JP2002220620A - Method for controlling pressure of heating furnace - Google Patents

Method for controlling pressure of heating furnace

Info

Publication number
JP2002220620A
JP2002220620A JP2001016974A JP2001016974A JP2002220620A JP 2002220620 A JP2002220620 A JP 2002220620A JP 2001016974 A JP2001016974 A JP 2001016974A JP 2001016974 A JP2001016974 A JP 2001016974A JP 2002220620 A JP2002220620 A JP 2002220620A
Authority
JP
Japan
Prior art keywords
furnace
pressure
recuperator
heating furnace
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001016974A
Other languages
Japanese (ja)
Inventor
Kenta Karibe
建太 苅部
Kazunari Adachi
一成 安達
Ichiro Sugimoto
一郎 杉本
Akihiro Furukawa
誠博 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001016974A priority Critical patent/JP2002220620A/en
Priority to DE60124691T priority patent/DE60124691T2/en
Priority to BR0109303-7A priority patent/BR0109303A/en
Priority to EP06018722A priority patent/EP1757707A3/en
Priority to CA002639404A priority patent/CA2639404A1/en
Priority to CA002403221A priority patent/CA2403221C/en
Priority to EP01273342A priority patent/EP1275740B1/en
Priority to US10/220,726 priority patent/US6644962B2/en
Priority to PCT/JP2001/011508 priority patent/WO2002057501A1/en
Priority to AT01273342T priority patent/ATE346172T1/en
Priority to CNB018092470A priority patent/CN100338236C/en
Priority to KR1020027012192A priority patent/KR100634776B1/en
Priority to TW091100620A priority patent/TW524956B/en
Publication of JP2002220620A publication Critical patent/JP2002220620A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling a furnace pressure, which can surely prevent invasion of air into the heating furnace. SOLUTION: This method for controlling the furnace pressure, which arranges a recuperator in the way of a flue for leading exhaust gas in the heating furnace to the outside, and which supplies a dilute air to the recuperator side in the flue, in order to protect the recuperator from high temperature atmosphere, when preheating the combustion air supplied to a burner which is a heat source of the heating furnace, with the recuperator, is characterized by controlling the amount of dilute air flow according to an exhaust gas temperature at the recuperator side and a combustion load of the heating furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、加熱炉の炉圧を
最適に制御する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for optimally controlling a furnace pressure of a heating furnace.

【0002】[0002]

【従来の技術】例えば、鋼材の加熱炉は、分塊工場で粗
圧延された鋼片や、連続鋳造された鋳片を最終製品に圧
延するため、その圧延に適した所定の温度に再加熱する
場合に主に用いられている。この加熱炉は、バッチ式と
連続式とに大別されるが、それぞれ長所および短所があ
るため、その目的に応じて選択使用されている。中で
も、連続式加熱炉は、近年の大量生産に適しているとこ
ろから、製鉄所などで多用されている。
2. Description of the Related Art For example, a heating furnace for steel products reheats a steel slab roughly rolled in a lump mill or a continuously cast slab to a final product at a predetermined temperature suitable for the rolling. It is mainly used when This heating furnace is roughly classified into a batch type and a continuous type, but each has its advantages and disadvantages, and thus is selectively used according to its purpose. Above all, continuous heating furnaces are widely used in steel mills and the like because they are suitable for mass production in recent years.

【0003】この連続式加熱炉は、その典型例を図1に
示すように、鋼材の装入側から順に予熱帯1、加熱帯2
および均熱帯3から成るのが一般的であり、少なくとも
加熱帯2および均熱帯3は、バーナ4によって所定温度
に加熱保持されている。そして、装入扉1aから予熱帯
1に導入された鋼材5は、搬送路6上を移動されて加熱
帯2そして均熱帯3を経て均熱帯3出側の抽出扉3aか
ら炉外へ搬出される間に、所定温度に加熱される。な
お、バーナ4の燃焼によって生じた排ガスは、予熱帯1
の入側に設けられた煙道7から炉外に排出される。その
際、煙道7に設けたレキュペレータ7aによって、バー
ナ4に供給する燃焼用空気の予熱を行って排ガス中の熱
を回収している。さらに、煙道7には、炉圧を制御する
ためのダンパー7bも配置されている。
[0003] As shown in Fig. 1, a typical example of this continuous heating furnace is a pre-tropical zone 1 and a heating zone 2 in order from the steel material charging side.
In general, the heating zone 2 and the soaking zone 3 are heated and maintained at a predetermined temperature by the burner 4. Then, the steel material 5 introduced from the charging door 1a into the pre-tropical zone 1 is moved on the transport path 6 and is carried out of the furnace through the heating zone 2 and the leveling zone 3 through the extraction door 3a on the exit side of the leveling zone 3. During this time, it is heated to a predetermined temperature. The exhaust gas generated by the combustion of the burner 4 is in the pre-tropical zone 1
From the flue 7 provided at the entrance side of the furnace. At this time, the heat in the exhaust gas is recovered by preheating the combustion air supplied to the burner 4 by the recuperator 7 a provided in the flue 7. Further, a damper 7b for controlling the furnace pressure is disposed in the flue 7.

【0004】ここに、連続式加熱炉では、その後の圧延
工程に適した温度に鋼材を加熱する必要があり、連続式
加熱炉で加熱された鋼材の温度が所定の圧延適合温度、
特にその下限を下回ると、圧延操業並びに製品品質にお
いて悪影響を招来することになる。一方、加熱炉から抽
出した鋼材温度が必要以上に高くなると、連続鋼材加熱
炉における熱損失が大きくなることから、連続式加熱炉
においては、鋼材を圧延適合温度まで必要最低限の燃料
で加熱することが重要になる。さらに、加熱炉において
は、圧延工程における圧延ピッチに対応して、加熱され
た鋼材が加熱炉から順次に供給されるように、加熱時間
を調整することも要求されている。
Here, in the continuous heating furnace, it is necessary to heat the steel material to a temperature suitable for the subsequent rolling process, and the temperature of the steel material heated in the continuous heating furnace is adjusted to a predetermined rolling compatible temperature,
In particular, when the value falls below the lower limit, adverse effects are caused in the rolling operation and product quality. On the other hand, if the temperature of the steel material extracted from the heating furnace becomes unnecessarily high, the heat loss in the continuous steel heating furnace increases, so in the continuous heating furnace, the steel material is heated to the rolling compatible temperature with the minimum necessary fuel. It becomes important. Furthermore, in the heating furnace, it is also required to adjust the heating time so that the heated steel material is sequentially supplied from the heating furnace in accordance with the rolling pitch in the rolling process.

【0005】かように、連続式加熱炉においては、熱損
失、とりわけ加熱帯からの放射エネルギー損失が大きい
ことから、加熱帯の入出側に予熱帯および均熱帯を配置
して炉内を3つに仕切ることによって、熱損失を抑制し
ているのである。
As described above, in a continuous heating furnace, heat loss, particularly radiant energy loss from the heating zone, is large. In this way, heat loss is suppressed.

【0006】[0006]

【発明が解決しようとする課題】ところで、連続式加熱
炉に装入する鋼材において、常温まで冷却された鋳片
や、連続鋳造後に直ちに圧延工程へ直送されるホットチ
ャージ材など、加熱炉入側での温度は様々である上、そ
の加熱温度も多岐にわたり、また加熱炉での加熱する処
理量も変化するために、これらの諸々の条件に応じて、
加熱炉内の温度を制御する必要がある。そのためには、
炉内の加熱を司るバーナの燃焼量を増減して加熱温度を
調整する必要があるが、このバーナの燃焼量の変化によ
って炉内圧は変動することになる。
The steel material to be charged into the continuous heating furnace is, for example, a slab cooled to room temperature or a hot charge material directly sent to the rolling process immediately after continuous casting. In addition to the various temperatures, the heating temperature is also diverse, and the amount of heating in the heating furnace also changes, depending on these various conditions,
It is necessary to control the temperature inside the heating furnace. for that purpose,
It is necessary to adjust the heating temperature by increasing or decreasing the amount of combustion of the burner that controls the heating in the furnace. However, the furnace pressure fluctuates due to the change in the amount of combustion of the burner.

【0007】特に、炉内圧が炉外の圧力に比べて低くな
る変動があると、加熱炉の開口部である装入扉および抽
出扉から空気が炉内に侵入して、炉内温度の低下をまね
くため、バーナの燃焼量を増加する必要があり、燃料原
単位が増加してコストの上昇をまねく。また、炉内に空
気が侵入すると、炉内雰囲気の酸素濃度が上昇するた
め、炉内に装入した鋼材などの被加熱材の表面酸化、窒
化または脱炭等が促進される結果、表面品質の低下をま
ねくことになる。
[0007] In particular, when there is a fluctuation in which the pressure inside the furnace becomes lower than the pressure outside the furnace, air enters the furnace from the charging door and the extraction door, which are openings of the heating furnace, and the temperature inside the furnace decreases. Therefore, it is necessary to increase the burner combustion amount, which increases the fuel consumption rate and increases the cost. In addition, when air enters the furnace, the oxygen concentration in the furnace atmosphere increases, so that the surface oxidation, nitridation, or decarburization of the material to be heated, such as the steel material charged into the furnace, is promoted. Will be reduced.

【0008】従って、加熱炉内の圧力を適正に制御する
ことが必要になるところから、この炉圧制御について、
種々の提案がなされている。例えば、特開昭61−119987
号公報には、炉内の排ガス発生量に応じて、加熱炉の均
熱帯の設定炉圧を炉外の圧力に対して正圧(以下、単に
正圧という)に制御し、装入扉および抽出扉からの空気
の侵入を防止することが開示されている。この方法によ
り炉内の搬送路を境とする、上部領域(以下、上部帯と
いう)の炉圧を正圧に制御することは可能であるが、加
熱炉全体の燃焼負荷が小さい場合は、炉内の搬送路を境
とする下部領域(以下、下部帯という)における炉圧が
炉外の圧力に対して負圧(以下、単に負圧という)にな
ることは避けられないため、装入扉および抽出扉の下部
の隙間から、また抽出口の下部にエキストラクターのエ
キストラフォークを受け入れるための櫛歯状開口、いわ
ゆるエキストラフォーク開口部を有する場合には、その
開口部から、の空気の侵入を確実に防ぐことは困難であ
った。
Accordingly, since it is necessary to appropriately control the pressure in the heating furnace, this furnace pressure control is
Various proposals have been made. For example, JP-A-61-119987
According to the publication, the set furnace pressure in the soaking zone of the heating furnace is controlled to a positive pressure (hereinafter simply referred to as positive pressure) with respect to the pressure outside the furnace in accordance with the amount of exhaust gas generated in the furnace. It is disclosed to prevent air from entering the extraction door. With this method, it is possible to control the furnace pressure in an upper region (hereinafter referred to as an upper zone) at a boundary of a transfer path in the furnace to a positive pressure. It is inevitable that the furnace pressure in the lower region (hereinafter, referred to as the lower zone) bordering on the transfer path in the inside becomes negative pressure (hereinafter, simply referred to as “negative pressure”) with respect to the pressure outside the furnace. If there is a comb-shaped opening for receiving the extractor's extra fork, so-called extra fork opening, if there is an opening in the lower part of the extraction door and also below the extraction opening, air from the opening is prevented. It was difficult to reliably prevent it.

【0009】また、特開平9−209032号公報には、均熱
帯の上部に配設した炉圧ダンパーにより、加熱炉の燃焼
負荷量に応じて炉圧を最適制御することが開示されてい
る。しかしながら、加熱炉からの排ガスが通る煙道内に
設けた炉圧ダンパーにより炉圧を制御するに当り、燃焼
負荷量が小さくなって、炉内から煙道までの排ガスの流
れによる圧力損失に比べて煙道のドラフトが大きくなっ
た場合は、炉圧ダンパーによって下部領域まで正圧にす
ることは難しくなるため、やはり装入扉および抽出扉か
らの空気の侵入を確実に防ぐことは困難であった。
Japanese Patent Application Laid-Open No. 9-209032 discloses that the furnace pressure is optimally controlled in accordance with the combustion load of a heating furnace by a furnace pressure damper disposed in the upper part of the solitary zone. However, in controlling the furnace pressure by the furnace pressure damper provided in the flue through which the exhaust gas from the heating furnace passes, the combustion load becomes smaller, and compared with the pressure loss due to the flow of the exhaust gas from the furnace to the flue. When the draft of the flue became large, it became difficult to make the lower pressure positive by the furnace pressure damper, so it was also difficult to reliably prevent air from entering through the charging door and the extraction door. .

【0010】さらに、特開平7−316645号公報には、煙
道のレキュペレータ出側に気体供給配管系を接続し、空
気等の気体を煙道に吹き込み、炉圧を制御する方法が開
示されている。この方法では、炉圧を制御するために、
新たにブロアや各種配管、そして制御系を設ける必要が
あり、初期投資に要する費用が嵩むとともに、そのメン
テナンスが煩雑であるところに問題があり、しかもダク
トや付設機器類が複雑に入り組む構成の加熱炉では、配
置スペースの問題から制御系を新たに設けることが困難
な場合が多かった。
Further, Japanese Patent Application Laid-Open No. Hei 7-316645 discloses a method of controlling a furnace pressure by connecting a gas supply piping system to the outlet of a recuperator of a flue and blowing gas such as air into the flue. I have. In this method, to control the furnace pressure,
It is necessary to provide new blowers, various pipes, and a control system, which increases the initial investment cost and has a problem in that the maintenance is complicated. In the heating furnace, it was often difficult to provide a new control system due to the space problem.

【0011】そこで、この発明は、加熱炉内への空気の
侵入を確実に防ぐことのできる、炉圧の制御方法につい
て提案することを目的とする。
Accordingly, an object of the present invention is to propose a method of controlling furnace pressure which can reliably prevent air from entering the heating furnace.

【0012】[0012]

【課題を解決するための手段】発明者らは、炉内が負圧
になった場合の空気の侵入について検討したところ、炉
外の空気は装入扉および抽出扉の両方から炉内に侵入す
るが、図1に示したように、装入扉1aの直後に煙道7
が設けられているため、装入扉1aから侵入した空気
は、直ちに煙道7に抜けて炉外に排出されるため、炉内
酸素濃度の上昇や炉内温度の低下を引き起こす要因にな
り難いことが判明した。従って、炉内酸素濃度の上昇や
炉内温度の低下を回避するには、抽出扉からの空気の侵
入を回避することが肝要であり、そのためには、抽出扉
が設けられている均熱帯の下部における炉圧を適切に制
御することが重要であることを知見するに到った。
Means for Solving the Problems The inventors of the present invention have studied the intrusion of air when the inside of the furnace has a negative pressure. The air outside the furnace enters the furnace from both the charging door and the extraction door. However, as shown in FIG.
Is provided, the air that has entered from the charging door 1a immediately passes through the flue 7 and is discharged outside the furnace, so that it is unlikely to cause a rise in the oxygen concentration in the furnace or a decrease in the temperature in the furnace. It has been found. Therefore, in order to avoid an increase in the oxygen concentration in the furnace and a decrease in the furnace temperature, it is important to avoid the intrusion of air from the extraction door. It has been found that it is important to properly control the furnace pressure in the lower part.

【0013】なお、上述したように、煙道に設けたダン
パーの開閉によって炉圧を制御するのは、特に燃焼負荷
が小さい場合に、均熱帯の搬送路下方領域の炉圧を正圧
にすることは困難である。なぜなら、排ガスの発生量が
減少し、炉内から煙道を抜けるまでの圧力損失が減少す
る一方で、炉内では下方に向かうほどドラフトが大きく
なるため、炉圧分布は相対的に加熱炉下方に向かって徐
々に低下する結果、下部帯では排ガスの圧力損失に比べ
てドラフトが大きくなり、負圧となり易いためである。
As described above, the furnace pressure is controlled by opening and closing the damper provided in the flue, particularly when the combustion load is small, by making the furnace pressure in the lower region of the uniform tropic transport path positive. It is difficult. This is because the amount of exhaust gas generated decreases and the pressure loss from the inside of the furnace to the passage through the flue decreases, while the draft increases in the furnace as it moves downward, so the furnace pressure distribution is relatively lower in the furnace. As a result, the draft gradually increases in the lower zone as compared with the pressure loss of the exhaust gas, and the pressure tends to be negative.

【0014】さらに、発明者らは、燃焼負荷が小さい場
合にも均熱帯の搬送路下方領域の炉圧を正圧にすること
のできる手法について鋭意究明したところ、煙道に設け
たレキュペレータの保護を目的として、煙道のレキュペ
レータ入側に供給するダイリューションエアを炉圧の制
御に利用できることを見出し、この発明を完成するに到
った。
Further, the present inventors have eagerly studied a technique capable of making the furnace pressure in the region below the transport path in the solitary zone positive even when the combustion load is small. For this purpose, they have found that dilution air supplied to the recuperator inlet side of the stack can be used for controlling furnace pressure, and have completed the present invention.

【0015】すなわち、この発明は、加熱炉内の排ガス
を炉外に導く煙道の途上にレキュペレータを配置し、該
レキュペレータにて、加熱炉の加熱源であるバーナに供
給する燃焼用空気の予熱を行う際、レキュペレータを高
温雰囲気から保護するために、煙道のレキュペレータ入
側にダイリューションエアを供給するに当り、レキュペ
レータ入側の排ガス温度および加熱炉の燃焼負荷に応じ
てダイリューションエアの流量を調整し、炉圧を制御す
ることを特徴とする加熱炉の炉圧制御方法である。
That is, according to the present invention, a recuperator is disposed on a flue for guiding exhaust gas in a heating furnace to the outside of the furnace, and the recuperator preheats combustion air supplied to a burner which is a heating source of the heating furnace. In order to protect the recuperator from high-temperature atmosphere when supplying dilution air to the recuperator inlet side of the flue, the dilution air depends on the exhaust gas temperature on the recuperator inlet side and the combustion load of the heating furnace. A furnace pressure control method for a heating furnace, wherein the furnace pressure is controlled by adjusting the flow rate of the furnace.

【0016】[0016]

【発明の実施の形態】以下、この発明の方法について、
図面を参照して詳細に説明する。図2に、この発明の方
法に直接使用する連続式加熱炉を示す。この加熱炉は、
図1に示したところと基本的に同じ構成であるが、さら
にレキュペレータ7aに導入する炉内排ガスがレキュペ
レータ7aの耐熱温度上限をこえる場合には、煙道7の
レキュペレータ7aの入側に、ダイリューションエア8
を供給することによって、レキュペレータ7aの保護が
はかられる構造を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the method of the present invention will be described.
This will be described in detail with reference to the drawings. FIG. 2 shows a continuous heating furnace used directly in the method of the present invention. This heating furnace
Although the configuration is basically the same as that shown in FIG. 1, if the furnace exhaust gas to be introduced into the recuperator 7a exceeds the upper limit of the heat-resistant temperature of the recuperator 7a, a die is provided on the flue gas inlet side of the recuperator 7a. Solution Air 8
To protect the recuperator 7a.

【0017】かような構造の加熱炉の操業において、排
ガス温度がレキュペレータ7aの耐熱温度をこえる場合
に加えて、均熱帯3の特に下部の炉圧が目標値より低下
した場合にも、ダイリューションエア8を所定流量の下
に供給し、均熱帯3の特に下部域での炉圧を制御、具体
的には正圧となるように制御するところに特徴がある。
In the operation of the heating furnace having such a structure, in addition to the case where the exhaust gas temperature exceeds the heat-resistant temperature of the recuperator 7a and the case where the furnace pressure in the lower part of the solitary zone 3 in particular lowers below the target value, the diluting temperature is reduced. It is characterized in that the blast air 8 is supplied at a predetermined flow rate and the furnace pressure in the lower part of the soaking zone 3 is controlled, specifically, so as to be a positive pressure.

【0018】すなわち、図2に示すように、均熱帯3の
下部域に設置した炉圧計3bによる炉圧測定値P.lと
目標炉圧(正圧)とを演算器9aにて比較し、その結果
に基づいて演算器9aから、まず炉圧制御用のダンパー
7bの開度設定を行って、炉圧制御を行う。
That is, as shown in FIG. 2, a furnace pressure measurement value P.O.R. 1 and the target furnace pressure (positive pressure) are compared by the calculator 9a, and based on the result, the opening of the damper 7b for furnace pressure control is first set from the calculator 9a to perform furnace pressure control. .

【0019】この通常操業において、煙道7のレキュペ
レータ7aの入側に設けた温度計7cでの温度測定値
T.lと当該位置での排ガスの目標温度、すなわちレキ
ュペレータ7aの耐熱温度上限とを演算器9bにて比較
し、温度測定値T.lがレキュペレータ7aの耐熱温度
上限に近づいたならば、演算器9bからの指令によっ
て、ダイリューションエア8の供給を司る、送風ファン
8aおよび流量調整弁8bにそれぞれ適当なファン回転
数および流量調整弁開度を与えて、所定流量のダイリュ
ーションエア8を煙道7へ供給し、ダイリューションエ
ア8を排ガスに混合することによって、レキュペレータ
7aへ導入される排ガス温度を許容範囲まで低減する。
そして、温度測定値T.lが上記目標温度と等しくなっ
た時点でファン回転数および流量調整弁開度を固定す
る。
In the normal operation, the temperature measured by the thermometer 7c provided on the inlet side of the recuperator 7a of the flue 7 is measured by the T.C. The target temperature of the exhaust gas at the position, that is, the upper limit of the heat-resistant temperature of the recuperator 7a is compared by the calculator 9b. When 1 approaches the upper limit of the heat-resistant temperature of the recuperator 7a, the fan rotation speed and the flow rate adjustment appropriate for the blower fan 8a and the flow rate adjustment valve 8b, respectively, which control the supply of the dilution air 8 by a command from the calculator 9b. By providing the valve opening and supplying a predetermined amount of dilution air 8 to the flue 7 and mixing the dilution air 8 with the exhaust gas, the temperature of the exhaust gas introduced into the recuperator 7a is reduced to an allowable range. .
Then, the measured temperature T.T. When 1 becomes equal to the target temperature, the fan speed and the flow control valve opening are fixed.

【0020】一方、上記通常操業において、例えばバー
ナの燃焼負荷が小さくなって炉圧計3bによる炉圧測定
値P.lが目標炉圧から負側になった場合は、演算器9
aから送風ファン8aおよび流量調整弁8bにそれぞれ
適当なファン回転数および流量調整弁開度を与えて、所
定流量のダイリューションエア8を煙道7へ供給し、炉
圧の上昇をはかる。すなわち、ダイリューションエア8
を煙道7へ供給すると、煙道7を通過するガス流量が増
加するため、煙道7の圧力損失が上昇して炉圧が上昇す
る結果、均熱帯3の下部域の炉圧が負圧になることが回
避されるのである。そして、炉圧測定値P.lが上記目
標炉圧と等しくなった時点でファン回転数および流量調
整弁開度を固定する。
On the other hand, in the normal operation, for example, when the combustion load of the burner is reduced and the furnace pressure P. When the value of l becomes negative from the target furnace pressure, the arithmetic unit 9
a, the fan 8a and the flow control valve 8b are given an appropriate fan rotation speed and a flow control valve opening, respectively, to supply the dilution air 8 having a predetermined flow rate to the flue 7, thereby increasing the furnace pressure. That is, dilution air 8
When the gas is supplied to the stack 7, the gas flow rate passing through the stack 7 increases, so the pressure loss of the stack 7 increases and the furnace pressure increases. Is avoided. The measured furnace pressure P. When 1 becomes equal to the target furnace pressure, the fan speed and the flow control valve opening are fixed.

【0021】ここに、図3に、ダイリューションエア8
の流量調整弁開度と均熱帯3の下部域の炉圧との関係を
示すように、ダイリューションエア8の流量調整によっ
て炉圧の制御範囲は極めて大きくなり、従ってバーナの
燃焼負荷が小さい場合にあっても、ダイリューションエ
ア8の供給によって均熱帯3の下部域の炉圧を正圧にす
ることが容易に実現される。しかも、既存の設備を利用
するため、新たな設備投資を行う必要がなく、極めて低
コストである。
FIG. 3 shows the dilution air 8.
As shown by the relationship between the opening degree of the flow control valve and the furnace pressure in the lower region of the solitary zone 3, the control range of the furnace pressure becomes extremely large by adjusting the flow rate of the dilution air 8, so that the combustion load of the burner is small. Even in this case, the supply of the dilution air 8 makes it easy to make the furnace pressure in the lower region of the solitary zone 3 positive. Moreover, since existing equipment is used, there is no need to make new capital investment, and the cost is extremely low.

【0022】[0022]

【実施例】図2に示した連続式加熱炉(搬送路高さ:炉
底から0.5 m)を用いて、厚み:220mm 、幅:1200mmお
よび長さ9800mmの鋼スラブを導入して、室温から1230℃
まで加熱する操業を行った。操業条件は、下記のとおり
である。 記 加熱炉(バーナ)燃焼負荷:10〜100 % ダイリューションエア流量:0〜 50000(Nm3 /H) レキュペレータ入側排ガス温度:750 ℃以下 煙道のダンパー開度:5〜100 %
EXAMPLE A steel slab having a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced using the continuous heating furnace (transport path height: 0.5 m from the furnace bottom) shown in FIG. 1230 ℃
Operation was performed until heating. The operating conditions are as follows. Note Heating furnace (burner) combustion load: 10 to 100% Dilution air flow rate: 0 to 50000 (Nm 3 / H) Rejector inlet exhaust gas temperature: 750 ° C or less Flue damper opening: 5 to 100%

【0023】上記の加熱炉の操業において、レキュペレ
ータ入側排ガス温度が750 ℃以上になった場合、もしく
は均熱帯の下部域の炉圧が0mmAq以下になった場合に、
ダイリューションエアを、レキュペレータ入側排ガス温
度≦750 ℃かつ均熱下部炉圧>0mmAqとなる条件にて供
給した。また、比較としてダイリューションエアによる
炉圧制御を行わない操業も行った。
In the operation of the heating furnace described above, when the temperature of the exhaust gas at the inlet of the recuperator becomes 750 ° C. or more, or when the furnace pressure in the lower region of the solitary tropic becomes 0 mmAq or less,
Dilution air was supplied under the conditions that the exhaust gas temperature on the inlet side of the recuperator ≦ 750 ° C. and the pressure in the soaking lower furnace> 0 mmAq. As a comparison, an operation without furnace pressure control using dilution air was also performed.

【0024】これらの操業において、加熱炉の燃焼負荷
を種々に変化したときの、抽出扉が閉状態における、均
熱帯の下部域の炉圧および同域における酸素濃度を測定
した。その測定結果を図4に示すように、ダイリューシ
ョンエアによる炉圧制御を行うことによって、炉圧を正
圧に保持でき、かつ酸素濃度も低レベルに保持できた。
これに対して、従来のダンパーのみによる炉圧制御で
は、炉圧および酸素濃度がともに大きく変化した。
In these operations, when the combustion load of the heating furnace was varied, the furnace pressure in the lower region of the solitary zone and the oxygen concentration in the same region when the extraction door was closed were measured. As shown in FIG. 4, the furnace pressure could be maintained at a positive pressure and the oxygen concentration could be maintained at a low level by controlling the furnace pressure using dilution air.
On the other hand, in the conventional furnace pressure control using only the damper, both the furnace pressure and the oxygen concentration greatly changed.

【0025】次に、同様の操業において、抽出扉を開閉
した際の、炉圧および酸素濃度を同様に測定した。その
測定結果をそれぞれ図5および図6に示すように、抽出
扉を開閉した場合にあっても、ダイリューションエアに
よる炉圧制御を行うことによって、炉圧を正圧に保持で
き、かつ酸素濃度も低レベルに保持できる。
Next, in the same operation, the furnace pressure and the oxygen concentration when the extraction door was opened and closed were measured in the same manner. As shown in FIG. 5 and FIG. 6, respectively, the measurement results show that even when the extraction door is opened and closed, the furnace pressure can be maintained at a positive pressure by controlling the furnace pressure using dilution air, and oxygen can be maintained. The concentration can also be kept at a low level.

【0026】[0026]

【発明の効果】以上述べたように、この発明によれば、
炉圧の制御を厳密に行えるため、この炉圧制御によって
加熱炉内への空気の侵入は確実に防がれる結果、被加熱
材の品質低下は回避され、また加熱炉における燃料原単
位の増加を抑制することができる。
As described above, according to the present invention,
Since the furnace pressure can be strictly controlled, this furnace pressure control reliably prevents air from entering the heating furnace, thereby avoiding deterioration in the quality of the material to be heated and increasing the fuel consumption rate in the heating furnace. Can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 連続式加熱炉の構造を示す図である。FIG. 1 is a diagram showing the structure of a continuous heating furnace.

【図2】 この発明で使用する連続式加熱炉の構造を示
す図である。
FIG. 2 is a diagram showing a structure of a continuous heating furnace used in the present invention.

【図3】 ダイリューションエアの流量調整弁開度と炉
圧との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the opening degree of the flow control valve for dilution air and the furnace pressure.

【図4】 炉圧制御方法と炉圧および炉内酸素濃度との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a furnace pressure control method, a furnace pressure, and an oxygen concentration in a furnace.

【図5】 炉圧制御方法と炉圧との関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a furnace pressure control method and a furnace pressure.

【図6】 炉圧制御方法と炉内酸素濃度との関係を示す
図である。
FIG. 6 is a diagram showing a relationship between a furnace pressure control method and a furnace oxygen concentration.

【符号の説明】[Explanation of symbols]

1 予熱帯 1a 装入扉 2 加熱炉 3 均熱帯 3a 抽出扉 4 バーナ 5 搬送路 6 鋼材 7 煙道 7a レキュペレータ 7b ダンパー 8 ダイリューションエア DESCRIPTION OF SYMBOLS 1 Pre-tropical 1a Charging door 2 Heating furnace 3 Uniform tropical 3a Extraction door 4 Burner 5 Transport path 6 Steel 7 Flue 7a Recuperator 7b Damper 8 Dilution air

フロントページの続き (72)発明者 杉本 一郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 古川 誠博 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K056 AA08 BA02 BB01 CA02 DA02 DA22 DA32 FA01 FA13 4K063 AA08 AA13 BA02 CA01 CA03 DA08 DA33 Continuing on the front page (72) Inventor Ichiro Sugimoto 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. No address) F-term (reference) at Kawasaki Steel Corporation Mizushima Works 4K056 AA08 BA02 BB01 CA02 DA02 DA22 DA32 FA01 FA13 4K063 AA08 AA13 BA02 CA01 CA03 DA08 DA33

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉内の排ガスを炉外に導く煙道の途
上にレキュペレータを配置し、該レキュペレータにて、
加熱炉の加熱源であるバーナに供給する燃焼用空気の予
熱を行う際、レキュペレータを高温雰囲気から保護する
ために、煙道のレキュペレータ入側にダイリューション
エアを供給するに当り、レキュペレータ入側の排ガス温
度および加熱炉の燃焼負荷に応じてダイリューションエ
アの流量を調整し、炉圧を制御することを特徴とする加
熱炉の炉圧制御方法。
Claims: 1. A recuperator is disposed in the middle of a flue for guiding exhaust gas from a heating furnace to the outside of the furnace, and the recuperator is used for
When preheating the combustion air to be supplied to the burner, which is the heating source of the heating furnace, in order to protect the recuperator from the high temperature atmosphere, supply the dilution air to the recuperator inlet side of the flue. A furnace pressure control method for a heating furnace, wherein the furnace pressure is controlled by adjusting the flow rate of dilution air according to the exhaust gas temperature and the combustion load of the heating furnace.
JP2001016974A 2001-01-17 2001-01-25 Method for controlling pressure of heating furnace Pending JP2002220620A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2001016974A JP2002220620A (en) 2001-01-25 2001-01-25 Method for controlling pressure of heating furnace
DE60124691T DE60124691T2 (en) 2001-01-17 2001-12-27 METHOD FOR OPERATING A HEATER WITH REGENERATIVE BURNERS
BR0109303-7A BR0109303A (en) 2001-01-17 2001-12-27 Heating furnace having heat regeneration burners and their method of operation
EP06018722A EP1757707A3 (en) 2001-01-17 2001-12-27 Heating furnace having heat regenerating burners and operation method thereof
CA002639404A CA2639404A1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
CA002403221A CA2403221C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
EP01273342A EP1275740B1 (en) 2001-01-17 2001-12-27 Method of operating a heating furnace with regenerative burners
US10/220,726 US6644962B2 (en) 2001-01-17 2001-12-27 Heating furnace having heat regenerating burners and operation method thereof
PCT/JP2001/011508 WO2002057501A1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
AT01273342T ATE346172T1 (en) 2001-01-17 2001-12-27 METHOD FOR OPERATING A HEATING FURNACE WITH REGENERATIVE BURNERS
CNB018092470A CN100338236C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating heating furnace
KR1020027012192A KR100634776B1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
TW091100620A TW524956B (en) 2001-01-17 2002-01-16 Heating furnace with regenerative burners and method of operating the heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001016974A JP2002220620A (en) 2001-01-25 2001-01-25 Method for controlling pressure of heating furnace

Publications (1)

Publication Number Publication Date
JP2002220620A true JP2002220620A (en) 2002-08-09

Family

ID=18883256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001016974A Pending JP2002220620A (en) 2001-01-17 2001-01-25 Method for controlling pressure of heating furnace

Country Status (1)

Country Link
JP (1) JP2002220620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133552A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp Control method for dilution fan of heating furnace
JP2014088966A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Dilution blower control device and dilution blower control method
KR200476494Y1 (en) * 2014-12-08 2015-03-06 삼현테크(주) Apparatus for heating
KR200478186Y1 (en) * 2014-12-08 2015-09-07 삼현테크(주) Apparatus for heating
CN112432510A (en) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 Control method for coexistence of conventional flue and waste heat recovery double flues

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133552A (en) * 2007-11-30 2009-06-18 Jfe Steel Corp Control method for dilution fan of heating furnace
JP2014088966A (en) * 2012-10-29 2014-05-15 Jfe Steel Corp Dilution blower control device and dilution blower control method
KR200476494Y1 (en) * 2014-12-08 2015-03-06 삼현테크(주) Apparatus for heating
KR200478186Y1 (en) * 2014-12-08 2015-09-07 삼현테크(주) Apparatus for heating
CN112432510A (en) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 Control method for coexistence of conventional flue and waste heat recovery double flues
CN112432510B (en) * 2019-08-26 2022-07-19 宝山钢铁股份有限公司 Control method for coexistence of conventional flue and waste heat recovery double flues

Similar Documents

Publication Publication Date Title
WO2002057501A1 (en) Heating furnace with regenerative burners and method of operating the heating furnace
JP2002220620A (en) Method for controlling pressure of heating furnace
JP2002294347A (en) Method and device for jet preheating strip continuous annealing facility
JP2002213879A (en) Atmosphere control method for heating furnace, and the heating furnace
JP4873325B2 (en) In-furnace atmosphere control method for heating furnace
JP2002220621A (en) Method for controlling furnace pressure using regenerative burner
CN110617716B (en) Method for controlling production rhythm and furnace temperature of mixed steel heating on line
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
JPH0192322A (en) Method for controlling sheet temperature in continuous annealing furnace
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JP7302553B2 (en) Furnace temperature control method for heating furnace, steel manufacturing method and heating equipment
CN111630192A (en) Method for heating steel sheet in continuous annealing and continuous annealing apparatus
JP3982042B2 (en) Combustion control method for continuous heating furnace
CN115341079A (en) Method for controlling reverse flow of furnace gas of continuous normalizing furnace
KR102441323B1 (en) Heating method and apparatus
JP2885072B2 (en) Heating furnace control method
TWI421134B (en) Furnace pressure control system and method
JPS63241124A (en) Method for controlling temperature of circulating gas for sintering
JP3197638B2 (en) Scale control method in heating furnace
JPH04268013A (en) Heating furnace and heating method for quenching steel material
JP3003062B2 (en) Heating method of billet in continuous heating furnace
JPH0320405A (en) Method for changing temperature in furnace for multi-zones type continuous heating furnace
CN114746697A (en) Method and device for heating a furnace
JPH07126759A (en) Method for heating metallic strip and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710