JP4485623B2 - Mobile farm machine - Google Patents

Mobile farm machine Download PDF

Info

Publication number
JP4485623B2
JP4485623B2 JP24089799A JP24089799A JP4485623B2 JP 4485623 B2 JP4485623 B2 JP 4485623B2 JP 24089799 A JP24089799 A JP 24089799A JP 24089799 A JP24089799 A JP 24089799A JP 4485623 B2 JP4485623 B2 JP 4485623B2
Authority
JP
Japan
Prior art keywords
speed
steering
turning
difference
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24089799A
Other languages
Japanese (ja)
Other versions
JP2001063611A (en
Inventor
茂實 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP24089799A priority Critical patent/JP4485623B2/en
Publication of JP2001063611A publication Critical patent/JP2001063611A/en
Application granted granted Critical
Publication of JP4485623B2 publication Critical patent/JP4485623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Harvester Elements (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Guiding Agricultural Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば圃場の穀稈を連続的に刈取って脱穀するコンバインまたは耕耘トラクタまたは圃場管理車などの移動農機に関する。
【0002】
【発明が解決しようとする課題】
従来、走行変速レバーの操作によって走行速度を無段階に変更自在なベルトまたは油圧無段変速機構を介して左右走行クローラに駆動力を伝えて任意の車速で移動させると共に、操向ハンドルによって操向用の無段変速機構を操作して差動機構を制御し、左右走行クローラの駆動速度の差を無段階に変化させ、走行進路を変更させる技術がある。しかし乍ら、車速が変更されても操向ハンドル操作による左右走行クローラの速度差の割合は常に一定のため、高速或いは低速走行状態で機体を緩やかに或いは機敏に旋回させようとしても旋回させることができず、路上走行や狭い圃場での走行には余り適したものではなかった。
【0003】
また操向ハンドルの操作量に対する車速の減速量も一定割合のため、操向ハンドルの切角を大とするときには必要以上に機体が旋回(スピンターンも含む)して安定した走行が行えないなどの不都合もあった。
【0004】
【課題を解決するための手段】
したがって本発明は、走行変速レバーの操作によって左右走行クローラの駆動速度を無段階に変更する走行変部材と、操向ハンドルの操作によって左右走行クローラの駆動速度の差を無段階に変更する操向部材を備えた移動農機において、走行変速レバーの操作量によって決定される車速を操向ハンドルの操作量に比例して減速させると共に、操向ハンドルの操作量によって決定される左右走行クローラの駆動速度の差を変更する際に、機体の設定中心速度を標準または低速もしくは高速に副変速の操作に応じて変化させる副変速車速設定器の設定値と、副変速の標準・低速・高速操作に応じて左右走行クローラ(2)間の設定駆動速度差を変化させる副変速旋回設定器の設定値とに基づいて左右走行クローラの駆動速度の差を変更させて、高速或いは低速走行中の操向ハンドルの一定の旋回操作に対し、左右走行クローラ間の速度を変化させて緩慢或いは急激な機体の旋回を可能とさせて、各種作業に適した旋回フィーリングで機体を旋回させて旋回性能を向上させるものである。
【0005】
また、副変速の高速操作によって車速高速としたには左右走行クローラの駆動速度の差を小とさせると共に、前記副変速の低速操作によって車速を低速としたには左右走行クローラの駆動速度の差を大とさせて、車速の高速時には滑らかな旋回フィーリングで機体の旋回を行って路上走行などの安定性を向上させると共に、低速時にはより機敏な旋回フィーリングで機体の旋回を行って狭い圃場などでの作業性を向上させるものである。
【0007】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1はコンバインの全体側面図、図2は同平面図であり、図中(1)は左右一対の走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は丸形操向ハンドル(19)及び運転席(20)などを備える運転台、(21)は運転席(20)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0008】
また、図3に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)は、1対の第1油圧ポンプ(23)及び第1油圧モータ(24)を備えて走行主変速用の油圧式無段変速機構を形成する走行変速部材(25)と、1対の第2油圧ポンプ(26)及び第2油圧モータ(27)を備えて旋回用の油圧式無段変速機構を形成する操向部材(28)とを備え、前記エンジン(21)の出力軸(21a)に第1及び第2油圧ポンプ(23)(26)の入力軸(29a)(29b)を伝達ベルト(30a)(30b)によって連結させ、前記各油圧ポンプ(23)(26)を駆動するように構成している。
【0009】
さらに、前記第1油圧モータ(24)の出力軸(31)に、副変速機構(32)及び差動機構(33)を介して左右走行クローラ(2)の各駆動輪(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有し、各遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)と、これらプラネタリギヤ(37)に噛合うリングギヤ(38)などで形成している。
【0010】
前記プラネタリギヤ(37)はサンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は各プラネタリギヤ(37)に噛み合う内歯(38a)を有してサンギヤ軸(39)とは同一軸芯上に配置させ、キャリヤ軸(40)に回転自在に軸支させ、キャリヤ軸(40)を延設して車軸を形成して駆動輪(34)を軸支させている。
【0011】
また、走行変速部材(25)は、第1油圧ポンプ(23)の回転斜板の角度変更調節により第1油圧モータ(24)の正逆回転と回転数の制御を行うもので、第1油圧モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)より各ギヤ(43)(44)(45)及び副変速機構(32)を介して、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達してサンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(44)を有する副変速軸(47)と、前記ギヤ(45)を介してセンタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に各1対の低速用ギヤ(50)(51)・中速用ギヤ(52)(53)・高速用ギヤ(54)(48)を設けて、低中速スライダ(55)及び高速スライダ(56)のスライド操作によって副変速の低速・中速・高速の切換を行うように構成している。なお低速・中速間及び中速・高速間には中立を有する。また前記ブレーキ軸(49)に駐車ブレーキ(57)を設けると共に、刈取部(8)に回転力を伝達する刈取PTO軸(58)にギヤ(59)(60)及び一方向クラッチ(61)を介して副変速軸(47)を連結させ、刈取部(8)を車速同調速度で駆動している。
【0012】
上記のように、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された第1油圧モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)を介して左右キャリヤ軸(40)に伝達させると共に、左右キャリヤ軸(40)に伝達された回転を左右の駆動輪(34)にそれぞれ伝え、左右走行クローラ(2)を駆動するように構成している。
【0013】
さらに、旋回用の油圧式無段変速機構で形成する操向部材(28)は、第2油圧ポンプ(26)の回転斜板の角度変更調節により第2油圧モータ(27)の正逆回転と回転数の制御を行うもので、操向出力ブレーキ(62)を有するブレーキ軸(63)と、操向出力クラッチ(64)を有するクラッチ軸(65)と、前記の左右リングギヤ(38)の外歯(38b)に常時噛合させる左右入力ギヤ(66)(67)を設け、第2油圧モータ(27)の出力軸(68)に前記ブレーキ軸(63)及び操向出力クラッチ(64)を介してクラッチ軸(65)を連結させ、クラッチ軸(65)に正転ギヤ(69)を介して右入力ギヤ(67)を連結させ、またクラッチ軸(65)に正転ギヤ(69)及び逆転ギヤ(70)を介して左入力ギヤ(66)を連結させている。そして、副変速スライダ(55)(56)の中立によって前記ブレーキ(62)を入にしかつクラッチ(64)を切にする一方、前記中立以外の副変速出力時にブレーキ(62)を切にしかつクラッチ(64)を入にし、右側のリングギヤ(38)の外歯(38b)に正転ギヤ(69)を介してモータ(27)回転力を伝え、また左側のリングギヤ(38)の外歯(38b)に正転ギヤ(69)及び逆転ギヤ(70)を介してモータ(27)回転を伝え、第2油圧モータ(27)を正転(逆転)時、左右同一回転数で、左リングギヤ(38)を逆転(正転)させ、かつ右リングギヤ(38)を正転(逆転)とさせるように構成している。
【0014】
而して、旋回用の第2油圧モータ(27)を停止させて左右リングギヤ(38)を静止固定させた状態で、走行用の第1油圧モータ(24)を駆動すると、第1油圧モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)・キャリヤ(41)を介して左右の走行クローラ(2)が左右同一回転方向で同一回転数によって駆動され、機体の前後方向直進走行が行われる。一方、走行用の第1油圧モータ(24)を停止させて左右のサンギヤ(36)を静止固定させた状態で、旋回用の第2油圧モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転、また右側の遊星ギヤ機構(35)が逆或いは正回転し、左右走行クローラ(2)を逆方向に駆動し、機体を左或いは右に旋回させる。また、走行用の第1油圧モータ(24)を駆動させながら、旋回用の第2油圧モータ(27)を駆動することにより、機体が左右に旋回して進路が修正されるもので、機体の旋回半径は第2油圧モータ(27)の出力回転数によって決定される。
【0015】
さらに、図2、図4に示す如く、前記運転台(18)の前部上面にステアリングコラム(71)を立設固定させ、ステアリングコラム(71)上面上方側に操向ハンドル(19)を縦軸回りに回転自在に取付けると共に、運転台(18)左側にサイドコラム(72)を設け、サイドコラム(72)下方にミッション(22)を配設させ、主変速レバー(73)、副変速レバー(74)、刈取クラッチレバー(75)、脱穀クラッチレバー(76)を前記サイドコラム(72)に取付ける。
【0016】
また、前記操向ハンドル(19)に連結させるハンドル軸(77)をステアリングコラム(71)上部に回転自在に軸支させると共に、ステアリングコラム(71)上部に操向入力軸(78)上端部を回転自在に軸支させ、前記ハンドル軸(77)のギヤ(79)と操向入力軸(78)のセクタギヤ(80)を噛合させて各軸(77)(78)を連結させる。
【0017】
さらに、前記ギヤ(79)は、270度の外周範囲に複数の歯(81)を形成し、90度の外周範囲を円弧(82)に形成し、操向ハンドル(19)の全回転角度を270度とし、左操向回転または右操向回転の角度を135度に設定し、操向ハンドル(19)回転操作を片手で作業者が容易に行えるように形成する。また、前記セクタギヤ(80)は、130度の外周範囲に複数の歯(83)を形成し、230度の外周範囲を円弧カム(84)に形成し、前記ギヤ(79)の歯(81)とセクタギヤ(80)の歯(83)を噛合せ、各ギヤ(79)(80)の最大正逆転時、前記円弧(82)両端のストッパ(85)と前記円弧カム(84)両端のストッパ(86)を当接させ、操向ハンドル(19)の回転を規制する。
【0018】
また、前記セクタギヤ(80)の円弧カム(84)中央に直進ノッチ(87)を形成すると共に、前記ステアリングコラム(71)上面壁にデテント軸(88)を回転自在に軸支させ、デテント軸(88)下端部にデテントアーム(89)を固定させ、デテントアーム(89)にローラ軸(90)を介してデテントローラ(91)を回転自在に軸支させ、前記円弧カム(84)にデテントローラ(91)を当接させ、直進ノッチ(87)に係脱自在にデテントローラ(91)を係合させ、操向ハンドル(19)を直進位置に支持させる。
【0019】
さらに、前記操向入力軸(78)に操向出力アーム(92)の一端を固定させ、操向ハンドル(19)を直進位置に戻す左右一対の直進バネ(93)(93)と、前記バネ(93)に抗して操向ハンドル(19)の回転速度を遅くする戻り抵抗アブソーバ(94)を、前記出力アーム(92)に連結させ、操向ハンドル(19)を左右に回転させる手動操作を行ったとき、ハンドル(19)から作業者が手を離すことにより、ハンドル(19)を緩やかに直進位置に自動的に戻し、作業者によるハンドル(19)直進戻し操作を省くと共に、スライドポテンショメータ型操向角度センサ(95)を前記出力アーム(92)に連結させ、操向ハンドル(19)の操向操作量を操向角度センサ(95)によって検出させる。
【0020】
また、図5に示す如く、前記主変速レバー(73)の変速操作位置及び中立位置及び前後進切換動作を検出するポテンショメータ型主変速センサ(96)と、前記副変速レバー(74)の変速操作位置及び中立位置を検出するポテンショメータ型副変速センサ(97)と、運転席(20)の作業者が切換えるステアリングコラム(71)上面の撮形手元操作部材(98)の操作によって操向ハンドル(19)の切れ角増大に対する車速の減速比を変更させるボリューム形旋回フィーリング設定器(99)と、前記操向角度センサ(95)を、マイクロコンピュータで形成する変速操向コントローラ(100)に入力接続させる。また、前記直進ノッチ(87)にデテントローラ(91)が係入する直進状態をデテントアーム(89)を介して検出するマイクロスイッチ型直進センサ(101)とを前記コントローラ(100)に入力接続させる。
【0021】
さらに、図3、図5に示す如く、主変速レバー(73)手動操作によって切換える電動変速モータ(103)を設け、前記主変速レバー(73)を操作して変速モータ(103)を作動させて第1油圧ポンプ(23)の斜板角度を変更させ、第1油圧モータ(24)の出力軸(31)の回転数を無段階に変化させたり、逆転させる前後進切換動作を行わせ、主変速レバー(73)の操作量に比例させて第1油圧モータ(24)の回転数を変更させると共に、前記操向ハンドル(19)手動操作によって切換える電動操向モータ(104)と、操向ハンドル(19)の直進操作並びに副変速機構(32)中立切換によって作動させる直進バルブ(105)と、該バルブ(105)に接続させる操向クラッチシリンダ(106)を設け、前記操向ハンドル(19)を操作して操向モータ(104)を作動させて第2油圧ポンプ(26)の斜板角度を変更させ、第2油圧モータ(27)の出力回転数を無段階に変化させたり、逆転させる左右操向動作を行わせ、走行方向を左右に変更して圃場枕地で方向転換したり進路を修正するもので、操向ハンドル(19)の操作量に比例させて操向モータ(27)の回転数を変更させると共に、前記操向ハンドル(19)の直進操作並びに副変速機構(32)の中立操作によって直進バルブ(105)が自動的に切換わり、操向クラッチシリンダ(106)を作動させて操向出力クラッチ(62)を切にして第2油圧モータ(27)の出力を中止し、操向駆動を中止させるように構成している。
【0022】
また、前記変速モータ(103)を正転または逆転させる増速及び減速回路(107)(108)を前記コントローラ(100)に接続させ、主変速レバー(73)操作量(操作角度)に対して変速モータ(103)による第1油圧ポンプ(23)の斜板角を略正比例させて変化させ、主変速レバー(73)の傾き操作に応じた車速を得ると共に、前記操向モータ(104)を正転または逆転させる左右旋回回路(109)(110)を前記コントローラ(100)に接続させ、操向ハンドル(19)の操向操作量(左右回転角度)に対して操向モータ(104)による第2油圧ポンプ(26)の斜板を略正比例させて変化させ、また図6の旋回出力線図に示す如く、主変速レバー(73)の前進操作時と後進操作時とでは、操向ハンドル(19)の左右回転に対して左右旋回出力を逆にし、前進時と後進時とで逆ハンドルになるのを防ぎ、四輪自動車と同じ操向動作を行わせて前後進させる。また、主変速レバー(73)が中立のときは、第2油圧ポンプ(26)の斜板角を零に保ち、第2油圧モータ(27)の出力を停止維持し、主変速中立状態下でのハンドル(19)操作による旋回動作を阻止すると共に、操向ハンドル(19)切れ角に応じて大きくなる第2油圧ポンプ(26)の斜板角の絶対値を主変速レバー(73)操作角度の絶対値と比例するように制御し、操向ハンドル(19)切れ角が一定のときに車速を変化させても旋回半径を一定に保ち、四輪自動車と同じ操向動作で旋回させる。また、直進バルブ(105)を切換えて操向クラッチシリンダ(106)を作動させる直進回路(111)を前記コントローラ(100)に接続させ、副変速中立またはハンドル(19)直進によって操向出力を自動的に停止させると共に、第1油圧モータ(24)の作動油圧を検出させる変速油圧センサ(112)と、第2油圧モータ(27)の作動油圧を検出させる操向油圧センサ(113)を設け、前記各油圧モータ(24)(27)による走行クローラ(2)駆動負荷を各油圧センサ(112)(113)によって検出して前記コントローラ(100)に入力させ、前記条件センサ(102)並びに各油圧センサ(112)(113)の検出結果に基づき、走行路面状況(乾田または湿田)を自動的に判断させる。
【0023】
さらに、副変速の標準・低速・高速操作に応じて、機体の設定中心速度(車速)を変化させる副変速車速設定器(114)と、副変速の標準・低速・高速に応じ左右走行クローラ(2)間の設定駆動速度差を変化させる副変速旋回設定器(115)とを前記コントローラ(100)に入力させ、操向ハンドル(19)の切角に応じて機体の中心速度を減速させるときの減速量を、車速設定器(114)の設定値に基づき変化させると共に、操向ハンドル(119)の切角に応じて大となる左右走行クローラ(2)間の駆動速度差(旋回系の減速比)を旋回設定器(115)の設定値に基づき変化させて、植付作業に適した旋回フィーリングで機体を旋回させる。
【0024】
また、図7の車速出力線図に示す如く、操向ハンドル(19)の切れ角の増大に伴い、主変速レバー(73)変速位置で決定される車速を減速させるもので、主変速レバー(73)を一定位置に保ち乍らハンドル(19)切れ角に比例させて減速させ、ハンドル(19)を直進に戻すだけでレバー(73)速度に自動的に戻ると共に、ハンドル(19)最大切り角でスピンターン速度に減速され、またハンドル(19)の直進を中心とする不感帯(約15度の回転角度)でレバー(73)速度を保たせ、収穫作業中に未刈り穀稈列に沿わせる条合せ(進路修正)のための操向操作を行っても、走行速度が減速されたり増速されて収穫作業途中に走行速度が不均一に変化するのを防ぎ、作業者の運転感覚とコンバインの走行動作との間にずれが生じることなく適正な操向操作を行わせると共に、手元操作部材(98)を用いた作業者の手動切換により、鋭敏な旋回、通常間旋回、滑らかな旋回となるように減速比を変化させる制御を前記部材(98)の手動によって行わせ、作業内容、圃場条件、作物状況などに適応させた旋回性能を得る。
【0025】
さらに、図8の旋回出力線図に示す如く、前記主変速レバー(73)の操作角度を検出する主変速センサ(96)入力に対し、操向角度センサ(95)に基づきコントローラ(100)から出力される操向モータ(104)制御出力を二次曲線形に変化させ、容積効率が低い第2油圧ポンプ(26)の斜板の小さいときに車速が遅くても操向ハンドル(19)を少し切るだけで斜板を大きく変化させ、第2油圧ポンプ(26)及び油圧モータ(27)の特性を電気的に補正して遅い車速であっても敏感に操向モータ(104)により第2油圧ポンプ(26)を旋回制御し、主変速レバー(73)の変速全域で操向ハンドル(19)の切れ角に対して走行クローラ(2)の旋回半径を略同一に保つもので、主変速レバー(73)が高速のときよりも低速のときの操向ハンドル(19)操作量に対する第2油圧ポンプ(26)制御量の割合を大きくし、第2油圧ポンプ(26)出力が低効率になる低速域で車速が遅いときであっても操向ハンドル(19)の少量操作によって適正な旋回動作を行わせ、操向ハンドル(19)の操作量と走行クローラ(2)の旋回半径を一致させる操向操作性及び操向機能の向上を図ると共に、主変速レバー(73)の中立を主変速センサ(96)によって検出して第2油圧ポンプ(26)を中立に維持させ、停止時の走行クローラ(2)の旋回動作を阻止し乍ら低速域の旋回性能を向上させ、操向ハンドル(19)の操作性向上並びに運転操作の簡略化などを図る。
【0026】
また、図9は機体の左右旋回時における操向ハンドル(19)の切れ角と左右走行クローラ(2)の速度の関係を示すもので、ハンドル(19)の切れ角が大となる程左右走行クローラ(2)の速度差は大となると共に、左右走行クローラ(2)の平均速度となる機体中心速度も副変速レバー(74)の走行速度(高速・標準・低速)状態に応じて減速される。直進位置の操向ハンドル(19)を左方向(右方向)に約15度回転させる刈取り進路修正範囲では、変速出力が直進と略同一位置に維持されると共に、第2油圧ポンプ(26)によって第2油圧モータ(27)を正転(逆転)させる操向出力によって左方向(右方向)に旋回させ、未刈り穀稈(作物)列の湾曲に合せる進路修正を行う。このとき、旋回内側の走行クローラ(2)の減速量と、旋回外側の走行クローラ(2)の増速量が略等しくなり、機体中心速度が直進と略同一速度に保たれる。また、操向ハンドル(19)を直進位置から15度以上回転させると、変速出力が左旋回及び右旋回のいずれでも減速変化し、第1油圧ポンプ(23)及びモータ(24)の走行変速出力を減速させ、左右走行クローラ(2)(2)を同一方向に回転駆動させて前進(または後進)させ、左右走行クローラ(2)(2)の走行速度差により左方向(右方向)に機体を旋回する動作を行わせ、未刈り穀稈(作物)列から外れたときに元の列に戻したり隣の列に移動させる進路修正を行う。さらに、操向ハンドル(19)を約116度回転させると、旋回出力が最高出力維持され、135度の切角範囲で機体中心速度が直進時の約4分の1に減速され、旋回内側の走行クローラ(2)が逆転駆動され、左右走行クローラ(2)の間の旋回中心回りに機体が旋回するスピンターン動作が行われ、左右走行クローラ(2)の左右幅だけ旋回方向にずらせて機体を180度方向転換させるもので、ハンドル切角0度からハンドル切れ角135度の範囲で操向ハンドル(19)を回転させて左または右方向の旋回操作を行い、直進位置を中心とした左右15度のハンドル(19)回転範囲で未刈り穀稈(作物)列に沿って移動する条合せ進路修正を、直進時の走行速度を維持し乍ら行うと共に、左右116度乃至135度のハンドル(19)回転により、旋回部材(28)を最高出力維持し乍ら、圃場枕地で機体を方向転換させて次作業工程に移動させるスピンターン動作を、直進時の約4分の1の走行速度(減速率25パーセント)に自動的に減速して行う。
【0027】
さらに、副変速を標準(秒速1.5メートル)速度に保ち、操向ハンドル(19)を90度回転させたとき、主変速レバー(68)操作により主変速出力を高速及び3分の2及び3分の1に変更しても、機体の旋回半径が略一定に保たれた状態で、旋回速度(機体中心速度)だけを変化させる。また、直進位置を基準として操向ハンドル(19)の約15度の操向操作範囲で第1油圧ポンプ(23)及び第1油圧モータ(24)を直進状態に維持させ、農作業中に作物列または畦などに機体を沿わせる操向操作を行っても走行速度が不均一に変化するのを防止し、略同一走行速度を保ち乍ら農作業中の進路修正を行え、作業者の運転感覚と機体の走行動作とを略一致させて適正な操向操作を行える。
【0028】
また図10、図11に示す如く、前記操向ハンドル(19)の切れ角に応じて減速させる車速(機体の中心速度)の減速値を、副変速に応じて変化させるもので、従来は副変速の標準・高速・低速の各設定車速に対し最終減速値(N1)を一定の75%とするのに対し、副変速の高速・低速状態のとき最終減速値(N2)(N3)を60%、40%に変更して、操向ハンドル(19)の最大切れ角(135°)時における副変速の標準・高速・低速のときの最大減速量(H1)(H2)(H3)をH3<H1<H2とさせる。そして標準状態では従来の旋回車速(A)を一定維持させる一方、高速・低速状態では、従来の旋回車速(B)(C)より変更後の車速(B1)(C1)(B<B1、C<C1)を大とさせることによって副変速の高速状態にあってはスピンターンするのを防止して滑らかな旋回フィーリングとさせて路上などで安定良く走行させる一方、低速状態時には旋回内側のクローラ(2)の逆転側回転数を低減させて湿田などでの走行性能を向上させる。なお最終減速値は作業条件やその他機械の機能などに応じ適宜変更させるものである。
【0029】
さらに、図12、図13に示す如く、左右走行クローラ(2)間の駆動速度差を変化させる制御を行うもので、従来は副変速の標準・高速・低速の何れの変速状態にあっても、操向モータ(104)による旋回系の減速比(G1)を一定維持させるのに対し、副変速の標準時の減速比をG1、高速時の減速比をG2、低速時の減速比をG3とするとき、G3<G1<G2の関係を成立させる制御を操向モータ(104)で行って、最大旋回時の内外側走行クローラ(2)の速度差を標準時にS1、高速時にS2、低速時にS3(S2<S1<S3)とさせて、高速旋回時では左右走行クローラ(2)の速度差(S2)を小とさせることによって、機体を滑らかに旋回させる一方、低速旋回時では左右走行クローラ(2)の速度差(S3)を大とさせることによって、狭い圃場などにおいても機体を機敏に旋回させるものである。
【0030】
なお、上述の他、圃場条件や機械の機能に応じて左右走行クローラ(2)の旋回系の減速比を適宜変化させるものである。
【0031】
このように、走行変速レバーである主変速レバー(73)の操作によって左右走行クローラ(2)の駆動速度を無段階に変更する走行変速部材(25)と、操向ハンドル(19)の操作によって左右走行クローラ(2)の駆動速度の差を無段階に変更する操向部材(28)とを備えた移動農機において、主変速レバー(73)の操作量によって決定される車速を操向ハンドル(19)の操作量に比例して減速させると共に、操向ハンドル(19)の操作量によって決定される左右走行クローラ(2)の駆動速度の差(S1)(S2)(S3)を変更自在とさせて、高速或いは低速走行中の操向ハンドル(19)の一定の旋回操作に対し、左右走行クローラ(2)間の速度を変化させて緩慢或いは急激な機体の旋回を可能とさせて、各種作業に適した旋回フィーリングで機体を旋回させて旋回性能を向上させるもので、車速の高速時左右走行クローラ(2)の駆動速度の差(S2)を小とさせると共に、低速時左右走行クローラ(2)の駆動速度の差(S3)を大とさせることによって、車速の高速時には滑らかな旋回フィーリングで機体の旋回を行って路上走行などの安定性を向上させると共に、低速時にはより機敏な旋回フィーリングで機体の旋回を行って狭い圃場などでの作業性を向上させる。
【0032】
また、走行変速レバー(73)の操作量によって決定される車速を操向ハンドル(19)の操作量に比例して減速させると共に、操向ハンドル(19)の操作量に対する車速の減速値を変更自在とさせて、走行作業中に操向ハンドルを最大切り角に操作した場合でも、必要以上に機体を急旋回或いは機体をスピンターンさせるなどの不都合を防止して、路上や湿田作業などでの走行性能を向上させる。
【0033】
【発明の効果】
以上実施例から明らかなように本発明は、走行変速レバーの操作によって左右走行クローラの駆動速度を無段階に変更する走行変部材と、操向ハンドルの操作によって左右走行クローラの駆動速度の差を無段階に変更する操向部材を備えた移動農機において、走行変速レバーの操作量によって決定される車速を操向ハンドルの操作量に比例して減速させると共に、操向ハンドルの操作量によって決定される左右走行クローラの駆動速度の差を変更する際に、機体の設定中心速度を標準または低速もしくは高速に副変速の操作に応じて変化させる副変速車速設定器の設定値と、副変速の標準・低速・高速操作に応じて左右走行クローラ(2)間の設定駆動速度差を変化させる副変速旋回設定器の設定値とに基づいて左右走行クローラの駆動速度の差を変更させて、高速或いは低速走行中の操向ハンドルの一定の旋回操作に対し、左右走行クローラ間の速度を変化させて緩慢或いは急激な機体の旋回を可能とさせて、各種作業に適した旋回フィーリングで機体を旋回させて旋回性能を向上させることができるものである。
【0034】
また、副変速の高速操作によって車速高速としたには左右走行クローラ(2)の駆動速度の差(S2)を小とさせると共に、前記副変速の低速操作によって車速を低速としたには左右走行クローラ(2)の駆動速度の差(S3)を大とさせて、車速の高速時には滑らかな旋回フィーリングで機体の旋回を行って路上走行などの安定性を向上させると共に、低速時にはより機敏な旋回フィーリングで機体の旋回を行って狭い圃場などでの作業性を向上させるものである。
【図面の簡単な説明】
【図1】コンバインの全体側面図。
【図2】コンバインの全体平面図。
【図3】ミッション駆動系の説明図。
【図4】操向ハンドル部の平面説明図。
【図5】変速及び操向制御回路図。
【図6】操向ハンドルと旋回出力を示す線図。
【図7】操向ハンドルと変速出力を示す線図。
【図8】主変速レバーと旋回出力を示す線図。
【図9】主変速と操向ハンドル操作を示す線図。
【図10】副変速による車速減速のフローチャート。
【図11】副変速による車速減速を示す線図。
【図12】副変速による旋回系減速のフローチャート。
【図13】副変速による旋回系減速を示す線図。
【符号の説明】
(2) 走行クローラ
(19) 操向ハンドル
(25) 走行変速部材
(28) 操向部材
(73) 主変速レバー(走行変速レバー)
(S1)(S2)(S3) (駆動速度の)差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile agricultural machine such as a combine or a tilling tractor or a field management vehicle that continuously harvests and thresh cereals in a field.
[0002]
[Problems to be solved by the invention]
Conventionally, the driving force is transmitted to the left and right traveling crawlers via a belt or hydraulic continuously variable transmission mechanism that can change the traveling speed steplessly by operating the traveling speed change lever, and the vehicle is moved at an arbitrary vehicle speed and is steered by the steering handle. There is a technique for controlling a differential mechanism by operating a continuously variable transmission mechanism for changing the driving path of the left and right traveling crawlers in a stepless manner and changing the traveling path. However, even if the vehicle speed is changed, the ratio of the speed difference between the left and right crawlers by the steering handle is always constant, so the aircraft can be turned even if it is going to turn slowly or agile in high or low speed driving conditions. It was not suitable for driving on the road or in narrow fields.
[0003]
In addition, since the amount of deceleration of the vehicle speed relative to the amount of operation of the steering wheel is a fixed ratio, the aircraft turns more than necessary (including spin turn) when the turning angle of the steering wheel is increased, and stable running cannot be performed. There were also inconveniences.
[0004]
[Means for Solving the Problems]
Procedure Accordingly, the present invention is to change the traveling speed change member for changing the drive speed of the left and right traveling crawlers by the operation of the travel gear lever steplessly, the difference in driving speeds of the left and right traveling crawlers by operating the steering wheel steplessly In a mobile agricultural machine provided with a direction member , the vehicle speed determined by the operation amount of the travel shift lever is decelerated in proportion to the operation amount of the steering handle, and the left and right traveling crawlers determined by the operation amount of the steering handle are When changing the drive speed difference , the setting speed of the auxiliary transmission vehicle speed setting device that changes the set center speed of the aircraft to standard, low speed or high speed according to the operation of the auxiliary transmission, and standard / low speed / high speed operation of the auxiliary transmission left and right travel crawlers (2) by changing the difference in driving speeds of the left and right traveling crawlers based set to the setting value of the subtransmission turning setter for changing the driving speed difference between depending on, The aircraft has a turning feeling suitable for various tasks by changing the speed between the left and right traveling crawlers and allowing the aircraft to turn slowly or abruptly in response to a constant turning operation of the steering handle during high-speed or low-speed driving. To improve the turning performance.
[0005]
Also, the difference in driving speeds of the left and right traveling crawlers when the vehicle speed and the high speed by the high speed operation of auxiliary transmission with is small, the driving of the left and right traveling crawlers when the vehicle speed and the low speed by said low speed operation of auxiliary transmission The speed difference is increased, and when the vehicle speed is high, the aircraft turns with a smooth turning feeling to improve the stability of driving on the road. At low speed, the aircraft turns with a more agile turning feeling. Workability in narrow and narrow fields.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is an overall side view of the combine, and FIG. 2 is a plan view thereof. In FIG. 1, (1) is a track frame on which a pair of left and right traveling crawlers (2) are installed, and (3) is the track frame (1). A machine base to be installed, (4) is a threshing section that stretches the feed chain (5) to the left and incorporates a handling cylinder (6) and a processing cylinder (7), (8) is a cutting blade (9) and grains A cutting part provided with a reed transport mechanism (10), (11) is a hydraulic cylinder that raises and lowers the reeding part (8) via a cutting frame (12), and (13) is a discharge part that faces the end of the waste chain (14). A cocoon processing unit, (15) is a cereal tank that carries the grain from the threshing unit (4) through the milling cylinder (16), and (17) carries the cereal of the tank (15) out of the machine. A discharge auger, (18) a cab with a round steering handle (19) and a driver seat (20), (2 ) Is an engine provided in the driver's seat (20) downward, and configured to threshing continuously harvests culms.
[0008]
Further, as shown in FIG. 3, the transmission case (22) for driving the traveling crawler (2) includes a pair of first hydraulic pump (23) and first hydraulic motor (24) for traveling main transmission. A traveling transmission member (25) forming a hydraulic continuously variable transmission mechanism, a pair of second hydraulic pump (26) and a second hydraulic motor (27) are provided to form a hydraulic continuously variable transmission mechanism for turning. A steering member (28), and input shafts (29a) (29b) of the first and second hydraulic pumps (23) (26) to the output shaft (21a) of the engine (21). The hydraulic pumps (23) and (26) are driven by being connected by (30b).
[0009]
Further, each drive wheel (34) of the left and right traveling crawler (2) is interlockedly connected to the output shaft (31) of the first hydraulic motor (24) via the auxiliary transmission mechanism (32) and the differential mechanism (33). The differential mechanism (33) has a pair of symmetrical planetary gear mechanisms (35) (35), and each planetary gear mechanism (35) includes one sun gear (36) and the sun gear ( 36) three planetary gears (37) meshing with the outer periphery of the ring 36, and a ring gear (38) meshing with these planetary gears (37).
[0010]
The planetary gear (37) is rotatably supported by a carrier (41) of a carrier shaft (40) coaxial with the sun gear shaft (39), and the left and right sun gears (36) (36) are sandwiched between the left and right carriers. The ring gear (38) has an inner tooth (38a) that meshes with each planetary gear (37) and is arranged on the same axis as the sun gear shaft (39), so that the carrier shaft (40 ), The carrier shaft (40) is extended to form an axle, and the drive wheel (34) is pivotally supported.
[0011]
The traveling speed change member (25) controls the forward / reverse rotation and the rotational speed of the first hydraulic motor (24) by adjusting the angle change of the rotary swash plate of the first hydraulic pump (23). The rotational output of the motor (24) is fixed to the sun gear shaft (39) from the transmission gear (42) of the output shaft (31) via the gears (43) (44) (45) and the auxiliary transmission mechanism (32). The sun gear (36) is rotated by being transmitted to the center gear (46). The sub-transmission mechanism (32) includes a sub-transmission shaft (47) having the gear (44) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46) via the gear (45). ), And a pair of low speed gears (50) (51), medium speed gears (52) (53), and high speed gears (54) between the auxiliary transmission shaft (47) and the brake shaft (49). (48) is provided, and the sub-shift is switched between low speed, medium speed, and high speed by the sliding operation of the low and medium speed slider (55) and the high speed slider (56). There is neutrality between low speed and medium speed and between medium speed and high speed. In addition, a parking brake (57) is provided on the brake shaft (49), and gears (59) (60) and a one-way clutch (61) are provided on a cutting PTO shaft (58) that transmits rotational force to the cutting portion (8). The sub-transmission shaft (47) is coupled to the cutting part (8) at the vehicle speed synchronization speed.
[0012]
As described above, the driving force from the first hydraulic motor (24) transmitted to the sun gear shaft (39) via the center gear (46) is transmitted to the left and right carrier shafts (40) via the left and right planetary gear mechanisms (35). ) And the rotation transmitted to the left and right carrier shafts (40) to the left and right drive wheels (34), respectively, to drive the left and right traveling crawler (2).
[0013]
Further, the steering member (28) formed by the turning hydraulic continuously variable transmission mechanism is configured to rotate the second hydraulic motor (27) forward and backward by adjusting the angle of the rotary swash plate of the second hydraulic pump (26). The rotation speed is controlled by a brake shaft (63) having a steering output brake (62), a clutch shaft (65) having a steering output clutch (64), and the left and right ring gears (38). Left and right input gears (66) and (67) that are always meshed with the teeth (38b) are provided, and the output shaft (68) of the second hydraulic motor (27) is connected to the output shaft (68) via the brake shaft (63) and the steering output clutch (64). The clutch shaft (65) is connected, the right input gear (67) is connected to the clutch shaft (65) via the forward rotation gear (69), and the forward rotation gear (69) and the reverse rotation are connected to the clutch shaft (65). The left input gear (66 through the gear (70) And by connecting the. Then, the brake (62) is turned on and the clutch (64) is turned off by the neutral of the auxiliary transmission sliders (55) and (56), while the brake (62) is turned off and the clutch is turned off at the time of the auxiliary transmission other than the neutral. (64) is turned on, the rotational force of the motor (27) is transmitted to the external teeth (38b) of the right ring gear (38) via the forward rotation gear (69), and the external teeth (38b) of the left ring gear (38) ) Is transmitted to the rotation of the motor (27) via the forward rotation gear (69) and the reverse rotation gear (70), and when the second hydraulic motor (27) rotates forward (reverse rotation), the left ring gear (38 ) In the reverse direction (forward rotation) and the right ring gear (38) in the forward direction (reverse rotation).
[0014]
Thus, when the traveling first hydraulic motor (24) is driven in a state where the second hydraulic motor (27) for turning is stopped and the left and right ring gears (38) are stationary and fixed, the first hydraulic motor ( The rotational output from 24) is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the left and right traveling crawlers are transmitted via the planetary gear (37) and carrier (41) of the left and right planetary gear mechanism (35). (2) is driven at the same rotational speed in the same direction in the left and right directions, and the aircraft is traveling straight forward and backward. On the other hand, when the second hydraulic motor (27) for rotation is driven to rotate in the forward and reverse directions with the first hydraulic motor (24) for traveling stopped and the left and right sun gears (36) stationary and fixed, the planet on the left side The gear mechanism (35) rotates forward or backward, and the right planetary gear mechanism (35) rotates backward or forward, driving the left and right traveling crawler (2) in the reverse direction and turning the aircraft to the left or right. Further, by driving the second hydraulic motor (27) for turning while driving the first hydraulic motor (24) for traveling, the aircraft turns left and right to correct the course. The turning radius is determined by the output rotational speed of the second hydraulic motor (27).
[0015]
Further, as shown in FIGS. 2 and 4, the steering column (71) is vertically fixed on the upper surface of the front part of the cab (18), and the steering handle (19) is vertically installed on the upper surface of the steering column (71). A side column (72) is provided on the left side of the cab (18), a transmission (22) is provided below the side column (72), a main transmission lever (73), and a sub transmission lever. (74) A mowing clutch lever (75) and a threshing clutch lever (76) are attached to the side column (72).
[0016]
A steering shaft (77) connected to the steering handle (19) is rotatably supported on the steering column (71), and an upper end portion of the steering input shaft (78) is provided on the steering column (71). The shaft (77) (78) is coupled by rotating the shaft (77) and the gear (79) of the steering input shaft (78) and the sector gear (80) of the steering input shaft (78).
[0017]
Further, the gear (79) forms a plurality of teeth (81) in an outer peripheral range of 270 degrees, forms an outer peripheral range of 90 degrees in an arc (82), and sets the total rotation angle of the steering handle (19). The angle of left steering rotation or right steering rotation is set to 135 degrees, and the steering handle (19) is rotated so that the operator can easily perform the rotation operation with one hand. Further, the sector gear (80) forms a plurality of teeth (83) in the outer peripheral range of 130 degrees, forms an outer peripheral range of 230 degrees in the arc cam (84), and the teeth (81) of the gear (79) Are engaged with the teeth (83) of the sector gear (80), and when the maximum forward / reverse rotation of each gear (79) (80), the stopper (85) at both ends of the arc (82) and the stopper (85) at both ends of the arc cam (84) ( 86) abuts to regulate the rotation of the steering handle (19).
[0018]
A straight notch (87) is formed at the center of the circular arc cam (84) of the sector gear (80), and a detent shaft (88) is rotatably supported on the upper surface wall of the steering column (71). 88) A detent arm (89) is fixed to the lower end portion, a detent roller (91) is rotatably supported on the detent arm (89) via a roller shaft (90), and the detent roller is mounted on the arc cam (84). (91) is brought into contact, and the detent roller (91) is detachably engaged with the rectilinear notch (87) to support the steering handle (19) in the rectilinear position.
[0019]
Furthermore, one end of a steering output arm (92) is fixed to the steering input shaft (78), and a pair of left and right rectilinear springs (93) (93) for returning the steering handle (19) to a rectilinear position, and the springs The return resistance absorber (94), which slows the rotational speed of the steering handle (19) against (93), is connected to the output arm (92), and the steering handle (19) is rotated left and right manually. When the operator removes the handle (19) from the handle (19), the handle (19) is automatically and gently returned to the straight-ahead position, and the operator does not need to return the handle (19) to the straight-ahead position. The mold steering angle sensor (95) is connected to the output arm (92), and the steering operation amount of the steering handle (19) is detected by the steering angle sensor (95).
[0020]
Further, as shown in FIG. 5, a potentiometer-type main transmission sensor (96) for detecting a shift operation position and a neutral position of the main transmission lever (73) and a forward / reverse switching operation, and a shift operation of the sub transmission lever (74). A steering handle (19) is operated by operating a potentiometer-type auxiliary transmission sensor (97) for detecting a position and a neutral position, and a photographing hand operating member (98) on the upper surface of a steering column (71) switched by an operator of a driver seat (20). ) The volume type turning feeling setting device (99) for changing the reduction ratio of the vehicle speed with respect to the increase in the turning angle of) and the steering angle sensor (95) are input-connected to a shift steering controller (100) formed by a microcomputer. Let Further, the controller (100) is input-connected to a microswitch type rectilinear sensor (101) for detecting, via a detent arm (89), a rectilinear state in which the detent roller (91) is engaged with the rectilinear notch (87). .
[0021]
Further, as shown in FIGS. 3 and 5, an electric transmission motor (103) that is switched by manual operation of the main transmission lever (73) is provided, and the transmission motor (103) is operated by operating the main transmission lever (73). The swash plate angle of the first hydraulic pump (23) is changed to change the rotational speed of the output shaft (31) of the first hydraulic motor (24) steplessly or to perform forward / reverse switching operation for reverse rotation. The rotation speed of the first hydraulic motor (24) is changed in proportion to the operation amount of the speed change lever (73), and the steering handle (19) is switched by manual operation. A linear valve (105) that is operated by the linear operation of (19) and the neutral speed change mechanism (32) and a steering clutch cylinder (106) that is connected to the valve (105); The steering motor (104) is operated by operating the handle (19) to change the swash plate angle of the second hydraulic pump (26), and the output rotational speed of the second hydraulic motor (27) is changed steplessly. Left and right to perform a left and right steering operation, change the traveling direction to the left and right to change the direction on the field headland and correct the course, steer in proportion to the amount of operation of the steering handle (19) The rotation speed of the motor (27) is changed, and the rectilinear valve (105) is automatically switched by the rectilinear operation of the steering handle (19) and the neutral operation of the subtransmission mechanism (32), and the steering clutch cylinder ( 106) is operated to disengage the steering output clutch (62), the output of the second hydraulic motor (27) is stopped, and the steering drive is stopped.
[0022]
Further, an acceleration / deceleration circuit (107) (108) for normal rotation or reverse rotation of the transmission motor (103) is connected to the controller (100), and the operation amount (operation angle) for the main transmission lever (73) is connected. The swash plate angle of the first hydraulic pump (23) by the transmission motor (103) is changed in an approximately direct proportion to obtain a vehicle speed according to the tilting operation of the main transmission lever (73), and the steering motor (104) is operated. A left / right turning circuit (109) (110) for forward rotation or reverse rotation is connected to the controller (100), and the steering motor (104) is operated with respect to the steering operation amount (left / right rotation angle) of the steering handle (19). The swash plate of the second hydraulic pump (26) is changed in approximately direct proportion, and as shown in the turning output diagram of FIG. 6, the steering handle is operated during forward operation and reverse operation of the main transmission lever (73). ( And left and right turning output to the inverse relative to the left and right rotation of 9) prevents the reversed handle during forward and reverse time, to reverse pre-made to perform the same steering operation as a four-wheeled vehicle. When the main transmission lever (73) is neutral, the swash plate angle of the second hydraulic pump (26) is kept at zero, the output of the second hydraulic motor (27) is stopped and maintained under the main transmission neutral state. The absolute value of the swash plate angle of the second hydraulic pump (26), which is increased according to the turning angle of the steering handle (19), is prevented while the turning operation by the steering wheel (19) operation is prevented. The steering handle (19) is controlled to be proportional to the absolute value of the steering wheel (19), and the turning radius is kept constant even when the vehicle speed is changed when the turning angle is constant, and the steering wheel is turned by the same steering operation as the four-wheeled vehicle. Further, a straight travel circuit (111) for operating the steering clutch cylinder (106) by switching the straight travel valve (105) is connected to the controller (100), and the steering output is automatically generated by the sub-shift neutral or the straight travel of the handle (19). A transmission hydraulic pressure sensor (112) for detecting the hydraulic pressure of the first hydraulic motor (24) and a steering hydraulic pressure sensor (113) for detecting the hydraulic pressure of the second hydraulic motor (27) are provided. The driving load of the traveling crawler (2) by the hydraulic motors (24) and (27) is detected by the hydraulic sensors (112) and (113) and input to the controller (100), and the condition sensor (102) and the hydraulic pressures are input. Based on the detection results of the sensors (112) and (113), the traveling road surface condition (dry field or wet field) is automatically determined.
[0023]
Furthermore, a sub-speed vehicle speed setting device (114) that changes the set center speed (vehicle speed) of the fuselage according to the standard, low-speed, and high-speed operation of the sub-shift, and a left-right traveling crawler ( 2) When an auxiliary shift turning setting device (115) for changing a set drive speed difference between the two is input to the controller (100), and the center speed of the aircraft is decelerated according to the turning angle of the steering handle (19). The amount of deceleration of the vehicle is changed based on the set value of the vehicle speed setter (114), and the driving speed difference between the left and right traveling crawlers (2) increases according to the turning angle of the steering handle (119) (the turning system The speed reduction ratio is changed based on the setting value of the turning setting device (115), and the body is turned with a turning feeling suitable for planting work.
[0024]
Further, as shown in the vehicle speed output diagram of FIG. 7, as the turning angle of the steering handle (19) increases, the vehicle speed determined by the main shift lever (73) shift position is decelerated. 73) is held at a fixed position, the handle (19) is decelerated in proportion to the turning angle, and the lever (73) is automatically returned to the speed by simply returning the handle (19) to the straight line, and the handle (19) is turned to the maximum. The speed is reduced to the spin turn speed at the corner, and the lever (73) speed is maintained in a dead zone (about 15 degrees of rotation angle) centered on the straight movement of the handle (19), and along the uncut grain row during the harvesting operation Even if the steering operation for adjusting the course (the course correction) is performed, the traveling speed is reduced or increased to prevent the traveling speed from changing unevenly during the harvesting work. There is a difference between the running operation of the combine A proper steering operation is performed without twisting, and the reduction ratio is changed so that sharp turning, normal turning, and smooth turning are achieved by manual switching of the operator using the hand operation member (98). Control is performed manually by the member (98) to obtain turning performance adapted to work contents, field conditions, crop conditions, and the like.
[0025]
Further, as shown in the turning output diagram of FIG. 8, in response to the input of the main transmission sensor (96) for detecting the operation angle of the main transmission lever (73), from the controller (100) based on the steering angle sensor (95). The control output of the steering motor (104) to be output is changed to a quadratic curve, and the steering handle (19) can be operated even when the vehicle speed is slow when the swash plate of the second hydraulic pump (26) having low volumetric efficiency is small. The swash plate is greatly changed by only slightly turning, and the characteristics of the second hydraulic pump (26) and the hydraulic motor (27) are electrically corrected, and the second steering motor (104) is sensitive to the second even at a slow vehicle speed. The turning of the hydraulic pump (26) is controlled, and the turning radius of the traveling crawler (2) is kept substantially the same with respect to the turning angle of the steering handle (19) in the entire shifting region of the main transmission lever (73). When lever (73) is fast The ratio of the control amount of the second hydraulic pump (26) to the operation amount of the steering handle (19) at low speed is increased, and the vehicle speed is low in the low speed range where the output of the second hydraulic pump (26) becomes low efficiency. Even if there is a steering wheel, the steering wheel (19) is operated by a small amount of turning, and the steering handle (19) and the traveling crawler (2) have the same steering operability and steering function. In addition, the neutrality of the main transmission lever (73) is detected by the main transmission sensor (96) to maintain the second hydraulic pump (26) in a neutral state, and the turning operation of the traveling crawler (2) when stopped is performed. While preventing, the turning performance in the low speed region is improved, the operability of the steering handle (19) is improved, and the driving operation is simplified.
[0026]
FIG. 9 shows the relationship between the turning angle of the steering handle (19) and the speed of the left and right traveling crawler (2) when the aircraft is turning left and right. The speed difference of the crawler (2) becomes large, and the airframe center speed, which is the average speed of the left and right traveling crawlers (2), is also reduced according to the traveling speed (high speed / standard / low speed) state of the auxiliary transmission lever (74). The In the cutting path correction range in which the steering handle (19) in the rectilinear position is rotated about 15 degrees in the left direction (right direction), the shift output is maintained at substantially the same position as the rectilinear advance, and the second hydraulic pump (26) The second hydraulic motor (27) is turned leftward (rightward) by the steering output for normal rotation (reverse rotation), and the course is corrected to match the curve of the uncut grain culm (crop) row. At this time, the deceleration amount of the traveling crawler (2) inside the turning and the acceleration amount of the traveling crawler (2) outside the turning become substantially equal, and the body center speed is kept at substantially the same speed as the straight traveling. Further, when the steering handle (19) is rotated by 15 degrees or more from the straight traveling position, the shift output is decelerated in both the left turn and the right turn, and the first hydraulic pump (23) and the motor (24) are shifted. The output is decelerated, the left and right traveling crawlers (2) and (2) are rotated in the same direction to advance (or reverse), and the left and right traveling crawlers (2) and (2) move leftward (rightward) due to the difference in traveling speed. The operation of turning the aircraft is performed, and when it is out of the uncut cereal (crops) row, it is returned to the original row or the course is corrected to move to the next row. Further, when the steering handle (19) is rotated by about 116 degrees, the turning output is maintained at the maximum output, and the center speed of the aircraft is reduced to about one-fourth of the straight angle in the range of 135 degrees. The traveling crawler (2) is driven in reverse, and a spin turn operation is performed in which the aircraft turns around the turning center between the left and right running crawlers (2), and the left and right running crawlers (2) are shifted in the turning direction by the right and left width. Rotate the steering handle (19) within the range of the steering angle from 0 ° to the steering angle of 135 °, and turn left or right to turn left and right around the straight position. 15 degree handle (19) Alignment course correction that moves along the row of uncut grain cereals (crop) within the range of rotation while maintaining the traveling speed when traveling straight, and handles from 116 to 135 degrees on the left and right (19 The rotation speed of the turning member (28) is reduced by about one-fourth when traveling straight, while turning the swivel member (28) while maintaining the maximum output, and moving to the next work step on the field headland. Automatically decelerate to 25%).
[0027]
Further, when the sub-shift is maintained at a standard speed (1.5 meters per second) and the steering handle (19) is rotated by 90 degrees, the main shift output is set to a high speed and two thirds by operating the main shift lever (68). Even if it is changed to 1/3, only the turning speed (aircraft center speed) is changed in a state where the turning radius of the airframe is kept substantially constant. Further, the first hydraulic pump (23) and the first hydraulic motor (24) are maintained in a straight traveling state within a steering operation range of about 15 degrees of the steering handle (19) with reference to the straight traveling position, so that a crop row is produced during farm work. Or, even if the steering operation is carried out along the dredger, etc., the traveling speed is prevented from changing unevenly, and the course can be corrected during farm work while maintaining the same traveling speed. Appropriate steering operation can be performed by substantially matching the traveling motion of the aircraft.
[0028]
Further, as shown in FIGS. 10 and 11, the deceleration value of the vehicle speed (the center speed of the fuselage) to be decelerated according to the turning angle of the steering handle (19) is changed according to the sub-shift. The final deceleration value (N1) is set to a constant 75% for each standard speed / high speed / low speed setting vehicle speed, whereas the final deceleration value (N2) (N3) is set to 60 when the sub speed is in the high speed / low speed state. %, 40%, the maximum deceleration amount (H1) (H2) (H3) for the standard, high and low speeds of the sub-shift at the maximum turning angle (135 °) of the steering handle (19) is changed to H3 <H1 <H2. In the standard state, the conventional turning vehicle speed (A) is kept constant, while in the high speed / low speed state, the vehicle speed (B1) (C1) (B <B1, C <C1) is increased to prevent a spin turn in the high speed state of the sub-shift, thereby providing a smooth turning feeling and stable running on the road or the like, while in a low speed state, the crawler inside the turning (2) The reverse side rotation speed is reduced to improve the running performance in a wet paddy field. The final deceleration value is appropriately changed according to the working conditions and other machine functions.
[0029]
Further, as shown in FIG. 12 and FIG. 13, control is performed to change the drive speed difference between the left and right traveling crawlers (2). , While maintaining the reduction ratio (G1) of the turning system by the steering motor (104) constant, the reduction ratio at the standard time of the sub-shift is G1, the reduction ratio at the high speed is G2, and the reduction ratio at the low speed is G3. The steering motor (104) performs control to establish the relationship of G3 <G1 <G2, and the speed difference of the inner and outer traveling crawlers (2) at the maximum turning is S1 at standard speed, S2 at high speed, and at low speed By making S3 (S2 <S1 <S3) and reducing the speed difference (S2) between the left and right traveling crawlers (2) during high-speed turning, the aircraft smoothly turns, while during low-speed turning, the left and right traveling crawlers. Large speed difference (S3) in (2) By, in which it is agile in turn the aircraft even in such a narrow field.
[0030]
In addition to the above, the reduction ratio of the turning system of the left and right traveling crawler (2) is appropriately changed according to the field conditions and machine functions.
[0031]
In this way, by operating the travel speed change member (25) that changes the driving speed of the left and right travel crawler (2) steplessly by operating the main speed change lever (73) that is the travel speed change lever, and by operating the steering handle (19). In a mobile agricultural machine including a steering member (28) that changes the difference in driving speed between the left and right traveling crawlers (2) steplessly, the vehicle speed determined by the amount of operation of the main transmission lever (73) 19) The speed is reduced in proportion to the operation amount of 19), and the difference (S1) (S2) (S3) in the drive speed of the left and right traveling crawler (2) determined by the operation amount of the steering handle (19) can be changed. By changing the speed between the left and right traveling crawlers (2) in response to a constant turning operation of the steering handle (19) during high speed or low speed running, To work The turning feeling improves the turning performance by reducing the difference in driving speed (S2) between the left and right traveling crawlers (2) when the vehicle speed is high and the left and right traveling crawlers (2) at the low speed. By increasing the driving speed difference (S3), the vehicle turns with a smooth turning feeling when the vehicle speed is high, improving the stability of driving on the road, and more agile turning feeling at low speeds. In order to improve workability in narrow fields, etc.
[0032]
In addition, the vehicle speed determined by the operation amount of the travel shift lever (73) is decelerated in proportion to the operation amount of the steering handle (19), and the deceleration value of the vehicle speed with respect to the operation amount of the steering handle (19) is changed. Even if the steering handle is operated to the maximum turning angle during traveling work, it is possible to prevent inconveniences such as turning the aircraft suddenly or spinning the aircraft more than necessary, such as on the road or in wet fields Improve driving performance.
[0033]
【The invention's effect】
The present invention, as is clear from the above examples, a travel speed change member for changing the drive speed of the left and right traveling crawlers by the operation of the travel gear lever steplessly, the difference in driving speeds of the left and right traveling crawlers by operation of the steering wheel in the mobile agricultural machine provided with a steering member to change steplessly, the speed determined by the operation amount of the travel gear lever with slowing in proportion to the operation amount of the steering wheel, the operation amount of the steering wheel When changing the difference between the determined driving speeds of the left and right crawlers, the setting value of the auxiliary transmission vehicle speed setting device that changes the set center speed of the fuselage to standard or low or high according to the operation of the auxiliary transmission, and the auxiliary transmission The driving speed of the left and right traveling crawlers based on the setting value of the sub-speed turning setting device that changes the setting driving speed difference between the left and right traveling crawlers (2) according to the standard, low speed and high speed operation By changing the difference, fast or to certain turning operation of the steering wheel during low-speed traveling, by enabling the turning of the slow or rapid aircraft by changing the speed between the left and right traveling crawlers, suitable for various operations The turning performance can be improved by turning the body with the turning feeling.
[0034]
The difference between driving speeds of the left and right traveling crawlers (2) when the vehicle speed and the high speed by the high speed operation of auxiliary transmission with (S2) together is smaller, when the vehicle speed and the low speed by the low speed operation of the subtransmission the difference in the drive speed of the left and right traveling crawlers (2) (S3) by a large, thereby improving the stability of such road performing pivoting aircraft smooth turning feeling during vehicle speed, the low speed is It is intended to improve workability in a narrow field by turning the machine body with a more agile turning feeling.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is an overall plan view of the combine.
FIG. 3 is an explanatory diagram of a mission drive system.
FIG. 4 is an explanatory plan view of a steering handle portion.
FIG. 5 is a shift and steering control circuit diagram.
FIG. 6 is a diagram showing a steering handle and a turning output.
FIG. 7 is a diagram showing a steering handle and a shift output.
FIG. 8 is a diagram showing a main transmission lever and a turning output.
FIG. 9 is a diagram showing main shift and steering handle operation.
FIG. 10 is a flowchart of vehicle speed deceleration by sub-shifting.
FIG. 11 is a diagram showing vehicle speed reduction by sub-shifting.
FIG. 12 is a flowchart of turning system deceleration by sub-shifting.
FIG. 13 is a diagram illustrating turning system deceleration by sub-shifting.
[Explanation of symbols]
(2) Traveling crawler (19) Steering handle (25) Traveling transmission member (28) Steering member (73) Main transmission lever (traveling transmission lever)
(S1) (S2) (S3) (Driving speed) difference

Claims (2)

走行変速レバー(73)の操作によって左右走行クローラ(2)の駆動速度を無段階に変更する走行変速部材(25)と、操向ハンドル(19)の操作によって左右走行クローラ(2)の駆動速度の差を無段階に変更する操向部材(28)とを備えた移動農機において、
走行変速レバー(73)の操作量によって決定される車速を操向ハンドル(19)の操作量に比例して減速させると共に、操向ハンドル(19)の操作量によって決定される左右走行クローラ(2)の駆動速度の差を変更する際に、機体の設定中心速度を標準又は低速もしくは高速に副変速の操作に応じて変化させる副変速車速設定器(114)の設定値と、副変速の標準・低速・高速操作に応じて左右走行クローラ(2)間の設定駆動速度差を変化させる副変速旋回設定器(115)の設定値とに基づいて左右走行クローラ(2)の駆動速度の差を変更することを特徴とする移動農機。
The drive speed of the left and right travel crawler (2) is changed by the operation of the travel speed change member (25) and the steering handle (19) which changes the drive speed of the left and right travel crawler (2) steplessly by the operation of the travel shift lever (73). In the mobile agricultural machine provided with the steering member (28) that changes the difference of steplessly,
The vehicle speed determined by the operation amount of the travel shift lever (73) is decelerated in proportion to the operation amount of the steering handle (19), and the left and right traveling crawlers (2 ), The setting value of the auxiliary transmission vehicle speed setting device (114) that changes the set center speed of the aircraft to standard or low or high according to the operation of the auxiliary transmission, and the standard of the auxiliary transmission・ The difference in the driving speed of the left and right traveling crawler (2) is determined based on the setting value of the sub-shift turning setting device (115) that changes the setting driving speed difference between the left and right traveling crawler (2) according to the low speed and high speed operation. A mobile agricultural machine characterized by changing.
前記副変速の高速操作によって車速高速としたには左右走行クローラ(2)の駆動速度の差(S2)を小とさせると共に、前記副変速の低速操作によって車速を低速としたには左右走行クローラ(2)の駆動速度の差(S3)を大とさせたことを特徴とする請求項1に記載の移動農機。 The difference in the driving speed of the right and left traveling crawlers (2) when the vehicle speed and the high speed by the high speed operation of auxiliary transmission with (S2) together is smaller, when the vehicle speed and the low speed by the low speed operation of the subtransmission is The mobile agricultural machine according to claim 1, wherein a difference (S3) in driving speed between the left and right traveling crawlers (2) is increased.
JP24089799A 1999-08-27 1999-08-27 Mobile farm machine Expired - Fee Related JP4485623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24089799A JP4485623B2 (en) 1999-08-27 1999-08-27 Mobile farm machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24089799A JP4485623B2 (en) 1999-08-27 1999-08-27 Mobile farm machine

Publications (2)

Publication Number Publication Date
JP2001063611A JP2001063611A (en) 2001-03-13
JP4485623B2 true JP4485623B2 (en) 2010-06-23

Family

ID=17066319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24089799A Expired - Fee Related JP4485623B2 (en) 1999-08-27 1999-08-27 Mobile farm machine

Country Status (1)

Country Link
JP (1) JP4485623B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303369A (en) * 2001-04-04 2002-10-18 Yanmar Agricult Equip Co Ltd Residual pressure removing mechanism of traveling hst
JP4604420B2 (en) * 2001-07-31 2011-01-05 井関農機株式会社 Steering control device for crawler type work vehicle
JP5022458B2 (en) * 2010-02-23 2012-09-12 株式会社クボタ Work vehicle load control structure
JP2017074889A (en) * 2015-10-16 2017-04-20 ヤンマー株式会社 Work vehicle

Also Published As

Publication number Publication date
JP2001063611A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP4142208B2 (en) Mobile farm machine
JP4430181B2 (en) Crawler work vehicle
JP4485623B2 (en) Mobile farm machine
JP4267774B2 (en) Mobile farm machine
JP4065359B2 (en) Mobile farm machine
JP3998109B2 (en) Mobile farm machine
JP4390960B2 (en) Crawler car
JP4422241B2 (en) Mobile farm machine
JP3174952B2 (en) Moving agricultural machine
JP2001138944A (en) Crawler traveling vehicle
JP3842456B2 (en) Mobile farm machine
JP4112738B2 (en) Mobile farm machine
JP2001138943A (en) Crawler traveling vehicle
JP3816645B2 (en) Mobile farm machine
JP4417500B2 (en) Crawler car
JP3691703B2 (en) Mobile farm machine
JP3013179B1 (en) Traveling equipment for mobile farm machines
JP3429252B2 (en) Combine
JP3946888B2 (en) Mobile farm machine
JP3429253B2 (en) Moving agricultural machine
JP3190987B2 (en) Moving agricultural machine
JP3013178B1 (en) Moving agricultural machine
JP3174950B2 (en) Moving agricultural machine
JP3108874B2 (en) Moving agricultural machine
JP3986080B2 (en) Traveling vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040810

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20041019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4485623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees