JP4142208B2 - Mobile farm machine - Google Patents

Mobile farm machine Download PDF

Info

Publication number
JP4142208B2
JP4142208B2 JP16630199A JP16630199A JP4142208B2 JP 4142208 B2 JP4142208 B2 JP 4142208B2 JP 16630199 A JP16630199 A JP 16630199A JP 16630199 A JP16630199 A JP 16630199A JP 4142208 B2 JP4142208 B2 JP 4142208B2
Authority
JP
Japan
Prior art keywords
steering
speed
turning
traveling
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16630199A
Other languages
Japanese (ja)
Other versions
JP2000177620A (en
Inventor
茂實 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP16630199A priority Critical patent/JP4142208B2/en
Publication of JP2000177620A publication Critical patent/JP2000177620A/en
Application granted granted Critical
Publication of JP4142208B2 publication Critical patent/JP4142208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • B62D11/10Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears
    • B62D11/14Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears differential power outputs being effected by additional power supply to one side, e.g. power originating from secondary power source
    • B62D11/18Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using gearings with differential power outputs on opposite sides, e.g. twin-differential or epicyclic gears differential power outputs being effected by additional power supply to one side, e.g. power originating from secondary power source the additional power supply being supplied hydraulically
    • B62D11/183Control systems therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/06Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source
    • B62D11/08Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of a single main power source using brakes or clutches as main steering-effecting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)
  • Soil Working Implements (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A working vehicle such as a mobile agricultural machine is designed such that it has an improved working efficiency if any spinning turn is not required, and has an improved running property in a wet farm. The vehicle has a pair of right and left crawlers (2), a speed change apparatus (25) for imparting traction force to the crawlers, a speed change lever (73) operable to control the speed change apparatus so as to alter running speed of the vehicle in a step-less manner. The vehicle further has a steering apparatus (28) and a steering wheel (19) operable to control the steering apparatus so as to alter difference in the running speeds between the crawlers (2). The running speed generally determined for each crawler by the speed change lever (73) can be decreased voluntarily and proportionally to an operated angle of the steering wheel (19). <IMAGE>

Description

【0001】
【発明の属する技術分野】
本発明は例えば圃場の穀稈を連続的に刈取って脱穀するコンバインまたは耕耘トラクタまたは圃場管理車などの移動農機に関する。
【0002】
【発明が解決しようとする課題】
従来、走行変速レバーの操作によって走行速度を無段階に変更自在なベルトまたは油圧無段変速機構を介して左右走行クローラに駆動力を伝えて任意の車速で移動させると共に、操向ハンドルによって操向用の無段変速機構を操作して差動機構を制御し、左右走行クローラの駆動速度の差を無段階に変化させ、走行進路を変更させる技術がある。しかし乍ら、操向ハンドルの操向操作だけでは直進時と旋回時とで車速が略一定に保たれ、旋回半径が小さいスピンターン動作などを行うときに走行変速レバーにより減速操作を行う必要があり、圃場枕地で方向転換するときに操向ハンドル操作と走行変速レバー操作の両方を行う必要がある。そこで、操向ハンドル操作と連動させて車速を自動的に減速させ、かつ直進走行に戻すハンドル操作と連動させて元の車速に自動的に増速させることにより、操向ハンドル操作だけでスピンターン動作などを適正車速に減速させて行え、面倒な走行変速操作を省けるが、スピンターンが不要な作業のときに減速によって作業能率が低下する不具合があると共に、湿田作業のときに減速によって走行性能が低下する不具合がある。また、操向ハンドル操作量に対する車速の減速比を小さくすると、路上または乾田などで機敏な旋回動作を得られず、特に乾田作業での方向転換(スピンターン)性能が低下する不具合がある。
【0003】
【課題を解決するための手段】
そこで、本発明では、走行変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、圃場表面泥土層が乾いている乾田走行に適している乾田モードと、圃場表面泥土層が軟弱な湿田走行に適している湿田モードとに分けて走行変速と操向の各制御を関連させて行わせるように構成し、旋回内側の走行クローラ(2)を逆転させるスピンターン旋回走行と、操向ハンドル(19)の最大操作量で旋回内側の走行クローラ(2)の回転方向を旋回外側の走行クローラ(2)と同一方向に維持する非スピンターン旋回走行を、選択切換自在として、前記湿田モードで非スピンターン旋回走行に選択切換することができるようにし、走行変速レバー(73)操作量によって決定される車速を操向ハンドル(19)操作量に比例させて減速させると共に、操向ハンドル(19)操作量に対する車速の減速比を変更自在とした移動農機であって、車速を操向ハンドル(19)角度によって減速させる減速時と減速させない不減速時とを切換選択するもので、不減速時に非スピンターン旋回走行を選択可能としたことを特徴とする移動農機を提供するものである。
【0004】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1はコンバインの全体側面図、図2は同平面図であり、図中(1)は左右一対の走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は丸形操向ハンドル(19)及び運転席(20)などを備える運転台、(21)は運転席(20)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0005】
さらに、図3に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)は、1対の第1油圧ポンプ(23)及び第1油圧モータ(24)を備えて走行主変速用の油圧式無段変速機構を形成する変速部材(25)と、1対の第2油圧ポンプ(26)及び第2油圧モータ(27)を備えて旋回用の油圧式無段変速機構を形成する操向部材(28)とを備え、前記エンジン(21)の出力軸(21a)に第1及び第2油圧ポンプ(23)(26)の入力軸(29a)(29b)を伝達ベルト(30a)(30b)によって連結させ、前記各油圧ポンプ(23)(26)を駆動するように構成している。
【0006】
また、前記第1油圧モータ(24)の出力軸(31)に、副変速機構(32)及び差動機構(33)を介して左右走行クローラ(2)の各駆動輪(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有し、各遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)と、これらプラネタリギヤ(37)に噛合うリングギヤ(38)などで形成している。
【0007】
前記プラネタリギヤ(37)はサンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は各プラネタリギヤ(37)に噛み合う内歯(38a)を有してサンギヤ軸(39)とは同一軸芯上に配置させ、キャリヤ軸(40)に回転自在に軸支させ、キャリヤ軸(40)を延設して車軸を形成して駆動輪(34)を軸支させている。
【0008】
また、走行用の油圧式無段変速部材(25)は、第1油圧ポンプ(23)の回転斜板の角度変更調節により第1油圧モータ(24)の正逆回転と回転数の制御を行うもので、第1油圧モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)より各ギヤ(43)(44)(45)及び副変速機構(32)を介して、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達してサンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(44)を有する副変速軸(47)と、前記ギヤ(45)を介してセンタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に各1対の低速用ギヤ(50)(51)・中速用ギヤ(52)(53)・高速用ギヤ(54)(48)を設けて、低中速スライダ(55)及び高速スライダ(56)のスライド操作によって副変速の低速・中速・高速の切換を行うように構成している。なお低速・中速間及び中速・高速間には中立を有する。また前記ブレーキ軸(49)に駐車ブレーキ(57)を設けると共に、刈取部(8)に回転力を伝達する刈取PTO軸(58)にギヤ(59)(60)及び一方向クラッチ(61)を介して副変速軸(47)を連結させ、刈取部(8)を車速同調速度で駆動している。
【0009】
上記のように、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された第1油圧モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)を介して左右キャリヤ軸(40)に伝達させると共に、左右キャリヤ軸(40)に伝達された回転を左右の駆動輪(34)にそれぞれ伝え、左右走行クローラ(2)を駆動するように構成している。
【0010】
さらに、旋回用の油圧式無段変速機構で形成する操向部材(28)は、第2油圧ポンプ(26)の回転斜板の角度変更調節により第2油圧モータ(27)の正逆回転と回転数の制御を行うもので、操向出力ブレーキ(62)を有するブレーキ軸(63)と、操向出力クラッチ(64)を有するクラッチ軸(65)と、前記の左右リングギヤ(38)の外歯(38b)に常時噛合させる左右入力ギヤ(66)(67)を設け、第2油圧モータ(27)の出力軸(68)に前記ブレーキ軸(63)及び操向出力クラッチ(64)を介してクラッチ軸(65)を連結させ、クラッチ軸(65)に正転ギヤ(69)を介して右入力ギヤ(67)を連結させ、またクラッチ軸(65)に正転ギヤ(69)及び逆転ギヤ(70)を介して左入力ギヤ(66)を連結させている。そして、副変速スライダ(55)(56)の中立によって前記ブレーキ(62)を入にしかつクラッチ(64)を切にする一方、前記中立以外の副変速出力時にブレーキ(62)を切にしかつクラッチ(64)を入にし、右側のリングギヤ(38)の外歯(38b)に正転ギヤ(69)を介してモータ(27)回転力を伝え、また左側のリングギヤ(38)の外歯(38b)に正転ギヤ(69)及び逆転ギヤ(70)を介してモータ(27)回転を伝え、第2油圧モータ(27)を正転(逆転)時、左右同一回転数で、左リングギヤ(38)を逆転(正転)させ、かつ右リングギヤ(38)を正転(逆転)とさせるように構成している。
【0011】
而して、旋回用の第2油圧モータ(27)を停止させて左右リングギヤ(38)を静止固定させた状態で、走行用の第1油圧モータ(24)を駆動すると、第1油圧モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)・キャリヤ(41)を介して左右の走行クローラ(2)が左右同一回転方向で同一回転数によって駆動され、機体の前後方向直進走行が行われる。一方、走行用の第1油圧モータ(24)を停止させて左右のサンギヤ(36)を静止固定させた状態で、旋回用の第2油圧モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転、また右側の遊星ギヤ機構(35)が逆或いは正回転し、左右走行クローラ(2)を逆方向に駆動し、機体を左或いは右に旋回させる。また、走行用の第1油圧モータ(24)を駆動させながら、旋回用の第2油圧モータ(27)を駆動することにより、機体が左右に旋回して進路が修正されるもので、機体の旋回半径は第2油圧モータ(27)の出力回転数によって決定される。
【0012】
さらに、図2、図4乃至図13に示す如く、前記運転台(18)の前部上面にステアリングコラム(71)を立設固定させ、ステアリングコラム(71)上面上方側に操向ハンドル(19)を縦軸回りに回転自在に取付けると共に、運転台(18)左側にサイドコラム(72)を設け、サイドコラム(72)下方にミッション(22)を配設させ、主変速レバー(73)、副変速レバー(74)、刈取クラッチレバー(75)、脱穀クラッチレバー(76)を前記サイドコラム(72)に取付ける。また、前記ステアリングコラム(71)は、アルミニウム合金鋳物を成形加工して形成し、左右に分割自在な2つ割れ構造で複数のボルト(77)で締結して箱形に形成している。
【0013】
また、前記ステアリングコラム(71)上部にチルト台(78)を一体形成し、チルト台(78)に支点ボルト(79)を介してチルトブラケット(80)を回転自在に軸支させ、チルトレバー(81)によってチルトブラケット(80)を角度調節自在に固定させる。前記チルトブラケット(80)に軸ケース(82)下部を一体固定させ、コラム(71)上面に固定させる上面カバー(83)上方に軸ケース(82)を延設させ、軸ケース(82)内部に上ハンドル軸(84)を回転自在に軸支させ、上ハンドル軸(84)上端に操向ハンドル(19)を固定させ、チルトレバー(81)操作により支点ボルト(79)回りにハンドル(19)を前後方向に移動調節して一定位置に支持させ、ハンドル(19)取付け位置を前後方向に調節して作業者が操作し易い位置に固定させる。
【0014】
また、前記上ハンドル軸(84)の下端部に自在継手(85)を介して下ハンドル軸(86)上端側を連結させ、下ハンドル軸(86)をステアリングコラム(71)上部に回転自在に軸支させると共に、ステアリングコラム(71)上部に操向入力軸(87)上端部を回転自在に軸支させ、下ハンドル軸(86)のギヤ(88)と操向入力軸(87)のセクタギヤ(89)を噛合させて各軸(86)(87)を連結させ、ステアリングコラム(71)内部の略中央で上下方向に操向入力軸(87)を延設させる。
【0015】
さらに、前記ステアリングコラム(71)の左側面で上下幅略中間に軸受部材(90)を着脱自在に固定させ、変速入力軸(91)の一端部を軸受部材(90)にベアリング(92)を介して回転自在に片持ち支持させ、変速入力軸(91)を左右方向に略水平に軸支させると共に、操向入力軸(87)下端に自在継手(93)を介して入力支点軸(94)上端側を連結させ、入力支点軸(94)に操向入力部材(95)を固定させ、変速入力軸(91)に操向入力部材(95)を回転自在に取付けると共に、操向入力部材(95)に入力連結体(96)を着脱自在に固定させ、連係ボルト(97)によって前記操向入力部材(95)と入力連結体(96)を連結させ、また変速入力軸(91)にベアリング(95a)を介して操向入力部材(95)を回転自在に軸支させ、操向入力部材(95)を操向入力軸(87)回りに回転自在に支持させる。また、前記操向入力軸(87)の正逆転によって操向入力部材(95)を略垂直な入力軸(87)芯線回りに正逆転させると共に、前記変速入力軸(91)の正逆転によって略水平な左右方向の入力軸(91)芯線回りに入力支点軸(94)及び操向入力部材(95)を前後方向に傾動させるもので、垂直方向の操向入力軸(87)芯線と左右水平方向の変速入力軸(91)芯線とが直角交叉する交点に自在継手(93)を取付け、操向ハンドル(19)の操向入力軸(87)正逆転操作により操向入力軸(87)芯線回りに操向入力部材(95)と入力連結体(96)を正逆転させる。
【0016】
さらに、前記ステアリングコラム(71)の下部前側に主変速軸(99)を回転自在に軸支させ、左右方向に略水平に横架させる主変速軸(99)の左側端をステアリングコラム(71)の左側外方に突設させると共に、サイドコラム(72)下方の機台(3)に回転自在に設ける中介軸(100)に、リンク(101)(102)並びに長さ調節ターンバックル(103)付きロッド(104)を介して主変速軸(99)を連結させる。また、図4の如く、レバー支点軸(105)を介して機台(3)に回転自在に支点板(106)を取付け、支点板(106)に筒軸(107)を介して主変速レバー(73)基部を左右方向に揺動自在に取付けると共に、支点板(106)にリンク(108)(109)を介して中介軸(100)を連結させ、主変速レバー(73)をレバー支点軸(105)回りに前後方向に揺動させる変速操作によって主変速軸(99)を正逆転させる。また、ロッド形主変速部材(110)及び上連結板(111)及び下リンク(112)を介して変速入力軸(91)に主変速軸(99)を連結させ、主変速レバー(73)の主変速軸(99)正逆転操作により前記操向入力部材(95)を変速入力軸(91)芯線回りに前後に傾動させる。
【0017】
さらに、筒軸形の操向出力軸(113)を前記主変速軸(99)に回転自在に取付け、リンク形操向出力部材(114)を操向出力軸(113)に固定させると共に、ロッド形操向結合部材(115)の上端部を前記入力連結体(96)に自在継手形操向入力連結部(116)を介して連結させ、球関継手形操向出力連結部(117)を介して操向結合部材(115)の下端部を操向出力部材(114)に連結させ、走行進路を変更させる操向機構(118)を構成している。
【0018】
さらに、前記操向出力軸(113)の上方で該軸(113)と略平行に変速出力軸(119)をステアリングコラム(71)内部に回転自在に軸支させ、リンク形変速出力部材(120)を変速出力軸(119)に固定させると共に、ロッド形変速結合部材(121)の上端部を前記入力連結体(96)に自在継手形変速入力連結部(122)を介して連結させ、球関継手形変速出力連結部(123)を介して変速結合部材(121)の下端部を変速出力部材(120)に連結させ、走行速度の変更並びに前後進の切換を行う変速機構(124)を構成している。
【0019】
さらに、互に回転自在な二重軸構造の内側の操向操作軸(125)並びに外側の変速操作軸(126)をステアリングコラム(71)の下部後側で左右幅中央の軸受部(127)に回転自在に取付けるもので、長さ調節自在な球関継手軸(128)及び変速リンク(129)(130)を介して前記変速出力軸(119)に変速操作軸(126)上端部を連結させると共に、長さ調節自在な球関継手軸(131)及び操向リンク(132)(133)を介して前記操向出力軸(113)に操向操作軸(125)上端部を連結させる。
【0020】
また、前記各操作軸(125)(126)は同一軸芯上に略垂直にステアリングコラム(71)底部に立設させ、各操作軸(125)(126)上端部をステアリングコラム(71)内部に延設させて各出力軸(113)(119)に連結させると共に、ステアリングコラム(71)底面下方に各操作軸(125)(126)下端部を突設させ、前記運転台(20)の作業者搭乗ステップ(134)下面側に各操作軸(125)(126)下端側を延設させるもので、前記変速部材(25)の出力制御軸(135)に車速制御アーム(136)を固定させ、ターンバックル(137)付き長さ調節自在車速ロッド(138)及び車速リンク(139)を介して前記変速操作軸(126)下端部に車速制御アーム(136)を連結させ、出力制御軸(135)の正逆転操作により第1油圧ポンプ(23)斜板角調節を行って第1油圧モータ(24)の回転数制御及び正逆転切換を行い、走行速度(車速)の無段階変更並びに前後進の切換を行う。また、前記操向部材(28)の出力制御軸(140)に操向制御アーム(141)を固定させ、ターンバックル(142)付き長さ調節自在旋回ロッド(143)及び旋回リンク(144)を介して操向操作軸(125)下端部に操向制御アーム(141)を連結させ、出力制御軸(140)の正逆転操作により第2油圧ポンプ(26)斜板角調節を行って第2油圧モータ(27)の回転数制御及び正逆転切換を行い、操向角度(旋回半径)の無段階変更並びに左右旋回方向の切替を行う。
【0021】
さらに、前記ステアリングコラム(71)の右側外面にアクセルレバー(145)を前後方向回転自在に設け、エンジン(21)にアクセルレバー(145)を連結させるアクセルワイヤ(146)をステアリングコラム(71)前面内側に沿わせて下方から延出させ、アクセルレバー(145)によってエンジン(21)回転数を手動調節すると共に、前記ステアリングコラム(71)後面にメンテナンス窓(147)を開設させ、着脱自在な蓋(148)によってメンテナンス窓(147)を閉鎖している。
【0022】
上記から明らかなように、変速機構(124)動作量に比例させて操向機構(118)操向量を変化させるもので、高速側走行変速によって操向量を自動的に拡大させ、かつ低速側走行変速によって操向量を自動的に縮少させ、操向ハンドル(19)の一定量の操作によって走行速度に関係なく左右走行クローラ(2)の旋回半径を略一定に維持させ、農作業走行速度の変更並びに作物列などに機体を沿わせる進路修正などを行わせると共に、逆円錐形の変速機構(124)並びに操向機構(118)を形成し、操向操作によって操向入力軸(87)を回転させて操向入力部材(95)を作動させ、例えば旋回させ乍ら走行速度を減速させる動作を行わせ、変速操作によって変速入力軸(91)を回転させて操向入力部材(95)を作動させ、走行変速による旋回半径の拡大縮少並びに走行変速中立による旋回出力の中止などの操作を行わせる。
【0023】
また、操向入力部材(95)と操向結合部材(115)を連結させる操向入力連結部(116)を変速入力軸(91)芯線上に配設させ、変速入力部材(96)と変速結合部材(121)を連結させる変速入力連結部(122)を、変速入力軸(91)芯線と交叉する直線(A)上に配設させ、操向入力軸(87)及び変速入力軸(91)を中心とする操向入力部材(95)の相対的な運動を容易に設定でき、設計及び組立及び構造の簡略化並びに動作の信頼性向上などを図れると共に、変速入力軸(91)芯線と操向入力軸(87)芯線が交叉する軸芯交点(B)を中心とする円周(C)上に、変速入力連結部(122)並びに操向入力連結部(116)を配設させ、操向入力部材(95)などの構造の簡略化及びコンパクト化などを図るもので、変速出力部材(120)と変速結合部材(121)を連結させる変速出力連結部(123)と、操向出力部材(114)と操向結合部材(115)を連結させる操向出力連結部(117)を、操向入力軸(87)芯線上に配設させ、前進時と後進時の変速切換による逆ハンドル現像を防止し、変速出力部材(120)及び操向出力部材(114)の設計及び組立及び構造の簡略化並びに動作の信頼性向上などを図ると共に、変速入力軸(91)と操向入力軸(87)の軸芯交点(B)に対する変速出力連結部(123)の距離と、操向出力連結部(117)の距離を異ならせ、変速出力連結部(123)と操向出力連結部(117)を同一直線(D)上で離間させることによって各連結部(117)(123)の干渉防止並びに移動範囲の設定などを容易に行え、変速結合部材(121)及び操向結合部材(115)を狭少場所に設置できるように構成している。
【0024】
また、変速入力連結部(116)と、操向入力連結部(122)を、変速入力軸(91)と操向入力軸(87)の軸芯交点(B)を中心とする円周(C)上で約90度離間させ、変速入力軸(91)の回転によって操向入力連結部(116)を一定位置に維持させかつ変速入力連結部(122)の変位量を最大にして走行変速を行わせると共に、前記各入力連結部(116)(122)を移動させる平面上に変速入力軸(91)を配置させる構造で各連結部(116)(122)の移動量を容易に確保し、コンパクトで機能的に操向入力部材(95)を配置させるもので、操向入力軸(87)回りに約90度の範囲内で変速入力連結部(122)及び操向入力連結部(116)を移動させ、前後進切換による逆ハンドル現像の防止並びに各入力連結部(116)(122)の移動量の確保と共に、操向入力軸(87)を回転させる操向角度に応じて変速入力連結部(122)を減速方向に移動させる動作と、旋回内側の走行クローラ(2)を中心に方向転換させるスピンターン動作を容易に行わせ、コンパクトな構造で機能的に構成している。また、前記スピンターン動作は、操向部材(28)の出力により差動機構(33)を介して左右走行クローラ(2)の一方を正転させかつもう一方を逆転させ、左右走行クローラ(2)の前後及び左右中心点回りに旋回させる動作であり、前後進走行と旋回とが同時に行われて前後進出力である変速部材(25)の回転と旋回出力である操向部材(28)の回転の割合により旋回半径が決定される。さらに、変速出力軸(119)及び操向出力軸(113)を変速入力軸(91)と略平行に設け、前記各出力軸(113)(119)を複数に分割自在なケースを形成するコラム(71)に高精度で軸支させると共に、変速入力軸(91)並びに前記各出力軸(113)(119)を左右方向に延設させることによって機体前後方向の連結構造を容易に得られ、主変速レバー(73)と変速入力軸(91)の連結、並びに変速部材(25)及び操向部材(28)と前記出力軸(113)(119)との連結を容易に行え、操作構造の簡略化並びに取扱い性向上などを図れるように構成している。
【0025】
さらに、図14に示す如く、前記連係ボルト(97)を遊嵌挿通させる位相調節長孔(149)を入力連結体(96)に開設させると共に、操向入力軸(87)芯線を中心とする同一円周上に前記長孔(149)を形成し、変速入力軸(91)をボルト形基準設定部材(98)と中立設定孔(150)の係合によって走行変速中立位置に固定させた状態で、操向入力部材(95)だけを回転させ、変速入力軸(91)に対して左右に回転させて操向入力部材(95)の相対位置を修正するもので、操向ハンドル(19)操作によって決定される旋回中立位置と走行速度の中立位置を設定する。また、変速入力軸(91)を基準位置に固定させる基準設定部材(98)を係脱自在に設け、図14に示すボルト止め体(98a)を外し、図15のように基準設定部材(98)先端を中立設定孔(150)に係入させ、走行変速の中立位置並びに操向直進位置を中立設定孔(150)と基準設定部材(98)の係合によって確定し、図8及び図11に示すジョイントナット(121a)(115a)の螺出入操作により、変速結合部材(121)または操向結合部材(115)などの連結長さを伸縮させる組立時の調整などを行い、組立作業性の向上などを図るように構成している。
【0026】
さらに、図16乃至図18に示す如く、前記ギヤ(88)は、270度の外周範囲に複数の歯(151)を形成し、90度の外周範囲を円弧(152)に形成し、操向ハンドル(19)の全回転角度を270度とし、左操向回転または右操向回転の角度を135度に設定し、操向ハンドル(19)回転操作を片手で作業者が容易に行えるように形成する。また、前記セクタギヤ(89)は、130度の外周範囲に複数の歯(153)を形成し、230度の外周範囲を円弧カム(154)に形成し、前記ギヤ(88)の歯(151)とセクタギヤ(89)の歯(153)を噛合せ、各ギヤ(88)(89)の最大正逆転時、前記円弧(152)両端のストッパ(155)と前記円弧カム(154)両端のストッパ(156)を当接させ、操向ハンドル(19)の回転を規制すると共に、操向入力軸(87)芯線回りに操向入力部材(95)及び入力連結体(96)を65度の範囲で正転または逆転させ、操向入力部材(95)が回転移動する平面上に変速入力軸(91)及び主変速部材(110)上端部を配置させる空間を確保し、変速入力軸(91)芯線上に操向入力連結部(116)を設ける構造、並びに同一円周上で前記各入力連結部(116)(122)を90度離間させる構造を容易に得られ、構造のコンパクト化、設計組立の簡略化などを図れるように構成している。
【0027】
また、前記セクタギヤ(89)の円弧カム(154)中央に直進ノッチ(157)を形成すると共に、前記ステアリングコラム(71)上面壁にデテント軸(158)を回転自在に軸支させ、デテント軸(158)下端部にデテントアーム(159)を固定させ、デテントアーム(159)にローラ軸(160)を介してデテントローラ(161)を回転自在に軸支させ、前記円弧カム(154)にデテントローラ(161)を当接させ、直進ノッチ(157)に係脱自在にデテントローラ(161)を係合させ、操向ハンドル(19)を直進位置に支持させる。また、前記デテント軸(158)上端側にデテントレバー(162)を固定させ、デテント軸(158)に巻装させる中立バネ(163)の一端をデテントレバー(162)に係止させ、ステアリングコラム(71)の受板(164)に中立バネ(163)の他端を当接させ、円弧カム(154)及び直進ノッチ(157)にデテントローラ(161)を中立バネ(163)によって弾圧当接させている。また、操向ハンドル(19)の直進位置をオンオフ切換によって電気的に検出するマイクロスイッチ型直進センサ(165)をデテントレバー(162)に取付けている。
【0028】
さらに、図12、図13に示す如く、前記旋回ロッド(143)中間部に伸縮ダンパ(166)を設けるもので、一方のロッド(143)端部に固定させるバネケース(167)と、他方のロッド(143)端部に摺動自在に係止させるバネ座(168)(169)と、バネ座(168)(169)を介して圧縮状態にロッド(143)に巻装させる圧縮バネ(170)を、前記ダンパ(166)に備え、操向ハンドル(19)の操向操作による押し方向と引き方向の双方向で前記ロッド(143)に一定以上の押引力が作用したとき、即ち、操向ハンドル(19)の切角116度(85パーセント)操作により、操向制御アーム(141)が最高出力位置に移動したとき、前記バネ(170)が圧縮してロッド(143)を伸縮させ、第2油圧ポンプ(26)を最高出力維持した状態で操向ハンドル(19)をさらに旋回方向に回転操作させ、操向ハンドル(19)を切角116度から切角135度まで操作するように構成している。
【0029】
さらに、図12、図19、図20に示す如く、前記車速制御アーム(136)にピン(171)を固定させ、前記ピン(171)を摺動自在に貫挿させる長孔(172)を前記車速ロッド(138)端部に形成し、車速ロッド(138)を車速制御アーム(136)に長孔(172)及びピン(171)を介して連結させると共に、車速制御アーム(136)と同軸上にデテントカム(173)を固定させ、前記カム(173)にデテントローラ(174)をバネ(175)によって弾圧させ、前記カム(173)とローラ(174)によって車速制御アーム(136)を中立位置に自動的に復動させ、前記アーム(136)の中立支持によって第1油圧モータ(24)を停止維持し、かつ前記アーム(136)が中立で主変速レバー(73)が中立操作位置のときに前記長孔(172)の長手方向の略中央にピン(171)を位置させ、前記ロッド(138)の押引による前後進変速の両方に略等しいストロークがピン(171)に対して形成され、前後進変速の両方で前記アーム(136)が略対称(正逆転)動作を行うように構成している。
【0030】
そして、図20に示すように、中立位置(O)の主変速レバー(73)を変速操作して不感帯ゾーン(P)を移動させて変速開始位置(Q)に移動させることにより、車速ロッド(138)の押引によって長孔(172)の長手方向端部にピン(171)が当接し、主変速レバー(73)と車速制御アーム(136)が連結させると共に、主変速レバー(73)をさらに変速操作して変速ゾーン(R)を移動させて変速部材(25)の最高出力位置(S)までの間に傾倒支持させることにより、中立位置(T)の車速制御アーム(136)を最高出力位置(S)までの変速ゾーン(R)に主変速レバー(73)操作量に比例させて移動させ、変速部材(25)の第1油圧モータ(24)を無段階に変速出力させ、左右走行クローラ(2)を等速度で同一方向に駆動して前後進させるように構成している。
【0031】
さらに、図14、図21、図22に示す如く、前記軸受部(90)に切欠(176)を設けて凹部(177)を形成し、操向ハンドル(19)を左旋回最大切角(135度)操作したとき、変速入力連結部(122)及び変速結合部材(121)を前記凹部(177)に入り込ませ、前記連結部(122)が軸受部(90)に当接する構造に比べ、操向ハンドル(19)を左右旋回操作したときの最大車速減速率を大きく形成するもので、操向ハンドル(19)の直進位置(U)を中心に、連係ボルト(97)が位相調節孔(149)縁に当接するまでの間に定速ゾーン(V)が形成され、操向ハンドル(19)の切角15度以内の操向操作によって機体中心速度を略一定に保って進路を修正する。また、操向ハンドル(19)をさらに操向操作して旋回ゾーン(W)を移動させて操向部材(28)の最高出力位置(X)までの操向ハンドル(19)切角116殿間で回転させることにより、操向ハンドル(19)回転角度に比例して操向制御アーム(141)を最高出力位置(X)までの間で移動させ、操向部材(28)の第2油圧モータ(27)を無段階に変速出力させ、左右走行クローラ(2)の速度差を無段階に変更させると共に、操向ハンドル(19)回転角度に比例して車速ロッド(138)及び車速制御アーム(136)を変速中立方向に復動させ、左右走行クローラ(2)の走行速度を無段階に減速させ、操向ハンドル(19)切角を大きくすることにより、旋回半径が小さくなり、走行速度が遅くなり、左右旋回動作が行われる。また、切角116度の操向ハンドル(19)をさらに操向操作してスピンターンゾーン(Y)内を切角135度の最大操向位置(Z)までの間に回転させることにより、ダンパ(166)の伸縮吸収動作によって旋回ロッド(143)(連結長さ)を伸縮させ、操向制御アーム(141)を最高出力位置(X)に維持した状態で、車速ロッド(138)及び車速制御アーム(136)をさらに変速中立方向に復動させ、左右走行クローラ(2)の左右幅中間に形成される旋回中心回りに方向転換するスピンターン動作が行われるように構成している。
【0032】
また、図19、図20、図22のように、車速ロッド(138)と車速制御アーム(136)を長孔(172)によって連結させ、主変速レバー(73)の変速操作ストローク(L)を実変速ストロークよりも大きく形成すると共に、変速入力連結部(122)の左旋回方向に設ける軸受部(90)に凹部(177)を形成して前記連結部(122)を凹部(177)に出入させ、主変速レバー(73)最大出力操作時に操向ハンドル(19)最大切角(135度)で車速減速率を25パーセントに設定し、前記変速機構(124)によって減速率を40パーセントまで下げたのに対し、さらに減速率を上げて25パーセントまで減速させ、スピンターン動作を行わせ、圃場枕地で機体を約180度方向転換させて次の未刈り穀稈刈取り工程に移動させるように構成している。なお、図22のように、主変速レバー(73)最大出力時、操向ハンドル(19)の切角116度でダンパ(166)が作動して操向部材(28)が最高出力維持されると、操向ハンドル(19)の切角116度乃至135度の範囲で左右走行クローラ(2)の減速率が略等しく保たれるもので、操向ハンドル(19)の切角116度の位置で左右走行クローラ(2)速度差が最大となり、操向ハンドル(19)の切角116度乃至135度の範囲で、左右走行クローラ(2)の速度差が略一定に維持され、走行速度がハンドル(19)切角に比例して減速される。
【0033】
また、操向ハンドル(19)による車速制御アーム(136)の減速動作量を多くして減速率を大きく形成し、スピンターン動作に必要な減速率を容易に得られて圃場枕地での方向転換機能の向上などを図るもので、車速制御アーム(136)と車速ロッド(138)を長孔(172)とピン(171)によって連結させ、長孔(172)及びピン(171)の大きさによって車速ロッド(138)の操作量または車速制御アーム(136)の減速動作量などを容易に決定でき、変速部材(25)及び操向部材(28)の出力特性並びに操向ハンドル(19)の減速制御動作などの考慮を容易に行え、車速ロッド(138)取付け構造の簡略化、並びに組立作業など取扱い性向上、並びに製造コストの低減などを図れるように構成している。
【0034】
さらに、前記主変速レバー(73)の不感帯ゾーン(P)の操作によって前記入力部材(95)(96)を変速入力軸(91)回りに中立位置(P)から変速開始位置(Q)に移行させ、操向ハンドル(19)の直進位置を中心とする定速ゾーン(V)でのハンドル(19)切角に対する操向制御アーム(141)の動作比を大きくし、主変速レバー(73)を変速ゾーン(R)に移行させて微速走行させたとき、操向ハンドル(19)の定速ゾーン(V)での操作で、操向制御アーム(141)の動作量を多くし、操向部材(28)の第2油圧ポンプ(26)の回転変化率をハンドル(19)切角変化に対して大きくし、第2油圧ポンプ(26)の微速出力での旋回動作時間を短縮し、前記モータ(27)微速出力域で旋回動作が行われるのを阻止し、主変速レバー(73)微速走行状態での操向ハンドル(19)による旋回動作が第2油圧ポンプ(26)出力を一定以上大きくして行われるように構成している。このように、第2油圧ポンプ(26)の微速回転出力での旋回動作を防ぐことにより、第2油圧ポンプ(26)が微速出力域で低効率であっても、第2油圧ポンプ(26)の出力を一定以上確保して旋回動作を行わせることができる。また、主変速レバー(73)の変速操作により、操向ハンドル(19)による操向部材(28)の制御が一定以上の旋回力を確保して開始されるように設定した後、走行変速動作を遅れて開始させ、微速移動時の操向部材(28)の旋回力不足を防止し得、操向部材(28)など製造コストの低減並びに左右走行クローラ(2)の旋回性能向上などを図るもので、主変速レバー(73)の操作により、変速入力軸(91)芯線回りに操向及び変速入力部材(95)(96)を一定角度回転させた後、各入力部材(95)(96)が変速部材(25)に連結されて変速部材(25)を作動させ、変速操作によって各入力部材(95)(96)を操向動作状態に移動させた後で変速部材(25)から出力させて走行クローラ(2)を駆動するから、走行出力が小さい微速移動時でも、操向ハンドル(19)の操向操作による操向部材(28)の制御量を多くして必要な旋回力を確保し、微速移動時の旋回性能の向上などを図れるように構成している。
【0035】
そして、前記主変速レバー(73)が中立のとき、操向ハンドル(19)の正転(逆転)操作により、操向入力軸(87)芯線回りに前記各入力部材(95)(96)及び各結合部材(115)(121)が円錐軌跡上で移動し、前記各出力部材(114)(120)及び各出力軸(113)(119)が停止した状態が維持される。また、主変速レバー(73)を前方(後方)に倒す前進(後進)操作により、前記各入力部材(95)(96)が変速入力軸(91)芯線回りに前方(後方)に傾き、操向入力連結部(116)が一定位置に停止した状態を維持し乍ら、変速入力連結部(122)を上方(下方)に移動させ、変速出力部材(120)の上方(下方)揺動によって変速出力軸(119)を正転(逆転)させ、変速部材(23)の第1油圧ポンプ(23)の斜板角切換によって第1油圧モータ(24)を正転(逆転)させ、第1油圧モータ(24)の出力軸(31)の正転(逆転)によって左右走行クローラ(2)を前進(後進)駆動する。また、主変速レバー(73)の倒し角に比例して出力軸(31)の回転数が変化し、走行クローラ(2)の前進(後進)速度が無段階に変速される。
【0036】
さらに、主変速レバー(73)を前方(後方)に倒して前進(後進)操作を行っている状態下で、操向ハンドル(19)を左方向(右方向)に回転させることにより、変速入力軸(91)芯線回りに操向入力部材(95)が前方(後方)に傾いた姿勢で操向入力軸(87)芯線回りに正転(逆転)し、操向入力連結部(116)が下方(上方)に移動し、操向出力部材(114)の下方(上方)揺動によって操向出力軸(113)を正転(逆転)させ、操向部材(28)の第2油圧ポンプ(26)の斜板角切換によって第2油圧モータ(27)を正転(逆転)させ、第2油圧モータ(27)の出力軸(68)の正転(逆転)により、左走行クローラ(2)を減速(増速)させ、かつ右走行クローラ(2)を増速(減速)させ、左方向(右方向)に機体を旋回させて左方向(右方向)に進路を修正する。また、前記の進路修正動作と同時に、操向ハンドル(19)の左方向(右方向)回転により、変速入力軸(91)芯線回りに変速入力部材(96)が前方(後方)に傾いた状態で操向入力軸(87)芯線回りに正転(逆転)し、変速入力連結部(122)が下方(上方)に移動し、変速出力部材(120)の下方(上方)揺動によって変速出力軸(119)を逆転(正転)させ、変速部材(25)を中立方向に戻す制御を行って出力軸(31)の回転数を低下させ、走行速度(車速)を減速させる。このように、走行移動中の操向ハンドル(19)の左右操向操作により、操向ハンドル(19)の回転角度に比例して、進路を修正する旋回半径(角度)と、走行速度の減速量が変化し、操向ハンドル(19)を大きく回転させることによって左右走行クローラ(2)の速度差を大きくして旋回半径を小さくすると同時に、走行速度の減速量が多くなって車速が遅くなると共に、前進時と後進時とでは、操向ハンドル(19)の回転に対して旋回入力連結部(116)の動きを逆方向にし、前後進の何れにおいても操向ハンドル(19)の回動操作方向と機体の旋回方向とを一致させ、回転操作する丸形の操向ハンドル(19)の回転操作によって例えばトラクタまたは田植機など四輪自動車と同様の運転感覚で進路修正及び方向転換などを行う。
【0037】
さらに、図22は機体の左右旋回時における操向ハンドル(19)の切れ角と左右走行クローラ(2)の速度の関係を示すもので、ハンドル(19)の切れ角が大となる程左右走行クローラ(2)の速度差は大となると共に、左右走行クローラ(2)の平均速度となる機体中心速度も副変速レバー(74)の走行速度(高速・標準・低速)状態に応じて減速される。直進位置の操向ハンドル(19)を左方向(右方向)に約15度回転させる刈取り進路修正範囲では、操向入力部材(95)の回転に対して変速入力連結部(122)が略接線方向に移動し、変速出力部材(120)が直進と略同一位置に維持されると共に、操向部材(28)の第2油圧ポンプ(26)によって第2油圧モータ(27)を正転(逆転)させる操向出力によって左方向(右方向)に旋回させ、未刈り穀稈(作物)列の湾曲に合せる進路修正を行う。このとき、旋回内側の走行クローラ(2)の減速量と、旋回外側の走行クローラ(2)の増速量が略等しくなり、機体中心速度が直進と略同一速度に保たれる。また、操向ハンドル(19)を直進位置から15度以上回転させると、操向入力部材(95)の回転によって変速結合部材(121)が押引動作され、変速出力部材(120)が左旋回及び右旋回のいずれでも減速動作し、第1油圧ポンプ(23)及びモータ(24)の走行変速出力を減速させ、左右走行クローラ(2)(2)を同一方向に回転駆動させて前進(または後進)させ、左右走行クローラ(2)(2)の走行速度差により左方向(右方向)に旋回するブレーキターン動作を行わせ、未刈り穀稈(作物)列から外れたときに元の列に戻したり隣の列に移動させる進路修正を行う。さらに、操向ハンドル(19)を約116度回転させると、ダンパ(166)が作動して旋回出力が最高出力維持され、135度の切角範囲で機体中心速度が直進時の約4分の1に減速され、旋回内側の走行クローラ(2)が逆転駆動され、左右走行クローラ(2)の間の旋回中心回りに機体が旋回するスピンターン動作が行われ、左右走行クローラ(2)の左右幅だけ旋回方向にずらせて機体を180度方向転換させるもので、ハンドル切角0度からハンドル切角135度の範囲で操向ハンドル(19)を回転させて左または右方向の旋回操作を行い、直進位置を中心とした左右15度のハンドル(19)回転範囲で未刈り穀稈(作物)列に沿って移動する条合せ進路修正を、直進時の走行速度を維持し乍ら行うと共に、左右116度乃至135度のハンドル(19)回転により、旋回部材(28)を最高出力維持し乍ら、圃場枕地で機体を方向転換させて次作業工程に移動させるスピンターン動作を、直進時の約4分の1の走行速度(減速率25パーセント)に自動的に減速して行う。
【0038】
さらに、副変速を標準(秒速1.5メートル)速度に保ち、操向ハンドル(19)を90度回転させたとき、主変速レバー(68)操作により主変速出力を高速及び3分の2及び3分の1に変更しても、機体の旋回半径が略一定に保たれた状態で、旋回速度(機体中心速度)だけを変化させる。また、直進位置を基準として連係ボルト(97)と位相調節孔(149)の設定範囲で第1油圧ポンプ(23)及び第1油圧モータ(24)を直進状態に維持させ、農作業中に作物列または畦などに機体を沿わせる操向操作を行っても走行速度が不均一に変化するのを防止し、略同一走行速度を保ち乍ら農作業中の進路修正を行え、作業者の運転感覚と機体の走行動作とを略一致させて適正な操向操作を行える。また、主変速レバー(73)の変速基準値を切換える副変速レバー(74)副変速操作の低速及び標準及び高速切換に比例させて旋回半径を小径乃至大径に変化させ、第1油圧ポンプ(23)及びモータ(24)と走行クローラ(2)間の減速比並びに第2油圧ポンプ(26)及びモータ(27)と走行クローラ(2)間の減速比の設定、或いはスピンターン動作に必要な小半径旋回に必要な走行駆動力の確保などを図ると共に、同一副変速操作位置で主変速レバー(73)を操作することによって旋回半径を略一定に保った状態で旋回時の走行速度を変化させる。
【0039】
さらに、図11、図23、図24に示す如く、前記変速出力軸(119)に筒形の減速出力軸(178)と直結出力軸(179)を回転自在に軸支させ、減速出力軸(178)に変速出力部材(120)を固定させ、また変速出力軸(119)にボス(180)を介して変速リンク(129)を固定させると共に、前記主変速軸(99)にボス(181)を介して直結入力リンク(182)を固定させ、前記直結出力軸(179)に直結出力リンク(183)を固定させ、入力リンク(182)の軸(184)に設けるローラ(185)を出力リンク(183)の長孔(186)に摺動自在に嵌入させ、各リンク(182)(183)を介して主変速軸(99)に直結出力軸(179)を連結させ、各軸(99)(179)を連動回転させる。
【0040】
また、前記変速出力軸(119)の中空にクラッチ軸(187)を出入自在に挿入させ、変速出力軸(119)に係止させるクラッチピン(188)をクラッチ軸(187)挿入端部に固定させると共に、前記クラッチピン(188)を係脱自在に係止させるノッチ(189)(190)を前記減速出力軸(178)及び直結出力軸(179)に夫々形成し、クラッチ軸(187)出入操作によりクラッチピン(188)及びノッチ(189)(190)を介して減速出力軸(178)または直結出力軸(179)のいずれか一方を変速出力軸(119)に択一的に連結させる。また、バネ(191)によって位置決めボール(192)を係脱自在に係入させる位置決め溝(193)(194)を前記クラッチ軸(187)に設け、前記ボール(192)と各溝(193)(194)のいずれかの係止によって各出力軸(178)(179)の各ノッチ(189)(190)のいずれかにクラッチピン(188)を係合維持させると共に、前記ステアリングコラム(71)の外側でステップ(134)上の作業者が操作可能にフィーリングレバー(195)を取付け、該レバー(195)を前記クラッチ軸(187)に連結させ、前記レバー(195)操作によってクラッチ軸(187)を切換え、変速出力部材(120)からの変速入力と出力リンク(183)からの変速入力のいずれかによって変速リンク(129)を作動させ、操向ハンドル(19)の操作量に比例させて車速を減速させる変速入力と、主変速レバー(73)の操作量に基づく変速入力のいずれかにより、変速部材(25)を変速制御する。
【0041】
上記から明らかなように、主変速レバー(73)からの変速操作出力を主変速軸(99)で2つに分け、一方の出力をハンドル(19)角度に応じた車速減速出力として出力部材(120)から変速出力軸(119)上の減速出力軸(178)を介して変速リンク(129)に伝え、もう一方の出力を出力リンク(183)から変速出力軸(119)上の直結出力軸(179)を介して変速リンク(129)に伝え、前記の2つの変速出力を変速出力軸(119)上で選択していずれか一方によって第1油圧ポンプ(23)を変速制御するもので、走行変速レバーである主変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、操向ハンドル(19)の操作量に比例させて車速を減速させる協動系路である減速出力軸(178)を介して主変速レバー(73)に変速部材(25)を連結させると共に、前記減速出力軸(178)と別の第三系路である直結出力軸(179)で主変速レバー(73)に変速部材(25)を連結させ、前記減速出力軸(178)と直結出力軸(179)を使い分けることによって変速部材(25)の制御構造を組み換えることなく旋回性能及び走行性能を変更し、鈍感な旋回フィーリングまたは機敏な旋回フィーリングなど旋回特性を選択するように構成している。
【0042】
また、減速出力軸(178)からの減速入力と別の直結出力軸(179)からの変速操作入力を選択するフィーリング切換部材であるフィーリングレバー(195)を設け、減速出力軸(178)を用いた変速制御と直結出力軸(179)を用いた変速制御の切換をフィーリングレバー(195)の操作によって行い、操舵機能の向上並びに取扱い操作の簡略化などを図ると共に、減速出力軸(178)からの減速入力と別の直結出力軸(179)からの変速操作入力を同一軸芯上で選択していずれかの入力によって変速部材(25)を制御し、主変速レバー(73)及び操向ハンドル(19)及び変速部材(25)の間の連結機構の簡略化及びコンパクト化を行い、組立及び調整など作業性の向上を図るように構成している。
【0043】
さらに、図25、図26、図27に示す如く、主変速レバー(73)手動操作によって切換える電動変速モータ(196)を設け、前記主変速レバー(73)を操作して変速モータ(196)を作動させて第1油圧ポンプ(23)の斜板角度を変更させ、第1油圧モータ(24)の出力軸(31)の回転数を無段階に変化させたり、逆転させる前後進切換動作を行わせ、主変速レバー(73)の操作量に比例させて第1油圧モータ(24)の回転数を変更させると共に、前記操向ハンドル(19)手動操作によって切換える電動操向モータ(197)と、操向ハンドル(19)の直進操作並びに副変速機構(32)中立切換によって作動させる直進バルブ(198)と、該バルブ(198)に接続させる操向クラッチシリンダ(199)を設け、前記操向ハンドル(19)を操作して操向モータ(197)を作動させて第2油圧ポンプ(26)の斜板角度を変更させ、第2油圧モータ(27)の出力回転数を無段階に変化させたり、逆転させる左右操向動作を行わせ、走行方向を左右に変更して圃場枕地で方向転換したり進路を修正するもので、操向ハンドル(19)の操作量に比例させて操向モータ(27)の回転数を変更させると共に、前記操向ハンドル(19)の直進操作並びに副変速機構(32)の中立操作によって直進バルブ(198)が自動的に切換わり、操向クラッチシリンダ(199)を作動させて操向出力クラッチ(62)を切にして第2油圧モータ(27)の出力を中止し、操向駆動を中止させるように構成している。
【0044】
また、前記操向入力軸(87)に操向出力アーム(220)の一端を固定させ、操向ハンドル(19)を直進位置に戻す左右一対の直進バネ(221)(221)と、前記バネ(221)に抗して操向ハンドル(19)の回転速度を遅くする戻り抵抗アブソーバ(222)を、前記出力アーム(220)に連結させ、操向ハンドル(19)を左右に回転させる手動操作を行ったとき、ハンドル(19)から作業者が手を離すことにより、ハンドル(19)を緩やかに直進位置に自動的に戻し、作業者によるハンドル(19)直進戻し操作を省くと共に、スライドポテンショメータ型操向角度センサ(223)を前記出力アーム(220)に連結させ、操向ハンドル(19)の操向操作量を操向角度センサ(223)によって検出させると共に、前記主変速レバー(73)の変速操作位置及び中立位置及び前後進切換動作を検出するポテンショメータ型主変速センサ(224)と、前記副変速レバー(74)の変速操作位置及び中立位置を検出するポテンショメータ型副変速センサ(225)と、運転席(20)の作業者が切換えるステアリングコラム(71)上面の撮形手元操作部材(226)の操作によって操向ハンドル(19)の切れ角増大に対する車速の減速比を変更させるボリューム形旋回フィーリング設定器(227)と、前記直進センサ(165)を、マイクロコンピュータで形成する変速操向コントローラ(228)に入力接続させる。
【0045】
さらに、前記変速モータ(196)を正転または逆転させる増速及び減速回路(229)(230)を前記コントローラ(228)に接続させ、主変速レバー(73)操作量(操作角度)に対して変速モータ(196)による第1油圧ポンプ(23)の斜板角を略正比例させて変化させ、主変速レバー(73)の傾き操作に応じた車速を得ると共に、前記操向モータ(197)を正転または逆転させる左右旋回回路(231)(232)を前記コントローラ(228)に接続させ、操向ハンドル(19)の操向操作量(左右回転角度)に対して操向モータ(197)による第2油圧ポンプ(26)の斜板を略正比例させて変化させ、また図28の旋回出力線図に示す如く、主変速レバー(73)の前進操作時と後進操作時とでは、操向ハンドル(19)の左右回転に対して左右旋回出力を逆にし、前進時と後進時とで逆ハンドルになるのを防ぎ、四輪自動車と同じ操向動作を行わせて前後進させる。また、主変速レバー(73)が中立のときは、第2油圧ポンプ(26)の斜板角を零に保ち、第2油圧モータ(27)の出力を停止維持し、主変速中立状態下でのハンドル(19)操作による旋回動作を阻止すると共に、操向ハンドル(19)切れ角に応じて大きくなる第2油圧ポンプ(26)の斜板角の絶対値を主変速レバー(73)操作角度の絶対値と比例するように制御し、操向ハンドル(19)切れ角が一定のときに車速を変化させても旋回半径を一定に保ち、四輪自動車と同じ操向動作で旋回させる。また、直進バルブ(234)を切換えて操向クラッチシリンダ(199)を作動させる直進回路(233)を前記コントローラ(228)に接続させ、副変速中立またはハンドル(19)直進によって操向出力を自動的に停止させる。
【0046】
さらに、図29、図30の車速出力線図に示す如く、操向ハンドル(19)の切れ角の増大に伴い、主変速レバー(73)変速位置で決定される車速を減速させるもので、主変速レバー(73)を一定位置に保ち乍らハンドル(19)切れ角に比例させて減速させ、ハンドル(19)を直進に戻すだけでレバー(73)速度に自動的に戻ると共に、ハンドル(19)最大切り角でスピンターン速度に減速され、またハンドル(19)の直進を中心とする不感帯(約15度の回転角度)でレバー(73)速度を保たせ、収穫作業中に未刈り穀稈列に沿わせる条合せ(進路修正)のための操向操作を行っても、走行速度が減速されたり増速されて収穫作業途中に走行速度が不均一に変化するのを防ぎ、作業者の運転感覚とコンバインの走行動作との間にずれが生じることなく適正な操向操作を行わせると共に、手元操作部材(226)を用いた作業者の手動切換により、図30のように、鋭敏な旋回、通常間旋回、滑らかな旋回となるように減速比を変化させる制御を前記部材(226)の手動によって行わせ、作業内容、圃場条件、作物状況などに適応させた旋回性能を得る。
【0047】
さらに、図31の旋回出力線図に示す如く、前記主変速レバー(73)の操作角度を検出する主変速センサ(224)入力に対し、操向角度センサ(223)に基づきコントローラ(228)から出力される操向モータ(197)制御出力を二次曲線形に変化させ、容積効率が低い第2油圧ポンプ(26)の斜板の小さいときに車速が遅くても操向ハンドル(19)を少し切るだけで斜板を大きく変化させ、第2油圧ポンプ(26)及び油圧モータ(27)の特性を電気的に補正して遅い車速であっても敏感に操向モータ(197)により第2油圧ポンプ(26)を旋回制御し、主変速レバー(73)の変速全域で操向ハンドル(19)の切れ角に対して走行クローラ(2)の旋回半径を略同一に保つもので、主変速レバー(73)が高速のときよりも低速のときの操向ハンドル(19)操作量に対する第2油圧ポンプ(26)制御量の割合を大きくし、第2油圧ポンプ(26)出力が低効率になる低速域で車速が遅いときであっても操向ハンドル(19)の少量操作によって適正な旋回動作を行わせ、操向ハンドル(19)の操作量と走行クローラ(2)の旋回半径を一致させる操向操作性及び操向機能の向上を図ると共に、主変速レバー(73)の中立を主変速センサ(224)によって検出して第2油圧ポンプ(26)を中立に維持させ、停止時の走行クローラ(2)の旋回動作を阻止し乍ら低速域の旋回性能を向上させ、操向ハンドル(19)の操作性向上並びに運転操作の簡略化などを図る。
【0048】
さらに、図32の旋回出力線図に示す如く、操向ハンドル(19)の切れ角を検出する操向角度センサ(223)入力に対し、直進位置を基準にしてハンドル(19)切れ角が小さい(約0〜10度の範囲)ときにコントローラ(228)から出力させる操向モータ(197)制御出力を大きく変化させ、ハンドル(19)切れ角が大きい(約10〜70度の範囲)ときにコントローラ(228)から出力させる操向モータ(197)制御出力を小さく変化させ、第2油圧ポンプ(26)及びモータ(27)の特性を電気的に補正して小さい切れ角のときにハンドル(19)操作に対して操向モータ(197)制御を敏感にし、低効率となる低出力域での第2油圧ポンプ(26)及びモータ(27)による走行クローラ(2)旋回を機敏に行わせるもので、操向ハンドル(19)の切れ角度が小さいときに操向制御出力の変化を大きくし、畦または作物列に走行進路を一致させる条合せ等の微少進路修正を行わせ、農作業中の直進走行時の操向性能の向上などを図るもので、直進作業時の進路修正を適正に行い、また操向ハンドル(19)の誤操作による過剰進路修正を防止し、高速走行での方向転換などを安定良く行わせると共に、操向ハンドル(19)の操作量に対して第2油圧ポンプ(26)の制御出力を非直線的に変化させ、第2油圧ポンプ(26)の特性または農作業内容などに適応させた操向動作を設定し、操向機能並びに取扱い操作性の向上などを図る。
【0049】
上記から明らかなように、走行変速レバーである主変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、主変速レバー(73)操作量によって決定される車速を操向ハンドル(19)操作量に比例させて減速させると共に、操向ハンドル(19)操作量に対する車速の減速比を変更自在とし、操向ハンドル(19)操作量に対して車速の減速量を少なくし、滑らかな旋回フィーリングとなって湿田走行性能を向上させ、スピンターンが不要な作業での作業能率の向上並びに湿田作業での走行性能の向上などを行うもので、操向ハンドル(19)操作量に対する車速の減速比を変更させる手元操作部材(226)を設け、運転作業者または作業内容または湿田作業に適した操向動作を容易に得られ、動力損失の低減並びに操舵機能の向上などを図るように構成している。
【0050】
また、主変速レバー(73)の操作量を検出して変速部材(25)を出力制御する変速アクチュエータである変速モータ(196)を設け、主変速レバー(73)及び変速部材(25)の取付け及び制御構造の簡略化並びに保守及び調整など取扱い操作性の向上などを行うと共に、操向ハンドル(19)の操作量を検出して操向部材(28)を出力制御する操向アクチュエータである操向モータ(197)を設け、操向ハンドル(19)及び操向部材(28)の取付け及び制御構造の簡略化並びに保守及び調整など取扱い操作性の向上などを行うように構成している。
【0051】
そして、図33のフローチャートに示す如く、主変速センサ(224)、副変速センサ(225)、操向角度センサ(223)、フィーリング設定器(227)、直進センサ(165)からコントローラ(228)に入力させる。また、副変速レバー(74)が中立のときに旋回出力切制御を行って操向出力クラッチ(62)を切にして第2油圧モータ(27)を中止させると共に、主変速レバー(73)が中立のときに旋回出力切制御を行う一方、操向ハンドル(19)が直進位置のとき、操向出力クラッチ(62)切制御によって第2油圧モータ(27)の出力を中止させる。また、副変速が中速または低速で、主変速が中立以外で、操向ハンドル(19)が直進以外に操作されることにより、主変速センサ(224)入力と操向角度センサ(223)入力によって主変速減速量及び操舵量及び操向方向が演算されて決定され、主変速及び操向制御によって変速モータ(196)及び操向モータ(197)を作動させ、左右走行クローラ(2)(2)の駆動速度を変更して条合せ進路修正並びに圃場枕地でのスピンターンによる方向転換などを行い、連続的に穀稈を刈取って脱穀する収穫作業を行うもので、操向ハンドル(19)操作角度に応じて減速される車速の最終速度を手元操作部材(226)のフィーリング設定器(227)操作によって無段階に変更させ、例えば路上走行または乾田作業において、ハンドル(19)操作量に対して車速減速量を大きくすると、敏感な旋回が可能になり、また車速減速量を減らすことによって滑らかな旋回フィーリングになると共に、湿田作業またはスピンターンが不要なときに車速減速量を減らすと、湿田走行性能が向上し、またハンドル(19)を大きく操作してもスピンターンによる急旋回が防止される。
【0052】
このように、走行変速レバーである主変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、圃場表面泥土層が乾いている乾田走行に適している乾田モードと、圃場表面泥土層が軟弱な湿田走行に適している湿田モードとに分けて走行変速と操向の各制御を関連させて行わせるもので、路上または乾田などでの旋回を機敏に行わせ、また湿田または泥土面などでの旋回性能を向上させると共に、操向ハンドル(19)操作量に対して車速の減速量を少なくし、滑らかな旋回フィーリングとなって湿田走行性能を向上させ、スピンターンが不要な作業での作業能率の向上並びに湿田作業での走行性能の向上などを行い、旋回特性の切換によって操舵機能の向上並びに取扱い操作性の向上などを図る。
【0053】
さらに、図34に示す如く、車速を操向ハンドル(19)角度によって減速させる減速時と減速させない不減速時とを、フィーリングレバー(195)または手元操作部材(226)によって切換選択するもので、操向ハンドル(19)最大角度で旋回内側の走行クローラ(2)を逆転させるスピンターン旋回走行と、操向ハンドル(19)の最大操作量で旋回内側の走行クローラ(2)の回転方向を外側走行クローラ(2)と同一方向に維持する非スピンターン旋回走行を、選択切換自在とし、スピンターン旋回走行の選択によって路上または乾田などでの旋回を機敏に行わせ、また非スピンターン旋回走行の選択によって湿田または泥土面などでの旋回性能を向上させ、旋回特性の切換によって操舵機能の向上並びに取扱い操作性の向上などを図るように構成している。
【0054】
【発明の効果】
以上実施例から明らかなように本発明は、走行変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、圃場表面泥土層が乾いている乾田走行に適している乾田モードと、圃場表面泥土層が軟弱な湿田走行に適している湿田モードとに分けて走行変速と操向の各制御を関連させて行わせるように構成し、旋回内側の走行クローラ(2)を逆転させるスピンターン旋回走行と、操向ハンドル(19)の最大操作量で旋回内側の走行クローラ(2)の回転方向を旋回外側の走行クローラ(2)と同一方向に維持する非スピンターン旋回走行を、選択切換自在として、前記湿田モードで非スピンターン旋回走行に選択切換することができるようにしたもので、路上または乾田などでの旋回を機敏に行わせることができ、また湿田または泥土面などでの旋回性能を向上させることができると共に、操向ハンドル(19)操作量に対して車速の減速量を少なくすることができ、滑らかな旋回フィーリングとなって湿田走行性能を向上させることができ、スピンターンが不要な作業での作業能率の向上並びに湿田作業での走行性能の向上などを容易に行うことができ、旋回特性の切換によって操舵機能の向上並びに取扱い操作性の向上などを容易に図ることができるものである。
【0055】
そして、旋回内側の走行クローラ(2)を逆転させるスピンターン旋回走行と、操向ハンドル(19)の最大操作量で旋回内側の走行クローラ(2)の回転方向を外側走行クローラ(2)と同一方向に維持する非スピンターン旋回走行を、選択切換自在としたもので、スピンターン旋回走行の選択によって路上または乾田などでの旋回を機敏に行わせることができ、また非スピンターン旋回走行の選択によって湿田または泥土面などでの旋回性能を向上させることができ、旋回特性の切換によって操舵機能の向上並びに取扱い操作性の向上などを容易に図ることができるものである。
【0056】
また、走行変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、走行変速レバー(73)操作量によって決定される車速を操向ハンドル(19)操作量に比例させて減速させると共に、操向ハンドル(19)操作量に対する車速の減速比を変更自在としたもので、操向ハンドル(19)操作量に対して車速の減速量を少なくすることにより、滑らかな旋回フィーリングとなって湿田走行性能を向上させることができ、スピンターンが不要な作業での作業能率の向上並びに湿田作業での走行性能の向上などを容易に行うことができるものである。
【0057】
また、操向ハンドル(19)操作量に対する車速の減速比を変更させる手元操作部材(226)を設けたもので、運転作業者または作業内容または湿田作業に適した操向動作を容易に得ることができ、動力損失の低減並びに操舵機能の向上などを容易に図ることができるものである。
【0058】
また、走行変速レバー(73)の操作量を検出して変速部材(25)を出力制御する変速アクチュエータ(196)を設けたもので、走行変速レバー(73)及び変速部材(25)の取付け及び制御構造の簡略化並びに保守及び調整など取扱い操作性の向上などを容易に行うことができるものである。
【0059】
また、操向ハンドル(19)の操作量を検出して操向部材(28)を出力制御する操向アクチュエータ(197)を設けたもので、操向ハンドル(19)及び操向部材(28)の取付け及び制御構造の簡略化並びに保守及び調整など取扱い操作性の向上などを容易に行うことができるものである。
【0060】
また、車速を操向ハンドル(19)角度によって減速させる減速時と減速させない不減速時とを切換選択するもので、不減速時に非スピンターン旋回走行を選択可能としたことにより、不減速時に非スピンターン旋回走行の選択によって湿田または泥土面などでの旋回性能を向上させて、旋回特性の切換によって操舵機能の向上並びに取扱い操作性の向上などを図ることができるものである。
特に、湿田モードで非スピンターン旋回走行に選択切換することができるようにしているため、湿田での走行性能が向上し、またハンドル(19)を大きく操作してもスピンターンによる急旋回が防止される。
【図面の簡単な説明】
【図1】コンバインの全体側面図。
【図2】コンバインの全体平面図。
【図3】ミッション駆動系の説明図。
【図4】走行変速及び操向操作部の説明斜視図。
【図5】同部の作動説明図。
【図6】ステアリングコラムの側面図。
【図7】同上部拡大側面図。
【図8】同下部拡大側面図。
【図9】ステアリングコラムの正面図。
【図10】同上部拡大正面図。
【図11】同下部拡大正面図。
【図12】図4の平面説明図。
【図13】同拡大図。
【図14】ステアリングコラム横断面図。
【図15】設定操作説明図。
【図16】ステアリングコラム上部の部分平面図。
【図17】同部分図。
【図18】図16の作動説明図。
【図19】変速部材作動説明図。
【図20】主変速動作説明図。
【図21】操向動作説明図。
【図22】主変速と操向ハンドル操作を示す線図。
【図23】走行変速出力切換部の正面説明図。
【図24】同部の部分説明図。
【図25】変速及び操向駆動説明図。
【図26】操向ハンドル部の平面説明図。
【図27】変速及び操向制御回路図。
【図28】操向ハンドルと旋回出力を示す線図。
【図29】操向ハンドルと変速出力を示す線図。
【図30】操向ハンドルと変速出力を示す線図。
【図31】主変速レバーと旋回出力を示す線図。
【図32】操向ハンドルと旋回出力を示す線図。
【図33】図7の変速操向制御フローチャート。
【図34】走行クローラ旋回出力線図。
【符号の説明】
(2) 走行クローラ
(19) 操向ハンドル
(25) 変速部材
(28) 操向部材
(73) 主変速レバー(走行変速レバー)
(196) 変速モータ(変速アクチュエータ)
(197) 操向モータ(操向アクチュエータ)
(226) 手元操作部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile agricultural machine such as a combine or a tilling tractor or a field management vehicle that continuously harvests and thresh cereals in a field.
[0002]
[Problems to be solved by the invention]
Conventionally, the driving force is transmitted to the left and right traveling crawlers via a belt or hydraulic continuously variable transmission mechanism that can change the traveling speed steplessly by operating the traveling speed change lever, and the vehicle is moved at an arbitrary vehicle speed and is steered by the steering handle. There is a technique for controlling a differential mechanism by operating a continuously variable transmission mechanism for changing the driving path of the left and right traveling crawlers in a stepless manner and changing the traveling path. However, the steering speed of the steering wheel only keeps the vehicle speed constant when driving straight and when turning, and it is necessary to perform a deceleration operation with the travel shift lever when performing a spin turn operation with a small turning radius. Yes, it is necessary to perform both the steering handle operation and the travel shift lever operation when changing the direction at the field headland. Therefore, by automatically decelerating the vehicle speed in conjunction with the steering wheel operation and automatically increasing to the original vehicle speed in conjunction with the steering wheel operation to return to straight running, the spin turn can be performed only by the steering wheel operation. It can be performed by decelerating the operation to the appropriate vehicle speed, and it can save troublesome traveling speed change operation, but there is a problem that the work efficiency decreases due to deceleration when working without spin turn, and traveling performance due to deceleration when working in wet fields There is a problem that decreases. In addition, if the reduction ratio of the vehicle speed with respect to the steering handle operation amount is reduced, there is a problem that a turning operation that is quick on the road or in the dry field cannot be obtained, and the direction change (spin turn) performance particularly in the dry field operation is deteriorated.
[0003]
[Means for Solving the Problems]
Therefore, in the present invention, the driving force is transmitted to the left and right traveling crawlers (2) through the transmission member (25) whose traveling speed can be changed steplessly by the operation of the traveling transmission lever (73), and the steering handle (19 ) In the mobile farm machine that changes the drive speed of the left and right traveling crawler (2) steplessly by operating the steering member (28), and a dry rice field mode suitable for dry rice field driving in which the field surface mud layer is dry; In the wet paddy mode, which is suitable for wet paddy field travel where the field surface mud layer is soft, the travel crawler (2) on the inside of the turn is reversed, with each control of travel shift and steering controlled in relation to each other. Spin-turn turning and non-spin-turn turning that keeps the direction of rotation of the traveling crawler (2) inside the turning in the same direction as the traveling crawler (2) outside the turning with the maximum amount of operation of the steering handle (19) The selection as switching換自standing, the to be able to select switching to a non-spin turn turning in Shitsuden mode, proportional to vehicle speed determined by the travel gear lever (73) manipulated variable to the steering wheel (19) operation amount The speed of the steering wheel (19) is variable and the speed reduction ratio of the vehicle speed with respect to the amount of operation of the steering handle (19) can be freely changed. The present invention provides a mobile agricultural machine characterized in that non-spin turn traveling can be selected during non-deceleration .
[0004]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is an overall side view of the combine, and FIG. 2 is a plan view thereof. In FIG. 1, (1) is a track frame on which a pair of left and right traveling crawlers (2) are installed, and (3) is the track frame (1). A machine base to be installed, (4) is a threshing section that stretches the feed chain (5) to the left and incorporates a handling cylinder (6) and a processing cylinder (7), (8) is a cutting blade (9) and grains A cutting part provided with a reed transport mechanism (10), (11) is a hydraulic cylinder that raises and lowers the reeding part (8) via a cutting frame (12), and (13) is a discharge part that faces the end of the waste chain (14). A cocoon processing unit, (15) is a cereal tank that carries the grain from the threshing unit (4) through the milling cylinder (16), and (17) carries the cereal of the tank (15) out of the machine. A discharge auger (18) is a cab with a round steering handle (19) and a driver seat (20), (2 ) Is an engine provided in the driver's seat (20) downward, and configured to threshing continuously harvests culms.
[0005]
Further, as shown in FIG. 3, the transmission case (22) for driving the traveling crawler (2) includes a pair of first hydraulic pump (23) and first hydraulic motor (24) for traveling main transmission. A speed change member (25) forming a hydraulic continuously variable transmission mechanism, a pair of second hydraulic pump (26) and a second hydraulic motor (27) are provided to form a hydraulic continuously variable transmission mechanism for turning. Direction member (28), and input shafts (29a) (29b) of the first and second hydraulic pumps (23), (26) to the output shaft (21a) of the engine (21). 30b) and the hydraulic pumps (23) and (26) are driven.
[0006]
Further, the drive wheels (34) of the left and right traveling crawler (2) are interlockedly connected to the output shaft (31) of the first hydraulic motor (24) via the subtransmission mechanism (32) and the differential mechanism (33). The differential mechanism (33) has a pair of symmetrical planetary gear mechanisms (35) (35), and each planetary gear mechanism (35) includes one sun gear (36) and the sun gear ( 36) three planetary gears (37) meshing with the outer periphery of the ring 36, and a ring gear (38) meshing with these planetary gears (37).
[0007]
The planetary gear (37) is rotatably supported by the carrier (41) of the carrier shaft (40) coaxial with the sun gear shaft (39), and the left and right sun gears (36) (36) are sandwiched between the left and right carriers. The ring gear (38) has an inner tooth (38a) that meshes with each planetary gear (37) and is arranged on the same axis as the sun gear shaft (39), so that the carrier shaft (40 The carrier shaft (40) is extended to form an axle to support the drive wheel (34).
[0008]
The traveling hydraulic continuously variable transmission member (25) controls forward / reverse rotation and rotation speed of the first hydraulic motor (24) by adjusting and changing the angle of the rotary swash plate of the first hydraulic pump (23). Therefore, the rotation output of the first hydraulic motor (24) is transmitted from the transmission gear (42) of the output shaft (31) via the gears (43) (44) (45) and the auxiliary transmission mechanism (32) to the sun gear shaft. The sun gear (36) is rotated by being transmitted to the center gear (46) fixed to (39). The sub-transmission mechanism (32) includes a sub-transmission shaft (47) having the gear (44) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46) via the gear (45). ), And a pair of low speed gears (50) (51), medium speed gears (52) (53), and high speed gears (54) between the auxiliary transmission shaft (47) and the brake shaft (49). (48) is provided, and the sub-shift is switched between low speed, medium speed, and high speed by the sliding operation of the low and medium speed slider (55) and the high speed slider (56). There is neutrality between low speed and medium speed and between medium speed and high speed. In addition, a parking brake (57) is provided on the brake shaft (49), and gears (59) (60) and a one-way clutch (61) are provided on a cutting PTO shaft (58) that transmits rotational force to the cutting portion (8). The sub-transmission shaft (47) is coupled to the cutting part (8) at the vehicle speed synchronization speed.
[0009]
As described above, the driving force from the first hydraulic motor (24) transmitted to the sun gear shaft (39) via the center gear (46) is transmitted to the left and right carrier shafts (40) via the left and right planetary gear mechanisms (35). ) And the rotation transmitted to the left and right carrier shafts (40) to the left and right drive wheels (34), respectively, to drive the left and right traveling crawler (2).
[0010]
Further, the steering member (28) formed by the turning hydraulic continuously variable transmission mechanism is configured to rotate the second hydraulic motor (27) forward and backward by adjusting the angle of the rotary swash plate of the second hydraulic pump (26). The rotation speed is controlled by a brake shaft (63) having a steering output brake (62), a clutch shaft (65) having a steering output clutch (64), and the left and right ring gears (38). Left and right input gears (66) and (67) that are always meshed with the teeth (38b) are provided, and the output shaft (68) of the second hydraulic motor (27) is connected to the output shaft (68) via the brake shaft (63) and the steering output clutch (64). The clutch shaft (65) is connected, the right input gear (67) is connected to the clutch shaft (65) via the forward rotation gear (69), and the forward rotation gear (69) and the reverse rotation are connected to the clutch shaft (65). The left input gear (66 through the gear (70) And by connecting the. Then, the brake (62) is turned on and the clutch (64) is turned off by the neutral of the auxiliary transmission sliders (55) and (56), while the brake (62) is turned off and the clutch is turned off at the time of the auxiliary transmission other than the neutral. (64) is turned on, the rotational force of the motor (27) is transmitted to the external teeth (38b) of the right ring gear (38) via the forward rotation gear (69), and the external teeth (38b) of the left ring gear (38) ) Is transmitted to the rotation of the motor (27) via the forward rotation gear (69) and the reverse rotation gear (70), and when the second hydraulic motor (27) rotates forward (reverse rotation), the left ring gear (38 ) In the reverse direction (forward rotation) and the right ring gear (38) in the forward direction (reverse rotation).
[0011]
Thus, when the traveling first hydraulic motor (24) is driven in a state where the second hydraulic motor (27) for turning is stopped and the left and right ring gears (38) are stationary and fixed, the first hydraulic motor ( The rotational output from 24) is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the left and right traveling crawlers are transmitted via the planetary gear (37) and carrier (41) of the left and right planetary gear mechanism (35). (2) is driven at the same rotational speed in the same rotational direction on the left and right, and the machine body travels straight forward and backward. On the other hand, when the second hydraulic motor (27) for rotation is driven to rotate in the forward and reverse directions with the first hydraulic motor (24) for traveling stopped and the left and right sun gears (36) stationary and fixed, the planet on the left side The gear mechanism (35) rotates forward or backward, and the right planetary gear mechanism (35) rotates backward or forward, driving the left and right traveling crawler (2) in the reverse direction and turning the aircraft to the left or right. Further, by driving the second hydraulic motor (27) for turning while driving the first hydraulic motor (24) for traveling, the aircraft turns left and right to correct the course. The turning radius is determined by the output rotational speed of the second hydraulic motor (27).
[0012]
Further, as shown in FIGS. 2 and 4 to 13, a steering column (71) is vertically fixed on the upper surface of the front portion of the cab (18), and a steering handle (19) is disposed on the upper surface of the steering column (71). ) Rotatably mounted around the vertical axis, a side column (72) is provided on the left side of the cab (18), a transmission (22) is disposed below the side column (72), a main transmission lever (73), The auxiliary transmission lever (74), the cutting clutch lever (75), and the threshing clutch lever (76) are attached to the side column (72). The steering column (71) is formed by molding an aluminum alloy casting, and is formed into a box shape by fastening with a plurality of bolts (77) in a split structure that can be divided into left and right.
[0013]
Further, a tilt base (78) is integrally formed on the steering column (71), and a tilt bracket (80) is rotatably supported on the tilt base (78) via a fulcrum bolt (79). The tilt bracket (80) is fixed by 81) so that the angle can be adjusted. The lower part of the shaft case (82) is integrally fixed to the tilt bracket (80), the shaft case (82) is extended above the upper surface cover (83) to be fixed to the upper surface of the column (71), and the shaft case (82) is disposed inside. The upper handle shaft (84) is rotatably supported, the steering handle (19) is fixed to the upper end of the upper handle shaft (84), and the handle (19) around the fulcrum bolt (79) is operated by the tilt lever (81). Is moved and adjusted in the front-rear direction to be supported at a fixed position, and the handle (19) mounting position is adjusted in the front-rear direction to be fixed at a position that is easy for the operator to operate.
[0014]
Further, the upper end side of the lower handle shaft (86) is connected to the lower end portion of the upper handle shaft (84) via a universal joint (85) so that the lower handle shaft (86) can be rotated to the upper portion of the steering column (71). The upper end of the steering input shaft (87) is rotatably supported on the upper part of the steering column (71), and the gear (88) of the lower handle shaft (86) and the sector gear of the steering input shaft (87) are supported. (89) is engaged to connect the shafts (86) and (87), and the steering input shaft (87) is extended in the vertical direction substantially at the center inside the steering column (71).
[0015]
Further, the bearing member (90) is detachably fixed to the left side surface of the steering column (71) at approximately the middle in the vertical direction, and one end of the transmission input shaft (91) is attached to the bearing member (90) with the bearing (92). The shift input shaft (91) is pivotally supported in the left-right direction substantially horizontally and at the lower end of the steering input shaft (87) via the universal joint (93). ) The upper end side is connected, the steering input member (95) is fixed to the input fulcrum shaft (94), the steering input member (95) is rotatably attached to the transmission input shaft (91), and the steering input member The input coupling body (96) is detachably fixed to (95), the steering input member (95) and the input coupling body (96) are coupled by the linkage bolt (97), and the transmission input shaft (91) is coupled. Steering input member via bearing (95a) 95) rotatably is pivotally supported and is rotatably supported steering input member (95) steering input shaft (87) around. Further, the steering input member (95) is rotated forward and backward around the core line of the substantially vertical input shaft (87) by forward / reverse rotation of the steering input shaft (87), and substantially by forward / reverse rotation of the speed change input shaft (91). The input fulcrum shaft (94) and the steering input member (95) are tilted in the front-rear direction around the horizontal input shaft (91) core wire in the horizontal direction. The vertical steering input shaft (87) core wire and the horizontal A universal joint (93) is attached to the intersection where the direction change input shaft (91) core wire crosses at right angles, and the steering input shaft (87) core wire is operated by the steering input shaft (87) forward / reverse operation of the steering handle (19). The steering input member (95) and the input connector (96) are rotated forward and backward.
[0016]
Further, the main transmission shaft (99) is rotatably supported on the lower front side of the steering column (71), and the left end of the main transmission shaft (99) horizontally mounted in the horizontal direction is connected to the steering column (71). And a link (101) (102) and a length-adjusting turnbuckle (103) on a central shaft (100) that is rotatably provided on the machine base (3) below the side column (72). The main transmission shaft (99) is connected through the attached rod (104). Further, as shown in FIG. 4, a fulcrum plate (106) is rotatably attached to the machine base (3) via a lever fulcrum shaft (105), and the main transmission lever is attached to the fulcrum plate (106) via a cylindrical shaft (107). (73) The base is pivotably mounted in the left-right direction, and the intermediate shaft (100) is connected to the fulcrum plate (106) via the links (108) (109), and the main transmission lever (73) is connected to the lever fulcrum shaft. (105) The main transmission shaft (99) is rotated in the forward and reverse directions by a speed change operation that swings back and forth in the forward and backward directions. The main transmission shaft (99) is connected to the transmission input shaft (91) via the rod-shaped main transmission member (110), the upper connecting plate (111), and the lower link (112), and the main transmission lever (73) is connected. The steering input member (95) is tilted back and forth around the core line of the transmission input shaft (91) by forward / reverse operation of the main transmission shaft (99).
[0017]
Further, a cylindrical shaft-shaped steering output shaft (113) is rotatably attached to the main transmission shaft (99), the link-type steering output member (114) is fixed to the steering output shaft (113), and the rod An upper end portion of the shape steering coupling member (115) is connected to the input connector (96) via a universal joint type steering input connection portion (116), and a ball joint type steering output connection portion (117) is connected. The steering coupling member (115) is connected to the steering output member (114) through the steering coupling member (115), thereby constituting the steering mechanism (118) for changing the traveling path.
[0018]
Further, a shift output shaft (119) is rotatably supported inside the steering column (71) above the steering output shaft (113) and substantially in parallel with the shaft (113), so that a link type shift output member (120 ) Is fixed to the transmission output shaft (119), and the upper end of the rod-shaped transmission coupling member (121) is coupled to the input coupling body (96) via the universal coupling type transmission input coupling section (122). A transmission mechanism (124) for connecting the lower end portion of the transmission coupling member (121) to the transmission output member (120) via the joint-type transmission output connecting portion (123) and changing the traveling speed and switching between forward and backward travel. It is composed.
[0019]
Further, the inner steering operation shaft (125) and the outer speed change operation shaft (126) of the double shaft structure which can rotate with each other are connected to the bearing portion (127) at the center of the left and right width on the lower rear side of the steering column (71). The speed change operation shaft (126) upper end is connected to the speed change output shaft (119) via a ball joint shaft (128) and speed change links (129) (130) of which the length is adjustable. At the same time, the upper end portion of the steering operation shaft (125) is connected to the steering output shaft (113) through the ball joint shaft (131) and the steering links (132) (133) that are adjustable in length.
[0020]
The operation shafts (125) (126) are erected on the bottom of the steering column (71) substantially vertically on the same axis, and the upper ends of the operation shafts (125) (126) are located inside the steering column (71). To the output shafts (113) and (119), and the lower end portions of the operation shafts (125) and (126) are projected below the bottom surface of the steering column (71). The lower end side of each operation shaft (125) (126) is extended on the lower surface side of the worker boarding step (134), and the vehicle speed control arm (136) is fixed to the output control shaft (135) of the transmission member (25). The vehicle speed control arm (136) is connected to the lower end portion of the speed change operation shaft (126) via the adjustable length vehicle speed rod (138) with the turnbuckle (137) and the vehicle speed link (139) to control the output. The first hydraulic pump (23) swash plate angle is adjusted by forward / reverse operation of the shaft (135) to control the rotation speed and forward / reverse switching of the first hydraulic motor (24), thereby continuously changing the traveling speed (vehicle speed). In addition, forward / reverse switching is performed. Further, the steering control arm (141) is fixed to the output control shaft (140) of the steering member (28), and the length adjustable swivel rod (143) and the swivel link (144) with a turnbuckle (142) are provided. The steering control arm (141) is connected to the lower end of the steering operation shaft (125) through the second hydraulic pump (26) to adjust the swash plate angle by forward / reverse operation of the output control shaft (140). The rotational speed control and forward / reverse switching of the hydraulic motor (27) are performed, and the steering angle (turning radius) is continuously changed and the left / right turning direction is switched.
[0021]
Further, an accelerator lever (145) is provided on the right outer surface of the steering column (71) so as to be rotatable in the front-rear direction, and an accelerator wire (146) for connecting the accelerator lever (145) to the engine (21) is connected to the front surface of the steering column (71). Extending from below along the inside, manually adjusting the engine (21) rotation speed by the accelerator lever (145), and opening a maintenance window (147) on the rear surface of the steering column (71) The maintenance window (147) is closed by (148).
[0022]
As is clear from the above, the steering mechanism (118) changes the steering amount in proportion to the operation amount of the speed change mechanism (124), and the steering amount is automatically increased by the high speed side travel shift, and the low speed side travel is performed. The amount of steering is automatically reduced by shifting, and the turning radius of the left and right traveling crawler (2) is maintained substantially constant regardless of the traveling speed by a certain amount of operation of the steering handle (19), and the farm work traveling speed is changed. In addition, the course is corrected along the crop line and the like, and the reverse conical speed change mechanism (124) and the steering mechanism (118) are formed, and the steering input shaft (87) is rotated by the steering operation. Then, the steering input member (95) is operated, for example, the turning speed is reduced while the steering input member (95) is rotated, and the steering input member (95) is operated by rotating the speed change input shaft (91) by a speed change operation. Let Expand contraction small sequence of turning radius by the running speed to perform operations such as stop of the turning output by the running gear neutral.
[0023]
Further, a steering input connecting portion (116) for connecting the steering input member (95) and the steering coupling member (115) is disposed on the core line of the transmission input shaft (91), and the transmission input member (96) and the transmission are changed. The shift input connecting portion (122) for connecting the coupling member (121) is disposed on the straight line (A) intersecting the core line of the shift input shaft (91), and the steering input shaft (87) and the shift input shaft (91). ), The relative movement of the steering input member (95) can be easily set, the design, assembly and structure can be simplified, the operation reliability can be improved, and the transmission input shaft (91) core A shift input connecting portion (122) and a steering input connecting portion (116) are arranged on a circumference (C) centering on an axis center intersection (B) where the steering input shaft (87) core wires intersect, Simplify the structure of the steering input member (95) and make it more compact Therefore, the shift output connecting portion (123) for connecting the shift output member (120) and the shift connecting member (121), and the steering output connecting portion for connecting the steering output member (114) and the steering connecting member (115). (117) is disposed on the steering input shaft (87) core line to prevent reverse handle development due to shift switching during forward and reverse travel, and the shift output member (120) and the steering output member (114) The design, assembly and structure are simplified, and the reliability of operation is improved, and the distance of the speed change output connecting portion (123) with respect to the axis intersection (B) of the speed change input shaft (91) and the steering input shaft (87). And the steering output connecting portion (117) are made different from each other, and the shift output connecting portion (123) and the steering output connecting portion (117) are separated on the same straight line (D) to thereby connect the connecting portions (117). (123) Interference prevention and movement Setting circumference and easy to constitute so can be installed shift coupling member (121) and steering coupling member (115) in the narrow small place.
[0024]
Further, the shift input connecting portion (116) and the steering input connecting portion (122) are arranged with a circumference (C) centered on the axis intersection (B) of the shift input shaft (91) and the steering input shaft (87). ) About 90 degrees apart, the steering input connecting portion (116) is maintained at a fixed position by the rotation of the speed change input shaft (91), and the displacement of the speed change input connecting portion (122) is maximized. And a structure in which the speed change input shaft (91) is arranged on a plane on which the input connecting portions (116) and (122) are moved, and the amount of movement of the connecting portions (116) and (122) is easily secured. The steering input member (95) is compactly and functionally arranged, and the shift input connecting portion (122) and the steering input connecting portion (116) are within a range of about 90 degrees around the steering input shaft (87). To prevent reverse handle development by switching forward and backward, As well as ensuring the amount of movement of the connecting portions (116) and (122), the shift input connecting portion (122) is moved in the deceleration direction according to the steering angle for rotating the steering input shaft (87), A spin turn operation for changing the direction around the traveling crawler (2) is easily performed, and is functionally configured with a compact structure. In addition, the spin turn operation is performed by causing one of the left and right traveling crawlers (2) to rotate forward and the other in reverse via the differential mechanism (33) by the output of the steering member (28), thereby causing the left and right traveling crawlers (2) to rotate. ) Of the steering member (28) which is the rotation of the speed change member (25) which is a forward / reverse output and the turning output. The turning radius is determined by the rate of rotation. Further, the transmission output shaft (119) and the steering output shaft (113) are provided substantially in parallel with the transmission input shaft (91), and the output shafts (113) (119) form a case that can be divided into a plurality of cases. (71) is pivotally supported with high accuracy, and the shift input shaft (91) and the output shafts (113) and (119) are extended in the left-right direction, whereby a connecting structure in the longitudinal direction of the fuselage can be easily obtained. The main transmission lever (73) and the transmission input shaft (91) can be easily connected, and the transmission member (25) and the steering member (28) and the output shaft (113) (119) can be easily connected. It is configured to simplify and improve handling.
[0025]
Further, as shown in FIG. 14, a phase adjusting slot (149) for loosely inserting and inserting the linkage bolt (97) is opened in the input connecting body (96), and the steering input shaft (87) is centered on the core wire. The long hole (149) is formed on the same circumference, and the speed change input shaft (91) is fixed at the traveling speed neutral position by the engagement of the bolt type reference setting member (98) and the neutral setting hole (150). Thus, only the steering input member (95) is rotated and rotated to the left and right with respect to the transmission input shaft (91) to correct the relative position of the steering input member (95). The steering handle (19) A neutral position for turning determined by operation and a neutral position for traveling speed are set. Further, a reference setting member (98) for fixing the speed change input shaft (91) at the reference position is detachably provided, the bolt stopper (98a) shown in FIG. 14 is removed, and the reference setting member (98 is shown in FIG. ) The tip is engaged with the neutral setting hole (150), and the neutral position and the steering straight position are determined by the engagement of the neutral setting hole (150) and the reference setting member (98). The assembly nuts (121a) and (115a) shown in Fig. 5 are adjusted during assembly to extend and contract the connection length of the transmission coupling member (121) or the steering coupling member (115), etc. It is configured to improve.
[0026]
Further, as shown in FIG. 16 to FIG. 18, the gear (88) forms a plurality of teeth (151) in an outer peripheral range of 270 degrees, and forms an outer peripheral range of 90 degrees in an arc (152). The total rotation angle of the handle (19) is set to 270 degrees, the angle of left steering rotation or right steering rotation is set to 135 degrees, and the steering handle (19) can be rotated easily with one hand. Form. Further, the sector gear (89) forms a plurality of teeth (153) in an outer peripheral range of 130 degrees, forms an outer peripheral range of 230 degrees in an arc cam (154), and teeth (151) of the gear (88) Are engaged with the teeth (153) of the sector gear (89), and when the maximum forward / reverse rotation of each gear (88) (89), the stoppers (155) on both ends of the arc (152) and the stoppers on both ends of the arc cam (154) ( 156) and restricting the rotation of the steering handle (19), and the steering input member (95) and the input coupling body (96) around the core line of the steering input shaft (87) within a range of 65 degrees. The space where the shift input shaft (91) and the upper end of the main transmission member (110) are arranged on the plane on which the steering input member (95) rotates is moved forward and backward, and the shift input shaft (91) core is secured. Steering input connector (116) is provided on the line And a structure in which the input connecting portions (116) and (122) are separated by 90 degrees on the same circumference can be easily obtained, and the structure can be made compact and the design and assembly can be simplified. .
[0027]
A straight notch (157) is formed at the center of the circular arc cam (154) of the sector gear (89), and a detent shaft (158) is rotatably supported on the upper surface wall of the steering column (71). 158) The detent arm (159) is fixed to the lower end, the detent arm (159) is rotatably supported by the detent arm (159) via the roller shaft (160), and the arc cam (154) is detent-rolled. (161) is brought into contact, and the detent roller (161) is detachably engaged with the rectilinear notch (157) to support the steering handle (19) in the rectilinear position. The detent lever (162) is fixed to the upper end side of the detent shaft (158), and one end of a neutral spring (163) wound around the detent shaft (158) is locked to the detent lever (162) to 71) is brought into contact with the receiving plate (164) of the neutral spring (163), and the detent roller (161) is brought into elastic contact with the arc cam (154) and the straight notch (157) by the neutral spring (163). ing. Further, a microswitch type rectilinear sensor (165) that electrically detects the rectilinear position of the steering handle (19) by switching on and off is attached to the detent lever (162).
[0028]
Furthermore, as shown in FIG. 12 and FIG. 13, an expansion / contraction damper (166) is provided at an intermediate portion of the swiveling rod (143), and a spring case (167) fixed to the end of one rod (143) and the other rod (143) Spring seats (168) and (169) which are slidably engaged with the end portions, and compression springs (170) which are wound around the rod (143) in a compressed state via the spring seats (168) and (169) Is provided in the damper (166), and when a certain pushing force is applied to the rod (143) in both the pushing direction and the pulling direction by the steering operation of the steering handle (19), that is, the steering When the steering control arm (141) is moved to the maximum output position by operating the cutting angle 116 degrees (85%) of the handle (19), the spring (170) is compressed to expand and contract the rod (143). 2 The steering handle (19) is further rotated in the turning direction while maintaining the maximum output of the pressure pump (26), and the steering handle (19) is operated from a cutting angle of 116 degrees to a cutting angle of 135 degrees. ing.
[0029]
Further, as shown in FIGS. 12, 19, and 20, a pin (171) is fixed to the vehicle speed control arm (136), and a long hole (172) through which the pin (171) is slidably inserted is provided. Formed at the end of the vehicle speed rod (138), the vehicle speed rod (138) is connected to the vehicle speed control arm (136) via a long hole (172) and a pin (171) and coaxial with the vehicle speed control arm (136). The detent cam (173) is fixed to the cam (173), the detent roller (174) is elastically pressed by the spring (175), and the vehicle speed control arm (136) is moved to the neutral position by the cam (173) and the roller (174). The first hydraulic motor (24) is stopped and maintained by neutral support of the arm (136), and the arm (136) is neutral and the main transmission lever (73 Is in the neutral operation position, the pin (171) is positioned substantially in the center in the longitudinal direction of the long hole (172), and the stroke (approximately 171) is approximately equal to both forward and backward speed changes by pushing and pulling of the rod (138). ), And is configured such that the arm (136) performs substantially symmetrical (forward / reverse) operation in both forward and backward speed changes.
[0030]
As shown in FIG. 20, the speed change lever (73) in the neutral position (O) is operated to move the dead zone (P) to the shift start position (Q), thereby moving the vehicle speed rod ( 138) causes the pin (171) to come into contact with the longitudinal end portion of the long hole (172) to connect the main speed change lever (73) and the vehicle speed control arm (136), and to move the main speed change lever (73). Further, the vehicle speed control arm (136) at the neutral position (T) is maximized by shifting the shift zone (R) to support the tilting to the maximum output position (S) of the shift member (25) by shifting operation. The shift zone (R) up to the output position (S) is moved in proportion to the amount of operation of the main shift lever (73), and the first hydraulic motor (24) of the shift member (25) is output in a stepless manner. Travel crawler (2) etc. It is configured to forward and backward by driving in the same direction in degrees.
[0031]
Furthermore, as shown in FIGS. 14, 21, and 22, the bearing (90) is provided with a notch (176) to form a recess (177), and the steering handle (19) is turned to the maximum left turning angle (135). The shift input connecting portion (122) and the shift coupling member (121) are inserted into the recess (177) when the operation is performed, compared with a structure in which the connecting portion (122) contacts the bearing portion (90). The maximum speed reduction rate when the steering handle (19) is turned left and right is greatly increased. The linkage bolt (97) is centered on the straight position (U) of the steering handle (19), and the phase adjusting hole (149) ) A constant speed zone (V) is formed until it abuts against the edge, and the course is corrected while the aircraft center speed is kept substantially constant by the steering operation of the steering handle (19) within 15 degrees. Further, the steering handle (19) is further steered to move the turning zone (W), and the steering handle (19) to the maximum output position (X) of the steering member (28) is between 116 cutting angles. The steering control arm (141) is moved to the maximum output position (X) in proportion to the rotation angle of the steering handle (19), and the second hydraulic motor of the steering member (28) is rotated. (27) is output steplessly to change the speed difference between the left and right traveling crawlers (2) steplessly, and the vehicle speed rod (138) and vehicle speed control arm ( 136) is moved backward in the neutral direction of the shift, the traveling speed of the left and right traveling crawler (2) is steplessly reduced, and the turning angle of the steering handle (19) is increased so that the turning radius is reduced and the traveling speed is reduced. Slow down and turn left and right Divide. Further, the steering handle (19) with a cutting angle of 116 degrees is further operated to rotate the inside of the spin turn zone (Y) to the maximum steering position (Z) with a cutting angle of 135 degrees, thereby providing a damper. The vehicle speed rod (138) and the vehicle speed control are performed in a state where the turning rod (143) (connection length) is expanded and contracted by the expansion and contraction absorption operation of (166) and the steering control arm (141) is maintained at the maximum output position (X). The arm (136) is further moved backward in the gear shifting neutral direction, and a spin turn operation is performed in which the direction is changed around the turning center formed in the middle of the left and right width of the left and right traveling crawler (2).
[0032]
Further, as shown in FIGS. 19, 20, and 22, the vehicle speed rod (138) and the vehicle speed control arm (136) are connected by a long hole (172), and the speed change operation stroke (L) of the main speed change lever (73) is set. A recess (177) is formed in the bearing portion (90) provided in the left-turning direction of the shift input connecting portion (122) so that the connecting portion (122) enters and exits the recessed portion (177). The vehicle speed reduction rate is set to 25% with the steering handle (19) maximum turning angle (135 degrees) during the maximum output operation of the main speed change lever (73), and the speed reduction rate is reduced to 40% by the speed change mechanism (124). On the other hand, the deceleration rate is further increased to 25%, the spin turn operation is performed, the aircraft is turned about 180 degrees in the field headland, and the next uncut grain harvesting process It is configured to move to. As shown in FIG. 22, at the maximum output of the main speed change lever (73), the damper (166) is operated at a turning angle of 116 degrees of the steering handle (19), and the steering member (28) is maintained at the maximum output. And the deceleration rate of the left and right traveling crawler (2) is kept substantially equal in the range of 116 to 135 degrees of the steering handle (19). Thus, the speed difference between the left and right traveling crawlers (2) is maximized, and the speed difference between the left and right traveling crawlers (2) is maintained substantially constant in the range of the turning angle of the steering handle (19) from 116 degrees to 135 degrees. The handle (19) is decelerated in proportion to the turning angle.
[0033]
Further, the deceleration operation amount of the vehicle speed control arm (136) by the steering handle (19) is increased to increase the deceleration rate, so that the deceleration rate necessary for the spin turn operation can be easily obtained and the direction at the field headland In order to improve the conversion function, the vehicle speed control arm (136) and the vehicle speed rod (138) are connected by the long hole (172) and the pin (171), and the size of the long hole (172) and the pin (171) is obtained. Thus, the operation amount of the vehicle speed rod (138) or the deceleration operation amount of the vehicle speed control arm (136) can be easily determined. The output characteristics of the speed change member (25) and the steering member (28) and the steering handle (19) It is configured so that deceleration control operation and the like can be easily considered, the vehicle speed rod (138) mounting structure is simplified, handling is improved such as assembly work, and manufacturing costs are reduced.
[0034]
Further, the input member (95) (96) is shifted from the neutral position (P) to the shift start position (Q) around the shift input shaft (91) by operating the dead zone (P) of the main shift lever (73). The operating ratio of the steering control arm (141) with respect to the steering angle of the steering wheel (19) in the constant speed zone (V) centered on the straight traveling position of the steering steering wheel (19) is increased, and the main transmission lever (73) Is shifted to the speed change zone (R) and travels at a slow speed, the operation of the steering control arm (141) is increased by the operation in the constant speed zone (V) of the steering handle (19). The rotation change rate of the second hydraulic pump (26) of the member (28) is increased with respect to the change in the turning angle of the handle (19), the turning operation time at the very low speed output of the second hydraulic pump (26) is shortened, The motor (27) performs a turning operation in the slow output range. To prevent, it is configured such that the turning operation of the steering wheel (19) of the main speed change lever (73) a very low speed running state is performed by increasing the second hydraulic pump (26) or constant output. In this way, by preventing the second hydraulic pump (26) from turning at the very low speed rotation output, even if the second hydraulic pump (26) has low efficiency in the very low speed output region, the second hydraulic pump (26). The turning operation can be performed while ensuring a certain output or more. Further, after setting the control of the steering member (28) by the steering handle (19) to ensure a turning force of a certain level or more by the shift operation of the main shift lever (73), the travel shift operation is performed. Can be delayed to prevent shortage of the turning force of the steering member (28) at the time of slow movement, reducing the manufacturing cost of the steering member (28) and improving the turning performance of the left and right traveling crawler (2). Therefore, by operating the main speed change lever (73), the steering and the speed change input members (95) (96) are rotated by a certain angle around the core line of the speed change input shaft (91), and then each input member (95) (96 ) Is connected to the speed change member (25) to operate the speed change member (25), and each input member (95) (96) is moved to the steering operation state by the speed change operation, and then output from the speed change member (25). To drive the traveling crawler (2) Even when moving at a slow speed with a low travel output, the amount of control of the steering member (28) by the steering operation of the steering handle (19) is increased to ensure the necessary turning force, and the turning performance at a slow speed is improved. It is comprised so that it can plan.
[0035]
When the main speed change lever (73) is neutral, the input members (95) (96) and 96 around the core of the steering input shaft (87) by the forward (reverse) operation of the steering handle (19). Each coupling member (115) (121) moves on a conical locus, and the output members (114) (120) and the output shafts (113) (119) are stopped. Further, by the forward (reverse) operation of tilting the main transmission lever (73) forward (rearward), the input members (95) (96) are tilted forward (rearward) around the core line of the speed change input shaft (91) and operated. While maintaining the state where the direction input connecting portion (116) is stopped at a certain position, the shift input connecting portion (122) is moved upward (downward), and the shift output member (120) is swung upward (downward). The transmission output shaft (119) is rotated forward (reverse), and the first hydraulic motor (24) is rotated forward (reverse) by switching the swash plate angle of the first hydraulic pump (23) of the transmission member (23). The left and right traveling crawler (2) is driven forward (reverse) by forward rotation (reverse rotation) of the output shaft (31) of the hydraulic motor (24). Further, the rotation speed of the output shaft (31) changes in proportion to the tilt angle of the main transmission lever (73), and the forward (reverse) speed of the traveling crawler (2) is steplessly changed.
[0036]
Further, under the condition that the main shift lever (73) is moved forward (rearward) and the forward (reverse) operation is performed, the steering handle (19) is rotated leftward (rightward) to thereby input the shift. The steering input member (95) rotates forward (reversely) about the steering input shaft (87) around the core line in a posture in which the steering input member (95) is tilted forward (rearward) around the axis (91), and the steering input connecting portion (116) is The steering output shaft (113) is normally rotated (reversed) by the downward (upward) swing of the steering output member (114), and the second hydraulic pump ( 26) forward rotation (reverse rotation) of the second hydraulic motor (27) by switching the swash plate angle, and left rotation crawler (2) by forward rotation (reverse rotation) of the output shaft (68) of the second hydraulic motor (27). Is decelerated (accelerated) and the right traveling crawler (2) is accelerated (decelerated) to the left (right To thereby pivot the body to correct the path to the left (right). Simultaneously with the course correcting operation, the shift input member (96) is tilted forward (rear) around the core line of the shift input shaft (91) by the leftward (rightward) rotation of the steering handle (19). The steering input shaft (87) rotates forward (reversely) around the core wire, the shift input connecting portion (122) moves downward (upward), and the shift output (120) swings downward (upward) to produce shift output. The shaft (119) is reversely rotated (normally rotated), and the speed change member (25) is controlled to return to the neutral direction to reduce the rotational speed of the output shaft (31), thereby reducing the traveling speed (vehicle speed). As described above, by the left / right steering operation of the steering handle (19) during traveling, the turning radius (angle) for correcting the course is proportional to the rotation angle of the steering handle (19), and the traveling speed is reduced. By changing the amount and rotating the steering handle (19) largely, the speed difference between the left and right traveling crawlers (2) is increased to reduce the turning radius, and at the same time, the amount of deceleration of the traveling speed increases and the vehicle speed decreases. At the time of forward movement and backward movement, the movement of the turning input connecting portion (116) is reversed with respect to the rotation of the steering handle (19), and the steering handle (19) is rotated in both forward and backward movements. By adjusting the operation direction and the turning direction of the aircraft and rotating the round steering handle (19) to rotate, for example, a course correction and a direction change with a driving feeling similar to that of a four-wheeled vehicle such as a tractor or a rice transplanter. Cormorant.
[0037]
Further, FIG. 22 shows the relationship between the turning angle of the steering handle (19) and the speed of the left and right traveling crawler (2) when the aircraft is turning left and right. The speed difference of the crawler (2) becomes large, and the airframe center speed, which is the average speed of the left and right traveling crawlers (2), is also reduced according to the traveling speed (high speed / standard / low speed) state of the auxiliary transmission lever (74). The In the cutting path correction range in which the steering handle (19) in the straight traveling position is rotated about 15 degrees leftward (rightward), the speed change input connecting portion (122) is substantially tangent to the rotation of the steering input member (95). The shift output member (120) is maintained at substantially the same position as the straight travel, and the second hydraulic motor (27) is rotated forward (reverse) by the second hydraulic pump (26) of the steering member (28). ) Is turned leftward (rightward) by the steering output, and the course is corrected to match the curvature of the uncut grain culm (crop) row. At this time, the deceleration amount of the traveling crawler (2) inside the turning and the acceleration amount of the traveling crawler (2) outside the turning become substantially equal, and the body center speed is kept at substantially the same speed as the straight traveling. Further, when the steering handle (19) is rotated by 15 degrees or more from the straight traveling position, the shift coupling member (121) is pushed and pulled by the rotation of the steering input member (95), and the shift output member (120) is turned to the left. In both the right turn and the right turn, the traveling shift output of the first hydraulic pump (23) and the motor (24) is decelerated, and the left and right traveling crawlers (2) and (2) are rotationally driven in the same direction to move forward ( Or reverse), and a brake turn operation that turns leftward (rightward) due to the difference in travel speed between the left and right traveling crawlers (2) and (2) is performed. Make a course correction to return to the next row or move to the next row. Further, when the steering handle (19) is rotated about 116 degrees, the damper (166) is operated and the turning output is maintained at the maximum output, and the center speed of the aircraft is about 4 minutes at the straight angle range of 135 degrees. 1, the traveling crawler (2) inside the turn is driven in reverse, and a spin turn operation is performed in which the body turns around the turning center between the left and right traveling crawlers (2). Turn the aircraft 180 degrees by shifting the width in the turning direction. Turn the steering handle (19) in the range of 0 to 135 degrees and turn left or right. In addition, while performing the alignment course correction that moves along the uncut grain culm (crop) row in the 15 ° left and right handle (19) rotation range centered on the straight traveling position, while maintaining the traveling speed during straight traveling, 116 degrees left or right While rotating the steering wheel (19) at 35 degrees, while maintaining the maximum output of the swivel member (28), the spin turn operation of changing the direction of the aircraft on the field headland and moving to the next work process is about 4 minutes when going straight ahead. The vehicle is automatically decelerated to a traveling speed of 1 (deceleration rate 25%).
[0038]
Further, when the sub-shift is maintained at a standard speed (1.5 meters per second) and the steering handle (19) is rotated by 90 degrees, the main shift output is set to a high speed and two thirds by operating the main shift lever (68). Even if it is changed to 1/3, only the turning speed (aircraft center speed) is changed in a state where the turning radius of the airframe is kept substantially constant. In addition, the first hydraulic pump (23) and the first hydraulic motor (24) are maintained in a straight traveling state within a set range of the linkage bolt (97) and the phase adjustment hole (149) with reference to the straight traveling position, and the crop row during farming Or, even if the steering operation is carried out along the dredger, etc., the traveling speed is prevented from changing unevenly, and the course can be corrected during farm work while maintaining the same traveling speed. Appropriate steering operation can be performed by substantially matching the traveling motion of the aircraft. Further, the sub-shift lever (74) for switching the shift reference value of the main shift lever (73) changes the turning radius from a small diameter to a large diameter in proportion to the low speed, standard and high speed switching of the sub-shift operation, and the first hydraulic pump ( 23) and the reduction ratio between the motor (24) and the traveling crawler (2) and the reduction ratio between the second hydraulic pump (26) and the motor (27) and the traveling crawler (2), or necessary for the spin turn operation. While ensuring the driving force required for small radius turning, and operating the main speed change lever (73) at the same sub-shift operation position, the running speed during turning is changed with the turning radius kept substantially constant. Let
[0039]
Further, as shown in FIGS. 11, 23, and 24, a cylindrical output shaft (178) and a direct output shaft (179) are rotatably supported on the speed change output shaft (119), and a speed reduction output shaft ( 178), the transmission output member (120) is fixed, the transmission output shaft (119) is fixed to the transmission link (129) via the boss (180), and the main transmission shaft (99) is fixed to the boss (181). The direct input link (182) is fixed via the direct link, the direct output link (183) is fixed to the direct output shaft (179), and the roller (185) provided on the shaft (184) of the input link (182) is output link. A straight output shaft (179) is connected to the main transmission shaft (99) via the links (182) and (183) through the long holes (186) of the (183). (179) is rotated together
[0040]
Further, the clutch shaft (187) is inserted into the hollow of the speed change output shaft (119) so as to be freely inserted and removed, and a clutch pin (188) to be engaged with the speed change output shaft (119) is fixed to the insertion end of the clutch shaft (187). At the same time, notches (189) and (190) for releasably engaging the clutch pin (188) are formed in the deceleration output shaft (178) and the direct output shaft (179), respectively, and the clutch shaft (187) enters and exits. By operation, either the deceleration output shaft (178) or the direct output shaft (179) is selectively connected to the transmission output shaft (119) via the clutch pin (188) and the notches (189) (190). The clutch shaft (187) is provided with positioning grooves (193) (194) for releasably engaging the positioning balls (192) by springs (191), and the balls (192) and the grooves (193) ( 194), the clutch pin (188) is kept engaged with one of the notches (189) and (190) of the output shafts (178) and (179), and the steering column (71) A feeling lever (195) is attached to the outside so as to be operable by an operator on the step (134), the lever (195) is connected to the clutch shaft (187), and the clutch shaft (187) is operated by operating the lever (195). ), And the shift link (129) is switched by either the shift input from the shift output member (120) or the shift input from the output link (183). To change the speed of the speed change member (25) by either a speed change input for decelerating the vehicle speed in proportion to the operation amount of the steering handle (19) or a speed change input based on the operation amount of the main speed change lever (73). Control.
[0041]
As is apparent from the above, the shift operation output from the main transmission lever (73) is divided into two by the main transmission shaft (99), and one output is output as a vehicle speed deceleration output corresponding to the steering wheel (19) angle. 120) from the output link (183) to the transmission link (129) via the deceleration output shaft (178) on the transmission output shaft (119), and the other output is directly connected to the transmission output shaft (119). (179) is transmitted to the speed change link (129), the two speed change outputs are selected on the speed change output shaft (119), and the first hydraulic pump (23) is subjected to speed change control by one of them. A driving force is transmitted to the left and right traveling crawlers (2) through a speed change member (25) whose traveling speed can be changed steplessly by operation of a main transmission lever (73) which is a traveling transmission lever, and a steering handle (19). In In a mobile farm machine that operates the steering member (28) to change the difference in driving speed between the left and right traveling crawlers (2) steplessly, the vehicle speed is reduced in proportion to the operation amount of the steering handle (19). A speed change member (25) is connected to the main speed change lever (73) via a speed reduction output shaft (178) which is a cooperative system path, and a direct connection output which is a third system path different from the speed reduction output axis (178). The speed change member (25) is connected to the main speed change lever (73) by the shaft (179), and the control structure of the speed change member (25) is recombined by using the deceleration output shaft (178) and the direct connection output shaft (179). Without changing the turning performance and running performance, the turning characteristics such as insensitive turning feeling or agile turning feeling are selected.
[0042]
In addition, a feeling lever (195), which is a feeling switching member for selecting a speed change input from the deceleration output shaft (178) and a speed change operation input from another direct connection output shaft (179), is provided, and the speed reduction output shaft (178) The shift control using the direct drive shaft (179) and the shift control using the direct output shaft (179) are switched by operating the feeling lever (195) to improve the steering function and simplify the handling operation. 178) and a speed change input from another direct-coupled output shaft (179) are selected on the same axis, and the speed change member (25) is controlled by either input, and the main speed change lever (73) and The connecting mechanism between the steering handle (19) and the speed change member (25) is simplified and made compact to improve workability such as assembly and adjustment.
[0043]
Further, as shown in FIGS. 25, 26, and 27, an electric transmission motor (196) that is switched by manual operation of the main transmission lever (73) is provided, and the transmission motor (196) is operated by operating the main transmission lever (73). Operate to change the swash plate angle of the first hydraulic pump (23), change the rotation speed of the output shaft (31) of the first hydraulic motor (24) steplessly, or perform forward / reverse switching operation to reverse the rotation. An electric steering motor (197) that changes the rotational speed of the first hydraulic motor (24) in proportion to the amount of operation of the main transmission lever (73), and switches the steering handle (19) by manual operation; A straight-advancing valve (198) that is operated by a straight-ahead operation of the steering handle (19) and neutral switching of the sub-transmission mechanism (32), and a steering clutch cylinder (199) that is connected to the valve (198) are provided. The steering handle (19) is operated to operate the steering motor (197) to change the swash plate angle of the second hydraulic pump (26), and the output rotational speed of the second hydraulic motor (27) is reduced. Change the travel direction to the left and right to change the direction or correct the course by changing the direction to the left or right, and changing the course, proportional to the amount of operation of the steering handle (19) Thus, the rotational speed of the steering motor (27) is changed, and the rectilinear valve (198) is automatically switched by the rectilinear operation of the steering handle (19) and the neutral operation of the subtransmission mechanism (32). The direction clutch cylinder (199) is operated to disengage the steering output clutch (62), the output of the second hydraulic motor (27) is stopped, and the steering drive is stopped.
[0044]
One end of a steering output arm (220) is fixed to the steering input shaft (87), and a pair of left and right linear springs (221) (221) for returning the steering handle (19) to the linear position, and the spring A manual operation for connecting the return resistance absorber (222), which slows the rotational speed of the steering handle (19) against (221), to the output arm (220) and rotating the steering handle (19) to the left and right When the operator removes the handle (19) from the handle (19), the handle (19) is automatically and gently returned to the straight-ahead position, and the operator does not need to return the handle (19) to the straight-ahead position. The steering angle sensor (223) is connected to the output arm (220), and the steering operation amount of the steering handle (19) is detected by the steering angle sensor (223). A potentiometer type main transmission sensor (224) for detecting a shift operation position, a neutral position, and a forward / reverse switching operation of the main transmission lever (73), and a potentiometer for detecting a transmission operation position and a neutral position of the auxiliary transmission lever (74). The speed of the vehicle against the increase in the turning angle of the steering handle (19) by the operation of the photographing hand-operating member (226) on the upper surface of the steering column (71) switched by the operator at the driver auxiliary seat (20). A volume-type turning feeling setting device (227) for changing the reduction ratio and the straight-ahead sensor (165) are input-connected to a speed change steering controller (228) formed by a microcomputer.
[0045]
Further, an acceleration / deceleration circuit (229) (230) for forward or reverse rotation of the transmission motor (196) is connected to the controller (228), so that the operation amount (operation angle) of the main transmission lever (73) is reduced. The swash plate angle of the first hydraulic pump (23) by the transmission motor (196) is changed in a substantially direct proportion to obtain a vehicle speed according to the tilting operation of the main transmission lever (73), and the steering motor (197) is operated. A left / right turning circuit (231) (232) for normal rotation or reverse rotation is connected to the controller (228), and a steering motor (197) is used for a steering operation amount (left / right rotation angle) of the steering handle (19). The swash plate of the second hydraulic pump (26) is changed in substantially direct proportion, and as shown in the turning output diagram of FIG. 28, the steering hand is operated during forward operation and reverse operation of the main transmission lever (73). To reverse the right and left pivot output to the left and right rotation (19), prevents the reversed handle during forward and reverse time, to reverse pre-made to perform the same steering operation as a four-wheeled vehicle. When the main transmission lever (73) is neutral, the swash plate angle of the second hydraulic pump (26) is kept at zero, the output of the second hydraulic motor (27) is stopped and maintained under the main transmission neutral state. The absolute value of the swash plate angle of the second hydraulic pump (26), which is increased according to the turning angle of the steering handle (19), is prevented while the turning operation by the steering wheel (19) operation is prevented. The steering handle (19) is controlled to be proportional to the absolute value of the steering wheel (19), and the turning radius is kept constant even when the vehicle speed is changed when the turning angle is constant, and the steering wheel is turned by the same steering operation as the four-wheeled vehicle. Further, a straight travel circuit (233) for switching the straight travel valve (234) to operate the steering clutch cylinder (199) is connected to the controller (228), and the steering output is automatically generated by the sub-shift neutral or the straight travel of the handle (19). Stop.
[0046]
Further, as shown in the vehicle speed output diagrams of FIGS. 29 and 30, the vehicle speed determined at the shift position of the main shift lever (73) is reduced as the turning angle of the steering handle (19) increases. While the speed change lever (73) is kept at a fixed position, the speed is reduced in proportion to the turning angle of the handle (19), and the lever (73) is automatically returned to the speed by simply returning the handle (19) to the straight line. ) Reduced to the spin turn speed at the maximum cutting angle, and kept the lever (73) speed in a dead zone (rotation angle of about 15 degrees) centered on the straight travel of the handle (19), so that uncut cereal grains during harvesting Even if the steering operation for the alignment along the line (the course correction) is performed, the traveling speed is reduced or increased to prevent the traveling speed from changing unevenly during the harvesting work. Driving sensation and combine driving As shown in FIG. 30, a sharp turn, a normal turn, and a smooth turn can be performed by manually switching the operator using the hand operation member (226) while performing an appropriate steering operation without causing a gap. Control to change the reduction ratio is performed manually by the member (226) to obtain turning performance adapted to work contents, field conditions, crop conditions, and the like.
[0047]
Further, as shown in the turning output diagram of FIG. 31, in response to the input of the main transmission sensor (224) for detecting the operation angle of the main transmission lever (73), from the controller (228) based on the steering angle sensor (223). The output of the steering motor (197) output is changed to a quadratic curve, and the steering handle (19) can be operated even when the vehicle speed is slow when the swash plate of the second hydraulic pump (26) having low volumetric efficiency is small. The swash plate is greatly changed by cutting a little, and the characteristics of the second hydraulic pump (26) and the hydraulic motor (27) are electrically corrected, and the second steering motor (197) is sensitive to the second even at a low vehicle speed. The turning of the hydraulic pump (26) is controlled, and the turning radius of the traveling crawler (2) is kept substantially the same with respect to the turning angle of the steering handle (19) in the entire shifting region of the main transmission lever (73). Lever (73) is fast The ratio of the control amount of the second hydraulic pump (26) with respect to the operation amount of the steering handle (19) at a lower speed than that of the vehicle is increased, and the vehicle speed is low in a low speed region where the output of the second hydraulic pump (26) becomes low efficiency. Even when the steering handle (19) is operated by a small amount, a proper turning operation is performed, and the steering handleability and the manipulation of matching the operation amount of the steering handle (19) and the turning radius of the traveling crawler (2) are matched. And the neutrality of the main transmission lever (73) is detected by the main transmission sensor (224) to maintain the second hydraulic pump (26) in a neutral state, and the traveling crawler (2) is turned when stopped. While preventing the operation, the turning performance in the low speed region is improved, the operability of the steering handle (19) is improved, and the driving operation is simplified.
[0048]
Furthermore, as shown in the turning output diagram of FIG. 32, the steering angle of the steering wheel (19) is small with respect to the straight driving position with respect to the steering angle sensor (223) input for detecting the steering angle of the steering wheel (19). When the steering motor (197) control output to be output from the controller (228) is greatly changed (in the range of about 0 to 10 degrees), and the steering wheel (19) has a large turning angle (in the range of about 10 to 70 degrees) A steering motor (197) output from the controller (228) is changed to a small value, and the characteristics of the second hydraulic pump (26) and the motor (27) are electrically corrected to reduce the steering angle (19 ) The steering motor (197) is sensitive to the operation, and the traveling crawler (2) is turned quickly by the second hydraulic pump (26) and the motor (27) in the low output range where the efficiency is low. When the turning angle of the steering handle (19) is small, the change of the steering control output is increased, and the minute course correction such as the matching of the traveling course with the basket or the crop line is performed, and the farm work is being performed. In order to improve the steering performance during straight running, correct the course during straight running work and prevent excessive course correction due to incorrect operation of the steering handle (19), and change the direction at high speed The control output of the second hydraulic pump (26) is changed non-linearly with respect to the operation amount of the steering handle (19), and the characteristics of the second hydraulic pump (26) or the contents of farm work The steering operation adapted to the above is set to improve the steering function and handling operability.
[0049]
As is apparent from the above, the driving force is transmitted to the left and right traveling crawlers (2) via the transmission member (25) whose traveling speed can be changed steplessly by operating the main transmission lever (73) which is a traveling transmission lever. In a mobile agricultural machine that operates the steering member (28) with the steering handle (19) to change the difference in driving speed between the left and right traveling crawlers (2) steplessly, it is determined by the amount of operation of the main transmission lever (73). The vehicle speed is decelerated in proportion to the operation amount of the steering handle (19), and the reduction ratio of the vehicle speed with respect to the operation amount of the steering handle (19) can be changed. Reduce the amount of deceleration, improve the running performance of wet fields with a smooth turning feeling, improve work efficiency in work that does not require spin turn, improve running performance in wet field work, etc. On the other hand, the steering handle (19) is provided with a hand operating member (226) for changing the speed reduction ratio of the vehicle speed with respect to the operation amount, and the steering operation suitable for the driver or the work content or the wet field work can be easily obtained. The power loss is reduced and the steering function is improved.
[0050]
Further, a transmission motor (196), which is a transmission actuator that detects the operation amount of the main transmission lever (73) and controls the output of the transmission member (25), is provided, and the main transmission lever (73) and the transmission member (25) are attached. In addition to simplifying the control structure and improving handling operability such as maintenance and adjustment, the steering operation is a steering actuator that detects the amount of operation of the steering handle (19) and controls the output of the steering member (28). A direction motor (197) is provided, and the steering handle (19) and the steering member (28) are attached and the control structure is simplified, and handling operability such as maintenance and adjustment is improved.
[0051]
As shown in the flowchart of FIG. 33, the main transmission sensor (224), the auxiliary transmission sensor (225), the steering angle sensor (223), the feeling setting device (227), and the rectilinear sensor (165) to the controller (228). To input. Further, when the auxiliary transmission lever (74) is neutral, turning output cut-off control is performed to turn off the steering output clutch (62) to stop the second hydraulic motor (27), and the main transmission lever (73) While the turning output cut-off control is performed when neutral, the output of the second hydraulic motor (27) is stopped by the steering output clutch (62) cut-off control when the steering handle (19) is in the straight traveling position. Further, when the sub-shift is at medium speed or low speed, the main shift is other than neutral, and the steering handle (19) is operated other than straight travel, the main shift sensor (224) and steering angle sensor (223) are input. The main shift deceleration amount, the steering amount, and the steering direction are calculated and determined, and the shift motor (196) and the steering motor (197) are operated by the main shift and the steering control, and the left and right traveling crawlers (2) (2 ) To change the alignment course and change the direction by spin-turning in the field headland, etc., and continuously harvest the cereal and thresh, and the steering handle (19 ) The final speed of the vehicle speed that is decelerated according to the operation angle is changed steplessly by operating the feeling setting device (227) of the hand operating member (226). (19) When the vehicle speed reduction amount is increased with respect to the operation amount, sensitive turning becomes possible, and when the vehicle speed reduction amount is reduced, a smooth turning feeling is achieved, and when wet field work or spin turn is unnecessary. Decreasing the vehicle speed reduction amount improves wetland traveling performance and prevents sudden turning due to spin turn even if the steering wheel (19) is greatly operated.
[0052]
In this manner, the driving force is transmitted to the left and right traveling crawlers (2) through the transmission member (25) whose traveling speed can be changed steplessly by operating the main transmission lever (73), which is a traveling transmission lever. It is suitable for dry paddy traveling where the field surface mud layer is dry in a mobile agricultural machine that changes the drive speed difference of the left and right traveling crawler (2) steplessly by operating the steering member (28) with the handle (19). Dividing into dry paddy mode and wet paddy mode suitable for wet paddy field where the mud layer on the field is soft, it is possible to perform each control of traveling speed change and steering, and turn on the road or dry paddy etc. In addition to improving the turning performance on wetlands or mud, etc., the amount of deceleration of the vehicle speed is reduced with respect to the amount of operation of the steering handle (19), resulting in a smooth turning feeling and improved wetland driving performance. Is on, it performs and improving running performance on improving and Shitsuden work working efficiency of the spin turn unnecessary work, achieving such improvement, as well as improving the handling operability of the steering function by the switching of the turning characteristic.
[0053]
Further, as shown in FIG. 34, the vehicle speed is switched and selected by the feeling lever (195) or the hand operating member (226) between deceleration when the vehicle speed is decelerated by the steering handle (19) angle and non-deceleration when the vehicle speed is not decelerated. , Spin-turn turning that reverses the traveling crawler (2) inside the turning at the maximum angle of the steering handle (19), and the rotational direction of the traveling crawler (2) inside the turning with the maximum operation amount of the steering handle (19). Non-spin-turn turning traveling that is maintained in the same direction as the outer traveling crawler (2) can be selected and switched. By selecting the spin-turn turning operation, turning on the road or in dry fields can be performed quickly, and non-spin-turn turning traveling. Improves the turning performance on wetlands or mud surfaces, and improves the steering function and handling operability by switching the turning characteristics It is configured to achieve etc..
[0054]
【The invention's effect】
As is apparent from the above embodiments, the present invention transmits the driving force to the left and right traveling crawlers (2) through the transmission member (25) whose traveling speed can be changed steplessly by operating the traveling speed change lever (73). In a mobile farming machine in which the steering member (28) is operated by the steering handle (19) and the difference in driving speed between the left and right traveling crawlers (2) is changed steplessly, the paddy field traveling in which the field surface mud layer is dry is performed. The driving crawler on the inner side of the turn is configured so that each of the shifting control and steering control are performed in association with a suitable dry paddy mode and a wet paddy mode that is suitable for wet paddy fields where the field surface mud layer is soft. (2) Spin-turn turning traveling in the reverse direction, and maintaining the rotational direction of the traveling crawler (2) inside the turning in the same direction as the traveling crawler (2) outside the turning with the maximum operation amount of the steering handle (19). Pin-turn turning can be selected and switched, and can be selected and switched to non-spin-turn turning in the wet-field mode, and can turn quickly on the road or in dry fields. In addition, the turning performance on the mud surface can be improved, and the deceleration amount of the vehicle speed can be reduced with respect to the operation amount of the steering handle (19). It is possible to improve work efficiency in work that does not require a spin turn and to improve running performance in wet field work, and to improve steering function and handling operability by switching the turning characteristics. Improvements can be easily achieved.
[0055]
And the spin turn turning traveling that reverses the traveling crawler (2) inside the turning and the rotation direction of the traveling crawler (2) inside the turning with the maximum operation amount of the steering handle (19) are the same as the outer traveling crawler (2). Non-spin-turn turning that maintains the direction can be selected and switched. By selecting spin-turn turning, you can quickly turn on the road or in dry fields, and you can select non-spin-turn turning. Thus, the turning performance on a wetland or mud surface can be improved, and the steering function and handling operability can be easily improved by changing the turning characteristics.
[0056]
The driving force is transmitted to the left and right traveling crawlers (2) through a speed change member (25) whose traveling speed can be changed steplessly by operating the traveling speed change lever (73), and the steering handle (19) is used for steering. In a mobile agricultural machine that operates the member (28) to change the difference between the driving speeds of the left and right traveling crawlers (2) in a stepless manner, the vehicle speed determined by the amount of operation of the traveling shift lever (73) is operated by the steering handle (19). The vehicle speed is reduced in proportion to the amount, and the reduction ratio of the vehicle speed with respect to the operation amount of the steering handle (19) can be freely changed. By reducing the deceleration amount of the vehicle speed with respect to the operation amount of the steering handle (19), This makes it possible to improve the wet field running performance with a smooth turning feeling, improve work efficiency in work that does not require a spin turn, and improve running performance in wet field work. It is those that can be carried out in.
[0057]
Further, a hand operating member (226) that changes the speed reduction ratio of the vehicle speed with respect to the operation amount of the steering handle (19) is provided, and a steering operation suitable for a driver or work content or wet field work can be easily obtained. Thus, it is possible to easily reduce power loss and improve the steering function.
[0058]
Further, a shift actuator (196) for detecting the operation amount of the travel speed change lever (73) and controlling the output of the speed change member (25) is provided, and the travel speed change lever (73) and the speed change member (25) are attached and Simplification of the control structure and improvement of handling operability such as maintenance and adjustment can be easily performed.
[0059]
The steering handle (19) and the steering member (28) are provided with a steering actuator (197) that detects the operation amount of the steering handle (19) and controls the output of the steering member (28). It is possible to easily improve the handling operability such as simplification of the mounting and control structure and maintenance and adjustment.
[0060]
In addition, the vehicle speed can be switched between decelerating by decelerating the steering wheel (19) and non-decelerating when not decelerating, and non-spin-turn turning can be selected during non-decelerating. It is possible to improve the turning performance on the wet paddy or mud surface by selecting the spin turn turning, and to improve the steering function and the handling operability by changing the turning characteristics.
In particular, since it is possible to selectively switch to non-spin-turn turning in the wet field mode, the driving performance in the wet field is improved, and even if the handle (19) is operated largely, sudden turn due to spin turn is prevented. Is done.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is an overall plan view of the combine.
FIG. 3 is an explanatory diagram of a mission drive system.
FIG. 4 is an explanatory perspective view of a traveling speed change and steering operation unit.
FIG. 5 is an operation explanatory view of the same part.
FIG. 6 is a side view of a steering column.
FIG. 7 is an enlarged side view of the upper part.
FIG. 8 is an enlarged side view of the lower part.
FIG. 9 is a front view of a steering column.
FIG. 10 is an enlarged front view of the upper part.
FIG. 11 is an enlarged front view of the lower part.
FIG. 12 is an explanatory plan view of FIG. 4;
FIG. 13 is an enlarged view of the same.
FIG. 14 is a cross-sectional view of a steering column.
FIG. 15 is an explanatory diagram of a setting operation.
FIG. 16 is a partial plan view of the upper part of the steering column.
FIG. 17 is a partial view thereof.
18 is an operation explanatory view of FIG. 16. FIG.
FIG. 19 is an explanatory diagram of the operation of the speed change member.
FIG. 20 is an explanatory diagram of main shift operation.
FIG. 21 is an explanatory diagram of a steering operation.
FIG. 22 is a diagram showing main shift and steering handle operation.
FIG. 23 is a front explanatory view of a traveling shift output switching unit.
FIG. 24 is a partial explanatory view of the same part.
FIG. 25 is an explanatory diagram of shifting and steering driving.
FIG. 26 is an explanatory plan view of the steering handle portion.
FIG. 27 is a shift and steering control circuit diagram.
FIG. 28 is a diagram showing a steering handle and a turning output.
FIG. 29 is a diagram showing a steering handle and a shift output.
FIG. 30 is a diagram showing a steering handle and a shift output.
FIG. 31 is a diagram showing a main transmission lever and a turning output.
FIG. 32 is a diagram showing a steering handle and a turning output.
33 is a shift steering control flowchart of FIG. 7;
FIG. 34 is a traveling crawler turning output diagram.
[Explanation of symbols]
(2) Traveling crawler (19) Steering handle (25) Transmission member (28) Steering member (73) Main transmission lever (traveling transmission lever)
(196) Speed change motor (speed change actuator)
(197) Steering motor (steering actuator)
(226) Hand control member

Claims (1)

走行変速レバー(73)の操作によって走行速度を無段階に変更自在な変速部材(25)を介して左右走行クローラ(2)に駆動力を伝えると共に、操向ハンドル(19)によって操向部材(28)を操作して左右走行クローラ(2)の駆動速度の差を無段階に変化させる移動農機において、圃場表面泥土層が乾いている乾田走行に適している乾田モードと、圃場表面泥土層が軟弱な湿田走行に適している湿田モードとに分けて走行変速と操向の各制御を関連させて行わせるように構成し、
旋回内側の走行クローラ(2)を逆転させるスピンターン旋回走行と、操向ハンドル(19)の最大操作量で旋回内側の走行クローラ(2)の回転方向を旋回外側の走行クローラ(2)と同一方向に維持する非スピンターン旋回走行を、選択切換自在として、前記湿田モードで非スピンターン旋回走行に選択切換することができるようにし、
走行変速レバー(73)操作量によって決定される車速を操向ハンドル(19)操作量に比例させて減速させると共に、操向ハンドル(19)操作量に対する車速の減速比を変更自在とした移動農機であって、
車速を操向ハンドル(19)角度によって減速させる減速時と減速させない不減速時とを切換選択するもので、不減速時に非スピンターン旋回走行を選択可能としたことを特徴とする移動農機。
A driving force is transmitted to the left and right traveling crawlers (2) through a speed change member (25) whose traveling speed can be changed steplessly by operation of the traveling speed change lever (73), and a steering member (19) is controlled by a steering handle (19). 28) In the mobile agricultural machine that changes the driving speed of the left and right traveling crawler (2) steplessly by operating the dry field mode suitable for dry field driving in which the field surface mud layer is dry, and the field surface mud layer It is configured so that each control of traveling shift and steering is performed in association with the wet field mode suitable for soft wet field driving,
Spin-turn turning traveling that reverses the traveling crawler (2) inside the turning and the rotation direction of the traveling crawler (2) inside the turning with the maximum operation amount of the steering handle (19) are the same as the traveling crawler (2) outside the turning. The non-spin turn turning traveling to be maintained in the direction can be selectively switched, and can be selectively switched to the non-spin turn turning traveling in the wetland mode,
A mobile agricultural machine that decelerates the vehicle speed determined by the operation amount of the travel shift lever (73) in proportion to the operation amount of the steering handle (19) and allows the speed ratio of the vehicle speed to the operation amount of the steering handle (19) to be changed freely. Because
A mobile agricultural machine , which switches between a deceleration mode in which the vehicle speed is decelerated by an angle of the steering handle (19) and a non-deceleration mode in which the vehicle speed is not decelerated, and is capable of selecting non-spin-turn turning when the vehicle is not decelerating .
JP16630199A 1998-12-16 1999-06-14 Mobile farm machine Expired - Lifetime JP4142208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16630199A JP4142208B2 (en) 1998-12-16 1999-06-14 Mobile farm machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10357351A JP3028481B1 (en) 1998-12-16 1998-12-16 Moving agricultural machine
JP16630199A JP4142208B2 (en) 1998-12-16 1999-06-14 Mobile farm machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10357351A Division JP3028481B1 (en) 1998-12-16 1998-12-16 Moving agricultural machine

Publications (2)

Publication Number Publication Date
JP2000177620A JP2000177620A (en) 2000-06-27
JP4142208B2 true JP4142208B2 (en) 2008-09-03

Family

ID=18453691

Family Applications (2)

Application Number Title Priority Date Filing Date
JP10357351A Expired - Lifetime JP3028481B1 (en) 1998-12-16 1998-12-16 Moving agricultural machine
JP16630199A Expired - Lifetime JP4142208B2 (en) 1998-12-16 1999-06-14 Mobile farm machine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP10357351A Expired - Lifetime JP3028481B1 (en) 1998-12-16 1998-12-16 Moving agricultural machine

Country Status (9)

Country Link
US (1) US7347293B1 (en)
EP (1) EP1142775B1 (en)
JP (2) JP3028481B1 (en)
KR (1) KR100584785B1 (en)
CN (2) CN1239343C (en)
AT (1) ATE449532T1 (en)
DE (1) DE69941727D1 (en)
TW (1) TW515696B (en)
WO (1) WO2000035736A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6988571B2 (en) 2001-04-04 2006-01-24 Eiichi Okamoto Crawler tractor
US6808032B2 (en) 2001-12-14 2004-10-26 Textron Inc. Drive-by-wire lawn mower
US7540349B2 (en) * 2002-10-29 2009-06-02 Kanzaki Kokyukoki Mfg. Co., Ltd. Transaxle apparatus for four-wheel drive vehicle
JP4563054B2 (en) * 2004-03-15 2010-10-13 三菱農機株式会社 Combine
EP2038162B1 (en) * 2006-07-07 2011-04-27 Hydro-Gear Limited Partnership Electronic steering control apparatus
US7942220B2 (en) * 2006-12-22 2011-05-17 Caterpillar Inc. Differential steering control for a continuously variable transmission machine
DE602008001256D1 (en) 2007-01-15 2010-07-01 Kanzaki Kokyukoki Mfg Co Ltd mowing machine
JP2008168870A (en) * 2007-01-15 2008-07-24 Kanzaki Kokyukoki Mfg Co Ltd Riding lawn mower
JP5413211B2 (en) * 2010-01-19 2014-02-12 井関農機株式会社 Tractor engine control system
KR20130069753A (en) * 2010-09-17 2013-06-26 얀마 가부시키가이샤 Rice transplanter
JP5700824B2 (en) * 2011-07-18 2015-04-15 本田技研工業株式会社 Riding type work machine
US9944316B2 (en) 2012-04-24 2018-04-17 Mtd Products Inc Vehicle drive control systems and the related vehicles
KR102146680B1 (en) * 2012-06-18 2020-08-21 이세키노우키가부시키가이샤 Combine
CN104854979B (en) * 2015-02-02 2017-01-04 星光农机股份有限公司 A kind of operating mechanism of crawler-type rotary cultivator
US10058032B2 (en) 2015-07-31 2018-08-28 Parker-Hannifin Corporation Mowing machine brake apparatus with slideable engagement
CN106005002B (en) * 2016-08-02 2018-09-21 株洲中车时代电气股份有限公司 A kind of electric drive control method of mine dumper, device and mine dumper
KR101955248B1 (en) 2017-01-09 2019-03-08 국제종합기계 주식회사 Device for transmitting turning control force of work vehicle
KR101927900B1 (en) 2017-01-09 2019-02-26 국제종합기계 주식회사 Device for transmitting driving control force of work vehicle
KR101868504B1 (en) 2017-01-09 2018-06-19 국제종합기계 주식회사 Device for transmitting control force of HST for work vehicle
JP6910970B2 (en) * 2018-01-10 2021-07-28 株式会社クボタ Control device for work vehicles
EP3803161B1 (en) 2018-05-30 2023-07-26 Carrier Corporation Energy management systems (ems) for transportation refrigeration units (tru)
JP6674669B2 (en) * 2018-06-27 2020-04-01 井関農機株式会社 Combine
KR20210093873A (en) * 2018-11-26 2021-07-28 가부시끼 가이샤 구보다 Agricultural equipment, agricultural equipment control program, recording medium recording agricultural equipment control program, agricultural equipment control method, harvester, harvester control program, recording medium recording harvester control program, harvester control method
CN109854699A (en) * 2019-01-26 2019-06-07 傅江标 A kind of vehicle variable speed steering mechanism
JP7227077B2 (en) * 2019-05-30 2023-02-21 三菱マヒンドラ農機株式会社 work vehicle
CN111284557A (en) * 2020-03-20 2020-06-16 雷沃重工股份有限公司 Vehicle pivot steering device and method and vehicle
JP2023013527A (en) * 2021-07-16 2023-01-26 株式会社小松製作所 Work machine, and method for controlling work machine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE957184C (en) * 1952-08-22 1957-01-31 Hydromatic G M B H Tracked vehicle drive
US3876021A (en) 1974-01-21 1975-04-08 Owatonna Mfg Co Drive control apparatus for vehicles
JPS546237A (en) * 1977-06-15 1979-01-18 Kubota Ltd Movable agricultural instrument with stepless transmission
US4998591A (en) 1987-08-24 1991-03-12 Renk Aktiengesellschaft Electro-mechanical drive system for a full-track vehicle
JPH03113422U (en) * 1990-03-04 1991-11-20
JP2555272Y2 (en) * 1992-02-18 1997-11-19 株式会社クボタ Travel transmission structure of work vehicle
JP2589039Y2 (en) 1993-01-28 1999-01-20 株式会社小松製作所 Geared steering device for tracked vehicle and its control device
JP2600130Y2 (en) * 1993-03-26 1999-10-04 ヤンマー農機株式会社 Operation lever structure of upper swing type working vehicle
DE69429833T2 (en) * 1993-09-03 2002-09-12 Yanmar Agricultural Equipment Co., Ltd. working vehicle
JP3323357B2 (en) * 1995-04-17 2002-09-09 ヤンマー農機株式会社 Traveling crawler steering system
JPH0911767A (en) * 1995-06-30 1997-01-14 Kubota Corp Running operation structure of working vehicle
JP3612602B2 (en) * 1995-07-25 2005-01-19 ヤンマー農機株式会社 Travel crawler operating device
CA2229819C (en) 1995-09-11 2004-05-25 Yanmar Agricultural Equipment Co., Ltd. Operating device for a working vehicle
JP3612610B2 (en) * 1996-02-20 2005-01-19 ヤンマー農機株式会社 Traveling operation device for traveling vehicle
JP3556371B2 (en) * 1996-02-20 2004-08-18 ヤンマー農機株式会社 Traveling operation device for traveling vehicles
JP3643644B2 (en) * 1996-03-19 2005-04-27 ヤンマー農機株式会社 Combine operating device
US6325166B1 (en) 1996-09-13 2001-12-04 Yanmar Agricultural Equipment Co., Ltd. Hydraulic travelling agricultural machine
EP0931715A4 (en) 1996-09-13 2001-03-14 Yanmar Agricult Equip Hydraulic travelling agricultural machine
US5857532A (en) 1996-11-27 1999-01-12 Caterpillar Inc. Differential steer system for a machine
AU4965997A (en) * 1997-01-23 1998-08-18 Yanmar Agricultural Equipment Co., Ltd. Mobile agricultural machine
JP3816647B2 (en) * 1997-01-23 2006-08-30 ヤンマー農機株式会社 Mobile farm machine
EP0869048B1 (en) * 1997-03-31 2005-12-07 Honda Giken Kogyo Kabushiki Kaisha Speed change operation device for vehicle
JP3742188B2 (en) * 1997-05-14 2006-02-01 ヤンマー農機株式会社 Crawler type work vehicle travel drive device
JP2977788B2 (en) * 1998-01-12 1999-11-15 株式会社クボタ Combine steering controller for dry and wet fields
US20020005302A1 (en) 1999-09-16 2002-01-17 Shigemi Hidaka Working vehicle

Also Published As

Publication number Publication date
EP1142775B1 (en) 2009-11-25
KR100584785B1 (en) 2006-05-30
CN1133557C (en) 2004-01-07
JP2000175547A (en) 2000-06-27
US7347293B1 (en) 2008-03-25
CN1326409A (en) 2001-12-12
TW515696B (en) 2003-01-01
JP2000177620A (en) 2000-06-27
EP1142775A4 (en) 2006-08-02
WO2000035736A1 (en) 2000-06-22
CN1358639A (en) 2002-07-17
JP3028481B1 (en) 2000-04-04
EP1142775A1 (en) 2001-10-10
DE69941727D1 (en) 2010-01-07
KR20010086443A (en) 2001-09-12
CN1239343C (en) 2006-02-01
ATE449532T1 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
JP4142208B2 (en) Mobile farm machine
JP4065359B2 (en) Mobile farm machine
JP3842456B2 (en) Mobile farm machine
JP3902343B2 (en) Mobile farm machine
JP4053707B2 (en) Mobile farm machine
JP4005238B2 (en) Mobile farm machine
JP4485623B2 (en) Mobile farm machine
JP3946888B2 (en) Mobile farm machine
JP3971039B2 (en) Mobile farm machine
JP2001138943A (en) Crawler traveling vehicle
JP4267770B2 (en) Mobile farm machine
JP2001030943A (en) Movable agricultural machine
JP3141133B2 (en) Combine
JP3996279B2 (en) Mobile farm machine
JP3842455B2 (en) Mobile farm machine
JP4065362B2 (en) Crawler car
JP3013179B1 (en) Traveling equipment for mobile farm machines
JP3946884B2 (en) Mobile farm machine
JP3842454B2 (en) Mobile farm machine
JP3013178B1 (en) Moving agricultural machine
JP3190987B2 (en) Moving agricultural machine
JP4422241B2 (en) Mobile farm machine
JP3691703B2 (en) Mobile farm machine
JP3174950B2 (en) Moving agricultural machine
JP4094750B2 (en) Combine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term