JP4422241B2 - Mobile farm machine - Google Patents

Mobile farm machine Download PDF

Info

Publication number
JP4422241B2
JP4422241B2 JP23222699A JP23222699A JP4422241B2 JP 4422241 B2 JP4422241 B2 JP 4422241B2 JP 23222699 A JP23222699 A JP 23222699A JP 23222699 A JP23222699 A JP 23222699A JP 4422241 B2 JP4422241 B2 JP 4422241B2
Authority
JP
Japan
Prior art keywords
steering
speed
turning
traveling
steering handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23222699A
Other languages
Japanese (ja)
Other versions
JP2001055157A (en
Inventor
茂實 日高
雄一郎 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP23222699A priority Critical patent/JP4422241B2/en
Publication of JP2001055157A publication Critical patent/JP2001055157A/en
Application granted granted Critical
Publication of JP4422241B2 publication Critical patent/JP4422241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば圃場の穀稈を連続的に刈取って脱穀するコンバインまたは耕耘トラクタまたは圃場管理車などの移動農機に関する。
【0002】
【発明が解決しようとする課題】
従来、走行変速レバーの操作によって走行速度を無段階に変更自在なベルトまたは油圧無段変速機構を介して左右走行クローラに駆動力を伝えて任意の車速で移動させると共に、操向ハンドルによって操向用の無段変速機構を操作して差動機構を制御し、左右走行クローラの駆動速度の差を無段階に変化させ、走行進路を変更させる技術がある。そして操向ハンドルの切れ角に対する機体の旋回半径(計算上)は、車速に関係なく略同一を保って、通常の自動車感覚と同様の運転感覚で機体の旋回を行っている。しかし乍らコンバインの場合乾田での適応性を保つために、操向ハンドルの最大切り角時などには旋回内側の走行クローラを逆転させて機体をスピンターンする構成とさせているが、湿田の度合が高まるとスピンターン状態とならない方が走破性が向上する。
【0003】
【課題を解決するための手段】
したがって本発明は、走行変速レバーの操作によって左右走行クローラの駆動速度を無段階に変更する走行変速部材と、操向ハンドルの操作によって左右走行クローラの駆動速度の差を無段階に変更する操向部材とを備えた移動農機において、走行変速部材の第1油圧モータの作動油圧を検出させる変速油圧センサと、操向部材の第2油圧モータの作動油圧を検出させる操向油圧センサとを設けて、走行変速レバーの操作量によって決定される車速を操向ハンドルの操作量に比例して減速させると共に操向部材の作動油圧の変化を操向油圧センサで検出して、検出結果に基づき変速操向コントローラで走行路面状況を自動的に判断し、操向ハンドルの操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御をたものであるから、走行路面状況が湿田や乾田に変わって走行クローラの転がり抵抗も変化するとき、この走行負荷の変化状態を変速部材或いは操向部材の作動油圧で検出して、操向ハンドルの操作量(切り角)に対する車速の減速割合を変更することによって旋回半径も変化させて、乾田や湿田などそのときの路面状況に応じた最適の旋回フィーリングで機体を旋回させて、旋回性能を向上させるものである。
また、乾田や湿田など路面状況を作動油圧の変化より容易に確認して、走行負荷を常に把握しながらの適正な作業を可能とさせるものである。
【0005】
さらに、脱穀部を有する移動農機において、脱穀クラッチがオンのとき操向ハンドルの操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御を行って、例えばコンバインにあって別途制御用の操作スイッチなど必要とすることなく、脱穀クラッチのオン・オフでもって適確に旋回フィーリング自動変更制御のオン・オフを行うもので、制御構造の簡略化や旋回性能及び取扱い操作性の向上など図るものである。
【0006】
またさらに、脱穀部を有する移動農機において、脱穀クラッチがオフのとき操向ハンドルの操作量に対する車速の減速割合を一定に保って、例えばコンバインにあって脱穀クラッチがオフとなる刈取作業以外には例えば乾田に適した一定の減速割合を保って、路面状況に関係なく操向ハンドルの切れ角と旋回半径の関係を一定とさせた旋回性能と操作性に秀れた旋回作業を可能とさせるものである。
【0007】
また、穀物タンクを有する移動農機において、穀物タンク内の穀物を取出す排出オーガの収納時のみ操向ハンドルの操作量に対する車速の減速割合を変更する旋回フィーリング自動変更制御を行って、例えばコンバインにあって別途制御用の操作スイッチなど必要とすることなく排出オーガの収納或いは使用状態によって適確に旋回フィーリング自動変更制御のオン・オフを行うもので、制御構造の簡略化や旋回性能及び取扱い操作性の向上などを図るものである。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1はコンバインの全体側面図、図2は同平面図であり、図中(1)は左右一対の走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は丸形操向ハンドル(19)及び運転席(20)などを備える運転台、(21)は運転席(20)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0009】
また、図3に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)は、1対の第1油圧ポンプ(23)及び第1油圧モータ(24)を備えて走行主変速用の油圧式無段変速機構を形成する走行変速部材(25)と、1対の第2油圧ポンプ(26)及び第2油圧モータ(27)を備えて旋回用の油圧式無段変速機構を形成する操向部材(28)とを備え、前記エンジン(21)の出力軸(21a)に第1及び第2油圧ポンプ(23)(26)の入力軸(29a)(29b)を伝達ベルト(30a)(30b)によって連結させ、前記各油圧ポンプ(23)(26)を駆動するように構成している。
【0010】
さらに、前記第1油圧モータ(24)の出力軸(31)に、副変速機構(32)及び差動機構(33)を介して左右走行クローラ(2)の各駆動輪(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有し、各遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)と、これらプラネタリギヤ(37)に噛合うリングギヤ(38)などで形成している。
【0011】
前記プラネタリギヤ(37)はサンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は各プラネタリギヤ(37)に噛み合う内歯(38a)を有してサンギヤ軸(39)とは同一軸芯上に配置させ、キャリヤ軸(40)に回転自在に軸支させ、キャリヤ軸(40)を延設して車軸を形成して駆動輪(34)を軸支させている。
【0012】
また、走行変速部材(25)は、第1油圧ポンプ(23)の回転斜板の角度変更調節により第1油圧モータ(24)の正逆回転と回転数の制御を行うもので、第1油圧モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)より各ギヤ(43)(44)(45)及び副変速機構(32)を介して、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達してサンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(44)を有する副変速軸(47)と、前記ギヤ(45)を介してセンタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に各1対の低速用ギヤ(50)(51)・中速用ギヤ(52)(53)・高速用ギヤ(54)(48)を設けて、低中速スライダ(55)及び高速スライダ(56)のスライド操作によって副変速の低速・中速・高速の切換を行うように構成している。なお低速・中速間及び中速・高速間には中立を有する。また前記ブレーキ軸(49)に駐車ブレーキ(57)を設けると共に、刈取部(8)に回転力を伝達する刈取PTO軸(58)にギヤ(59)(60)及び一方向クラッチ(61)を介して副変速軸(47)を連結させ、刈取部(8)を車速同調速度で駆動している。
【0013】
上記のように、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された第1油圧モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)を介して左右キャリヤ軸(40)に伝達させると共に、左右キャリヤ軸(40)に伝達された回転を左右の駆動輪(34)にそれぞれ伝え、左右走行クローラ(2)を駆動するように構成している。
【0014】
さらに、旋回用の油圧式無段変速機構で形成する操向部材(28)は、第2油圧ポンプ(26)の回転斜板の角度変更調節により第2油圧モータ(27)の正逆回転と回転数の制御を行うもので、操向出力ブレーキ(62)を有するブレーキ軸(63)と、操向出力クラッチ(64)を有するクラッチ軸(65)と、前記の左右リングギヤ(38)の外歯(38b)に常時噛合させる左右入力ギヤ(66)(67)を設け、第2油圧モータ(27)の出力軸(68)に前記ブレーキ軸(63)及び操向出力クラッチ(64)を介してクラッチ軸(65)を連結させ、クラッチ軸(65)に正転ギヤ(69)を介して右入力ギヤ(67)を連結させ、またクラッチ軸(65)に正転ギヤ(69)及び逆転ギヤ(70)を介して左入力ギヤ(66)を連結させている。そして、副変速スライダ(55)(56)の中立によって前記ブレーキ(62)を入にしかつクラッチ(64)を切にする一方、前記中立以外の副変速出力時にブレーキ(62)を切にしかつクラッチ(64)を入にし、右側のリングギヤ(38)の外歯(38b)に正転ギヤ(69)を介してモータ(27)回転力を伝え、また左側のリングギヤ(38)の外歯(38b)に正転ギヤ(69)及び逆転ギヤ(70)を介してモータ(27)回転を伝え、第2油圧モータ(27)を正転(逆転)時、左右同一回転数で、左リングギヤ(38)を逆転(正転)させ、かつ右リングギヤ(38)を正転(逆転)とさせるように構成している。
【0015】
而して、旋回用の第2油圧モータ(27)を停止させて左右リングギヤ(38)を静止固定させた状態で、走行用の第1油圧モータ(24)を駆動すると、第1油圧モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)・キャリヤ(41)を介して左右の走行クローラ(2)が左右同一回転方向で同一回転数によって駆動され、機体の前後方向直進走行が行われる。一方、走行用の第1油圧モータ(24)を停止させて左右のサンギヤ(36)を静止固定させた状態で、旋回用の第2油圧モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転、また右側の遊星ギヤ機構(35)が逆或いは正回転し、左右走行クローラ(2)を逆方向に駆動し、機体を左或いは右に旋回させる。また、走行用の第1油圧モータ(24)を駆動させながら、旋回用の第2油圧モータ(27)を駆動することにより、機体が左右に旋回して進路が修正されるもので、機体の旋回半径は第2油圧モータ(27)の出力回転数によって決定される。
【0016】
また、図2、図4に示す如く、前記運転台(18)の前部上面にステアリングコラム(71)を立設固定させ、ステアリングコラム(71)上面上方側に操向ハンドル(19)を縦軸回りに回転自在に取付けると共に、運転台(18)左側にサイドコラム(72)を設け、サイドコラム(72)下方にミッション(22)を配設させ、主変速レバー(73)、副変速レバー(74)、刈取クラッチレバー(75)、脱穀クラッチレバー(76)を前記サイドコラム(72)に取付ける。
【0017】
さらに、前記操向ハンドル(19)に連結させるハンドル軸(77)をステアリングコラム(71)上部に回転自在に軸支させると共に、ステアリングコラム(71)上部に操向入力軸(78)上端部を回転自在に軸支させ、前記ハンドル軸(77)のギヤ(79)と操向入力軸(78)のセクタギヤ(80)を噛合させて各軸(77)(78)を連結させる。
【0018】
また、前記ギヤ(79)は、270度の外周範囲に複数の歯(81)を形成し、90度の外周範囲を円弧(82)に形成し、操向ハンドル(19)の全回転角度を270度とし、左操向回転または右操向回転の角度を135度に設定し、操向ハンドル(19)回転操作を片手で作業者が容易に行えるように形成する。また、前記セクタギヤ(80)は、130度の外周範囲に複数の歯(83)を形成し、230度の外周範囲を円弧カム(84)に形成し、前記ギヤ(79)の歯(81)とセクタギヤ(80)の歯(83)を噛合せ、各ギヤ(79)(80)の最大正逆転時、前記円弧(82)両端のストッパ(85)と前記円弧カム(84)両端のストッパ(86)を当接させ、操向ハンドル(19)の回転を規制する。
【0019】
さらに、前記セクタギヤ(80)の円弧カム(84)中央に直進ノッチ(87)を形成すると共に、前記ステアリングコラム(71)上面壁にデテント軸(88)を回転自在に軸支させ、デテント軸(88)下端部にデテントアーム(89)を固定させ、デテントアーム(89)にローラ軸(90)を介してデテントローラ(91)を回転自在に軸支させ、前記円弧カム(84)にデテントローラ(91)を当接させ、直進ノッチ(87)に係脱自在にデテントローラ(91)を係合させ、操向ハンドル(19)を直進位置に支持させる。
【0020】
また、前記操向入力軸(78)に操向出力アーム(92)の一端を固定させ、操向ハンドル(19)を直進位置に戻す左右一対の直進バネ(93)(93)と、前記バネ(93)に抗して操向ハンドル(19)の回転速度を遅くする戻り抵抗アブソーバ(94)を、前記出力アーム(92)に連結させ、操向ハンドル(19)を左右に回転させる手動操作を行ったとき、ハンドル(19)から作業者が手を離すことにより、ハンドル(19)を緩やかに直進位置に自動的に戻し、作業者によるハンドル(19)直進戻し操作を省くと共に、スライドポテンショメータ型操向角度センサ(95)を前記出力アーム(92)に連結させ、操向ハンドル(19)の操向操作量を操向角度センサ(95)によって検出させる。
【0021】
さらに、図5に示す如く、前記主変速レバー(73)の変速操作位置及び中立位置及び前後進切換動作を検出するポテンショメータ型主変速センサ(96)と、前記副変速レバー(74)の変速操作位置及び中立位置を検出するポテンショメータ型副変速センサ(97)と、運転席(20)の作業者が切換えるステアリングコラム(71)上面の撮形手元操作部材(98)の操作によって操向ハンドル(19)の切れ角増大に対する車速の減速比を変更させるボリューム形旋回フィーリング設定器(99)と、前記操向角度センサ(95)を、マイクロコンピュータで形成する変速操向コントローラ(100)に入力接続させる。また、前記直進ノッチ(87)にデテントローラ(91)が係入する直進状態をデテントアーム(89)を介して検出するマイクロスイッチ型直進センサ(101)とを前記コントローラ(100)に入力接続させる。
【0022】
さらに、図3、図5に示す如く、主変速レバー(73)手動操作によって切換える電動変速モータ(103)を設け、前記主変速レバー(73)を操作して変速モータ(103)を作動させて第1油圧ポンプ(23)の斜板角度を変更させ、第1油圧モータ(24)の出力軸(31)の回転数を無段階に変化させたり、逆転させる前後進切換動作を行わせ、主変速レバー(73)の操作量に比例させて第1油圧モータ(24)の回転数を変更させると共に、前記操向ハンドル(19)手動操作によって切換える電動操向モータ(104)と、操向ハンドル(19)の直進操作並びに副変速機構(32)中立切換によって作動させる直進バルブ(105)と、該バルブ(105)に接続させる操向クラッチシリンダ(106)を設け、前記操向ハンドル(19)を操作して操向モータ(104)を作動させて第2油圧ポンプ(26)の斜板角度を変更させ、第2油圧モータ(27)の出力回転数を無段階に変化させたり、逆転させる左右操向動作を行わせ、走行方向を左右に変更して圃場枕地で方向転換したり進路を修正するもので、操向ハンドル(19)の操作量に比例させて操向モータ(27)の回転数を変更させると共に、前記操向ハンドル(19)の直進操作並びに副変速機構(32)の中立操作によって直進バルブ(105)が自動的に切換わり、操向クラッチシリンダ(106)を作動させて操向出力クラッチ(62)を切にして第2油圧モータ(27)の出力を中止し、操向駆動を中止させるように構成している。
【0023】
また、前記変速モータ(103)を正転または逆転させる増速及び減速回路(107)(108)を前記コントローラ(100)に接続させ、主変速レバー(73)操作量(操作角度)に対して変速モータ(103)による第1油圧ポンプ(23)の斜板角を略正比例させて変化させ、主変速レバー(73)の傾き操作に応じた車速を得ると共に、前記操向モータ(104)を正転または逆転させる左右旋回回路(109)(110)を前記コントローラ(100)に接続させ、操向ハンドル(19)の操向操作量(左右回転角度)に対して操向モータ(104)による第2油圧ポンプ(26)の斜板を略正比例させて変化させ、また図6の旋回出力線図に示す如く、主変速レバー(73)の前進操作時と後進操作時とでは、操向ハンドル(19)の左右回転に対して左右旋回出力を逆にし、前進時と後進時とで逆ハンドルになるのを防ぎ、四輪自動車と同じ操向動作を行わせて前後進させる。また、主変速レバー(73)が中立のときは、第2油圧ポンプ(26)の斜板角を零に保ち、第2油圧モータ(27)の出力を停止維持し、主変速中立状態下でのハンドル(19)操作による旋回動作を阻止すると共に、操向ハンドル(19)切れ角に応じて大きくなる第2油圧ポンプ(26)の斜板角の絶対値を主変速レバー(73)操作角度の絶対値と比例するように制御し、操向ハンドル(19)切れ角が一定のときに車速を変化させても旋回半径を一定に保ち、四輪自動車と同じ操向動作で旋回させる。また、直進バルブ(105)を切換えて操向クラッチシリンダ(106)を作動させる直進回路(111)を前記コントローラ(100)に接続させ、副変速中立またはハンドル(19)直進によって操向出力を自動的に停止させると共に、第1油圧モータ(24)の作動油圧を検出させる変速油圧センサ(112)と、第2油圧モータ(27)の作動油圧を検出させる操向油圧センサ(113)を設け、前記各油圧モータ(24)(27)による走行クローラ(2)駆動負荷を各油圧センサ(112)(113)によって検出して前記コントローラ(100)に入力させ、前記条件センサ(102)並びに各油圧センサ(112)(113)の検出結果に基づき、走行路面状況(乾田または湿田など)を自動的に判断させる。
【0024】
また路面状況に関係なく操向ハンドル(19)の操作量(切れ角)に比例させて車速を自動的に所定割合で減速させる通常の旋回減速制御と、路面状況に応じ操向ハンドル(19)の操作量に対する車速の減速割合を自動的に変化させて車速を減速する旋回フィーリング自動変更制御とを行うように設け、これら減速制御と変更制御との切換えを制御切換スイッチ(114)で行うもので、該切換スイッチ(114)と、脱穀クラッチ或いは脱穀クラッチレバー(76)のオン・オフを検出する脱穀クラッチセンサ(115)と、前記排出オーガ(17)の機体内収納を検出する排出オーガ収納センサ(116)とを前記コントローラ(100)に入力させると共に、前記油圧センサ(112)(113)の検出結果に基づいて判定される走行路面状況をコンクリート路面・乾田・湿田・超湿田などの表示モードで表示する表示器(117)をコントローラ(100)に接続させている。
【0025】
そして前記切換スイッチ(114)の切換えによる通常の旋回一定減速制御にあっては、図7の車速出力線図に示す如く、操向ハンドル(19)の切れ角の増大に伴い、主変速レバー(73)変速位置で決定される車速を減速させるもので、主変速レバー(73)を一定位置に保ち乍らハンドル(19)切れ角に比例させて減速させ、ハンドル(19)を直進に戻すだけでレバー(73)速度に自動的に戻ると共に、ハンドル(19)最大切り角でスピンターン速度に減速され、またハンドル(19)の直進を中心とする不感帯(約15度の回転角度)でレバー(73)速度を保たせ、収穫作業中に未刈り穀稈列に沿わせる条合せ(進路修正)のための操向操作を行っても、走行速度が減速されたり増速されて収穫作業途中に走行速度が不均一に変化するのを防ぎ、作業者の運転感覚とコンバインの走行動作との間にずれが生じることなく適正な操向操作を行わせると共に、手元操作部材(98)を用いた作業者の手動切換により、鋭敏な旋回、通常間旋回、滑らかな旋回となるように減速比を変化させる制御を前記部材(98)の手動によって行わせ、作業内容、圃場条件、作物状況などに適応させた旋回性能を得る。
【0026】
さらに、図8の旋回出力線図に示す如く、前記主変速レバー(73)の操作角度を検出する主変速センサ(96)入力に対し、操向角度センサ(95)に基づきコントローラ(100)から出力される操向モータ(104)制御出力を二次曲線形に変化させ、容積効率が低い第2油圧ポンプ(26)の斜板の小さいときに車速が遅くても操向ハンドル(19)を少し切るだけで斜板を大きく変化させ、第2油圧ポンプ(26)及び油圧モータ(27)の特性を電気的に補正して遅い車速であっても敏感に操向モータ(104)により第2油圧ポンプ(26)を旋回制御し、主変速レバー(73)の変速全域で操向ハンドル(19)の切れ角に対して走行クローラ(2)の旋回半径を略同一に保つもので、主変速レバー(73)が高速のときよりも低速のときの操向ハンドル(19)操作量に対する第2油圧ポンプ(26)制御量の割合を大きくし、第2油圧ポンプ(26)出力が低効率になる低速域で車速が遅いときであっても操向ハンドル(19)の少量操作によって適正な旋回動作を行わせ、操向ハンドル(19)の操作量と走行クローラ(2)の旋回半径を一致させる操向操作性及び操向機能の向上を図ると共に、主変速レバー(73)の中立を主変速センサ(96)によって検出して第2油圧ポンプ(26)を中立に維持させ、停止時の走行クローラ(2)の旋回動作を阻止し乍ら低速域の旋回性能を向上させ、操向ハンドル(19)の操作性向上並びに運転操作の簡略化などを図る。
【0027】
さらに、図9は機体の左右旋回時における操向ハンドル(19)の切れ角と左右走行クローラ(2)の速度の関係を示すもので、ハンドル(19)の切れ角が大となる程左右走行クローラ(2)の速度差は大となると共に、左右走行クローラ(2)の平均速度となる機体中心速度も副変速レバー(74)の走行速度(高速・標準・低速)状態に応じて減速される。直進位置の操向ハンドル(19)を左方向(右方向)に約15度回転させる刈取り進路修正範囲では、変速出力が直進と略同一位置に維持されると共に、第2油圧ポンプ(26)によって第2油圧モータ(27)を正転(逆転)させる操向出力によって左方向(右方向)に旋回させ、未刈り穀稈(作物)列の湾曲に合せる進路修正を行う。このとき、旋回内側の走行クローラ(2)の減速量と、旋回外側の走行クローラ(2)の増速量が略等しくなり、機体中心速度が直進と略同一速度に保たれる。また、操向ハンドル(19)を直進位置から15度以上回転させると、変速出力が左旋回及び右旋回のいずれでも減速変化し、第1油圧ポンプ(23)及びモータ(24)の走行変速出力を減速させ、左右走行クローラ(2)(2)を同一方向に回転駆動させて前進(または後進)させ、左右走行クローラ(2)(2)の走行速度差により左方向(右方向)に機体を旋回する動作を行わせ、未刈り穀稈(作物)列から外れたときに元の列に戻したり隣の列に移動させる進路修正を行う。さらに、操向ハンドル(19)を約116度回転させると、旋回出力が最高出力維持され、135度の切角範囲で機体中心速度が直進時の約4分の1に減速され、旋回内側の走行クローラ(2)が逆転駆動され、左右走行クローラ(2)の間の旋回中心回りに機体が旋回するスピンターン動作が行われ、左右走行クローラ(2)の左右幅だけ旋回方向にずらせて機体を180度方向転換させるもので、ハンドル切角0度からハンドル切れ角135度の範囲で操向ハンドル(19)を回転させて左または右方向の旋回操作を行い、直進位置を中心とした左右15度のハンドル(19)回転範囲で未刈り穀稈(作物)列に沿って移動する条合せ進路修正を、直進時の走行速度を維持し乍ら行うと共に、左右116度乃至135度のハンドル(19)回転により、旋回部材(28)を最高出力維持し乍ら、圃場枕地で機体を方向転換させて次作業工程に移動させるスピンターン動作を、直進時の約4分の1の走行速度(減速率25パーセント)に自動的に減速して行う。
【0028】
さらに、副変速を標準(秒速1.5メートル)速度に保ち、操向ハンドル(19)を90度回転させたとき、主変速レバー(68)操作により主変速出力を高速及び3分の2及び3分の1に変更しても、機体の旋回半径が略一定に保たれた状態で、旋回速度(機体中心速度)だけを変化させる。また、直進位置を基準として操向ハンドル(19)の約15度の操向操作範囲で第1油圧ポンプ(23)及び第1油圧モータ(24)を直進状態に維持させ、農作業中に作物列または畦などに機体を沿わせる操向操作を行っても走行速度が不均一に変化するのを防止し、略同一走行速度を保ち乍ら農作業中の進路修正を行え、作業者の運転感覚と機体の走行動作とを略一致させて適正な操向操作を行える。
【0029】
一方、前記切換スイッチ(114)をフィーリング変更側に切換えて、操向ハンドル(19)の操作量(切れ角)に対する車速の減速割合を自動的に変化させて、ハンドル(19)操作量に応じただけ車速を減速させる旋回フィーリング変更制御にあっては、前記変速油圧センサ(112)(或いは操向油圧センサ(113))により一定時間内に検出される油圧圧力(P)よりその平均圧力(P1)が算出されるとき、図11に示す如く路面モードの表図より路面状況が判定されるもので、平均圧力(P1)及び転がり抵抗と路面状況のコンクリート路面・乾田・湿田・超湿田との間には表図の如く関連性を有して、平均圧力(P1)の算出結果に基づいて、コンクリート路面・乾田・湿田・超湿田の判別が行われて、表示器(117)にその路面モードの表示が行われる。
【0030】
また路面モードが確定すると、図12に示す如く、各モード毎にハンドル角度と左右クローラ速度との関係が表示設定される旋回軌跡のグラフより、そのモードに最適の最大切れ角での最大減速量(A1)(A2)(A3)(A4)(A1<A2<A3<A4)が算出され、旋回時には該減速量(A1)(A2)(A3)(A4)に基づく車速の減速制御が行われ、各路面状況に最適の旋回半径で機体の旋回が行われて、旋回フィーリングを向上させるものである。
【0031】
またこのような旋回フィーリング自動変更制御は脱穀クラッチのオン時に行い、オフ時にはこの変更制御を中止し、図12の各モードのなかの1つの乾田モードに固定して該乾田モードに基づいた旋回減速制御を行うもので、刈取クラッチがオンの通常の刈取脱穀作業中は旋回フィーリングを良好とさせた旋回作業を行う一方、刈取クラッチをオフとさせた機体の旋回作業などでは、路面状況に関係なくハンドル(19)の切れ角に対し旋回半径を略一定に保った機体の旋回を行って、旋回性能と操作性を良好とさせるものである。また脱穀クラッチのオン・オフによって旋回フィーリング自動変更制御のオン・オフを行うことによって、別途この制御用の操作スイッチなどの設置も必要なく適確な制御のオン・オフも行えて、制御構造の簡略化や旋回性能及び取扱い操作性の向上も図ることができる。
【0032】
さらに、排出オーガ(17)を機体内に収納しての刈取作業中での旋回では、路面状況に応じて旋回フィーリングを変更させての機体の旋回を自動的に行うと共に、排出オーガ(17)の収納時以外の旋回では、路面状況に関係なくハンドル(19)の切れ角に対し旋回半径を略一定に保った機体の旋回を行って旋回性能と操作性を良好とさせるもので、別途旋回フィーリング自動変更制御用の操作スイッチなど必要とすることなく適確に旋回フィーリング自動変更制御のオン・オフを自動的に可能とさせて、制御構造の簡略化や旋回性能及び取扱い操作性の向上などを図るものである。
【0033】
このように、走行変速レバーである主変速レバー(73)の操作によって左右走行クローラ(2)の駆動速度を無段階に変更する油圧式走行変速部材(25)と、操向ハンドル(19)の操作によって左右走行クローラ(2)の駆動速度の差を無段階に変更する油圧式操向部材(28)とを備えた移動農機において、主変速レバー(73)の操作量によって決定される車速を操向ハンドル(19)の操作量に比例して減速させると共に、前記変速部材(25)或いは操向部材(28)の作動油圧の変化でもって操向ハンドル(19)の操作量に対する車速の減速割合を自動的に変更して、走行路面状況が湿田や乾田に変わって走行クローラ(2)の転がり抵抗も変化するとき、この走行負荷の変化状態を変速部材(25)或いは操向部材(28)の作動油圧で検出して、操向ハンドル(19)の操作量(切り角)に対する車速の減速割合を変更することによって旋回半径も変化させて、乾田や湿田などそのときの路面状況に応じた最適の旋回フィーリングで機体を旋回させて、旋回性能を向上させるもので、また変速部材(25)或いは操向部材(28)の作動油圧の変化でもって、走行路面状況を自動的に判断して、現状の機体の走行する路面状況や走行部の駆動負荷状況の把握も容易とさせて、作業の安定且つ適正化を促進させるものである。
【0034】
【発明の効果】
以上実施例から明らかなように本発明は、走行変速レバーの操作によって左右走行クローラの駆動速度を無段階に変更する走行変速部材と、操向ハンドルの操作によって左右走行クローラの駆動速度の差を無段階に変更する操向部材とを備えた移動農機において、走行変速部材の第1油圧モータの作動油圧を検出させる変速油圧センサと、操向部材の第2油圧モータの作動油圧を検出させる操向油圧センサとを設けて、走行変速レバーの操作量によって決定される車速を操向ハンドルの操作量に比例して減速させると共に操向部材の作動油圧の変化を操向油圧センサで検出して、検出結果に基づき変速操向コントローラで走行路面状況を自動的に判断し、操向ハンドルの操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御をたものであるから、走行路面状況が湿田や乾田に変わって走行クローラの転がり抵抗も変化するとき、この走行負荷の変化状態を変速部材或いは操向部材の作動油圧で検出して、操向ハンドルの操作量(切り角)に対する車速の減速割合を変更することによって旋回半径も変化させて、乾田や湿田などそのときの路面状況に応じた最適の旋回フィーリングで機体を旋回させて、旋回性能を向上させるものである。
また、乾田や湿田など路面状況を作動油圧の変化より容易に確認して、走行負荷を常に把握しながらの適正な作業を可能とさせるものである。
【0036】
さらに、脱穀部(4)を有する移動農機において、脱穀クラッチがオンのとき操向ハンドル(19)の操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御を行うものであるから、例えばコンバインにあって別途旋回フィーリング変更制御用の操作スイッチなど必要とすることなく脱穀クラッチのオン・オフでもって適確に旋回フィーリング変更制御のオン・オフを行って、制御構造の簡略化や旋回性能及び取扱い操作性の向上などを図ることができるものである。
【0037】
またさらに、脱穀部(4)を有する移動農機において、脱穀クラッチがオフのとき操向ハンドル(19)の操作量に対する車速の減速割合を一定に保つものであるから、例えばコンバインにあって脱穀クラッチがオフとなる刈取作業以外には例えば乾田モードに適した一定の減速割合を保って、路面状況に関係なく操向ハンドル(19)の切れ角と旋回半径の関係を一定とさせた旋回性能と操作性良好な旋回作業を可能とさせることができるものである。
【0038】
また、穀物タンク(15)を有する移動農機において、穀物タンク(15)内の穀物を取出す排出オーガ(17)の収納時のみ操向ハンドル(19)の操作量に対する車速の減速割合を変更する旋回フィーリング自動変更制御を行うものであるから、例えばコンバインにあって別途旋回フィーリング変更制御用の操作スイッチなど必要とすることなく排出オーガ(17)の収納或いは使用状態によって適確に旋回フィーリング変更制御のオン・オフを自動的に可能とさせて、制御構造の簡略化や旋回性能及び取扱い操作性の向上などを図ることができるものである。
【図面の簡単な説明】
【図1】コンバインの全体側面図。
【図2】コンバインの全体平面図。
【図3】ミッション駆動系の説明図。
【図4】操向ハンドル部の平面説明図。
【図5】変速及び操向制御回路図。
【図6】操向ハンドルと旋回出力を示す線図。
【図7】操向ハンドルと変速出力を示す線図。
【図8】主変速レバーと旋回出力を示す線図。
【図9】主変速と操向ハンドル操作を示す線図。
【図10】フローチャート。
【図11】油圧センサの検出値と路面状況の関係を示す表図。
【図12】各モード線図。
【符号の説明】
(2) 走行クローラ
(4) 脱穀部
(15) 穀物タンク
(19) 操向ハンドル
(25) 走行変速部材
(28) 操向部材
(73) 主変速レバー(走行変速レバー)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile agricultural machine such as a combine or a tilling tractor or a field management vehicle that continuously harvests and thresh cereals in a field.
[0002]
[Problems to be solved by the invention]
Conventionally, the driving force is transmitted to the left and right traveling crawlers via a belt or hydraulic continuously variable transmission mechanism that can change the traveling speed steplessly by operating the traveling speed change lever, and the vehicle is moved at an arbitrary vehicle speed and is steered by the steering handle. There is a technique for controlling a differential mechanism by operating a continuously variable transmission mechanism for changing the driving path of the left and right traveling crawlers in a stepless manner and changing the traveling path. The turning radius (calculated) of the airframe with respect to the turning angle of the steering wheel is kept substantially the same regardless of the vehicle speed, and the airframe is turned with a driving feeling similar to that of a normal automobile. However, in the case of a combine, in order to maintain adaptability in the dry field, the traveling crawler on the inside of the turn is reversed to rotate the aircraft at the maximum turning angle of the steering handle. If the degree increases, the runnability improves if the spin turn state is not achieved.
[0003]
[Means for Solving the Problems]
  Therefore, the present invention provides a traveling speed change member that changes the driving speed of the left and right traveling crawler steplessly by operating the traveling speed change lever and a steering operation that changes the difference of the driving speed of the left and right traveling crawler steplessly by operating the steering handle. In a mobile agricultural machine equipped with a member,A shift oil pressure sensor for detecting the operating oil pressure of the first hydraulic motor of the traveling speed change member and a steering oil pressure sensor for detecting the operating oil pressure of the second hydraulic motor of the steering member;The vehicle speed determined by the operation amount of the traveling shift lever is decelerated in proportion to the operation amount of the steering handle.,Change in hydraulic pressure of steering memberIs detected by the steering hydraulic sensor, and the traveling road surface condition is automatically determined by the shift steering controller based on the detection result,Automatic turning feeling change control that automatically changes the deceleration rate of the vehicle speed relative to the steering wheel operation amountSettingTheBecauseWhen the traveling road surface condition changes to wet fields or dry fields, and the rolling resistance of the traveling crawler also changes, this change in traveling load is detected by the hydraulic pressure of the speed change member or steering member, and the steering handle operation amount (cut angle) ) By changing the deceleration rate of the vehicle speed with respect to), the turning radius is also changed, and the aircraft is turned with the optimum turning feeling according to the road surface conditions such as dry fields and wet fields, thereby improving the turning performance. .
  Also,It makes it possible to check the road surface conditions such as dry fields and wet fields more easily than changes in hydraulic pressure, and to enable proper work while constantly grasping the running load.
[0005]
Furthermore, in a mobile agricultural machine having a threshing unit, when the threshing clutch is on, a turning feeling automatic change control is performed to automatically change the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle. The turning feeling automatic change control is turned on and off accurately by turning the threshing clutch on and off without the need for an operation switch, etc., simplifying the control structure, turning performance and handling operability It is intended to improve.
[0006]
Furthermore, in a mobile agricultural machine having a threshing section, when the threshing clutch is off, keep the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle constant, for example, except in the harvesting work in the combine where the threshing clutch is off For example, maintaining a constant deceleration rate suitable for dry fields, and enabling turning work with excellent turning performance and operability by making the relationship between the turning angle of the steering handle and turning radius constant regardless of the road surface condition It is.
[0007]
Also, in a mobile agricultural machine having a grain tank, turning feeling automatic change control is performed to change the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle only when storing the discharge auger that takes out the grain in the grain tank, for example, to combine The turning feeling automatic change control is appropriately turned on and off depending on the storage or use state of the discharge auger without the need for a separate control switch. Simplified control structure, turning performance and handling It is intended to improve operability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is an overall side view of the combine, and FIG. 2 is a plan view thereof. In FIG. 1, (1) is a track frame on which a pair of left and right traveling crawlers (2) are installed, and (3) is the track frame (1). A machine base to be installed, (4) is a threshing section that stretches the feed chain (5) to the left and incorporates a handling cylinder (6) and a processing cylinder (7), (8) is a cutting blade (9) and grains A cutting part provided with a reed transport mechanism (10), (11) is a hydraulic cylinder that raises and lowers the reeding part (8) via a cutting frame (12), and (13) is a discharge part that faces the end of the waste chain (14). A cocoon processing unit, (15) is a cereal tank that carries the grain from the threshing unit (4) through the milling cylinder (16), and (17) carries the cereal of the tank (15) out of the machine. A discharge auger (18) is a cab with a round steering handle (19) and a driver seat (20), (2 ) Is an engine provided in the driver's seat (20) downward, and configured to threshing continuously harvests culms.
[0009]
Further, as shown in FIG. 3, the transmission case (22) for driving the traveling crawler (2) includes a pair of first hydraulic pump (23) and first hydraulic motor (24) for traveling main transmission. A traveling transmission member (25) forming a hydraulic continuously variable transmission mechanism, a pair of second hydraulic pump (26) and a second hydraulic motor (27) are provided to form a hydraulic continuously variable transmission mechanism for turning. A steering member (28), and input shafts (29a) (29b) of the first and second hydraulic pumps (23) (26) to the output shaft (21a) of the engine (21). The hydraulic pumps (23) and (26) are driven by being connected by (30b).
[0010]
Further, each drive wheel (34) of the left and right traveling crawler (2) is interlockedly connected to the output shaft (31) of the first hydraulic motor (24) via the auxiliary transmission mechanism (32) and the differential mechanism (33). The differential mechanism (33) has a pair of symmetrical planetary gear mechanisms (35) (35), and each planetary gear mechanism (35) includes one sun gear (36) and the sun gear ( 36) three planetary gears (37) meshing with the outer periphery of the ring 36, and a ring gear (38) meshing with these planetary gears (37).
[0011]
The planetary gear (37) is rotatably supported by the carrier (41) of the carrier shaft (40) coaxial with the sun gear shaft (39), and the left and right sun gears (36) (36) are sandwiched between the left and right carriers. The ring gear (38) has an inner tooth (38a) that meshes with each planetary gear (37) and is arranged on the same axis as the sun gear shaft (39), so that the carrier shaft (40 The carrier shaft (40) is extended to form an axle to support the drive wheel (34).
[0012]
The traveling speed change member (25) controls the forward / reverse rotation and the rotational speed of the first hydraulic motor (24) by adjusting the angle change of the rotary swash plate of the first hydraulic pump (23). The rotational output of the motor (24) is fixed to the sun gear shaft (39) from the transmission gear (42) of the output shaft (31) via the gears (43) (44) (45) and the auxiliary transmission mechanism (32). The sun gear (36) is rotated by being transmitted to the center gear (46). The sub-transmission mechanism (32) includes a sub-transmission shaft (47) having the gear (44) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46) via the gear (45). ), And a pair of low speed gears (50) (51), medium speed gears (52) (53), and high speed gears (54) between the auxiliary transmission shaft (47) and the brake shaft (49). (48) is provided, and the sub-shift is switched between low speed, medium speed, and high speed by the sliding operation of the low and medium speed slider (55) and the high speed slider (56). There is neutrality between low speed and medium speed and between medium speed and high speed. In addition, a parking brake (57) is provided on the brake shaft (49), and gears (59) (60) and a one-way clutch (61) are provided on a cutting PTO shaft (58) that transmits rotational force to the cutting portion (8). The sub-transmission shaft (47) is coupled to the cutting part (8) at the vehicle speed synchronization speed.
[0013]
As described above, the driving force from the first hydraulic motor (24) transmitted to the sun gear shaft (39) via the center gear (46) is transmitted to the left and right carrier shafts (40) via the left and right planetary gear mechanisms (35). ) And the rotation transmitted to the left and right carrier shafts (40) to the left and right drive wheels (34), respectively, to drive the left and right traveling crawler (2).
[0014]
Further, the steering member (28) formed by the turning hydraulic continuously variable transmission mechanism is configured to rotate the second hydraulic motor (27) forward and backward by adjusting the angle of the rotary swash plate of the second hydraulic pump (26). The rotation speed is controlled by a brake shaft (63) having a steering output brake (62), a clutch shaft (65) having a steering output clutch (64), and the left and right ring gears (38). Left and right input gears (66) and (67) that are always meshed with the teeth (38b) are provided, and the output shaft (68) of the second hydraulic motor (27) is connected to the output shaft (68) via the brake shaft (63) and the steering output clutch (64). The clutch shaft (65) is connected, the right input gear (67) is connected to the clutch shaft (65) via the forward rotation gear (69), and the forward rotation gear (69) and the reverse rotation are connected to the clutch shaft (65). The left input gear (66 through the gear (70) And by connecting the. Then, the brake (62) is turned on and the clutch (64) is turned off by the neutral of the auxiliary transmission sliders (55) and (56), while the brake (62) is turned off and the clutch is turned off at the time of the auxiliary transmission other than the neutral. (64) is turned on, the rotational force of the motor (27) is transmitted to the external teeth (38b) of the right ring gear (38) via the forward rotation gear (69), and the external teeth (38b) of the left ring gear (38) ) Is transmitted to the rotation of the motor (27) via the forward rotation gear (69) and the reverse rotation gear (70), and when the second hydraulic motor (27) rotates forward (reverse rotation), the left ring gear (38 ) In the reverse direction (forward rotation) and the right ring gear (38) in the forward direction (reverse rotation).
[0015]
Thus, when the traveling first hydraulic motor (24) is driven in a state where the second hydraulic motor (27) for turning is stopped and the left and right ring gears (38) are stationary and fixed, the first hydraulic motor ( The rotational output from 24) is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the left and right traveling crawlers are transmitted via the planetary gear (37) and carrier (41) of the left and right planetary gear mechanism (35). (2) is driven at the same rotational speed in the same rotational direction on the left and right, and the machine body travels straight forward and backward. On the other hand, when the second hydraulic motor (27) for rotation is driven to rotate in the forward and reverse directions with the first hydraulic motor (24) for traveling stopped and the left and right sun gears (36) stationary and fixed, the planet on the left side The gear mechanism (35) rotates forward or backward, and the right planetary gear mechanism (35) rotates backward or forward, driving the left and right traveling crawler (2) in the reverse direction and turning the aircraft to the left or right. Further, by driving the second hydraulic motor (27) for turning while driving the first hydraulic motor (24) for traveling, the aircraft turns left and right to correct the course. The turning radius is determined by the output rotational speed of the second hydraulic motor (27).
[0016]
As shown in FIGS. 2 and 4, a steering column (71) is erected and fixed on the upper surface of the front portion of the cab (18), and a steering handle (19) is vertically installed on the upper surface of the steering column (71). A side column (72) is provided on the left side of the cab (18), a transmission (22) is provided below the side column (72), a main transmission lever (73), and a sub transmission lever. (74) A mowing clutch lever (75) and a threshing clutch lever (76) are attached to the side column (72).
[0017]
Further, a handle shaft (77) connected to the steering handle (19) is rotatably supported on the steering column (71), and an upper end portion of the steering input shaft (78) is provided on the steering column (71). The shaft (77) (78) is coupled by rotating the shaft (77) and the gear (79) of the steering input shaft (78) and the sector gear (80) of the steering input shaft (78).
[0018]
Further, the gear (79) forms a plurality of teeth (81) in an outer peripheral range of 270 degrees, forms an outer peripheral range of 90 degrees in an arc (82), and sets the total rotation angle of the steering handle (19). The angle of left steering rotation or right steering rotation is set to 135 degrees, and the steering handle (19) is rotated so that the operator can easily perform the rotation operation with one hand. Further, the sector gear (80) forms a plurality of teeth (83) in the outer peripheral range of 130 degrees, forms an outer peripheral range of 230 degrees in the arc cam (84), and the teeth (81) of the gear (79) Are engaged with the teeth (83) of the sector gear (80), and when the maximum forward / reverse rotation of each gear (79) (80), the stopper (85) at both ends of the arc (82) and the stopper (85) at both ends of the arc cam (84) ( 86) abuts to regulate the rotation of the steering handle (19).
[0019]
Further, a rectilinear notch (87) is formed at the center of the arc cam (84) of the sector gear (80), and a detent shaft (88) is rotatably supported on the upper surface wall of the steering column (71). 88) A detent arm (89) is fixed to the lower end portion, a detent roller (91) is rotatably supported on the detent arm (89) via a roller shaft (90), and the detent roller is mounted on the arc cam (84). (91) is brought into contact, and the detent roller (91) is detachably engaged with the rectilinear notch (87) to support the steering handle (19) in the rectilinear position.
[0020]
One end of a steering output arm (92) is fixed to the steering input shaft (78), and a pair of right and left straight springs (93) (93) for returning the steering handle (19) to the straight position, and the springs The return resistance absorber (94), which slows the rotational speed of the steering handle (19) against (93), is connected to the output arm (92), and the steering handle (19) is rotated left and right manually. When the operator removes the handle (19) from the handle (19), the handle (19) is automatically and gently returned to the straight-ahead position, and the operator does not need to return the handle (19) to the straight-ahead position. The mold steering angle sensor (95) is connected to the output arm (92), and the steering operation amount of the steering handle (19) is detected by the steering angle sensor (95).
[0021]
Further, as shown in FIG. 5, a potentiometer-type main transmission sensor (96) for detecting the shift operation position and neutral position of the main shift lever (73) and the forward / reverse switching operation, and the shift operation of the sub shift lever (74). A steering handle (19) is operated by operating a potentiometer-type auxiliary transmission sensor (97) for detecting a position and a neutral position, and a photographing hand operating member (98) on the upper surface of a steering column (71) switched by an operator of a driver seat (20). ) The volume type turning feeling setting device (99) for changing the reduction ratio of the vehicle speed with respect to the increase in the turning angle of) and the steering angle sensor (95) are input-connected to a shift steering controller (100) formed by a microcomputer. Let Further, the controller (100) is input-connected to a microswitch type rectilinear sensor (101) for detecting, via a detent arm (89), a rectilinear state in which the detent roller (91) is engaged with the rectilinear notch (87). .
[0022]
Further, as shown in FIGS. 3 and 5, an electric transmission motor (103) that is switched by manual operation of the main transmission lever (73) is provided, and the transmission motor (103) is operated by operating the main transmission lever (73). The swash plate angle of the first hydraulic pump (23) is changed to change the rotational speed of the output shaft (31) of the first hydraulic motor (24) steplessly or to perform forward / reverse switching operation for reverse rotation. The rotation speed of the first hydraulic motor (24) is changed in proportion to the operation amount of the speed change lever (73), and the steering handle (19) is switched by manual operation. A linear valve (105) that is operated by the linear operation of (19) and the neutral speed change mechanism (32) and a steering clutch cylinder (106) that is connected to the valve (105); The steering motor (104) is operated by operating the handle (19) to change the swash plate angle of the second hydraulic pump (26), and the output rotational speed of the second hydraulic motor (27) is changed steplessly. Left and right to perform a left and right steering operation, change the traveling direction to the left and right to change the direction on the field headland and correct the course, steer in proportion to the amount of operation of the steering handle (19) The rotation speed of the motor (27) is changed, and the rectilinear valve (105) is automatically switched by the rectilinear operation of the steering handle (19) and the neutral operation of the subtransmission mechanism (32), and the steering clutch cylinder ( 106) is operated to disengage the steering output clutch (62), the output of the second hydraulic motor (27) is stopped, and the steering drive is stopped.
[0023]
Further, an acceleration / deceleration circuit (107) (108) for normal rotation or reverse rotation of the transmission motor (103) is connected to the controller (100), and the operation amount (operation angle) for the main transmission lever (73) is connected. The swash plate angle of the first hydraulic pump (23) by the transmission motor (103) is changed in an approximately direct proportion to obtain a vehicle speed according to the tilting operation of the main transmission lever (73), and the steering motor (104) is operated. A left / right turning circuit (109) (110) for forward rotation or reverse rotation is connected to the controller (100), and the steering motor (104) is operated with respect to the steering operation amount (left / right rotation angle) of the steering handle (19). The swash plate of the second hydraulic pump (26) is changed in approximately direct proportion, and as shown in the turning output diagram of FIG. 6, the steering handle is operated during forward operation and reverse operation of the main transmission lever (73). ( And left and right turning output to the inverse relative to the left and right rotation of 9) prevents the reversed handle during forward and reverse time, to reverse pre-made to perform the same steering operation as a four-wheeled vehicle. When the main transmission lever (73) is neutral, the swash plate angle of the second hydraulic pump (26) is kept at zero, the output of the second hydraulic motor (27) is stopped and maintained under the main transmission neutral state. The absolute value of the swash plate angle of the second hydraulic pump (26), which is increased according to the turning angle of the steering handle (19), is prevented while the turning operation by the steering wheel (19) operation is prevented. The steering handle (19) is controlled to be proportional to the absolute value of the steering wheel (19), and the turning radius is kept constant even when the vehicle speed is changed when the turning angle is constant, and the steering wheel is turned by the same steering operation as the four-wheeled vehicle. Further, a straight travel circuit (111) for operating the steering clutch cylinder (106) by switching the straight travel valve (105) is connected to the controller (100), and the steering output is automatically generated by the sub-shift neutral or the straight travel of the handle (19). A transmission hydraulic pressure sensor (112) for detecting the hydraulic pressure of the first hydraulic motor (24) and a steering hydraulic pressure sensor (113) for detecting the hydraulic pressure of the second hydraulic motor (27) are provided. The driving load of the traveling crawler (2) by the hydraulic motors (24) and (27) is detected by the hydraulic sensors (112) and (113) and input to the controller (100), and the condition sensor (102) and the hydraulic pressures are input. Based on the detection results of the sensors (112) and (113), the traveling road surface condition (such as dry fields or wet fields) is automatically determined.
[0024]
In addition, normal turning deceleration control that automatically decelerates the vehicle speed at a predetermined rate in proportion to the operation amount (cut angle) of the steering handle (19) regardless of the road surface condition, and the steering handle (19) according to the road surface condition. Automatic change control for turning feeling for reducing the vehicle speed by automatically changing the deceleration rate of the vehicle speed with respect to the operation amount of the vehicle, and switching between the deceleration control and the change control is performed by the control switch (114). The changeover switch (114), the threshing clutch sensor (115) for detecting on / off of the threshing clutch or the threshing clutch lever (76), and the discharge auger for detecting the housing of the discharge auger (17). The storage sensor (116) is input to the controller (100), and the running is determined based on the detection results of the hydraulic sensors (112) (113). Road surface conditions and to connect the display unit to be displayed in the display mode such as concrete road surface, dry paddy field, Shitsuden Ultra Shitsuden a (117) to the controller (100).
[0025]
In normal turning constant deceleration control by switching the changeover switch (114), as shown in the vehicle speed output diagram of FIG. 7, as the turning angle of the steering handle (19) increases, the main speed change lever ( 73) Decelerates the vehicle speed determined by the speed change position. While maintaining the main speed change lever (73) at a constant position, the vehicle speed is reduced in proportion to the turning angle of the handle (19), and the handle (19) is simply returned straight. The lever automatically returns to the lever (73) speed, decelerates to the spin turn speed at the maximum turning angle of the handle (19), and the lever in a dead zone (rotation angle of about 15 degrees) centered on the straight advance of the handle (19). (73) Even if a steering operation is performed for adjusting the alignment (course correction) to keep the speed and along the uncut grain row during the harvesting operation, the traveling speed is decelerated or increased so that it is in the middle of the harvesting operation. The running speed is uneven , The steering operation is performed properly without causing a deviation between the operator's driving sensation and the traveling operation of the combine, and the operator is manually switched using the hand operating member (98). By the above, the member (98) is manually controlled to change the reduction ratio so as to make a sharp turn, a normal turn, and a smooth turn, and the turning performance adapted to the work content, field conditions, crop conditions, etc. Get.
[0026]
Further, as shown in the turning output diagram of FIG. 8, in response to the input of the main transmission sensor (96) for detecting the operation angle of the main transmission lever (73), from the controller (100) based on the steering angle sensor (95). The control output of the steering motor (104) to be output is changed to a quadratic curve, and the steering handle (19) can be operated even when the vehicle speed is slow when the swash plate of the second hydraulic pump (26) having low volumetric efficiency is small. The swash plate is greatly changed by only slightly turning, and the characteristics of the second hydraulic pump (26) and the hydraulic motor (27) are electrically corrected, and the second steering motor (104) is sensitive to the second even at a slow vehicle speed. The turning of the hydraulic pump (26) is controlled, and the turning radius of the traveling crawler (2) is kept substantially the same with respect to the turning angle of the steering handle (19) in the entire shifting region of the main transmission lever (73). When lever (73) is fast The ratio of the control amount of the second hydraulic pump (26) to the operation amount of the steering handle (19) at low speed is increased, and the vehicle speed is low in the low speed range where the output of the second hydraulic pump (26) becomes low efficiency. Even if there is a steering wheel, the steering wheel (19) is operated by a small amount of turning, and the steering handle (19) and the traveling crawler (2) have the same steering operability and steering function. In addition, the neutrality of the main transmission lever (73) is detected by the main transmission sensor (96) to maintain the second hydraulic pump (26) in a neutral state, and the turning operation of the traveling crawler (2) when stopped is performed. While preventing, the turning performance in the low speed region is improved, the operability of the steering handle (19) is improved, and the driving operation is simplified.
[0027]
Further, FIG. 9 shows the relationship between the turning angle of the steering handle (19) and the speed of the left and right traveling crawler (2) when the aircraft is turning left and right. As the turning angle of the steering wheel (19) becomes larger, the vehicle travels left and right. The speed difference of the crawler (2) becomes large, and the airframe center speed, which is the average speed of the left and right traveling crawlers (2), is also reduced according to the traveling speed (high speed / standard / low speed) state of the auxiliary transmission lever (74). The In the cutting path correction range in which the steering handle (19) in the rectilinear position is rotated about 15 degrees in the left direction (right direction), the shift output is maintained at substantially the same position as the rectilinear advance, and the second hydraulic pump (26) The second hydraulic motor (27) is turned leftward (rightward) by the steering output for normal rotation (reverse rotation), and the course is corrected to match the curve of the uncut grain culm (crop) row. At this time, the deceleration amount of the traveling crawler (2) inside the turning and the acceleration amount of the traveling crawler (2) outside the turning become substantially equal, and the body center speed is kept at substantially the same speed as the straight traveling. Further, when the steering handle (19) is rotated by 15 degrees or more from the straight traveling position, the shift output is decelerated in both the left turn and the right turn, and the first hydraulic pump (23) and the motor (24) are shifted. The output is decelerated, the left and right traveling crawlers (2) and (2) are rotated in the same direction to advance (or reverse), and the left and right traveling crawlers (2) and (2) move leftward (rightward) due to the difference in traveling speed. The operation of turning the aircraft is performed, and when it is out of the uncut cereal (crops) row, it is returned to the original row or the course is corrected to move to the next row. Further, when the steering handle (19) is rotated by about 116 degrees, the turning output is maintained at the maximum output, and the center speed of the aircraft is reduced to about one-fourth of the straight angle in the range of 135 degrees. The traveling crawler (2) is driven in reverse, and a spin turn operation is performed in which the aircraft turns around the turning center between the left and right running crawlers (2), and the left and right running crawlers (2) are shifted in the turning direction by the right and left width. Rotate the steering handle (19) within the range of the steering angle from 0 ° to the steering angle of 135 °, and turn left or right to turn left and right around the straight position. 15 degree handle (19) Alignment course correction that moves along the row of uncut grain cereals (crop) within the range of rotation while maintaining the traveling speed when traveling straight, and handles from 116 to 135 degrees on the left and right (19 The rotation speed of the turning member (28) is reduced by about one-fourth when traveling straight, while turning the swivel member (28) while maintaining the maximum output, and moving to the next work step on the field headland. Automatically decelerate to 25%).
[0028]
Further, when the sub-shift is maintained at a standard speed (1.5 meters per second) and the steering handle (19) is rotated by 90 degrees, the main shift output is set to a high speed and two thirds by operating the main shift lever (68). Even if it is changed to 1/3, only the turning speed (aircraft center speed) is changed in a state where the turning radius of the airframe is kept substantially constant. Further, the first hydraulic pump (23) and the first hydraulic motor (24) are maintained in a straight traveling state within a steering operation range of about 15 degrees of the steering handle (19) with reference to the straight traveling position, so that a crop row is produced during farm work. Or, even if the steering operation is carried out along the dredger, etc., the traveling speed is prevented from changing unevenly, and the course can be corrected during farm work while maintaining the same traveling speed. Appropriate steering operation can be performed by substantially matching the traveling motion of the aircraft.
[0029]
On the other hand, the changeover switch (114) is switched to the feeling change side, and the deceleration rate of the vehicle speed with respect to the operation amount (cut angle) of the steering handle (19) is automatically changed to the operation amount of the handle (19). In the turning feeling change control for decelerating the vehicle speed in response, the average is obtained from the hydraulic pressure (P) detected within a predetermined time by the shift hydraulic pressure sensor (112) (or the steering hydraulic pressure sensor (113)). When the pressure (P1) is calculated, the road surface condition is judged from the road surface mode chart as shown in FIG. 11, and the average pressure (P1), rolling resistance and road surface condition concrete road surface / dry field / wet field / super As shown in the chart, there is a relationship with the wet fields, and based on the calculation result of the average pressure (P1), the concrete road surface, dry fields, wet fields, and super wet fields are determined, and the indicator (117) In Display road mode of of is performed.
[0030]
When the road surface mode is determined, as shown in FIG. 12, the maximum deceleration amount at the optimum maximum turning angle for the mode is shown from the turning locus graph in which the relationship between the handle angle and the left and right crawler speeds is displayed for each mode. (A1) (A2) (A3) (A4) (A1 <A2 <A3 <A4) is calculated, and deceleration control of the vehicle speed is performed based on the deceleration amount (A1) (A2) (A3) (A4) during turning. In other words, the airframe is turned with the optimum turning radius for each road surface condition, and the turning feeling is improved.
[0031]
Further, such turning feeling automatic change control is performed when the threshing clutch is turned on, and when the threshing clutch is turned off, the change control is stopped, and the turning based on the dry rice field mode is fixed to one dry rice mode in each mode of FIG. During normal reaping and threshing work with the mowing clutch turned on, turning work with a good feeling of turning is performed, while in turning work with the mowing clutch turned off, etc. Regardless of the turning angle of the handle (19), the aircraft is turned with the turning radius kept substantially constant, and the turning performance and operability are improved. In addition, by turning on and off the turning feeling automatic change control by turning on and off the threshing clutch, it is possible to turn on and off the control accurately without the need to separately install an operation switch for this control. Can be simplified, turning performance and handling operability can be improved.
[0032]
Further, in the turning during the cutting operation with the discharge auger (17) housed in the airframe, the airframe is automatically turned by changing the turning feeling according to the road surface condition, and the discharge auger (17 ) When turning except when storing, the aircraft is turned with the turning radius kept substantially constant with respect to the turning angle of the handle (19) regardless of the road surface condition, and the turning performance and operability are improved. Automatic turning feeling automatic change control can be turned on and off automatically without the need for operation switches for turning feeling automatic change control, simplifying the control structure, turning performance and handling operability It is intended to improve.
[0033]
Thus, the hydraulic travel speed change member (25) that changes the driving speed of the left and right travel crawler (2) steplessly by the operation of the main speed change lever (73) that is the travel speed change lever, and the steering handle (19). In a mobile agricultural machine having a hydraulic steering member (28) that changes the difference between the driving speeds of the left and right traveling crawlers (2) steplessly by operation, the vehicle speed determined by the amount of operation of the main transmission lever (73) is The vehicle is decelerated in proportion to the operation amount of the steering handle (19), and the vehicle speed is reduced with respect to the operation amount of the steering handle (19) by the change in the operating hydraulic pressure of the speed change member (25) or the steering member (28). The ratio is automatically changed, and when the traveling road surface condition changes to a wet field or a dry field and the rolling resistance of the traveling crawler (2) also varies, the variation state of the traveling load is changed to the speed change member (25) or the steering member (2 ) And the turning radius is also changed by changing the deceleration rate of the vehicle speed with respect to the operation amount (cutting angle) of the steering handle (19), depending on the road surface conditions such as dry fields and wet fields The vehicle is turned with the optimum turning feeling to improve the turning performance, and the road surface condition is automatically judged by the change in the hydraulic pressure of the speed change member (25) or the steering member (28). Thus, it is possible to easily grasp the road surface condition on which the current aircraft is traveling and the driving load condition of the traveling unit, and promote stable and appropriate work.
[0034]
【The invention's effect】
  As is apparent from the above embodiments, the present invention provides a difference between the driving speed of the left and right traveling crawlers by operating the steering handle and the traveling speed change member that changes the driving speed of the left and right traveling crawlers steplessly by operating the traveling speed change lever. In a mobile agricultural machine with a steering member that changes steplessly,A shift oil pressure sensor for detecting the operating oil pressure of the first hydraulic motor of the traveling speed change member and a steering oil pressure sensor for detecting the operating oil pressure of the second hydraulic motor of the steering member;The vehicle speed determined by the operation amount of the traveling shift lever is decelerated in proportion to the operation amount of the steering handle.,Change in hydraulic pressure of steering memberIs detected by the steering hydraulic sensor, and the traveling road surface condition is automatically determined by the shift steering controller based on the detection result,Automatic turning feeling change control that automatically changes the deceleration rate of the vehicle speed relative to the steering wheel operation amountSettingTheBecauseWhen the traveling road surface condition changes to wet fields or dry fields, and the rolling resistance of the traveling crawler also changes, this change in traveling load is detected by the hydraulic pressure of the speed change member or steering member, and the steering handle operation amount (cut angle) ) By changing the deceleration rate of the vehicle speed with respect to), the turning radius is also changed, and the aircraft is turned with the optimum turning feeling according to the road surface conditions such as dry fields and wet fields, thereby improving the turning performance. .
  In addition, road conditions such as dry fields and wet fields can be easily checked from changes in hydraulic pressure, and appropriate work can be performed while constantly grasping the running load.
[0036]
Furthermore, in the mobile agricultural machine having the threshing section (4), the turning feeling automatic change control is performed to automatically change the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle (19) when the threshing clutch is on. For example, the turning feeling change control can be turned on and off accurately by turning the threshing clutch on and off without the need for a separate operation switch for turning feeling change control in a combine. This simplifies and improves the turning performance and handling operability.
[0037]
Furthermore, in the mobile agricultural machine having the threshing section (4), when the threshing clutch is off, the speed reduction ratio of the vehicle speed with respect to the operation amount of the steering handle (19) is kept constant. In addition to the cutting operation in which the vehicle is turned off, for example, while maintaining a constant deceleration rate suitable for the dry paddy mode, the turning performance in which the relationship between the turning angle of the steering handle (19) and the turning radius is constant regardless of the road surface condition, This makes it possible to perform a turning operation with good operability.
[0038]
Further, in the mobile agricultural machine having the grain tank (15), the turn for changing the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle (19) only when the discharge auger (17) for taking out the grain in the grain tank (15) is stored. Since the automatic feeling change control is performed, for example, in the combine, there is no need for a separate operation switch for turning feeling change control. The change control can be automatically turned on and off to simplify the control structure and improve the turning performance and handling operability.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is an overall plan view of the combine.
FIG. 3 is an explanatory diagram of a mission drive system.
FIG. 4 is an explanatory plan view of a steering handle portion.
FIG. 5 is a shift and steering control circuit diagram.
FIG. 6 is a diagram showing a steering handle and a turning output.
FIG. 7 is a diagram showing a steering handle and a shift output.
FIG. 8 is a diagram showing a main transmission lever and a turning output.
FIG. 9 is a diagram showing main shift and steering handle operation.
FIG. 10 is a flowchart.
FIG. 11 is a table showing a relationship between a detection value of a hydraulic sensor and a road surface condition.
FIG. 12 is a mode diagram.
[Explanation of symbols]
(2) Traveling crawler
(4) Threshing part
(15) Grain tank
(19) Steering handle
(25) Traveling transmission member
(28) Steering member
(73) Main transmission lever (traveling transmission lever)

Claims (4)

走行変速レバー(73)の操作によって左右走行クローラ(2)の駆動速度を無段階に変更する走行変速部材(25)と、操向ハンドル(19)の操作によって左右走行クローラ(2)の駆動速度の差を無段階に変更する操向部材(28)とを備えた移動農機において、
走行変速部材(25)の第1油圧モータ(24)の作動油圧を検出させる変速油圧センサ(112)と、操向部材(28)の第2油圧モータ(27)の作動油圧を検出させる操向油圧センサ(113)とを設けて、
走行変速レバー(73)の操作量によって決定される車速を操向ハンドル(19)の操作量に比例して減速させると共に
操向部材(28)の作動油圧の変化を操向油圧センサ(113)で検出して、検出結果に基づき変速操向コントローラ(100)で走行路面状況を自動的に判断し、操向ハンドル(19)の操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御をけたことを特徴とする移動農機。
Driving speed of the operation of the travel gear lever (73) the drive speed of the left and right traveling crawlers (2) and the travel gear member to change steplessly (25), right and left travel crawlers by operating the steering wheel (19) (2) In a mobile agricultural machine equipped with a steering member (28) that changes the difference of steplessly,
A transmission hydraulic pressure sensor (112) for detecting the hydraulic pressure of the first hydraulic motor (24) of the travel transmission member (25), and a steering force for detecting the hydraulic pressure of the second hydraulic motor (27) of the steering member (28). A hydraulic sensor (113),
While decelerating the vehicle speed determined by the operation amount of the travel shift lever (73) in proportion to the operation amount of the steering handle (19) ,
A change in operating hydraulic pressure of the steering member (28) is detected by the steering hydraulic sensor (113), and based on the detection result, the shift steering controller (100) automatically determines the traveling road surface condition, and the steering handle ( mobile agricultural machine, wherein the automatic pivoting feeling automatic change control for changing the speed reduction ratio of the speed digits set with respect to the operation amount of 19).
脱穀部(4)を有する移動農機において、脱穀クラッチがオンのとき操向ハンドル(19)の操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御を行うように設けたことを特徴とする請求項1記載の移動農機。 In the mobile agricultural machine having the threshing part (4), when the threshing clutch is on, it is provided to perform turning feeling automatic change control that automatically changes the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle (19) The mobile agricultural machine according to claim 1. 脱穀部(4)を有する移動農機において、脱穀クラッチがオフのとき操向ハンドル(19)の操作量に対する車速の減速割合を一定に保つように設けたことを特徴とする請求項1記載の移動農機。 The mobile agricultural machine having a threshing section (4), wherein the speed reduction ratio of the vehicle speed with respect to the operation amount of the steering handle (19) is kept constant when the threshing clutch is off. Agricultural machinery. 穀物タンク(15)を有する移動農機において、穀物タンク(19)内の穀物を取出す排出オーガ(17)の収納時のみ操向ハンドル(19)の操作量に対する車速の減速割合を自動的に変更する旋回フィーリング自動変更制御を行うように設けたことを特徴とする請求項1記載の移動農機。 In a mobile agricultural machine with a grain tank (15), the deceleration rate of the vehicle speed with respect to the operation amount of the steering handle (19) is automatically changed only when the discharge auger (17) for taking out the grain in the grain tank (19) is stored. The mobile agricultural machine according to claim 1, wherein the mobile agricultural machine is provided so as to perform turning feeling automatic change control .
JP23222699A 1999-08-19 1999-08-19 Mobile farm machine Expired - Fee Related JP4422241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23222699A JP4422241B2 (en) 1999-08-19 1999-08-19 Mobile farm machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23222699A JP4422241B2 (en) 1999-08-19 1999-08-19 Mobile farm machine

Publications (2)

Publication Number Publication Date
JP2001055157A JP2001055157A (en) 2001-02-27
JP4422241B2 true JP4422241B2 (en) 2010-02-24

Family

ID=16935963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23222699A Expired - Fee Related JP4422241B2 (en) 1999-08-19 1999-08-19 Mobile farm machine

Country Status (1)

Country Link
JP (1) JP4422241B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6080458B2 (en) * 2012-09-28 2017-02-15 株式会社アイチコーポレーション Crawler type traveling vehicle

Also Published As

Publication number Publication date
JP2001055157A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP4142208B2 (en) Mobile farm machine
JP4430181B2 (en) Crawler work vehicle
JP4485623B2 (en) Mobile farm machine
JP2001163241A (en) Crewler traveling car
JP4267774B2 (en) Mobile farm machine
JP4422241B2 (en) Mobile farm machine
JP4065359B2 (en) Mobile farm machine
JP3998109B2 (en) Mobile farm machine
JP4390960B2 (en) Crawler car
JP2001138944A (en) Crawler traveling vehicle
JP3174952B2 (en) Moving agricultural machine
JP3902343B2 (en) Mobile farm machine
JP4112738B2 (en) Mobile farm machine
JP3816645B2 (en) Mobile farm machine
JP4417500B2 (en) Crawler car
JP3691703B2 (en) Mobile farm machine
JP3013179B1 (en) Traveling equipment for mobile farm machines
JP4417498B2 (en) Crawler car
JP2000102318A (en) Mobile agricultural machine
JP3429253B2 (en) Moving agricultural machine
JP4248714B2 (en) Crawler car
JP3429252B2 (en) Combine
JP2001163247A (en) Crawler traveling vehicle
JP3013178B1 (en) Moving agricultural machine
JP4248713B2 (en) Crawler car

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040810

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20041019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees