可能な連続式焼結炉およびその運転方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、炉内の水分濃度と、脱炭による被焼結品の炭素含有量減少量とを比較検討することによって、この水分量が炭素含有量減少に大きな影響を及ぼすことを見いだし、これに基づいて本発明を完成するに至った。
本発明では、被焼結品を焼結する焼結室と被焼結品搬出入用の搬出および搬入口を備えた焼結炉本体と、被焼結品を焼結炉本体内で搬入口から搬出口に向けて搬送する搬送手段を備えた連続式焼結炉を用い、被焼結品の表面酸化物を還元する水素と、被焼結品などの酸化を防止する不活性ガスと、水素により前記酸化物が還元される際に生成する水を低減させる炭化水素ガスを搬出口側から焼結炉本体内に供給しつつ被焼結品を焼結室内で焼結するに際し、
前記焼結室の中央部よりも搬入口側のガス中の酸素濃度を検出し、この酸素濃度に基づいて焼結室内の水分濃度を算出し、この水分濃度に基づいて、焼結室内の水分露点温度を算出し、この水分露点温度が、常時−60〜−35℃となるように炭化水素ガスの供給量を調節することを上記課題の解決手段とした。
前記焼結室内の水素濃度を検出し、前記酸素濃度および水素濃度に基づいて焼結室内の水分濃度を算出し、この水分濃度に基づいて、焼結室内の水分露点温度を算出し、この水分露点温度が、常時−60〜−35℃となるように炭化水素ガスの供給量を調節することも可能である。
また、本発明の連続式焼結炉は、被焼結品を焼結する焼結室と被焼結品搬出入用の搬出および搬入口を備えた焼結炉本体と、被焼結品を焼結炉本体内で搬入口から搬出口に向けて搬送する搬送手段と、被焼結品の表面酸化物を還元する水素を搬出口側から焼結炉本体内に供給する水素供給手段と、不活性ガスを搬出口側から焼結炉本体内に供給する不活性ガス供給手段と、水素により前記酸化物が還元される際に生成する水を低減させる炭化水素ガスを搬出口側から焼結炉本体内に供給する炭化水素供給手段と、焼結室の中央部よりも搬入口側のガス中の酸素濃度を検出して水分濃度を算出し、この水分濃度から焼結室内の水分露点温度を算出する演算手段と、この水分露点温度が、常時−60〜−35℃となるように焼結炉本体内への炭化水素ガスの供給量を制御する制御部を備えたものである。
【0011】
【発明の実施の形態】
図1は、本発明の連続式焼結炉の一実施形態を示すもので、ここに示す連続式焼結炉40は、被焼結品Sを焼結する焼結室4と搬入、搬出口2、8を備えた筒状の焼結炉本体1と、被焼結品Sを焼結炉本体1内で搬入口2から搬出口8に向けて搬送する搬送手段9と、被焼結品Sの酸化を防止する不活性ガスである窒素と被焼結品S表面の酸化物を還元する水素とを焼結炉本体1内に供給する水素供給手段となる[水素+窒素]ガス供給管路12と、水素により被焼結品S表面の酸化物が還元される際に生成する水を還元するプロパンガスなどの炭化水素ガスを焼結炉本体1内に供給する炭化水素供給手段となる[炭化水素+窒素]ガス供給管路11と、焼結室4内の水分濃度を検出する水分濃度検出手段である酸素分圧計26と、この酸素分圧計26からの信号に基づいて、前記炭化水素の焼結炉本体1内への供給量を制御する制御部15を備えて構成されている。
【0012】
焼結炉本体1は、搬送手段9により搬送される被焼結品Sを予備的に加熱する予熱室3と、予熱室3を経た被焼結品Sを焼結する焼結室4と、焼結室4を経た被焼結品Sを冷却する第1および第2の水冷室5、6と、カーテン室7を備えている。
【0013】
予熱室3は、電気ヒータ等のヒータを備え、被焼結品を加熱することができるように構成されている。
また、予熱室3は、バーナの燃焼排ガスによる対流型の加熱を行うことができるように構成することもできる。この場合、予熱室3は、[プロパン+空気]ガス等の燃焼ガスを完全燃焼比率0.7前後の不完全燃焼域で燃焼させ、燃焼排ガスにより予熱室3内を酸化が強く促進されない雰囲気として加熱を行うことができるように構成することができる。
【0014】
[炭化水素+窒素]ガス供給管路11は、図示せぬ供給源から供給されたプロパンなどの炭化水素ガスを導く管路16と、図示せぬ供給源から供給された窒素ガスを導く管路17と、これら管路16、17からの炭化水素と窒素を焼結炉本体1内に供給する管路22からなるものである。
管路22は、焼結室4とその下流側に位置する第1水冷室5の間に接続され、この接続位置から焼結炉本体1内に[炭化水素+窒素]ガスを送り込むことができるようになっている。
【0015】
[水素+窒素]ガス供給管路12は、第1供給管路13と、第2供給管路14からなるものである。
第1供給管路13は、上記管路17内の窒素ガスを導く管路18と、図示せぬ供給源から供給された水素ガスを導く管路19と、これら管路18,19からの窒素ガスおよび水素ガスを焼結炉本体1内に供給する管路23からなるものである。
管路23は、第1水冷室5とその下流側に位置する第2水冷室6の間に接続され、この接続位置から焼結炉本体1内に[水素+窒素]ガスを送り込むことができるようになっている。
【0016】
第2供給管路14は、図示せぬ供給源から供給された窒素ガスを導く管路20と、図示せぬ供給源から供給された水素ガスを導く管路21と、これら管路20、21からの窒素ガスおよび水素ガスを焼結炉本体1内に供給する管路24からなるものである。
管路24は、上記管路23に接続され、管路23を通して焼結炉本体1内に[水素+窒素]ガスを送り込むことができるようになっている。
【0017】
管路16には、管路16内を流れるガスの流量を調節する流量調節器16aが設けられている。また、管路17,18、19には、流量調節器17a、18a、19aが設けられている。また管路20、21には電磁バルブ20a、21aが設けられている。流量調節器16a、電磁バルブ20a,21aは制御部15に接続されている。
【0018】
酸素分圧計26は、焼結室4内のガス中に含まれる水分量を検出するためのもので、管路25を通して導かれた焼結室4内のガスの酸素分圧を測定し、測定値に応じた検出信号を出力することができるようにされている。なお符号25aは焼結室4内のガスを酸素分圧計26に送り込むポンプを示す。
【0019】
焼結室4内のガスを酸素分圧計26に導く管路25の焼結室4への接続位置は、焼結室4の中央部よりも搬入口側となっている。これは、焼結室4内の水分濃度が中央部より搬入口側において比較的高くなると考えられるためである。
焼結室4内の水分濃度が中央部より搬入口側において高くなるのは、後述する焼結過程において、焼結室4の搬出口側から導入された水素が焼結室4中央の被焼結品中の酸化物と化合することで水が生成し、この水が上記管路23、24から供給されたガスとともに焼結室4の搬入口側に向かって流れるためである。
【0020】
制御部15は、演算器27と、調節計28を有するものである。
演算器27は、酸素分圧計26からの信号と、予め入力された焼結室4内の水素濃度の予想値を用い、化学平衡式[2H2+O2=2H2O]に基づいて焼結室4内の水分濃度を算出し、さらにこの水分濃度に基づいて当該温度における水分露点温度を算出し、この水分露点温度に基づいた信号を調節計28に出力することができるようになっている。
調節計28は、演算器27からの信号に基づいて、上記流量調節器16aを調節し、管路16内における炭化水素の流量を任意の値に調節することができるようになっている。また調節計28は電磁バルブ20a,21aを開閉することができるようになっている。
【0021】
なお、焼結室4に酸素分圧計26のセンサ部を取り付けることにより焼結室4内ガスの酸素分圧を測定することもでき、この場合、管路25は不要となる。
【0022】
上記連続式焼結炉を使用するには、例えば次のようにする。
制御部15の調節計28を、酸素分圧計26からの信号によって算出された焼結室4内の水分露点温度が予め定められた設定範囲上限値を越えた場合に信号を流量調節器16aに出力し、管路16,22を通して焼結炉本体1内に供給される炭化水素流量を増加させ、かつ上記水分露点温度が設定範囲下限値未満となった場合に炭化水素流量を減少させるように設定しておく。
また、調節計28は、流量調節器16aが管路16内の炭化水素ガスの流量を最大限に高めてもなお焼結室4内水分露点温度が上記上限値を越える場合に、バルブ20a,21aを開き、[水素+窒素]ガスを第2供給管路14から焼結炉本体1内に供給し、かつ水分露点温度が上記設定範囲下限値未満となったときに電磁バルブ20a,21aを閉じ[水素+窒素]ガスの供給を停止するように設定しておく。
上記設定範囲は、被焼結品に要求される炭素濃度に応じて焼結室4内の水分露点温度が常時−60〜−35℃の範囲内となるように適宜選択される。
【0023】
この方法では、[水素+窒素]ガスを第1供給管路13を通して一定流量で焼結炉本体1内に供給するとともに、焼結室4内の水分露点温度を調節する[炭化水素+窒素]ガスを供給管路11を通して焼結炉本体1内に供給する。
【0024】
ここで用いる水素は、焼結室4内を還元性雰囲気に維持し、焼結接合を阻害する被焼結品Sの金属粉末表面の酸化物を還元し、高品質、高強度の焼結品を得るためのものである。
また、炭化水素は、上記水素によって、被焼結品Sや、炉壁、搬送手段等の炉材の表面酸化物が還元される際に生成した水分(生成水)を分解除去し、炉内雰囲気の立ち上げ時間を短縮するとともに、被焼結品Sの脱炭反応を抑え焼結品の品質低下を防ぐためのものである。
また供給管路11、12から供給される窒素ガスは、焼結炉本体1内に流入するガスの焼結炉本体1内における拡散を促し、上記生成水の分解を効率的に行わせるために使用されるものである。
【0025】
[水素+窒素]ガス供給管路13を通して炉内に供給された[水素+窒素]ガスの大部分は搬入口2の方向へ流れ、残りの部分は搬出口8の方向へ流れる。
[炭化水素+窒素]ガス供給管路11を通して炉内に供給された[炭化水素+窒素]ガスは、主として搬入口2方向へ流れる。
【0026】
次いで、被焼結品Sを搬入口2を通して焼結炉本体1内に搬入する。
被焼結品Sとしては、鉄粉等の金属粉末、炭素粉末、およびワックス(ステアリン酸亜鉛など)等を混合しプレス成形したものを用いることができる。
焼結炉本体1内に搬入された被焼結品Sは、予熱室3内で例えば500〜700℃まで加熱され、ここでワックスが蒸発除去される。
【0027】
予熱室3として、輻射加熱式のものを使用した場合には、[水素+窒素]ガスなどを室内に導入し予熱室3内を還元性雰囲気としつつヒータにより被焼結品を加熱する。
予熱室3として、バーナの燃焼排ガスによる対流型加熱式のものを使用した場合には、[プロパン+空気]ガス等の燃焼ガスを完全燃焼比率0.7前後の不完全燃焼域で燃焼させ、燃焼排ガスにより予熱室3内を酸化が進行しにくい雰囲気として被焼結品を加熱する。
【0028】
予熱室3内でワックスが蒸発除去された被焼結品Sは焼結室4に送られ、例えば1100〜1150℃の温度条件下で、上記[水素+窒素]ガスに由来する水素を含む雰囲気中に30〜60分間置かれ、焼結される。
この際、被焼結品表面の酸化物は、焼結室4内の水素によって還元され、上記酸化物と水素との反応により水が生成する。
【0029】
焼結室4を経た被焼結品Sは、水冷室5、6内に搬入され、ここで冷却された後、カーテン室7を経て搬出口8を通して外部に搬出される。
次いで、搬入口2を通して順次新たな被焼結品を炉内に導入し、上記操作と同様にしてこれら被焼結品に焼結処理を施す。
焼結炉本体1内において上記還元反応に関与する表面酸化物量は、被焼結品の形状、大きさ等に応じたものとなるため、還元反応によって生じる水分量は被焼結品ごとに大きく異なる。
【0030】
本実施形態の運転方法では、制御部15によって、次に示すガス流量調節が行われ、前記炭化水素、窒素、水素の焼結炉本体内への供給量が、焼結室内の水分露点温度が常時−60〜−35℃となるように調節される。
炭化水素、窒素、水素の焼結炉本体内への供給量を、焼結室4内の水分露点温度が、常時−60〜−35℃となるように調節するのは、この水分露点温度が−60℃未満となると、すす発生等により焼結品の品質低下を招き、−35℃を越えると、上記脱炭反応が促進され焼結品の炭素含有量低下による品質低下が起こりやすくなるためである。
焼結室4内の水分露点温度は−55〜−40℃とするのが好ましい。
【0031】
演算器27において算出された焼結室4内水分露点温度が上記設定範囲上限値を越えると、流量調節器16aによって管路16、22から焼結炉本体1内に供給される炭化水素ガスの流量が高められる。
流量調節器16aが炭化水素ガスの流量を最大に高めてもなお焼結室4内水分露点温度が上記上限値を越える場合には、バルブ20a,21aが開状態となり、第2供給管路14からの[水素+窒素]ガス供給が加わり、これによって第1供給管路13のみの場合に比較して[水素+窒素]ガスの供給量が高められる。
【0032】
焼結炉本体1内に供給される炭化水素、窒素、水素ガスの流量が高められることによって、焼結室4内において、多量の水分、二酸化炭素を含むガスが搬入口側に押し流される。また炭化水素による水の還元反応が促進される。このため、焼結室4内の水分濃度は低下する。
焼結室4内の水分濃度の低下により上記脱炭反応が抑制され、被焼結品の炭素含有量の低下が抑止され、焼結品の品質低下が防止される。
【0033】
また、演算器27において算出された焼結室4内水分露点温度が上記設定範囲下限値未満となった場合には、電磁バルブ20a,21aが閉止し、第1供給管路13のみによって[水素+窒素]ガス供給が行われるようになり、これによって[水素+窒素]ガス流量が低下する。
また流量調節器16aによって管路16を通して焼結炉本体1内に供給される炭化水素の流量が低下する。このため、炭化水素による上記生成水の還元量が減少し焼結室4内の水分濃度が上昇する。
【0034】
なお、一般に、炭化水素濃度がある程度以上に高まると、炭化水素の自己熱分解によるすすの発生が起こりやすくなるが、本実施形態の方法では、調節計28を、上記炭化水素ガス供給量が一定以上にならないように最大流量を設定しておくことで、焼結室4内における炭化水素濃度を減少させ、すす発生を防ぐことができる。
【0035】
また、予熱室3として、バーナの燃焼排ガスによる対流型加熱式のものを使用した場合には、異なる形状、大きさの複数の被焼結品を連続的に焼結させる際に、これら被焼結品の熱容量の違いによって、予熱室3内の被焼結品に与えられる熱量が変動し、予熱室3内の酸化性ガスの流れに乱れが生じ、その一部が焼結室4内に流入し、焼結室4内のガス組成に影響を与えることがある。
本実施形態の方法では、このように焼結室4内に酸化性ガスが流入したときにおいても、酸素分圧計26がこれを検出し、検出信号を制御部15に出力し、これに基づいてバルブ20a,21aが開状態となり第2供給管路14から[水素+窒素]ガスが焼結室4内に導入され、上記予熱室3からの流入ガスが搬入口方向に押し流され、焼結室4内雰囲気が適正に保たれる。
【0036】
また、本実施形態の運転方法の具体例としては、次の方法を挙げることができる。以下の説明では、第1供給管路13をL系統13、第2供給管路14をH系統14という。また以下の例では、炭化水素としてプロパンを使用した場合を想定した。またL系統13の管路18を流れる窒素ガス流量をL2とし、管路19を流れる水素ガス流量をL3とする。またH系統14の管路20を流れる窒素ガス流量をH2とし、管路21を流れる水素ガス流量をH3とする。(L2<H2、L3<L3とする。)
【0037】
図2は、本具体例に用いられる焼結炉本体1へのガス供給量を調節するプログラムのフローチャートを示すものである。
上記過程で焼結処理を行うに際して、管路16を通して供給される炭化水素の流量Q1が予め定められた上限値(HH1)と下限値(LL1)との間にある場合には、演算器27において、酸素分圧計26からの信号に基づいて算出された焼結室4内の酸素分圧O1と、予め入力された焼結室4内の水素濃度の予想値とから上記化学平衡式を用いて焼結室4内の水分量W1を算出する。
【0038】
得られた結果に基づいて、上述の過程に従い、流量調節器16aを用いて管路16内を流れる炭化水素の流量を、焼結室4内の水分量W1と、予め定められた設定値水分量WSとの差が所定の値以下となるようにPID制御することによって、焼結室4内の水分露点温度が常時−60〜−35℃となるように[炭化水素+窒素]ガス、[水素+窒素]ガスの供給を行う。なお電磁バルブ20a,21aは閉止しH系統14からのガス供給を停止しておく。
【0039】
炭化水素の流量Q1が上記上限値HH1を越えてもなお水分量W1が降下しない場合には、調節計28からの信号により電磁バルブ20a,21aを開き、H系統14を通して[水素+窒素]ガスを焼結炉本体1内に導入する。
これによって、焼結炉本体1内に供給される窒素ガス流量は、H2だけ増加する。また焼結炉本体1内に供給される水素ガス流量は、H3だけ増加する。
この際、水分、炭化水素、二酸化炭素を含む焼結室4内ガスは予熱室3方向に押し流され、焼結室4内の水分濃度が低下するとともに、炭化水素濃度が低下し炭化水素の自己熱分解によるすすの発生が抑止される。
【0040】
また、炭化水素の流量Q1が下限値LL1未満となった場合には、電磁バルブ20a,21aを閉じ、H系統14からの[水素+窒素]ガス供給を停止し、L系統13を用いて[水素+窒素]ガスの供給を行うようにする。
【0041】
本実施形態の運転方法では、炭化水素の焼結炉本体内への供給量を、焼結室4内の水分露点温度が、常時−60〜−35℃となるように調節するので、焼結室4内の水分が関与して起こる脱炭反応により被焼結品中の炭素含有量が低下するのを防ぐことができる。
また、予熱室3内の酸化性ガスの一部が焼結室4内に流入した場合には、焼結室4に流入するガス流量を大きくし、この酸化性ガスを押し流し、焼結室4内を還元性雰囲気に保ち、被焼結品の表面酸化物の還元反応の効率を高く維持することができる。
従って、焼結品の品質低下を防止することができる。
【0042】
また、一般に、焼結炉の運転休止中には、焼結炉本体1内壁をなす炉材が空気に晒された状態とされるため炉材表面が酸化する。
このため、運転再開に先立って、シーズニング操作、すなわち被焼結品を投入せず炭化水素、水素等の雰囲気ガスのみを焼結炉本体1に流して空運転を行ない、炉材表面の酸化物除去を行う必要があった。
これに対し本実施形態の運転方法では、運転再開時に炉材表面に多量の酸化物が存在し、この酸化物を原料として焼結炉本体1内に多量の水分が生成した場合でも、上記過程に従って直ちに焼結室4内の水分濃度が低下するため、シーズニング操作を行うことなく焼結品の品質低下を防ぐことができる。従って、生産効率の向上を図ることができる。
【0043】
図3は、本発明の連続式焼結炉の他の実施形態を示すもので、ここに示す焼結炉50は、水素分圧計30を有する点で図1に示す焼結炉と異なる。
水素分圧計30は、焼結室4内のガス中の水素濃度を検出するためのもので、管路29を通して導入された焼結室4内ガスの水素濃度に応じた信号を演算器27に出力できるようになっている。
水素分圧計30としては、気体熱伝導式、熱線型半導体式分圧計を用いることができる。本実施形態の連続式焼結炉では、酸素分圧計26および水素分圧計30が水分濃度検出手段に相当する。
【0044】
この焼結炉50では、酸素分圧計26,水素分圧計30によって、焼結室4内の酸素濃度および水素濃度が算出される。
次いで、演算器27において、これら酸素濃度および水素濃度を用い、化学平衡式[2H2+O2=2H2O]に基づいて焼結室4内の水分濃度が算出され、さらにこの水分濃度に基づいて当該温度における水分露点温度が算出され、この水分露点温度に応じた信号が調節計28に出力される。
調節計28は、炭化水素、窒素、水素の焼結炉本体内への供給量を、焼結室内の水分露点温度が、常時−60〜−35℃となるように調節する。
【0045】
本実施形態の運転方法では、焼結室4内の酸素濃度および水素濃度を実測し、これに基づいて焼結室4内の水分濃度を算出するので、より正確な水分量測定が可能となる。
従って、焼結室4内の水分濃度を高い精度で所定の範囲内に維持することができ、焼結品の品質低下を確実に防ぐことができる。
【0046】
なお、上記実施形態では、水分濃度検出手段として、酸素分圧計26、または酸素分圧計26と水素分圧計30を用いたが、これに限らず、露点計を用いることもできる。
この場合には、焼結室4内ガスの水分露点温度を直接測定し、測定値に基づいて、上述のように調節計28によって炭化水素、窒素、水素の焼結炉本体内への供給量を、焼結室内の水分露点温度が常時−60〜−35℃となるように調節する。
【0047】
また、水分濃度検出手段としては、O2センサを用いることもできる。O2センサとしては、ジルコニアO2センサ等の固体電解質センサや、半導体センサなどを用いることができる。O2センサは水分濃度変動が速い場合でも比較的高精度の検出が可能となるため、焼結室4内においてガス組成が頻繁に変動する場合でも検出精度を高めることができる。
またこのほか、水分濃度検出手段としては、H2Oセンサを用いることも可能である。H2Oセンサとしては、鏡面式センサ、セラミック湿度センサなどを用いることができる。
また、上記実施形態では、不活性ガスとして窒素を用いたが、これに限らず、アルゴン等を使用することもできる。
【0048】
【実施例】
(実施例1)
図1に示す焼結炉を用いて焼結処理を行った。
焼結炉としては、下記諸元のものを使用した。

Figure 0004443667
【0049】
焼結炉本体、1内の水分濃度を変動させるため、図示せぬ供給管路から2〜3%の水分を含む窒素ガスを焼結炉本体1内に供給し、その供給量を2〜4L/minの範囲で増減させた。
この際、焼結室4内の酸素濃度を酸素分圧計26によって検出し、これに基づいてガス供給量を調節した。すなわち、酸素分圧計26からの信号に基づいて演算器27において算出された焼結室4内水分露点温度が−42±0.3℃となるように炭化水素供給量を調節した。
図示せぬ水分濃度測定装置を用いて焼結室4内ガスの露点温度を実測した結果を図4中実線で示す。
【0050】
(実施例2)
酸素分圧計26に代えて露点計を用いた連続式焼結炉を用い、ガス供給量調節を、この露点計の測定値に基づいて行うこと以外は実施例1と同様にして焼結処理を行った。
図示せぬ水分濃度測定装置を用いて焼結室4内ガスの露点温度を実測した結果を図4中破線で示す。
【0051】
(比較例)
プロパンガス添加量を一定量とすること以外は実施例1と同様にして焼結処理を行った。
図示せぬ水分濃度測定装置を用いて焼結室4内ガスの露点温度を実測した結果を図5に示す。
【0052】
図4および図5に示すように、上記各試験の結果、比較例の方法では、焼結室4内の水分露点温度がおよそ−10〜−50℃の間で変動した。
これに対し、実施例1の方法では、およそ±0.3℃の範囲で焼結室4内露点温度を保つことができた。また実施例2の方法では、およそ±3℃の範囲で焼結室4内露点温度を保つことができた。
従って、実施例の方法は、比較例に比べ焼結室4内の水分露点温度を狭い範囲に保つことができたことがわかる。
特に、焼結室4内の酸素分圧を測定しこれに基づいてガス供給量を調節する実施例1の方法では、より精度の高い水分量調節を行うことができたことがわかる。
【0053】
(実施例3)
実施例1に示した方法に準じて、鉄粉と、炭素粉末と、ステアリン酸亜鉛を98.3:0.8:0.9(重量比)の割合で混合し円板状(厚さ10mm、直径27mm)にプレス成形して得た被焼結品を焼結処理した。
得られた焼結品の各特性を測定した結果を表1に示す。
【0054】
【表1】
Figure 0004443667
【0055】
表1より、焼結室4内露点温度を−60〜−35℃とすることによって、炭素含有量が高く、引張強度、硬度等の特性に優れた焼結品を得ることができたことがわかる。
【0056】
【発明の効果】
以上説明したように、本発明によれば、炭化水素の焼結炉本体内への供給量を、焼結室内の水分露点温度が、常時−60〜−35℃となるように調節するので、焼結室内の水分が関与して起こる脱炭反応により被焼結品中の炭素含有量が低下するのを防ぎ、焼結品の品質低下を防止することができる。
【図面の簡単な説明】
【図1】 本発明の連続式焼結炉の一実施形態を示す概略構成図である。
【図2】 焼結炉本体1へのガス供給量を調節するプログラムの一例のフローチャートである。
【図3】 本発明の連続式焼結炉の他の実施形態を示す概略構成図である。
【図4】 試験結果を示すグラフである。
【図5】 試験結果を示すグラフである。
【図6】 従来の連続式焼結炉の一例を示す概略構成図である。
【符号の説明】
1・・・焼結炉本体、2・・・搬入口、8・・・搬出口、9・・・搬送手段
11・・・[炭化水素+窒素]ガス供給管路(炭化水素供給手段)
12・・・[水素+窒素]ガス供給管路(水素供給手段)
15・・・制御部
26・・・酸素分圧計(水分濃度検出手段)
30・・・水素分圧計(水分濃度検出手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous sintering furnace that heats and sinters a metal and an operation method thereof.
[0002]
[Prior art]
Carbon steel (Fe-C, Fe-C-Cu) powder metallurgy products such as timing belt pulleys, camshaft pulleys, sprockets and other transport machinery parts such as iron powder, carbon powder, and wax (zinc stearate, etc.) ) Are mixed and press-molded, followed by sintering in a sintering furnace.
When sintering the above-mentioned press-formed product (sintered product) in a sintering furnace, the wax temperature from the sintered product is removed and sintered by optimizing the furnace temperature and furnace atmosphere. The product is subjected to reduction and removal of the surface oxide of the product, adjustment of the carbon content, and quality adjustment such as hardness.
[0003]
FIG. 6 shows an example of a continuous sintering furnace used to sinter the article to be sintered. The continuous sintering furnace 10 shown here includes the inlet 2 of the article S to be sintered and A sintering furnace body 1 having a muffle provided with a carry-out port 8, a conveying means 9 for carrying the product S to be carried from the carry-in port 2 toward the carry-out port 8 in the sintering furnace body 1, and to be sintered [Hydrogen + Nitrogen] gas supply line 23 'serving as a hydrogen supply means for supplying hydrogen to reduce the oxide on the surface of the product S into the sintering furnace body 1, and the oxide on the surface of the product S to be sintered by hydrogen A [hydrocarbon + nitrogen] gas supply line 22 ′ serving as a hydrocarbon supply means for supplying a hydrocarbon gas such as propane gas or the like for reducing water generated when reduced into the sintering furnace body 1 is provided. Has been.
[0004]
The sintering furnace body 1 includes a preheating chamber 3 for preliminarily heating the article to be sintered S conveyed by the conveying means 9, a sintering chamber 4 for sintering the article to be sintered S that has passed through the preheating chamber 3, First and second water-cooling chambers 5 and 6 for cooling the sintered product S that has passed through the sintering chamber 4 and a curtain chamber 7 are provided.
[0005]
The [hydrogen + nitrogen] gas supply line 23 'is connected to a position between the first water cooling chamber 5 and the second water cooling chamber 6, and connects the [hydrogen + nitrogen] gas supplied from a supply source (not shown). It can supply in the sintering furnace main body 1 from the position.
The [hydrocarbon + nitrogen] gas supply line 22 ′ is connected to a position between the sintering chamber 4 and the first water cooling chamber 5, and the [hydrocarbon + nitrogen] gas supplied from a supply source (not shown) It can supply in the sintering furnace main body 1 from a connection position.
[0006]
The sintering furnace 10 can be used as follows.
[Hydrogen + Nitrogen] gas is supplied into the sintering furnace body 1 through the [Hydrogen + Nitrogen] gas supply line 23 ', and [Hydrocarbon + Nitrogen] gas is supplied through the [Hydrocarbon + Nitrogen] gas supply line 22'. Is supplied into the sintering furnace body 1 at a constant flow rate.
Most of the [hydrogen + nitrogen] gas supplied into the sintering furnace main body 1 through the supply pipe 23 ′ flows toward the carry-in port 2, and the other part flows toward the carry-out port 8. Further, the [hydrocarbon + nitrogen] gas supplied into the sintering furnace main body 1 through the supply line 22 ′ flows mainly in the direction of the carry-in port 2.
[0007]
Next, the article to be sintered S is carried into the sintering furnace body 1 through the carry-in port 2. The article to be sintered S carried in is carried into the preheating chamber 3 by the conveying means 9, heated here to evaporate and remove the wax, and then carried into the sintering chamber 4 and further heated and sintered. The
The sintered product thus obtained is cooled in the first and second water cooling chambers 5, 6, and is carried out from the carry-out port 8 through the curtain chamber 7.
Subsequently, new products to be sintered are sequentially carried into the sintering furnace main body 1 through the carry-in port 2, and the products to be sintered are sequentially sintered in the same manner as described above.
[0008]
During the heat treatment in the sintering chamber 4, the surface oxide of the article S to be sintered is reduced by the hydrogen supplied into the sintering furnace body 1 through the [hydrogen + nitrogen] gas supply line 23 ′. The During this reduction reaction, oxygen in the oxide and the hydrogen combine to form water.
The produced moisture reacts with the carbon in the sintered product S to produce carbon monoxide and hydrogen. At this time, the sintered product S is decarburized and the carbon content is reduced.
The amount of decarburization can be kept low by supplying the hydrocarbon (propane or the like) gas. This is because the hydrocarbon gas and the water react to reduce the amount of water, and the decarburization reaction is suppressed.
[0009]
[Problems to be solved by the invention]
When a plurality of objects to be sintered S are continuously sintered by the above operation, depending on the shape, size, etc. of the objects to be sintered S, the reduction reaction of the surface oxide is performed in the sintering furnace body 1. Since the amount of water generated increases and decreases, the amount of decarburization increases and decreases, and the carbon content in the obtained sintered product may fluctuate greatly and the quality may become unstable.
This invention is made | formed in view of the said situation, and it aims at providing the continuous sintering furnace which can maintain the quality of a sintered article highly, and its operating method.
[0010]
[Means for Solving the Problems]
The present inventors have found that the moisture content has a great influence on the carbon content reduction by comparing the moisture concentration in the furnace and the carbon content reduction amount of the sintered product by decarburization. Based on this, the present invention has been completed.
In the present invention, a sintering furnace body provided with a sintering chamber for sintering the article to be sintered, a carry-out and carry-in opening for carrying in and out the article to be sintered, and an inlet for carrying out the article to be sintered in the sintering furnace body Using a continuous sintering furnace equipped with a transport means for transporting from the discharge port to the carry-out port, hydrogen for reducing the surface oxide of the product to be sintered, and an inert gas for preventing oxidation of the product to be sintered, Hydrocarbon gas that reduces the water produced when the oxide is reduced by hydrogen From the exit side When sintering the product to be sintered in the sintering chamber while supplying it into the sintering furnace body,
The oxygen concentration in the gas on the inlet side of the center of the sintering chamber is detected, the moisture concentration in the sintering chamber is calculated based on the oxygen concentration, and the moisture in the sintering chamber is calculated based on the moisture concentration. The solution to the above problem is to calculate the dew point temperature and adjust the supply amount of the hydrocarbon gas so that the moisture dew point temperature is always −60 to −35 ° C.
The hydrogen concentration in the sintering chamber is detected, the moisture concentration in the sintering chamber is calculated based on the oxygen concentration and the hydrogen concentration, and the moisture dew point temperature in the sintering chamber is calculated based on the moisture concentration. It is also possible to adjust the supply amount of the hydrocarbon gas so that the dew point temperature is always −60 to −35 ° C.
Further, the continuous sintering furnace of the present invention comprises a sintering chamber for sintering a product to be sintered, a sintering furnace main body having a carry-in / out port for carrying in / out the product to be sintered, and a product to be sintered. Transport means for transporting from the inlet to the outlet in the sintering furnace body, and hydrogen for reducing the surface oxide of the sintered product From the exit side Hydrogen supply means for supplying the sintering furnace body; Inert gas from the outlet side into the sintering furnace body An inert gas supply means for supplying, and a hydrocarbon gas for reducing water generated when the oxide is reduced by hydrogen From the exit side The moisture supply is calculated by detecting the oxygen concentration in the gas at the inlet side of the hydrocarbon supply means and the center of the sintering chamber, and supplying the moisture in the sintering chamber from this moisture concentration. An arithmetic means for calculating the dew point temperature and a control unit for controlling the amount of hydrocarbon gas supplied into the sintering furnace main body so that the moisture dew point temperature is always −60 to −35 ° C. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a continuous sintering furnace according to the present invention. A continuous sintering furnace 40 shown here includes a sintering chamber 4 for sintering a product to be sintered S, and a carry-in and carry-out outlet. 2 and 8, a cylindrical sintering furnace main body 1, a conveying means 9 for conveying the product S to be sintered S from the carry-in port 2 toward the carry-out port 8, and the product to be sintered. [Hydrogen + Nitrogen] gas supply pipe serving as a hydrogen supply means for supplying nitrogen, which is an inert gas for preventing oxidation of S, and hydrogen for reducing oxide on the surface of the sintered product S into the sintering furnace body 1 The passage 12 and a hydrocarbon supply means for supplying a hydrocarbon gas such as propane gas for reducing water generated when the oxide on the surface of the sintered product S is reduced by hydrogen into the sintering furnace body 1. [Hydrocarbon + nitrogen] gas supply line 11, oxygen partial pressure gauge 26 which is a moisture concentration detecting means for detecting the moisture concentration in the sintering chamber 4, and this oxygen partial pressure gauge 2 Based on signals from, and is configured to include a control unit 15 which controls the supply amount to the sintering furnace main body 1 of the hydrocarbon.
[0012]
The sintering furnace body 1 includes a preheating chamber 3 for preliminarily heating the article to be sintered S conveyed by the conveying means 9, a sintering chamber 4 for sintering the article to be sintered S that has passed through the preheating chamber 3, First and second water-cooling chambers 5 and 6 for cooling the sintered product S that has passed through the sintering chamber 4 and a curtain chamber 7 are provided.
[0013]
The preheating chamber 3 includes a heater such as an electric heater and is configured so as to heat a product to be sintered.
Moreover, the preheating chamber 3 can also be comprised so that the convection type heating by the combustion exhaust gas of a burner can be performed. In this case, the preheating chamber 3 burns a combustion gas such as [propane + air] gas in an incomplete combustion region having a complete combustion ratio of about 0.7, and the combustion exhaust gas creates an atmosphere in which oxidation is not strongly promoted in the preheating chamber 3. It can comprise so that heating can be performed.
[0014]
[Hydrocarbon + Nitrogen] gas supply line 11 includes a line 16 for introducing hydrocarbon gas such as propane supplied from a supply source (not shown), and a pipe for introducing nitrogen gas supplied from a supply source (not shown). 17 and a pipeline 22 for supplying hydrocarbons and nitrogen from the pipelines 16 and 17 into the sintering furnace body 1.
The pipe line 22 is connected between the sintering chamber 4 and the first water cooling chamber 5 located downstream thereof, and [hydrocarbon + nitrogen] gas can be fed into the sintering furnace body 1 from this connection position. It is like that.
[0015]
The [hydrogen + nitrogen] gas supply line 12 includes a first supply line 13 and a second supply line 14.
The first supply line 13 includes a line 18 for introducing nitrogen gas in the line 17, a line 19 for introducing hydrogen gas supplied from a supply source (not shown), and nitrogen from these lines 18, 19. It consists of a pipe line 23 for supplying gas and hydrogen gas into the sintering furnace body 1.
The pipe line 23 is connected between the first water cooling chamber 5 and the second water cooling chamber 6 located on the downstream side thereof, and [hydrogen + nitrogen] gas can be fed into the sintering furnace body 1 from this connection position. It is like that.
[0016]
The second supply pipe 14 includes a pipe 20 that guides nitrogen gas supplied from a supply source (not shown), a pipe 21 that guides hydrogen gas supplied from a supply source (not shown), and the pipes 20 and 21. From the pipe 24 for supplying the nitrogen gas and the hydrogen gas from the inside of the sintering furnace body 1.
The pipe line 24 is connected to the pipe line 23 so that [hydrogen + nitrogen] gas can be fed into the sintering furnace body 1 through the pipe line 23.
[0017]
The pipe line 16 is provided with a flow rate regulator 16 a that adjusts the flow rate of the gas flowing through the pipe line 16. Further, flow rate regulators 17a, 18a, and 19a are provided in the pipelines 17, 18, and 19, respectively. The conduits 20 and 21 are provided with electromagnetic valves 20a and 21a. The flow controller 16 a and the electromagnetic valves 20 a and 21 a are connected to the control unit 15.
[0018]
The oxygen partial pressure gauge 26 is for detecting the amount of moisture contained in the gas in the sintering chamber 4. The oxygen partial pressure gauge 26 measures the oxygen partial pressure of the gas in the sintering chamber 4 guided through the pipe line 25. A detection signal corresponding to the value can be output. Reference numeral 25 a denotes a pump that sends the gas in the sintering chamber 4 to the oxygen partial pressure gauge 26.
[0019]
The connection position to the sintering chamber 4 of the pipe 25 that guides the gas in the sintering chamber 4 to the oxygen partial pressure gauge 26 is closer to the carry-in side than the center of the sintering chamber 4 Has become . This is because the moisture concentration in the sintering chamber 4 is considered to be relatively higher on the carry-in side from the center.
The reason why the moisture concentration in the sintering chamber 4 is higher on the carry-in side than the central part is that hydrogen introduced from the carry-out side of the sintering chamber 4 is baked in the center of the sintering chamber 4 in the sintering process described later. This is because water is generated by combining with the oxide in the resulting product, and this water flows toward the inlet side of the sintering chamber 4 together with the gas supplied from the pipes 23 and 24.
[0020]
The control unit 15 includes a calculator 27 and a controller 28.
The computing unit 27 uses the signal from the oxygen partial pressure gauge 26 and the predicted value of the hydrogen concentration in the sintering chamber 4 inputted in advance, and the chemical equilibrium formula [2H 2 + O 2 = 2H 2 O] to calculate the moisture concentration in the sintering chamber 4, further calculate the moisture dew point temperature at the temperature based on the moisture concentration, and output a signal based on the moisture dew point temperature to the controller 28. Can be done.
The controller 28 adjusts the flow rate controller 16 a based on the signal from the computing unit 27, and can adjust the flow rate of hydrocarbons in the pipe line 16 to an arbitrary value. The controller 28 can open and close the electromagnetic valves 20a and 21a.
[0021]
In addition, the oxygen partial pressure of the gas in the sintering chamber 4 can be measured by attaching the sensor part of the oxygen partial pressure gauge 26 to the sintering chamber 4, and in this case, the pipe line 25 is not necessary.
[0022]
In order to use the continuous sintering furnace, for example, the following is performed.
When the moisture dew point temperature in the sintering chamber 4 calculated by the signal from the oxygen partial pressure meter 26 exceeds the predetermined set range upper limit value, the controller 28 of the control unit 15 sends a signal to the flow rate regulator 16a. So as to increase the flow rate of hydrocarbons supplied to the sintering furnace main body 1 through the pipes 16 and 22 and decrease the flow rate of hydrocarbons when the water dew point temperature is lower than the set range lower limit value. Set it.
Further, the controller 28 is provided with the valves 20a, 20b when the moisture dew point temperature in the sintering chamber 4 exceeds the upper limit even when the flow rate regulator 16a maximizes the flow rate of the hydrocarbon gas in the pipe 16. 21a is opened, and [hydrogen + nitrogen] gas is supplied into the sintering furnace body 1 from the second supply line 14, and the electromagnetic valves 20a, 21a are turned on when the water dew point temperature is lower than the lower limit of the set range. Set to shut off the supply of closed [hydrogen + nitrogen] gas.
The set range is appropriately selected so that the moisture dew point temperature in the sintering chamber 4 is always in the range of −60 to −35 ° C. according to the carbon concentration required for the product to be sintered.
[0023]
In this method, [hydrogen + nitrogen] gas is supplied into the sintering furnace body 1 at a constant flow rate through the first supply line 13 and the moisture dew point temperature in the sintering chamber 4 is adjusted [hydrocarbon + nitrogen]. Gas is supplied into the sintering furnace body 1 through the supply pipe 11.
[0024]
The hydrogen used here maintains the inside of the sintering chamber 4 in a reducing atmosphere, reduces oxides on the surface of the metal powder of the object S to be sintered, which inhibits sintering joining, and is a high quality, high strength sintered product. Is to get.
The hydrocarbon decomposes and removes moisture (product water) generated when the surface oxides of the furnace material such as the article S to be sintered, the furnace wall, and the conveying means are reduced by the hydrogen, and the inside of the furnace This is to shorten the start-up time of the atmosphere and suppress the decarburization reaction of the sintered product S to prevent the quality of the sintered product from deteriorating.
Further, the nitrogen gas supplied from the supply pipes 11 and 12 promotes diffusion of the gas flowing into the sintering furnace main body 1 in the sintering furnace main body 1 so that the generated water is efficiently decomposed. It is what is used.
[0025]
Most of the [hydrogen + nitrogen] gas supplied into the furnace through the [hydrogen + nitrogen] gas supply line 13 flows in the direction of the carry-in port 2, and the remaining part flows in the direction of the carry-out port 8.
The [hydrocarbon + nitrogen] gas supplied into the furnace through the [hydrocarbon + nitrogen] gas supply pipe 11 mainly flows in the direction of the carry-in port 2.
[0026]
Next, the article to be sintered S is carried into the sintering furnace body 1 through the carry-in port 2.
As the article to be sintered S, a metal powder such as iron powder, carbon powder, wax (such as zinc stearate) and the like mixed and press-molded can be used.
The to-be-sintered product S carried into the sintering furnace body 1 is heated to, for example, 500 to 700 ° C. in the preheating chamber 3, and the wax is removed by evaporation.
[0027]
When a radiant heating type is used as the preheating chamber 3, [hydrogen + nitrogen] gas or the like is introduced into the chamber, and the sintered product is heated by a heater while the preheating chamber 3 is made a reducing atmosphere.
When the convection heating type using the combustion exhaust gas of the burner is used as the preheating chamber 3, combustion gas such as [propane + air] gas is burned in an incomplete combustion region with a complete combustion ratio of about 0.7, The product to be sintered is heated in the preheating chamber 3 by the combustion exhaust gas in an atmosphere in which oxidation does not proceed easily.
[0028]
The sintered product S from which the wax has been removed by evaporation in the preheating chamber 3 is sent to the sintering chamber 4 and, for example, an atmosphere containing hydrogen derived from the [hydrogen + nitrogen] gas under a temperature condition of 1100 to 1150 ° C. Place in for 30-60 minutes and sinter.
At this time, the oxide on the surface of the article to be sintered is reduced by hydrogen in the sintering chamber 4, and water is generated by the reaction between the oxide and hydrogen.
[0029]
The product S to be sintered after passing through the sintering chamber 4 is carried into the water cooling chambers 5 and 6, cooled here, and then carried out through the curtain chamber 7 and through the carry-out port 8.
Next, new products to be sintered are sequentially introduced into the furnace through the carry-in port 2 and are sintered in the same manner as described above.
The amount of surface oxides involved in the reduction reaction in the sintering furnace body 1 depends on the shape, size, etc. of the product to be sintered, so that the amount of water generated by the reduction reaction is large for each product to be sintered. Different.
[0030]
In the operation method of the present embodiment, the gas flow rate adjustment described below is performed by the control unit 15, and the supply amount of the hydrocarbon, nitrogen, and hydrogen into the sintering furnace body is determined by the moisture dew point temperature in the sintering chamber. The temperature is always adjusted to −60 to −35 ° C.
The moisture dew point temperature is adjusted so that the moisture dew point temperature in the sintering chamber 4 is always -60 to -35 ° C. When the temperature is lower than -60 ° C, the quality of the sintered product is deteriorated due to generation of soot, and when the temperature is higher than -35 ° C, the decarburization reaction is promoted, and the quality of the sintered product is easily deteriorated due to a decrease in the carbon content. It is.
The water dew point temperature in the sintering chamber 4 is preferably −55 to −40 ° C.
[0031]
When the moisture dew point temperature in the sintering chamber 4 calculated by the calculator 27 exceeds the set range upper limit value, the hydrocarbon gas supplied into the sintering furnace body 1 from the pipes 16 and 22 by the flow rate regulator 16a. The flow rate is increased.
If the moisture dew point temperature in the sintering chamber 4 exceeds the upper limit even when the flow rate controller 16a increases the flow rate of the hydrocarbon gas to the maximum, the valves 20a and 21a are opened and the second supply line 14 is opened. [Hydrogen + Nitrogen] gas is supplied from this, and the supply amount of [Hydrogen + Nitrogen] gas is increased as compared with the case where only the first supply line 13 is provided.
[0032]
By increasing the flow rates of hydrocarbon, nitrogen, and hydrogen gas supplied into the sintering furnace main body 1, a gas containing a large amount of moisture and carbon dioxide is pushed away toward the carry-in port in the sintering chamber 4. In addition, the reduction reaction of water with hydrocarbons is promoted. For this reason, the moisture concentration in the sintering chamber 4 decreases.
The decarburization reaction is suppressed due to a decrease in the moisture concentration in the sintering chamber 4, a decrease in the carbon content of the sintered product is suppressed, and a deterioration in the quality of the sintered product is prevented.
[0033]
In addition, when the moisture dew point temperature in the sintering chamber 4 calculated by the computing unit 27 is less than the lower limit value of the set range, the electromagnetic valves 20a and 21a are closed, and only the first supply line 13 [hydrogen + Nitrogen] gas supply is started, and this reduces the flow rate of [hydrogen + nitrogen] gas.
Further, the flow rate of hydrocarbons supplied into the sintering furnace body 1 through the pipe line 16 by the flow rate controller 16a is lowered. For this reason, the reduction amount of the generated water by the hydrocarbon is reduced, and the moisture concentration in the sintering chamber 4 is increased.
[0034]
In general, when the hydrocarbon concentration is increased to a certain level or more, soot is likely to be generated due to autothermal decomposition of hydrocarbons. However, in the method of the present embodiment, the controller 28 is provided with a constant supply amount of the hydrocarbon gas. By setting the maximum flow rate so as not to become above, the hydrocarbon concentration in the sintering chamber 4 can be reduced, and soot generation can be prevented.
[0035]
Further, when a convection heating type using a burner combustion exhaust gas is used as the preheating chamber 3, when a plurality of products to be sintered having different shapes and sizes are successively sintered, Due to the difference in the heat capacity of the product, the amount of heat given to the sintered product in the preheating chamber 3 fluctuates, and the flow of the oxidizing gas in the preheating chamber 3 is disturbed, part of which is in the sintering chamber 4. Inflow may affect the gas composition in the sintering chamber 4.
In the method of the present embodiment, even when the oxidizing gas flows into the sintering chamber 4 as described above, the oxygen partial pressure gauge 26 detects this and outputs a detection signal to the control unit 15, based on this. The valves 20a and 21a are opened, and [hydrogen + nitrogen] gas is introduced into the sintering chamber 4 from the second supply line 14, and the inflow gas from the preheating chamber 3 is pushed away toward the carry-in port, so that the sintering chamber 4 atmosphere is maintained properly.
[0036]
Moreover, the following method can be mentioned as a specific example of the driving | running method of this embodiment. In the following description, the first supply line 13 is referred to as the L system 13 and the second supply line 14 is referred to as the H system 14. In the following example, it was assumed that propane was used as the hydrocarbon. Further, the flow rate of nitrogen gas flowing through the pipe line 18 of the L system 13 is L2, and the flow rate of hydrogen gas flowing through the pipe line 19 is L3. Further, the flow rate of nitrogen gas flowing through the pipe line 20 of the H system 14 is H2, and the flow rate of hydrogen gas flowing through the pipe line 21 is H3. (L2 <H2, L3 <L3)
[0037]
FIG. 2 shows a flowchart of a program for adjusting the gas supply amount to the sintering furnace body 1 used in this specific example.
When performing the sintering process in the above process, if the flow rate Q1 of the hydrocarbon supplied through the pipe line 16 is between a predetermined upper limit value (HH1) and a lower limit value (LL1), the calculator 27 In the above, the above chemical equilibrium equation is used from the oxygen partial pressure O1 in the sintering chamber 4 calculated based on the signal from the oxygen partial pressure gauge 26 and the predicted value of the hydrogen concentration in the sintering chamber 4 inputted in advance. Then, the water content W1 in the sintering chamber 4 is calculated.
[0038]
Based on the obtained result, according to the above-described process, the flow rate of the hydrocarbons flowing in the pipe line 16 using the flow rate regulator 16a is changed to the moisture amount W1 in the sintering chamber 4 and a predetermined set value moisture. By performing PID control so that the difference from the amount WS is less than or equal to a predetermined value, the [hydrocarbon + nitrogen] gas, [ Hydrogen + nitrogen] gas is supplied. The electromagnetic valves 20a and 21a are closed and the gas supply from the H system 14 is stopped.
[0039]
If the water content W1 does not decrease even when the hydrocarbon flow rate Q1 exceeds the upper limit value HH1, the electromagnetic valves 20a and 21a are opened by a signal from the controller 28, and the [hydrogen + nitrogen] gas is passed through the H system 14. Is introduced into the sintering furnace body 1.
As a result, the flow rate of nitrogen gas supplied into the sintering furnace body 1 increases by H2. Further, the flow rate of hydrogen gas supplied into the sintering furnace body 1 increases by H3.
At this time, the gas in the sintering chamber 4 containing moisture, hydrocarbons, and carbon dioxide is swept away in the direction of the preheating chamber 3, and the moisture concentration in the sintering chamber 4 is lowered and the hydrocarbon concentration is lowered and the hydrocarbon self Soot generation due to thermal decomposition is suppressed.
[0040]
When the hydrocarbon flow rate Q1 is less than the lower limit value LL1, the electromagnetic valves 20a and 21a are closed, the supply of [hydrogen + nitrogen] gas from the H system 14 is stopped, and the L system 13 is used [ [Hydrogen + Nitrogen] gas is supplied.
[0041]
In the operation method of the present embodiment, the supply amount of hydrocarbons into the sintering furnace body is adjusted so that the moisture dew point temperature in the sintering chamber 4 is always −60 to −35 ° C. It can prevent that the carbon content in a to-be-sintered product falls by the decarburization reaction which occurs in connection with the water | moisture content in the chamber 4. FIG.
Further, when a part of the oxidizing gas in the preheating chamber 3 flows into the sintering chamber 4, the flow rate of the gas flowing into the sintering chamber 4 is increased, and this oxidizing gas is swept away. The inside can be maintained in a reducing atmosphere, and the efficiency of the reduction reaction of the surface oxide of the article to be sintered can be maintained high.
Accordingly, it is possible to prevent the quality of the sintered product from being deteriorated.
[0042]
In general, during the operation stop of the sintering furnace, the furnace material forming the inner wall of the sintering furnace body 1 is exposed to air, so that the surface of the furnace material is oxidized.
For this reason, prior to resuming operation, a seasoning operation is performed, that is, an atmosphere gas such as hydrocarbon or hydrogen is allowed to flow through the sintering furnace main body 1 without introducing a product to be sintered, and an empty operation is performed. There was a need to remove.
In contrast, in the operation method of the present embodiment, a large amount of oxide is present on the surface of the furnace material when the operation is resumed, and even when a large amount of moisture is generated in the sintering furnace body 1 using this oxide as a raw material, the above process is performed. Accordingly, the moisture concentration in the sintering chamber 4 immediately decreases, so that the quality of the sintered product can be prevented from deteriorating without performing a seasoning operation. Therefore, the production efficiency can be improved.
[0043]
FIG. 3 shows another embodiment of the continuous sintering furnace of the present invention. A sintering furnace 50 shown here is different from the sintering furnace shown in FIG.
The hydrogen partial pressure meter 30 is for detecting the hydrogen concentration in the gas in the sintering chamber 4, and a signal corresponding to the hydrogen concentration of the gas in the sintering chamber 4 introduced through the pipe line 29 is sent to the calculator 27. It can be output.
As the hydrogen partial pressure gauge 30, a gas heat conduction type or a hot wire type semiconductor partial pressure gauge can be used. In the continuous sintering furnace of the present embodiment, the oxygen partial pressure gauge 26 and the hydrogen partial pressure gauge 30 correspond to moisture concentration detecting means.
[0044]
In the sintering furnace 50, the oxygen partial pressure gauge 26 and the hydrogen partial pressure gauge 30 calculate the oxygen concentration and the hydrogen concentration in the sintering chamber 4.
Next, in the computing unit 27, using these oxygen concentration and hydrogen concentration, the chemical equilibrium formula [2H 2 + O 2 = 2H 2 O] is calculated, the water dew point temperature at the temperature is calculated based on the water concentration, and a signal corresponding to the water dew point temperature is output to the controller 28. .
The controller 28 adjusts the supply amount of hydrocarbons, nitrogen, and hydrogen into the sintering furnace main body so that the moisture dew point temperature in the sintering chamber is always −60 to −35 ° C.
[0045]
In the operation method of the present embodiment, the oxygen concentration and the hydrogen concentration in the sintering chamber 4 are measured, and the moisture concentration in the sintering chamber 4 is calculated based on this, so that more accurate moisture measurement can be performed. .
Therefore, the moisture concentration in the sintering chamber 4 can be maintained within a predetermined range with high accuracy, and deterioration of the quality of the sintered product can be reliably prevented.
[0046]
In the above embodiment, the oxygen partial pressure gauge 26 or the oxygen partial pressure gauge 26 and the hydrogen partial pressure gauge 30 are used as the moisture concentration detecting means. However, the present invention is not limited to this, and a dew point meter can also be used.
In this case, the moisture dew point temperature of the gas in the sintering chamber 4 is directly measured, and based on the measured value, the supply amount of hydrocarbons, nitrogen, and hydrogen into the sintering furnace body by the controller 28 as described above. Is adjusted so that the water dew point temperature in the sintering chamber is always -60 to -35 ° C.
[0047]
As a moisture concentration detecting means, O 2 A sensor can also be used. O 2 As a sensor, zirconia O 2 A solid electrolyte sensor such as a sensor, a semiconductor sensor, or the like can be used. O 2 Since the sensor can detect with relatively high accuracy even when the moisture concentration fluctuation is fast, the detection accuracy can be improved even when the gas composition frequently changes in the sintering chamber 4.
In addition, as a moisture concentration detection means, H 2 It is also possible to use an O sensor. H 2 As the O sensor, a mirror surface sensor, a ceramic humidity sensor, or the like can be used.
Moreover, in the said embodiment, although nitrogen was used as an inert gas, not only this but argon etc. can also be used.
[0048]
【Example】
Example 1
Sintering was performed using the sintering furnace shown in FIG.
As the sintering furnace, the following specifications were used.
Figure 0004443667
[0049]
In order to change the moisture concentration in the sintering furnace body 1, nitrogen gas containing 2-3% moisture is supplied into the sintering furnace body 1 from a supply pipe (not shown), and the supply amount is 2 to 4L. Increase / decrease within the range of / min.
At this time, the oxygen concentration in the sintering chamber 4 was detected by the oxygen partial pressure gauge 26, and the gas supply amount was adjusted based on this. That is, the hydrocarbon feed rate was adjusted so that the moisture dew point temperature in the sintering chamber 4 calculated by the calculator 27 based on the signal from the oxygen partial pressure gauge 26 was −42 ± 0.3 ° C.
The result of actual measurement of the dew point temperature of the gas in the sintering chamber 4 using a moisture concentration measuring device (not shown) is shown by a solid line in FIG.
[0050]
(Example 2)
The sintering process was performed in the same manner as in Example 1 except that a continuous sintering furnace using a dew point meter was used instead of the oxygen partial pressure meter 26 and the gas supply amount was adjusted based on the measured value of the dew point meter. went.
The result of measuring the dew point temperature of the gas in the sintering chamber 4 using a moisture concentration measuring device (not shown) is shown by a broken line in FIG.
[0051]
(Comparative example)
Sintering was performed in the same manner as in Example 1 except that the amount of propane gas added was constant.
FIG. 5 shows the results of actual measurement of the dew point temperature of the gas in the sintering chamber 4 using a moisture concentration measuring device (not shown).
[0052]
As shown in FIGS. 4 and 5, as a result of the above tests, in the method of the comparative example, the moisture dew point temperature in the sintering chamber 4 varied between approximately −10 and −50 ° C.
On the other hand, in the method of Example 1, the dew point temperature in the sintering chamber 4 could be maintained within a range of approximately ± 0.3 ° C. Further, in the method of Example 2, the dew point temperature in the sintering chamber 4 could be maintained within a range of approximately ± 3 ° C.
Therefore, it can be seen that the method of the example could keep the moisture dew point temperature in the sintering chamber 4 in a narrow range as compared with the comparative example.
In particular, it can be seen that in the method of Example 1 in which the oxygen partial pressure in the sintering chamber 4 is measured and the gas supply amount is adjusted based on this, the moisture amount can be adjusted with higher accuracy.
[0053]
(Example 3)
In accordance with the method shown in Example 1, iron powder, carbon powder, and zinc stearate were mixed at a ratio of 98.3: 0.8: 0.9 (weight ratio) to form a disk (thickness 10 mm). The sintered product obtained by press molding to a diameter of 27 mm was sintered.
Table 1 shows the result of measuring each characteristic of the obtained sintered product.
[0054]
[Table 1]
Figure 0004443667
[0055]
From Table 1, by setting the dew point temperature in the sintering chamber 4 to −60 to −35 ° C., it was possible to obtain a sintered product having a high carbon content and excellent properties such as tensile strength and hardness. Recognize.
[0056]
【The invention's effect】
As described above, according to the present invention, the supply amount of hydrocarbons into the sintering furnace body is adjusted so that the moisture dew point temperature in the sintering chamber is always −60 to −35 ° C. It is possible to prevent the carbon content in the sintered product from being lowered by the decarburization reaction caused by the moisture in the sintering chamber, and to prevent the quality of the sintered product from being lowered.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a continuous sintering furnace of the present invention.
FIG. 2 is a flowchart of an example of a program for adjusting a gas supply amount to a sintering furnace body 1;
FIG. 3 is a schematic configuration diagram showing another embodiment of the continuous sintering furnace of the present invention.
FIG. 4 is a graph showing test results.
FIG. 5 is a graph showing test results.
FIG. 6 is a schematic configuration diagram showing an example of a conventional continuous sintering furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sintering furnace main body, 2 ... Carry-in port, 8 ... Carry-out port, 9 ... Conveyance means
11 ... [Hydrocarbon + Nitrogen] gas supply line (hydrocarbon supply means)
12 ... [hydrogen + nitrogen] gas supply line (hydrogen supply means)
15 ... Control unit
26 ... Oxygen partial pressure gauge (moisture concentration detection means)
30 ... Hydrogen partial pressure gauge (moisture concentration detection means)

Claims (3)

被焼結品を焼結する焼結室と被焼結品搬出入用の搬出および搬入口を備えた焼結炉本体と、被焼結品を焼結炉本体内で搬入口から搬出口に向けて搬送する搬送手段を備えた連続式焼結炉を用い、
被焼結品の表面酸化物を還元する水素と、被焼結品などの酸化を防止する不活性ガスと、水素により前記酸化物が還元される際に生成する水を低減させる炭化水素ガスを搬出口側から焼結炉本体内に供給しつつ被焼結品を焼結室内で焼結するに際し、
前記焼結室の中央部よりも搬入口側のガス中の酸素濃度を検出し、この酸素濃度に基づいて焼結室内の水分濃度を算出し、この水分濃度に基づいて、焼結室内の水分露点温度を算出し、この水分露点温度が、常時−60〜−35℃となるように炭化水素ガスの供給量を調節することを特徴とする連続式焼結炉の運転方法。
Sintering furnace body with a sintering chamber for sintering the product to be sintered, carry-out and carry-in port for the product to be sintered, and the product to be sintered from the carry-in port to the carry-out port in the sintering furnace body Using a continuous sintering furnace equipped with conveying means to convey
Hydrogen for reducing the surface oxide of the article to be sintered, inert gas for preventing oxidation of the article to be sintered, and hydrocarbon gas for reducing water generated when the oxide is reduced by hydrogen When sintering the product to be sintered in the sintering chamber while supplying it into the sintering furnace body from the carry-out side ,
The oxygen concentration in the gas on the inlet side of the center of the sintering chamber is detected, the moisture concentration in the sintering chamber is calculated based on the oxygen concentration, and the moisture in the sintering chamber is calculated based on the moisture concentration. A method for operating a continuous sintering furnace, characterized in that the dew point temperature is calculated and the amount of hydrocarbon gas supplied is adjusted so that the moisture dew point temperature is always -60 to -35 ° C.
請求項1記載の連続式焼結炉の運転方法において、前記焼結室内の水素濃度を検出し、前記酸素濃度および水素濃度に基づいて焼結室内の水分濃度を算出し、この水分濃度に基づいて、焼結室内の水分露点温度を算出し、この水分露点温度が、常時−60〜−35℃となるように炭化水素ガスの供給量を調節することを特徴とする連続式焼結炉の運転方法。  2. The operation method of a continuous sintering furnace according to claim 1, wherein a hydrogen concentration in the sintering chamber is detected, a moisture concentration in the sintering chamber is calculated based on the oxygen concentration and the hydrogen concentration, and based on the moisture concentration. The water dew point temperature in the sintering chamber is calculated, and the supply amount of hydrocarbon gas is adjusted so that the water dew point temperature is always −60 to −35 ° C. how to drive. 被焼結品を焼結する焼結室と被焼結品搬出入用の搬出および搬入口を備えた焼結炉本体と、被焼結品を焼結炉本体内で搬入口から搬出口に向けて搬送する搬送手段と、被焼結品の表面酸化物を還元する水素を搬出口側から焼結炉本体内に供給する水素供給手段と、不活性ガスを搬出口側から焼結炉本体内に供給する不活性ガス供給手段と、水素により前記酸化物が還元される際に生成する水を低減させる炭化水素ガスを搬出口側から焼結炉本体内に供給する炭化水素供給手段と、焼結室の中央部よりも搬入口側のガス中の酸素濃度を検出して水分濃度を算出し、この水分濃度から焼結室内の水分露点温度を算出する演算手段と、この水分露点温度が、常時−60〜−35℃となるように焼結炉本体内への炭化水素ガスの供給量を制御する制御部を備えたことを特徴とする連続式焼結炉。Sintering furnace body with a sintering chamber for sintering the product to be sintered, carry-out and carry-in port for the product to be sintered, and the product to be sintered from the carry-in port to the carry-out port in the sintering furnace body Conveying means for conveying toward the surface, hydrogen supply means for supplying hydrogen for reducing the surface oxide of the article to be sintered into the sintering furnace body from the carry-out side , and inert gas from the carry-out side. and the inert gas supply means for supplying within a hydrocarbon supply means for supplying the discharge port side in a sintering furnace main body hydrocarbon gas to reduce the water formed in the oxide is reduced by hydrogen, Calculating the moisture concentration by detecting the oxygen concentration in the gas on the inlet side of the center of the sintering chamber, calculating the moisture dew point temperature in the sintering chamber from this moisture concentration, and the moisture dew point temperature Control for controlling the supply amount of hydrocarbon gas into the sintering furnace main body so that the temperature is always -60 to -35 ° C. Continuous sintering furnace, characterized in that it comprises a.
JP11424999A 1999-04-21 1999-04-21 Continuous sintering furnace and operation method thereof Expired - Fee Related JP4443667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11424999A JP4443667B2 (en) 1999-04-21 1999-04-21 Continuous sintering furnace and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11424999A JP4443667B2 (en) 1999-04-21 1999-04-21 Continuous sintering furnace and operation method thereof

Publications (2)

Publication Number Publication Date
JP2000309805A JP2000309805A (en) 2000-11-07
JP4443667B2 true JP4443667B2 (en) 2010-03-31

Family

ID=14633047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11424999A Expired - Fee Related JP4443667B2 (en) 1999-04-21 1999-04-21 Continuous sintering furnace and operation method thereof

Country Status (1)

Country Link
JP (1) JP4443667B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978901B1 (en) * 2008-03-21 2010-08-31 가야에이엠에이 주식회사 MANUFACTURING METHOD OF Fe-BASED SINTERED BODY WITH HIGH TENSILE STRENGTH AND HIGH HARDNESS
WO2009122467A1 (en) * 2008-04-04 2009-10-08 ニホンハンダ株式会社 Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection
WO2013046446A1 (en) * 2011-09-30 2013-04-04 日本ピストンリング株式会社 Cooling device

Also Published As

Publication number Publication date
JP2000309805A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
CN110914467B (en) Surface hardening treatment device and surface hardening treatment method
US7722728B2 (en) Heat treatment method and heat treatment apparatus
US4035200A (en) Process for making an oxide-layer
JP5209921B2 (en) Heat treatment method and heat treatment equipment
JP2018059195A (en) Continuous nitriding furnace and continuous nitriding method
JP4443667B2 (en) Continuous sintering furnace and operation method thereof
US7575643B2 (en) Carburization treatment method
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
JP2019060588A (en) Method for controlling combustion air flow rate and continuous multiband-type heating furnace
JP6503122B1 (en) Surface hardening treatment apparatus and surface hardening treatment method
TWI473884B (en) Continuous annealing furnace
KR100512187B1 (en) Control method of and Apparatus for atmosphere in heat treatment furnace
WO1992005295A1 (en) Gas carburizing process and apparatus
JPH11158559A (en) Method for controlling atmosphere in continuous annealing furnace
JP4873325B2 (en) In-furnace atmosphere control method for heating furnace
JPH04107256A (en) Carburizing furnace
JP4876291B2 (en) Heat treatment method and heat treatment apparatus
JP2010255056A (en) Method of controlling furnace atmosphere in heat treatment furnace
CN1505687A (en) Method for enhancing the metallurgical quality of products treated in a furnace
KR19980071377A (en) Atmosphere control method and apparatus in heat treatment furnace
EP3617637A1 (en) Method of controlling an atmosphere in a furnace for performing sintering process
JP2002220620A (en) Method for controlling pressure of heating furnace
KR102441323B1 (en) Heating method and apparatus
KR102655059B1 (en) Surface hardening treatment device and surface hardening treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Ref document number: 4443667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees