JP4389867B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4389867B2
JP4389867B2 JP2005360361A JP2005360361A JP4389867B2 JP 4389867 B2 JP4389867 B2 JP 4389867B2 JP 2005360361 A JP2005360361 A JP 2005360361A JP 2005360361 A JP2005360361 A JP 2005360361A JP 4389867 B2 JP4389867 B2 JP 4389867B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
purge
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360361A
Other languages
English (en)
Other versions
JP2007162581A (ja
Inventor
宏之 北東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005360361A priority Critical patent/JP4389867B2/ja
Priority to DE602006013037T priority patent/DE602006013037D1/de
Priority to CN2006800460780A priority patent/CN101326355B/zh
Priority to US12/096,957 priority patent/US8220250B2/en
Priority to EP06831688A priority patent/EP1963645B1/en
Priority to PCT/IB2006/003566 priority patent/WO2007069032A2/en
Publication of JP2007162581A publication Critical patent/JP2007162581A/ja
Application granted granted Critical
Publication of JP4389867B2 publication Critical patent/JP4389867B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

本発明は、内燃機関の制御装置に関する。
特許文献1には、複数の気筒を2つの気筒群に分割し、各気筒群に対応して排気管を接続し、これら排気管を下流側で共通の排気管に合流させた内燃機関が記載されている。また、同文献1に記載の内燃機関では、各気筒群に対応して接続された排気管に、それぞれ、三元触媒が配置されており、また、これら排気管に共通の排気管にも、三元触媒が配置されている。また、同文献1に記載の内燃機関では、上流側の三元触媒上流にそれぞれ配置されている空燃比センサ(同文献1の図1において、参照符号13L、13Rで示されているものであり、以下これらを「上流側センサ」という)によって検出される空燃比に基づいて、空燃比が目標空燃比に維持されるように燃料噴射弁から噴射される燃料の量(以下「燃料噴射量」という)を補正する制御を行っている。また、同文献1に記載の内燃機関では、所定の条件が成立したとき、燃料タンクで発生した蒸発燃料(以下「ベーパ」という)を保持しておくキャニスタから吸気管にベーパを排出するようにしている。
ところで、キャニスタから吸気管に排出されたベーパは、最終的には、気筒内に吸入されて燃焼せしめられることから、空燃比に影響を与える。そこで、特許文献1に記載の内燃機関では、上流側センサによって検出される空燃比に基づいて空燃比が目標空燃比に維持されるように燃料噴射量を補正する補正係数に基づいて、キャニスタから吸気管に排出されるガスに含まれるベーパの割合(以下「ベーパ濃度」という)を求め、この求めたベーパ濃度を、空燃比を目標空燃比に維持するための燃料噴射量の制御に反映している。
特開2000−230445号公報 特開平11−36998号公報 特開平8−177572号公報
ところで、特許文献1に記載の内燃機関と同様な構成を備えた内燃機関において、例えば、下流側の三元触媒の温度を上昇させるために、該三元触媒に比較的多量の燃料と空気とを供給すると共に該三元触媒に流入する排気ガスの空燃比が理論空燃比となるようにすることが要求されることがある。そして、この要求を満たすための手段として、下流側の三元触媒に流入するときの排気ガスの空燃比が理論空燃比となるように、一方の気筒群において理論空燃比よりもリッチな空燃比でもって燃焼を行わせ、他方の気筒群において理論空燃比よりもリーンな空燃比でもって燃焼を行わせるというものが知られている。
ところで、一方の気筒群において理論空燃比よりもリッチな空燃比でもって燃焼を行わせると共に、他方の気筒群において理論空燃比よりもリーンな空燃比でもって燃焼を行わせる運転(以下「リッチ・リーン運転」という)を行っているときには、上流側の三元触媒に流入する排気ガスの空燃比は、それぞれ、リッチであったりリーンであったりする。したがって、上流側センサによって検出される空燃比に基づいて各気筒群における空燃比を目標空燃比に維持しようとしても、空燃比を正確に目標空燃比に維持することができない。そこで、一方の気筒群から排出された排気ガスと他方の気筒群から排出された排気ガスとが合流する地点よりも下流であって、下流側の三元触媒上流に配置されている空燃比センサ(特許文献1の図1において、参照符号16で示されているものであり、以下これを「下流側センサ」という)によって検出される空燃比に基づいて各気筒群における空燃比を目標空燃比に維持することが知られている。
ところで、特許文献1に記載の内燃機関によれば、上述したように、空燃比が目標空燃比に維持されるように燃料噴射量を補正する補正係数に基づいてベーパ濃度が求められることから、リッチ・リーン運転以外の運転(以下「通常運転」という)が行われているときには、上流側センサによって検出される空燃比に基づいて求められる燃料噴射量に対する補正係数に基づいてベーパ濃度が求められ、リッチ・リーン運転が行われているときには、下流側センサによって検出される空燃比に基づいて求められる燃料噴射量に対する補正係数に基づいてベーパ濃度が求められることになる。
ところで、内燃機関の運転中にベーパ濃度を求める場合、一定の時間間隔ごとにベーパ濃度を求めるのであるが、このとき、一般的には、求めたベーパ濃度を学習値として記憶しておき、直前に求めて記憶しておいたベーパ濃度の学習値を利用して各時刻におけるベーパ濃度を求めている。ここで、内燃機関の運転が上記通常運転から上記リッチ・リーン運転に切り換えられたときには、内燃機関の運転がリッチ・リーン運転に切り換えられた直後は、通常運転が行われているときに求められたベーパ濃度の学習値を利用してベーパ濃度を求めることになる。ところが、これによると、通常運転が行われているときには、上述したように、上流側センサの出力に基づいてベーパ濃度を求めているのであるから、内燃機関の運転が通常運転からリッチ・リーン運転に切り換えられたときには、上流側センサの出力に基づいて求められたベーパ濃度の学習値と下流側センサの出力とに基づいてベーパ濃度を求めることになる。
ここで、上流側センサと下流側センサとが異なるタイプであればなおさら、これらセンサが同じタイプのセンサであったとしても、その出力特性には自ずと差異がある。したがって、内燃機関の運転が通常運転からリッチ・リーン運転に切り換えられたときに、通常運転時に求めたベーパ濃度の学習値を利用してリッチ・リーン運転時のベーパ濃度を求めたのでは、正確なベーパ濃度を求められない可能性が高い。
そこで、本発明の目的は、内燃機関の運転が通常運転からリッチ・リーン運転に切り換えられたときにも、吸気通路内に導入されているベーパ量を正確に求めることにある。
上記課題を解決するために、1番目の発明では、複数の気筒を備え、これら気筒を少なくとも2つの気筒群に分け、各気筒群にそれぞれ排気枝管を接続すると共にこれら排気枝管を下流側で合流させて共通の1つの排気管に接続し、該共通の1つの排気管内に排気浄化触媒を配置した内燃機関であって、通常は各気筒群において所定の空燃比でもって燃焼を行わせる通常運転を行い、排気浄化触媒に還元剤と空気とを供給すべきことが要求されたときには排気浄化触媒に所定空燃比の排気ガスが流入するように一方の気筒群において理論空燃比よりもリッチな空燃比でもって燃焼を行わせると共に他方の気筒群において理論空燃比よりもリーンな空燃比でもって燃焼を行わせるリッチ・リーン運転を行い、所定の条件が成立したときには気筒全てに通じる吸気通路内にベーパを含んだガスを導入するパージ制御を行い、該パージ制御中に吸気通路内に導入されているベーパの量を求めて学習値として記憶する内燃機関において、各排気枝管にそれぞれ第1の空燃比センサを配置すると共に排気浄化触媒上流の上記共通の1つの排気管に第2の空燃比センサを配置し、パージ制御中に吸気通路内に導入されているベーパの量を求めるとき、通常運転が行われているときは、第1の空燃比センサの出力値と通常運転中に求められて記憶されたベーパ量の学習値とを利用してベーパ量を求め、リッチ・リーン運転が行われているときは、第2の空燃比センサの出力値とリッチ・リーン運転中に求められて記憶されたベーパ量の学習値とを利用してベーパ量を求める。
2番目の発明では、1番目の発明において、パージ制御中に内燃機関の運転が通常運転からリッチ・リーン運転に切り換えられたとき或いはリッチ・リーン運転から通常運転に切り換えられたときにパージ制御を停止し、所定の時間が経過したときにパージ制御を再開する。
3番目の発明では、1または2番目の発明において、通常運転が行われているときには第1の空燃比センサの出力値を利用して各気筒群における空燃比が目標空燃比に制御され、リッチ・リーン運転が行われているときには第2の空燃比センサの出力値を利用して各気筒群における空燃比が目標空燃比に制御される。
4番目の発明では、1〜3番目の発明のいずれか1つにおいて、上記第1の空燃比センサ下流の各排気枝管内にそれぞれ排気浄化触媒が配置されている。
本発明によれば、通常運転が行われているときと、リッチ・リーン運転が行われているときとで、それぞれ、別個にベーパ量を求めているので、内燃機関の運転が通常運転からリッチ・リーン運転に切り換えられたときにも、ベーパ量が正確に求められると共に、内燃機関の運転がリッチ・リーン運転から通常運転に切り換えられたときにも、ベーパ量が正確に求められる。
以下、図面を参照して本発明の実施の形態を説明する。図1は、本発明の排気浄化装置を備えた内燃機関を示している。図1において、1は内燃機関の本体を示し、♯1〜♯4はそれぞれ第1気筒、第2気筒、第3気筒、第4気筒を示している。各気筒には、それぞれ対応して、燃料噴射弁21,22,23,24が設けられている。また、各気筒には、それぞれ対応する吸気枝管3を介して吸気管4が接続されている。また、第1気筒および第4気筒には、第1の排気枝管5が接続されており、第2気筒および第3気筒には、第2の排気枝管6が接続されている。すなわち、第1気筒と第4気筒とをまとめて第1気筒群と称し、第2気筒と第3気筒とをまとめて第2気筒群と称したとき、第1気筒群には、第1の排気枝管5が接続されており、第2気筒群には、第2の排気枝管6が接続されている。そして、これら排気枝管5,6は、下流側において合流し、共通の1つの排気管7に接続されている。
なお、第1の排気枝管5は、下流側では1つの排気枝管であるが、上流側では2つに分岐しており、これら2つに分岐した排気枝管がそれぞれ第1気筒および第4気筒に接続されている。同様に、第2の排気枝管6も、下流側では1つの排気枝管であるが、上流側では2つに分岐しており、これら2つに分岐した排気枝管がそれぞれ第2気筒および第3気筒に接続されている。以下の説明では、排気枝管5,6の上流側の2つに分かれている部分を特定して表現する場合、これを「排気枝管の分岐部分」と表現し、排気枝管5,6の下流側の1つの部分を特定して表現する場合、これを「排気枝管の集合部分」と表現する。
各排気枝管5,6の集合部分には、それぞれ、三元触媒8,9が配置されており、排気管7には、NOx触媒10が配置されている。また、各三元触媒5,6上流の排気枝管5,6の集合部分には、それぞれ、空燃比センサ11,12が配置されている。また、NOx触媒10上流および下流の排気管7にも、それぞれ、空燃比センサ13,14が配置されている。
三元触媒8,9は、図2に示されているように、その温度が或る温度(いわゆる、活性温度)以上であって、且つ、そこに流入する排気ガスの空燃比が理論空燃比近傍(図2の領域X内)にあるときに、排気ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、および、炭化水素(HC)を同時に高い浄化率にて浄化する。一方、三元触媒は、そこに流入する排気ガスの空燃比が理論空燃比よりもリーンであるときには、排気ガス中の酸素を吸収し、そこに流入する排気ガスの空燃比が理論空燃比よりもリッチであるときには、吸収した酸素を放出する酸素吸放出能力を有する。この酸素吸放出能力が正常に機能する限り流入する排気ガスの空燃比が理論空燃比よりもリーンであってもリッチであっても、三元触媒内の雰囲気の空燃比がほぼ理論空燃比近傍に維持されるので、排気ガス中のNOx、CO、HCが同時に高い浄化率で浄化される。
NOx触媒10は、その温度が或る温度(いわゆる、活性温度)以上であって、且つ、そこに流入する排気ガスの空燃比が理論空燃比よりもリーンであるとき(大きいとき)に排気ガス中のNOxを吸収または吸蔵することによって保持し、そこに流入する排気ガスの空燃比が理論空燃比または理論空燃比よりもリッチとなると保持しているNOxを還元浄化する。
ところで、NOx触媒10にNOxが保持される条件において、排気ガス中にSOxが含まれていると、このSOxもNOx触媒に保持されてしまう。上述したように、NOx触媒にSOxが保持されると、その分、NOx触媒が保持することができるNOxの量が少なくなってしまう。このため、NOx触媒のNOx保持能力をできるだけ高く維持しておくためには、NOx触媒からSOxを除去する必要がある。ここで、NOx触媒の温度をSOxを除去可能な温度にした状態で、NOx触媒に理論空燃比またはリッチ(好ましくは、理論空燃比に極めて近いリッチ)の排気ガスを供給すれば、NOx触媒からSOxを除去することができる。云い換えれば、本実施形態のNOx触媒は、その温度を或る温度にした状態でそこに理論空燃比またはリッチ空燃比の排気ガスが供給されると、SOxを放出するものであると言える。
そこで、NOx触媒10からSOxを除去することが要求されたときには、本実施形態では、以下の硫黄被毒回復制御を実行することによって、NOx触媒の温度をSOxを除去可能な温度にすると共にNOx触媒に理論空燃比またはリッチ空燃比の排気ガスを供給する。すなわち、本実施形態の硫黄被毒回復制御では、第1気筒および第4気筒(すなわち、第1気筒群)からリッチ空燃比の排気ガス(以下「リッチ排気ガス」という)が排出されると共に第2気筒および第3気筒(すなわち、第2気筒群)からリーン空燃比の排気ガス(以下「リーン排気ガス」という)が排出されるように、各気筒に充填される混合気の空燃比を制御する。
ここで、各気筒から排出させるリッチ排気ガスのリッチ度合およびリーン排気ガスのリーン度合は、これらリッチ排気ガスとリーン排気ガスとがNOx触媒10上流で混ざり合ってNOx触媒に流入するときに、トータルの排気ガスの空燃比が理論空燃比または所望のリッチ空燃比となるように調整される。
一般的に、NOx触媒10からSOxを除去可能な温度(以下「SOx除去可能温度」という)は、NOx触媒にNOxを保持させたり還元浄化させたりする温度よりも高いので、NOx触媒からSOxを除去するためには、NOx触媒の温度を上昇させる必要がある。これに関し、本実施形態の硫黄被毒回復制御によれば、リッチ排気ガスとリーン排気ガスとが混ざり合ってリッチ排気ガス中のHCとリーン排気ガス中の酸素とが反応することで、反応熱が発生し、この反応熱により、NOx触媒の温度をSOx除去可能温度まで上昇させることができる。
そして、上述したように、NOx触媒10からSOxを除去するためには、NOx触媒に流入する排気ガスの空燃比を理論空燃比またはリッチ空燃比とすることが必要である。これに関し、本実施形態の硫黄被毒回復制御によれば、NOx触媒に流入する排気ガスの空燃比は理論空燃比またはリッチ空燃比となっている。こうして、本実施形態の硫黄被毒回復制御によれば、NOx触媒10からSOxを除去することができる。
なお、硫黄被毒回復制御において各気筒から排出させるリッチ排気ガスの空燃比は、理論空燃比に近いリッチ空燃比であることが好ましく、したがって、硫黄被毒回復制御において各気筒から排出させるリーン排気ガスの空燃比も、理論空燃比に近いリーン空燃比であることが好ましい。
ところで、空燃比センサとしては、例えば、図3に示されている特性でもって電流を出力するいわゆるリニア空燃比センサがある。このリニア空燃比センサは、排気ガスの空燃比が理論空燃比であるとき、0Aの電流を出力し、排気ガスの空燃比が理論空燃比よりもリッチであるほど大きな0A以下の電流を出力し、排気ガスの空燃比が理論空燃比よりもリーンであるほど大きな0A以上の電流を出力する。すなわち、リニア空燃比センサは、排気ガスの空燃比に応じてリニアに変化する電流を出力する。
また、別の空燃比センサとしては、例えば、図4に示されている特性でもって電圧を出力するいわゆるOセンサがある。このOセンサは、排気ガスの空燃比が理論空燃比よりもリーンであるとき、略0Vの電圧を出力し、理論空燃比よりもリッチであるとき、略1Vの電圧を出力する。そして、出力電圧は、排気ガスの空燃比が理論空燃比近傍にある領域で急激に変化して、0.5Vを横切る。すなわち、Oセンサは、排気ガスの空燃比が理論空燃比に対してリーンであるかリッチであるかに応じて異なる一定の電圧を出力する。
本発明の実施形態では、三元触媒8,9上流の空燃比センサ11,12および三元触媒とNOx触媒10との間の空燃比センサ13として、リニア空燃比センサを採用し、NOx触媒下流の空燃比センサ14として、Oセンサを採用している。
また、図1に示されているように、本実施形態の内燃機関は、燃料タンク30内で発生したベーパ(蒸発燃料)を吸着保持するための活性炭31を収容したチャコールキャニスタ32を具備する。活性炭31の一方の側にあるキャニスタ32の内部空間33は、ベーパ通路34を介して燃料タンク30の内部に連通されていると共にパージ通路35を介してスロットル弁36下流の吸気管4に連通可能とされている。パージ通路35には、該パージ通路35の流路面積を調整するパージ制御弁37が配置されている。パージ制御弁37が開弁されると、キャニスタ32の内部空間33がパージ通路を介して吸気管4に連通せしめられる。また、活性炭31の他方の側にあるキャニスタ32の内部空間38は、大気管39を介して大気に連通されている。
上述したように、キャニスタ32の活性炭31には、燃料タンク30内で発生したベーパが吸着保持されるのであるが、活性炭31が吸着保持可能なベーパ量には限界があることから、活性炭31がベーパで飽和する前に、活性炭31からベーパを取り除かなければならない。そこで、本実施形態では、機関運転中(内燃機関が運転されているとき)に或る所定の条件が成立しているときにパージ制御弁37を開いて活性炭31のベーパをパージ通路35を介して吸気管4に排出する(このように、ベーパをパージ通路を介して吸気管に排出することを本明細書では「パージ」という)。
すなわち、機関運転中は、スロットル弁36下流の吸気管4内には負圧(以下「吸気管負圧」という)が発生する。したがって、パージ制御弁37が開かれると、吸気管負圧がパージ通路35を介してキャニスタ32に導入される。そして、この導入された吸気管負圧によって、大気中の空気が大気管39を介してキャニスタ32内に吸引され、この吸引された空気がパージ通路35を介して吸気管4に吸引される。このとき、活性炭31に吸着保持されているベーパがキャニスタ32内を通る空気に乗って吸気管4に導入されることになる。
ところで、本実施形態では、各気筒に充填される混合気の空燃比が理論空燃比となるように、各燃料噴射弁から噴射させる燃料の量(以下「燃料噴射量」という)を制御する。次に、各気筒に充填される混合気の空燃比を理論空燃比に制御する本実施形態の方法について説明する。なお、本明細書において、機関空燃比とは、各気筒に充填される混合気の空燃比であって、各気筒に供給された燃料の量に対する各気筒に供給された空気の量の比を意味し、排気空燃比とは、排気ガスの空燃比を意味し、排気ガスの空燃比とは、各気筒に吸入された空気(機関排気通路に空気を供給することができるようにしたシステムでは機関排気通路に供給された空気を含む。)の量に対する各気筒に供給された燃料(機関排気通路に燃料を供給することができるようにしたシステムでは機関排気通路に供給された燃料を含む。)の比を意味する。
図1に示した内燃機関では、基本的には、次式1に従って燃料噴射弁を開弁する時間(以下「燃料噴射時間」という)TAUが算出される。
TAU=TP・FW・(FAF+KGj−FPG) …(1)
上式1において、TPは、基本燃料噴射時間であり、FWは、補正係数であり、FAFは、フィードバック補正係数であり、KGjは、機関空燃比の学習係数であり、FPGは、パージ空燃比補正係数(以下「パージA/F補正係数」という)である。
基本燃料噴射時間TPは、機関空燃比を理論空燃比とするのに必要な実験により求められた噴射時間であって、機関負荷Ga/N(吸入空気量Ga/機関回転数N)と機関回転数Nとの関数として予めECU(電子制御装置)などに記憶されている。
また、補正係数FWは、暖機増量係数や加速増量係数を一まとめにして表わしたもので、増量補正する必要がないときには、FW=1.0となる。また、フィードバック補正係数FAFは、リニア空燃比センサ11,12の出力信号に基づいて機関空燃比を理論空燃比に制御するための係数である。また、パージA/F補正係数FPGは、内燃機関の運転が開始されてからパージが開始されるまでの間は、零とされ、パージが開始された後は、パージガス中のベーパ濃度が高くなるほど大きくされ、機関運転中にパージが一時的に停止されたときは、パージの停止中、零とされる。
ところで、上述したように、フィードバック補正係数FAFは、リニア空燃比センサ11,12の出力信号に基づいて空燃比を理論空燃比に制御するためのものである。
図5は、機関空燃比が理論空燃比に維持されているときのリニア空燃比センサ11,12の出力電流Iとフィードバック補正係数FAFとの関係を示している。図5に示されるように、リニア空燃比センサ11,12の出力電流Iが基準電圧、例えば、0(A)よりも低くなると、すなわち、機関空燃比がリッチになると、フィードバック補正係数FAFは、スキップ量Sだけ急激に低下せしめられ、次いで、積分定数Kでもって徐々に減少せしめられる。一方、リニア空燃比センサ11,12の出力電流Iが基準電圧よりも高くなると、すなわち、機関空燃比がリーンになると、フィードバック補正係数FAFは、スキップ量Sだけ急激に増大せしめられ、次いで、積分定数Kでもって徐々に増大せしめられる。
すなわち、機関空燃比がリッチになるとフィードバック補正係数FAFが減少せしめられて燃料噴射量が減少せしめられ、一方、機関空燃比がリーンになるとフィードバック補正係数FAFが増大せしめられて燃料噴射量が増大せしめられ、斯くして、機関空燃比が理論空燃比に制御される。このとき、フィードバック補正係数FAFは、図5に示されるように、基準値、すなわち、1.0を中心として上下動する。
また、図5において、FAFLは、機関空燃比がリーンからリッチになったときのフィードバック補正係数FAFの値を示し、FAFRは、機関空燃比がリッチからリーンになったときのフィードバック補正係数FAFの値を示している。本実施形態では、フィードバック補正係数FAFの変動平均値(以下単に「平均値」という)として、これらFAFLとFAFRとの平均値が用いられる。
なお、このように燃料噴射量を制御することにより、基本的には、機関空燃比は理論空燃比に制御されるはずである。ところが、リニア空燃比センサ11,12に出力誤差があると、機関空燃比は理論空燃比に制御されない。例えば、リニア空燃比センサが実際の排気空燃比に対応する電流値よりもリッチ側にずれた空燃比に対応する電流値を出力してしまう傾向にあると、排気空燃比が理論空燃比になっていたとしても、排気空燃比は理論空燃比よりもリッチであることになってしまう。このため、燃料噴射量が少なくされ、結果的に、機関空燃比は理論空燃比よりもリーンに制御されてしまう。逆に、リニア空燃比センサが実際の排気空燃比に対応する電流値よりもリーン側にずれた空燃比に対応する電流値を出力してしまう傾向にあると、機関空燃比は理論空燃比よりもリッチに制御されてしまう。
そこで、本実施形態では、こうしたリニア空燃比センサ11,12の出力誤差をNOx触媒10下流のOセンサ14の出力値を利用して補償する。すなわち、リニア空燃比センサに出力誤差がなく、機関空燃比が理論空燃比に制御されていれば、NOx触媒から流出する排気ガスの空燃比は理論空燃比になっているはずであり、このとき、Oセンサは理論空燃比に対応する0.5V(以下「基準電圧値」という)を出力する。
しかしながら、リニア空燃比センサ11,12に出力誤差があって、例えば、機関空燃比が理論空燃比よりもリッチに制御されていると、NOx触媒10から流出する排気ガスの空燃比は理論空燃比よりもリッチになっている。このとき、Oセンサ14は理論空燃比よりもリッチな空燃比に対応する電圧値を出力する。ここで、このときにOセンサから出力される電圧値と基準電圧値との差は、リニア空燃比センサの出力誤差を示している。そこで、本実施形態では、このOセンサから実際に出力される電圧値と基準電圧値との差に基づいて、リニア空燃比センサの出力誤差が補償されるように、リニア空燃比センサの出力電流値を補正する。
逆に、リニア空燃比センサ11,12に出力誤差があって、機関空燃比が理論空燃比よりもリーンに制御されているときにも、Oセンサ14から出力される電圧値と基準電圧値との差に基づいて、リーン空燃比センサの出力誤差が補償されるように、リニア空燃比センサの出力電流値を補正する。
図6は、パージ率PGR(これは、図1に示した例では、スロットル弁36上流から筒内に吸入される空気の量(以下「吸入空気量」という)に対するパージ通路35から吸気管4にパージされる空気とベーパとの混合ガス(以下「パージガス」という)の量の割合である)を示している。図6に示したように、本実施形態では、機関運転開始後、初めてパージが開始されると、パージ率PGRは零から徐々に増大せしめられ、パージ率PGRが目標値(例えば、6パーセント)に達すると、その後は、パージ率PGRは目標値に維持される。
そして、例えば、減速運転時に燃料噴射弁からの燃料の供給が停止されたような場合、Xで示したように、パージ率PGRが一時的に零にされる。そして、次にパージが再開されたときのパージ率PGRは、パージが停止される直前のパージ率とされる。
次に、図7を参照しつつパージガス中のベーパ濃度(以下「ベーパ濃度」ともいう)の学習方法について説明する。ベーパ濃度の学習は、単位パージ率当りのベーパ濃度(以下単に「単位ベーパ濃度」ともいう)を正確に求めることから始まる。図7では、単位ベーパ濃度をFGPGで示している。また、パージA/F補正係数FPGは、単位ベーパ濃度FGPGにパージ率PGRを乗算することによって得られる。
単位ベーパ濃度FGPGは、フィードバック補正係数FAFがスキップ(図6のS)する毎に次式2に従って算出される。
FGPG=FGPG+tFG …(2)
ここで、tFGは、フィードバック補正係数FAFのスキップ毎に行われる単位ベーパ濃度FGPGの更新量であり、次式3に従って算出される。
tFG=(1−FAFAV)/(PGR・a) …(3)
ここで、FAFAVは、フィードバック補正係数の平均値(=(FAFL+FAFR)/2)であり、aは、本実施形態では、2に設定されている。
すなわち、パージが開始されると機関空燃比がリッチとなるので、機関空燃比を理論空燃比とすべくフィードバック補正係数FAFが小さくなる。次いで、時刻tにおいて、リニア空燃比センサ11,12により空燃比がリッチからリーンに切替ったと判断されると、フィードバック補正係数FAFは増大せしめられる。この場合、パージが開始されてから時刻tに至るまでのフィードバック補正係数FAFの変化量ΔFAF(=1.0−FAF)は、パージによる機関空燃比の変動量を表しており、この変動量ΔFAFは、時刻tにおける単位ベーパ濃度を表わしていることになる。
時刻tに達すると、機関空燃比は理論空燃比に維持され、その後、機関空燃比が理論空燃比からずれないようにフィードバック補正係数の平均値FAFAVを1.0まで戻すために単位ベーパ濃度FGPGがフィードバック補正係数FAFのスキップ毎に徐々に更新される。このときの単位ベーパ濃度FGPGの1回当りの更新量tFGは、1.0に対するフィードバック補正係数の平均値FAFAVのずれ量の半分とされるので、この更新量tFGは、上述したように、tFG=(1−FAFAV)/(PGR・2)となる。
図7に示されるように、単位ベーパ濃度FGPGの更新が数回繰返されると、フィードバック補正係数の平均値FAFAVは、1.0に戻り、その後は、単位ベーパ濃度FGPGは、一定となる。このように、単位ベーパ濃度FGPGが一定になるということは、このときのFGPGが単位ベーパ濃度を正確に表わしていることを意味しており、したがって、単位ベーパ濃度の学習が完了したことを意味している。一方、実際のベーパ濃度は、単位ベーパ濃度FGPGにパージ率PGRを乗算した値となる。したがって、実際のベーパ濃度を表わすパージA/F補正係数FPG(=FGPG・PGR)は、図7に示されるように、単位ベーパ濃度FGPGが更新される毎に更新され、パージ率PGRが増大するにつれて増大する。
パージ開始後における単位ベーパ濃度の学習が一旦完了した後においても単位ベーパ濃度が変化すれば、フィードバック補正係数FAFは1.0からずれ、このときにも、上述のtFG(=(1−FAFAV)/(PGR・a))を用いて単位ベーパ濃度FGPGの更新量が算出される。
次に、図8および図9を参照しつつ、パージ制御ルーチンについて説明する。なお、このルーチンは、一定時間毎の割込みによって実行される。図8および図9のルーチンでは、まず初めに、ステップ20において、パージ制御弁37の駆動パルスのデューティ比の計算時期か否かが判別される。本実施形態では、デューティ比の計算は、100msec毎に行われる。ここで、デューティ比の計算時期でないと判別されたときには、図10に示されているパージ制御弁37の駆動処理ルーチンに進む。一方、ステップ20において、デューティ比の計算時期であると判別されたときには、ステップ21に進んで、パージ条件1が成立しているか否か、例えば、暖機が完了したか否かが判別される。
ここで、パージ条件1が成立していないと判別されたときには、ステップ28に進んで、初期化処理、すなわち、前回のパージの中止直前のパージ率PRGOが零とされ、次いで、ステップ29に進んで、デューティ比DPGおよびパージ率PGRも零とされ、次いで、図10に示されているパージ制御弁37の駆動処理ルーチンに進む。一方、ステップ21において、パージ条件1が成立していると判別されたときには、ステップ22に進んで、パージ条件2が成立しているか否か、例えば、機関空燃比のフィードバック制御が行われているか否かおよび燃料噴射弁からの燃料の供給が停止されていないか否かが判別される。
ここで、パージ条件2が成立していないと判別されたときには、ステップ29に進んで、デューティ比DPGおよびパージ率PGRが零とされ、次いで、図10に示されているパージ制御弁37の駆動処理ルーチンに進む。一方、ステップ22において、パージ条件2が成立していると判別されたときには、ステップ23に進む。
ステップ23では、全開パージ率PG100が算出される。ここで、全開パージ率PG100は、全開パージ量PGQと吸入空気量Gaとの比((PGQ/Ga)・100)であって、例えば、機関負荷Ga/N(=吸入空気量Ga/機関回転数N)と機関回転数Nとの関数であって予め実験により求められ、下表に示すようなマップの形で予めECUなどに記憶されている。なお、全開パージ量PGQは、パージ制御弁37を全開にしたときのパージガス量を表わしている。
Figure 0004389867
機関負荷Ga/Nが低くなるほど吸入空気量Gaに対する全開パージ量PGQは大きくなるので、表1に示されるように、全開パージ率PG100は、機関負荷Ga/Nが低くなるほど大きくなり、また、機関回転数Nが低くなるほど吸入空気量Gaに対する全開パージ量PGQは大きくなるので、表1に示されるように、全開パージ率PG100は、機関回転数Nが低くなるほど大きくなる。
次いで、ステップ24では、フィードバック補正係数FAFが上限値KFAF15(=1.15)と下限値KFAF85(=0.85)との間にある(KFAF15>FAF>KFAF85)か否かが判別される。ここで、KFAF15>FAF>KFAF85であると判別されたとき(このときには、機関空燃比が理論空燃比にフィードバック制御されている)には、ステップ25に進んで、パージ率PGRが零である(PGR=0)か否かが判別される。
ここで、PGR≠0である(ここで、パージ率PGRは、常に零以上であるから、PGR≠0であるということは、PGR>0であること、すなわち、パージが行われていることを意味する)と判別されたときには、ステップ27にジャンプする。一方、ステップ25において、PGR=0である(すなわち、パージが行われていない)と判別されたときには、ステップ26に進んで、パージ率PGRが前回のパージの中止直前のパージ率(再開パージ率)PGROとされる。ここで、機関運転が開始されてから初めてルーチンがステップ26に進んだとき(すなわち、機関運転が開始されてから初めてパージ条件1が成立したとき)には、ステップ28の初期化処理によって前回のパージの中止直前のパージ率PGROが零とされているので、ステップ26では、パージ率PGRは零とされている。一方、機関運転が開始されてから初めてルーチンがステップ26に進んだのではないとき(すなわち、パージが一旦中止された後にパージが再開されたとき)には、ステップ26では、パージ率PGRは前回のパージの中止直前のパージ率PGROとされる。
次いで、ステップ27では、パージ率PGRに一定値KPGRuを加算することによって目標パージ率tPGR(=PGR+KPGRu)が算出され、次いで、ステップ31に進む。すなわち、フィードバック補正係数FAFが上限値KFAF15と下限値KFAF85との間にあるときには、目標パージ率tPGRが100msec毎に徐々に増大せしめられることになる。なお、ステップ27に示されているように、目標パージ率tPGRに対しては、上限値P(例えば、6%)が設定されているので、目標パージ率tPGRは、上限値Pまでしか増大せしめられない。
一方、ステップ24において、FAF≧KFAF15またはFAF≦KFAF85であると判別されたときには、ステップ30に進んで、パージ率PGRから一定値KPGRdを減算することによって目標パージ率tPGR(=PGR−KPGRd)が算出され、次いで、ステップ31に進む。すなわち、フィードバック補正係数FAFが上限値KFAF15と下限値KFAF85との間に制御されていないとき、すなわち、機関空燃比が理論空燃比に制御されていないときには、パージの影響によって機関空燃比が理論空燃比に制御されていないものと判断し、目標パージ率tPGRが減少せしめられる。なお、ステップ30に示されているように、目標パージ率tPGRに対しては、下限値S(例えば、0%)が設定されているので、目標パージ率tPGRは、下限値Sまでしか減少せしめられない。
ステップ31では、目標パージ率tPGRを全開パージ率PG100により除算することによってパージ制御弁37の駆動パルスのデューティ比DPG(=(tPGR/PG100)・100)が算出される。したがって、パージ制御弁37の駆動パルスのデューティ比DPG、すなわち、パージ制御弁37の開弁量は、全開パージ率PG100に対する目標パージ率tPGRの割合に応じて制御されることになる。
次いで、ステップ32において、全開パージ率PG100にデューティ比DPGを乗算することによって実際のパージ率PGR(=PG100・(DPG/100))が算出される。次いで、ステップ33において、デューティ比DPGがDPGOとされると共にパージ率PGRがPGROとされる。次いで、ステップ34において、パージが開始されてからの時間を示すパージ実行時間カウンタCPGRが1だけインクリメントされ、次いで、図10に示されているパージ制御弁37の駆動処理ルーチンに進む。
次に、図10に示されているパージ制御弁37の駆動処理ルーチンについて説明する。図10のルーチンでは、まず初めに、ステップ40において、機関運転中か否かが判別される。ここで、機関運転中であると判別されたときには、ステップ41に進む。一方、機関運転中ではない、すなわち、機関運転停止中であると判別されたときには、ステップ45に進んで、パージ制御弁37の駆動パルスYEVPがオフとされる。
ステップ41では、デューティ比の出力周期か否か、すなわち、パージ制御弁37の駆動パルスの立上り周期であるか否かが判別される。このデューティ比の出力周期は、100msecである。ステップ41において、デューティ比の出力周期であると判別されたときには、ステップ42に進んで、デューティ比DPGが零である(DPG=0)か否かが判別される。ここで、DPG=0であると判別されたときには、ステップ45に進んで、パージ制御弁37の駆動パルスYEVPがオフとされる。一方、ステップ42において、DPG≠0であると判別されたときには、ステップ43に進んで、パージ制御弁37の駆動パルスYEVPがオンにされる。次いで、ステップ44において、現在の時刻TIMERにデューティ比DPGを加算することによって駆動パルスのオフ時刻TDPG(=DPG+TIMER)が算出される。
一方、ステップ41において、デューティ比の出力周期ではないと判別されたときには、ステップ46に進んで、現在の時刻TIMERが駆動パルスのオフ時刻TDPGである(TIMER=TDPG)か否かが判別される。ここで、TIMER=TDPGであると判別されたときには、ステップ47に進んで、駆動パルスYEVPがオフとされる。
次に、図11に示したフィードバック補正係数FAFの算出ルーチンについて説明する。このルーチンは、例えば、一定時間毎の割込みによって実行される。図11のルーチンでは、まず初めに、ステップ50において、機関空燃比のフィードバック制御条件が成立しているか否かが判別される。ここで、フィードバック制御条件が成立していないと判別されたときには、ステップ59に進んで、フィードバック補正係数FAFが1.0に固定され、次いで、ステップ60に進んで、フィードバック補正係数の平均値FAFAVが1.0に固定され、次いで、ステップ64に進む。一方、ステップ50において、フィードバック制御条件が成立していると判別されたときには、ステップ51に進む。
ステップ51では、リニア空燃比センサ11,12の出力電流Iが0(V)よりも低い(I<0)か否か、すなわち、リッチであるか否かが判別される。ここで、I<0であると判別されたとき、すなわち、リッチであると判別されたときには、ステップ52に進んで、前回の本ルーチンの実行時にリーンであったか否かが判別される。ここで、前回の本ルーチンの実行時にリーンであったと判別されたとき、すなわち、前回の本ルーチンの実行時から今回の本ルーチンの実行時までの間に、機関空燃比がリーンからリッチに変化したときには、ステップ53に進んで、FAFLがFAFとされ、次いで、ステップ54に進む。
ステップ54では、フィードバック補正係数FAFからスキップ値Sが減算され、次いで、ステップ55に進む。これにより、図5に示されるように、フィードバック補正係数FAFがスキップ値Sだけ急激に減少せしめられことになる。
一方、ステップ52において、前回の本ルーチンの実行時にもリッチであったと判別されたときは、ステップ58に進んで、フィードバック補正係数FAFから積分値K(K≪S)が減算され、次いで、ステップ57に進む。これにより、図5に示されるように、フィードバック補正係数FAFが徐々に減少せしめられることになる。
一方、ステップ51において、I≧0であると判別されたとき、すなわち、リーンであると判別されたときには、ステップ61に進んで、前回の本ルーチンの実行時にリッチであったか否かが判別される。ここで、前回の本ルーチンの実行時にリッチであったと判別されたとき、すなわち、前回の本ルーチンの実行時から今回の本ルーチンの実行時までの間に、空燃比がリッチからリーンに変化したときには、ステップ62に進んで、FAFRがFAFとされ、次いで、ステップ63に進む。
ステップ63では、フィードバック補正係数FAFにスキップ値Sが加算され、次いで、ステップ55に進む。これにより、図5に示されるように、フィードバック補正係数FAFは、スキップ値Sだけ急激に増大せしめられることになる。ステップ55では、ステップ53で算出されたFAFLとステップ62で算出されたFAFRとの平均値FAFAVが算出される。次いで、ステップ56において、スキップフラグがセットされ、次いで、ステップ57に進む。
一方、ステップ61において、前回の本ルーチンの実行時にもリーンであったと判別されたときは、ステップ64に進んで、フィードバック補正係数FAFに積分値Kが加算される。これにより、図5に示されるように、フィードバック補正係数FAFが徐々に増大せしめられることになる。
ステップ57では、フィードバック補正係数FAFが変動許容範囲の上限1.2と下限0.8とによりガードされる。すなわち、FAFが1.2よりも大きくならず、0.8よりも小さくならないようにFAFの値がガードされる。上述したように、機関空燃比がリッチとなってFAFが小さくなると、燃料噴射時間TAUが短くなって機関空燃比がリーン側へと移行し、機関空燃比がリーンとなってFAFが大きくなると、燃料噴射時間TAUが長くなって機関空燃比がリッチ側へと移行するので、機関空燃比が理論空燃比に維持されることになる。
図11に示したフィードバック補正係数FAFの算出ルーチンが完了すると、図12に示した空燃比の学習ルーチンに進む。図12のルーチンでは、まず初めに、ステップ70において、機関空燃比の学習条件が成立しているか否かが判別される。ここで、機関空燃比の学習条件が成立していないと判別されたときには、ステップ77にジャンプし、機関空燃比の学習条件が成立していると判別されたときには、ステップ71に進む。ステップ71では、スキップフラグがセットされているか否かが判別される。ここで、スキップフラグがセットされていないと判別されたときには、ステップ77にジャンプし、スキップフラグがセットされていると判別されたときには、ステップ72に進む。ステップ72では、スキップフラグがリセットされ、次いで、ステップ73に進む。すなわち、本ルーチンでは、フィードバック補正係数FAFがスキップせしめられる毎にステップ73に進むことになる。
ステップ73では、パージ率PGRが零である(PGR=0)か否か、すなわち、パージが行われているか否かが判別される。ここで、PGR≠0であると判別されたとき、すなわち、パージが行われているときには、図13に示したベーパ濃度の学習ルーチンへ進む。一方、PGR=0であると判別されたとき、すなわち、パージが行われていないときには、ステップ74に進み、以降のステップにおいて、機関空燃比の学習が行われる。
すなわち、まず初めに、ステップ74において、フィードバック補正係数の平均値FAFAVが1.02よりも大きい(FAFAV≧1.02)か否かが判別される。ここで、FAFAV≧1.02であると判別されたときには、ステップ78に進んで、学習領域jに対する機関空燃比の学習値KGjに一定値Xが加算される。すなわち、本実施形態では、機関負荷に応じて複数個の学習領域jが予め定められており、各学習領域jに対してそれぞれ機関空燃比の学習値KGjが設けられている。したがって、ステップ78では、機関負荷に応じた学習領域jの機関空燃比の学習値KGjが更新され、ステップ77に進む。
一方、ステップ74において、FAFAV<1.02であると判別されたときには、ステップ75に進んで、フィードバック補正係数の平均値FAFAVが0.98よりも小さい(FAFAV≦0.98)か否かが判別される。ここで、FAFAV≦0.98であると判別されたときには、ステップ76に進んで、機関負荷に応じた学習領域jの機関空燃比の学習値KGjから一定値Xが減算される。一方、ステップ75において、FAFAV>0.98であると判別されたとき、すなわち、FAFAVが0.98と1.02との間にあるときには、機関空燃比の学習値KGjを更新することなく、ステップ77にジャンプする。
ステップ77およびステップ79では、ベーパ濃度を学習するための初期化処理が行われる。すなわち、ステップ77では、機関始動中であるか否かが判別される。ここで、機関始動中であると判別されたときには、ステップ79に進んで、単位ベーパ濃度FGPGが零とされると共にパージ実行時間カウント値CPGRがクリアされ、図14に示されている燃料噴射時間の算出ルーチンに進む。一方、ステップ77において、機関始動中ではないと判別されたときには、図14に示されている燃料噴射時間の算出ルーチンに直接進む。
上述したように、ステップ73において、パージが行われていると判別されたときには、図13に示されているベーパ濃度の学習ルーチンに進む。次に、このベーパ濃度の学習ルーチンについて説明する。図13のルーチンでは、まず初めに、ステップ80において、フィードバック補正係数の平均値FAFAVが一定の設定範囲内にあるか否か、すなわち、1.02>FAFAV>0.98であるか否かが判別される。ここで、1.02>FAFAV>0.98であると判別されたときには、ステップ81に進んで、単位ベーパ濃度FGPGの更新量tFGが零とされ、次いで、ステップ82に進む。
ステップ82では、ベーパ濃度FGPGに更新量tFGが加算されるのであるが、ステップ81を経由してステップ82に達した場合、更新量tFGは零であるので、この場合には、ベーパ濃度FGPGは更新されないことになる。
一方、ステップ80において、FAFAV≧1.02またはFAFAV≦0.98であると判別されたときには、ステップ84に進んで、次式3に従ってベーパ濃度FGPGの更新量tFGが算出される。
tFG=(1.0−FAFAV)/PGR・a …(3)
ここで、aは2である。すなわち、フィードバック補正係数の平均値FAFAVが設定範囲(0.98と1.02との間)を越えると、ステップ84において、1.0に対するFAFAVのずれ量の半分が更新量tFGとされ、ステップ82に進む。
上述したように、ステップ82では、ベーパ濃度FGPGに更新量tFGが加算されるのであるが、ステップ84を経由してステップ82に達した場合、更新量tFGは、多くの場合、零ではないので、この場合には、ベーパ濃度FGPGは更新されることになる。
ステップ83では、ベーパ濃度FGPGの更新回数を表している更新回数カウンタCFGPGが1だけインクリメントされ、次いで、図14に示されている燃料噴射時間の算出ルーチンに進む。
次に、図14に示されている燃料噴射時間の算出ルーチンについて説明する。図14のルーチンでは、まず初めに、ステップ90において、機関負荷Ga/Nおよび機関回転数Nに基づいて基本燃料噴射時間TPが算出され、次いで、ステップ91において、暖機増量等のための補正係数FWが算出される。次いで、ステップ92において、単位ベーパ濃度FGPGにパージ率PGRを乗算することによってパージA/F補正係数FGR(=FGPG・PGR)が算出され、次いで、ステップ93において、次式4に従って燃料噴射時間TAUが算出される。
TAU=TP・FW・(FAF+KGj−FPG) …(4)
ところで、上述したように、本実施形態では、NOx触媒10からSOxを除去することが要求されたときには、硫黄被毒回復制御を実行する。すなわち、第1気筒群♯1、♯4からリッチ排気ガスが排出されると共に第2気筒群♯2、♯3からリーン排気ガスが排出されるように、各気筒に充填される混合気の空燃比を制御する。そして、このとき、リッチ排気ガスとリーン排気ガスとがNOx触媒上流で混ざり合ってNOx触媒に流入するときにトータルの排気ガスの空燃比が理論空燃比または所望のリッチ空燃比となるように、各気筒から排出させるリッチ排気ガスのリッチ度合およびリーン排気ガスのリーン度合いを調整する。
次に、この硫黄被毒回復制御中の各気筒群における空燃比の制御について説明する。硫黄被毒回復制御中は、リッチ空燃比でもって燃焼を行わせる第1気筒群では、次式5に従って燃料噴射時間TAUが算出され、リーン空燃比でもって燃焼を行わせる第2気筒群では、次式6に従って燃料噴射時間TAUが算出される。
TAU=TP・KR・FW・(FAF+KGj−FPG) …(5)
TAU=TP・KL・FW・(FAF+KGj−FPG) …(6)
ここで、TP、FW、FAF、KGj、FPGは、上式1のTP、FW、FAF、KGj、FPGと同様に、それぞれ、基本燃料噴射時間、補正係数、フィードバック補正係数、機関空燃比の学習係数、パージA/F補正係数である。そして、KRは、第1気筒群における空燃比を理論空燃比よりもリッチとする1よりも大きい係数であって、NOx触媒10に流入する排気ガスの空燃比が理論空燃比または所望のリッチ空燃比となるように予め実験などにより求めた係数であり、KLは、第2気筒群における空燃比を理論空燃比よりもリーンとする1よりも小さい係数であって、NOx触媒に流入する排気ガスの空燃比が理論空燃比または所望のリッチ空燃比となるように予め実験などにより求めた係数である。
そして、硫黄被毒回復制御中は、上述した空燃比制御において、リニア空燃比センサ11,12の出力の代わりに、リニア空燃比センサ13の出力を利用する。
これによれば、硫黄被毒回復制御中、NOx触媒10に流入する排気ガスの空燃比が理論空燃比または所望のリッチ空燃比となるように、各気筒群における空燃比が制御されることになる。また、本実施形態では、硫黄被毒回復制御中に、パージが行われているときには、基本的には、上述したベーパ濃度の学習方法に従って、パージガス中のベーパ濃度が学習される。
ところで、上述したベーパ濃度の学習方法によれば、ベーパ濃度を求めるとき、直前に求められたベーパ濃度を利用してベーパ濃度を求めている。したがって、これによると、内燃機関の運転が硫黄被毒回復制御を行っていない運転(以下「通常運転」という)から硫黄被毒回復制御を行っている運転(以下「硫黄被毒回復運転」という)に切り換わった直後は、通常運転中に求められたベーパ濃度を利用してベーパ濃度を求めることになる。
ところが、上述したベーパ濃度の学習方法によれば、通常運転中、ベーパ濃度は、フィードバック補正係数FAFがスキップする毎に求められるフィードバック補正係数FAFの平均値FAFAVを利用して求められる。そして、ここでのフィードバック補正係数FAFは、リニア空燃比センサ11,12の出力を利用して求められる。したがって、結局のところ、上述したベーパ濃度の学習方法によれば、通常運転中、ベーパ濃度は、リニア空燃比センサ11,12の出力を利用して求められていることになる。
一方、硫黄被毒回復運転中も、ベーパ濃度は、フィードバック補正係数FAFがスキップする毎に求められるフィードバック補正係数FAFの平均値FAFAVを利用して求められるのであるが、ここでのフィードバック補正係数FAFは、リニア空燃比センサ13の出力を利用して求められる。
すなわち、これによると、内燃機関の運転が通常運転から硫黄被毒回復運転に切り換わった直後は、リニア空燃比センサ11,12の出力を利用して求められたベーパ濃度とリニア空燃比センサ13の出力とを利用してベーパ濃度を求めることになる。
ところが、リニア空燃比センサ11,12とリニア空燃比センサ13とは、同じタイプのセンサであるが、これらセンサの出力特性には、自ずと、差異がある。このため、リニア空燃比センサ11,12の出力を利用して求められたベーパ濃度とリニア空燃比センサ13の出力とを利用してベーパ濃度を求めた場合、求められたベーパ濃度が真のベーパ濃度から大きくずれてしまう可能性が高い。そして、その後、硫黄被毒回復制御中に求められるベーパ濃度にも、このずれが反映されてしまうので、硫黄被毒回復制御中に求められるベーパ濃度の多くが真のベーパ濃度から大きくずれてしまうことになる。もちろん、内燃機関の運転が硫黄被毒回復運転から通常運転に切り換わったときにも、同様に、求められるベーパ濃度の多くが真のベーパ濃度から大きくずれてしまうことになる。
そこで、本実施形態では、内燃機関の運転が通常運転から硫黄被毒回復運転に切り換わったとき或いは硫黄被毒回復運転から通常運転に切り換わったときには、それまで求めたベーパ濃度をリセットし、初めから、ベーパ濃度を求めるようにする。これによれば、通常運転中においても硫黄被毒回復運転中においても、ベーパ濃度を正確に求めることができ、したがって、機関空燃比を正確に目標空燃比に制御することができるので、排気エミッションを低減すると共にドライバビリティを良好なものに維持することができる。
図15は、上述した実施形態に従ってベーパ濃度の学習値をリセットするルーチンの一例を示している。図15のルーチンでは、まず、ステップ10において、現在、通常運転中であるか否かが判別される。ここで、通常運転中であると判別されたときには、ステップ11において、前回、本ルーチンが実行されたとき、硫黄被毒回復運転中であったか否かが判別される。ここで、硫黄被毒回復運転中であったと判別されたときには、前回、本ルーチンが実行されてから今回、本ルーチンが実行されるまでの間に、内燃機関の運転が硫黄被毒回復運転から通常運転に切り換わったことになるので、ステップ12において、これまで行われていた硫黄被毒回復運転中に求められたベーパ濃度の学習値FGPGが零にリセットされる。一方、ステップ11において、硫黄被毒回復運転中ではなかったと判別されたときには、前回、本ルーチンが実行されてから今回、本ルーチンが実行されるまでの間、内燃機関の運転の切換は行われなかったことになるので、そのままルーチンが終了する。
一方、ステップ10において、現在、通常運転中ではない、すなわち、現在、硫黄被毒回復運転中であると判別されたときには、ステップ13において、前回、本ルーチンが実行されたとき、通常運転中であったか否かが判別される。ここで、通常運転中であったと判別されたときには、前回、本ルーチンが実行されてから今回、本ルーチンが実行されるまでの間に、内燃機関の運転が通常運転から硫黄被毒回復運転に切り換わったことになるので、ステップ14において、これまで行われていた通常運転中に求められたベーパ濃度の学習値が零にリセットされる。一方、ステップ13において、通常運転中ではなかったと判別されたときには、前回、本ルーチンが実行されてから今回、本ルーチンが実行されるまでの間、内燃機関の運転の切換は行われなかったことになるので、そのままルーチンが終了する。
なお、上述した例では、内燃機関の運転が通常運転から硫黄被毒回復運転に切り換えられたとき或いは硫黄被毒回復運転から通常運転に切り換えられたときに、それまでに求めたベーパ濃度の学習値をリセットしているが、例えば、内燃機関の運転が通常運転から硫黄被毒回復運転に切り換えられたとき、それまで求めたベーパ濃度の学習値をリセットせずに記憶しておき、硫黄被毒回復運転においては、通常運転中に求めたベーパ濃度を学習値を利用せずに改めてベーパ濃度を求めるが、その後、内燃機関の運転が硫黄被毒回復運転から通常運転に切り換えられたとき、通常運転中に求めて記憶しておいたベーパ濃度の学習値を利用してベーパ濃度を求めるようにしてもよい。もちろん、内燃機関の運転が硫黄被毒回復運転から通常運転に切り換えられたときにも、同様にして、硫黄被毒回復運転中に求めたベーパ濃度の学習値を記憶しておき、次に、硫黄被毒回復運転が行われるときに、前回の硫黄被毒回復運転中に求めて記憶しておいたベーパ濃度の学習値を利用してベーパ濃度を求めるようにしてもよい。
ところで、上述した実施形態において、内燃機関の運転が切り換えられたときに、パージを以下のように行うようにしてもよい。すなわち、内燃機関の運転を通常運転から硫黄被毒回復運転に切り換えることが要求されたとき、パージを停止すると共に内燃機関の運転を切り換える。そして、内燃機関の運転が切り換えられてから所定時間が経過したときに、パージを再開し、ベーパ濃度の学習を開始する。同様に、内燃機関の運転を硫黄被毒回復運転から通常運転に切り換えることが要求されたとき、パージを停止すると共に内燃機関の運転を切り換える。そして、内燃機関の運転が切り換えられてから所定時間が経過したときに、パージを再開し、ベーパ濃度の学習を開始する。これによれば、通常運転中においても硫黄被毒回復運転中においても、ベーパ濃度を正確に求めることができ、したがって、機関空燃比を正確に目標空燃比に制御することができるので、排気エミッションを低減すると共にドライバビリティを良好なものに維持することができる。
図16は、この実施形態に従って内燃機関の運転とパージとを制御したときの様子を示したタイムチャートである。図16に示されているように、時刻T0以前は、硫黄被毒回復運転を行うべきことを要求するフラグ(以下「硫黄被毒回復要求フラグ」という)FRがオフであり(すなわち、硫黄被毒回復運転を行うことが要求されておらず)、パージガス量VPが要求量となっており、硫黄被毒回復運転を実行させるフラグ(以下「硫黄被毒回復実行フラグ」という)FPがオフである(すなわち、硫黄被毒回復運転が行われていない)。
時刻T0になると、硫黄被毒回復要求フラグFRがオンとされる。このとき、本例では、パージが停止されると共にベーパ濃度の学習が中止される。そして、時刻T1において、パージガス量VPが零となると、硫黄被毒回復実行フラグFPがオンとされ、このとき、内燃機関の運転が通常運転から硫黄被毒回復運転に切り換えられる。そして、時刻T1から所定時間経過した時刻T2において、パージが再開されると共にベーパ濃度の学習が改めて開始される。
さらに、時刻T3になると、硫黄被毒回復要求フラグFRがオフとされる。このとき、本例では、パージが停止されると共にベーパ濃度の学習が中止される。そして、時刻T4において、パージガス量VPが零になると、硫黄被毒回復実行フラグFPがオフとされ、このとき、内燃機関の運転が硫黄被毒回復運転から通常運転に切り換えられる。そして、時刻T4から所定時間経過した時刻T5において、パージが再開されると共にベーパ濃度の学習が改めて開始される。
なお、上述では、硫黄被毒回復運転に本発明を適用した例を用いて本発明を説明したが、例えば、NOx触媒の温度を上昇させるためにNOx触媒に還元剤(すなわち、燃料)と空気とを供給することが要求される場合にも本発明を適用可能であり、こうした観点では、本発明は、広くは、NOx触媒に還元剤と空気とを供給することが要求されたときに、NOx触媒に所定空燃比の排気ガスが流入するように、一方の気筒群において理論空燃比よりもリッチな空燃比でもって燃焼を行わせると共に他方の気筒群において理論空燃比よりもリーンな空燃比でもって燃焼を行わせる場合に適用可能である。
また、上述では、各排気枝管に三元触媒が配置されていると共に共通の排気管にNOx触媒が配置されている内燃機関に本発明を適用した例を用いて本発明を説明したが、各排気枝管に配置される触媒が三元触媒ではなくて排気ガス中の特定成分を浄化する排気浄化触媒である内燃機関にも本発明を適用可能であるし、共通の排気管に配置される触媒がNOx触媒ではなくて排気ガス中の特定成分を浄化する排気浄化触媒である内燃機関にも本発明を適用可能である。
また、上述では、各排気枝管に三元触媒が配置されている内燃機関に本発明を適用した例を用いて本発明を説明したが、各排気枝管に何ら触媒が配置されていない内燃機関にも本発明を適用可能である。
また、上述では、ベーパ濃度を求める場合に本発明を適用した例を用いて本発明を説明したが、本発明は、広くは、パージガス中のベーパ量を求める場合にも適用可能である。
本発明の排気浄化装置を備えた内燃機関の一例を示した図である。 三元触媒の浄化特性を示した図である。 リニア空燃比センサの出力特性を示した図である。 センサの出力特性を示した図である。 機関空燃比が理論空燃比に維持されているときのリニア空燃比センサの出力電流Iとフィードバック補正係数FAFとの関係を示した図である。 パージ率を示した図である。 パージガス中のベーパ濃度の学習方法を説明するための図である。 パージ制御ルーチンの一部を示したフローチャートである。 パージ制御ルーチンの一部を示したフローチャートである。 パージ制御弁の駆動処理ルーチンを示したフローチャートである。 フィードバック補正係数を算出するルーチンを示したフローチャートである。 機関空燃比を学習するルーチンを示したフローチャートである。 ベーパ濃度を学習するルーチンを示したフローチャートである。 燃料噴射時間を算出するルーチンを示したフローチャートである。 本発明の実施形態に従ってベーパ濃度の学習値をリセットするルーチンを示したフローチャートである。 本発明の実施形態に従って内燃機関の運転とパージとを制御したときの様子を示したタイムチャートである。
符号の説明
1 機関本体
4 吸気管
5,6 排気枝管
7 排気管
8,9 三元触媒
10 NOx触媒
11〜14 空燃比センサ
30 燃料タンク
32 チャコールキャニスタ
37 パージ制御弁

Claims (4)

  1. 複数の気筒を備え、これら気筒を少なくとも2つの気筒群に分け、各気筒群にそれぞれ排気枝管を接続すると共にこれら排気枝管を下流側で合流させて共通の1つの排気管に接続し、該共通の1つの排気管内に排気浄化触媒を配置した内燃機関であって、通常は各気筒群において所定の空燃比でもって燃焼を行わせる通常運転を行い、排気浄化触媒に還元剤と空気とを供給すべきことが要求されたときには排気浄化触媒に所定空燃比の排気ガスが流入するように一方の気筒群において理論空燃比よりもリッチな空燃比でもって燃焼を行わせると共に他方の気筒群において理論空燃比よりもリーンな空燃比でもって燃焼を行わせるリッチ・リーン運転を行い、所定の条件が成立したときには気筒全てに通じる吸気通路内にベーパを含んだガスを導入するパージ制御を行い、該パージ制御中に吸気通路内に導入されているベーパの量を求めて学習値として記憶する内燃機関において、各排気枝管にそれぞれ第1の空燃比センサを配置すると共に排気浄化触媒上流の上記共通の1つの排気管に第2の空燃比センサを配置し、パージ制御中に吸気通路内に導入されているベーパの量を求めるとき、通常運転が行われているときは、第1の空燃比センサの出力値と通常運転中に求められて記憶されたベーパ量の学習値とを利用してベーパ量を求め、リッチ・リーン運転が行われているときは、第2の空燃比センサの出力値とリッチ・リーン運転中に求められて記憶されたベーパ量の学習値とを利用してベーパ量を求めることを特徴とする内燃機関。
  2. パージ制御中に内燃機関の運転が通常運転からリッチ・リーン運転に切り換えられたとき或いはリッチ・リーン運転から通常運転に切り換えられたときにパージ制御を停止し、所定の時間が経過したときにパージ制御を再開することを特徴とする請求項1に記載の内燃機関。
  3. 通常運転が行われているときには第1の空燃比センサの出力値を利用して各気筒群における空燃比が目標空燃比に制御され、リッチ・リーン運転が行われているときには第2の空燃比センサの出力値を利用して各気筒群における空燃比が目標空燃比に制御されることを特徴とする請求項1または2に記載の内燃機関。
  4. 上記第1の空燃比センサ下流の各排気枝管内にそれぞれ排気浄化触媒が配置されていることを特徴とする請求項1〜3のいずれか1つに記載の内燃機関。
JP2005360361A 2005-12-14 2005-12-14 内燃機関の制御装置 Expired - Fee Related JP4389867B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005360361A JP4389867B2 (ja) 2005-12-14 2005-12-14 内燃機関の制御装置
DE602006013037T DE602006013037D1 (de) 2005-12-14 2006-12-12 Verbrennungsmotor und steuerverfahren dafür
CN2006800460780A CN101326355B (zh) 2005-12-14 2006-12-12 内燃机及其控制方法
US12/096,957 US8220250B2 (en) 2005-12-14 2006-12-12 Internal combustion engine and method of controlling the same
EP06831688A EP1963645B1 (en) 2005-12-14 2006-12-12 Internal combustion engine and method of controlling the same
PCT/IB2006/003566 WO2007069032A2 (en) 2005-12-14 2006-12-12 Internal combustion engine and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360361A JP4389867B2 (ja) 2005-12-14 2005-12-14 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2007162581A JP2007162581A (ja) 2007-06-28
JP4389867B2 true JP4389867B2 (ja) 2009-12-24

Family

ID=38032462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360361A Expired - Fee Related JP4389867B2 (ja) 2005-12-14 2005-12-14 内燃機関の制御装置

Country Status (6)

Country Link
US (1) US8220250B2 (ja)
EP (1) EP1963645B1 (ja)
JP (1) JP4389867B2 (ja)
CN (1) CN101326355B (ja)
DE (1) DE602006013037D1 (ja)
WO (1) WO2007069032A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127848A (ja) * 2018-01-22 2019-08-01 株式会社デンソー 内燃機関の制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924694B2 (ja) * 2009-11-02 2012-04-25 株式会社デンソー エンジン制御装置
EP2682589B1 (en) * 2011-03-01 2016-06-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN103443428B (zh) * 2011-03-10 2015-06-24 丰田自动车株式会社 内燃机的控制装置
JP5791477B2 (ja) * 2011-11-25 2015-10-07 本田技研工業株式会社 内燃機関の排気装置
JP5949218B2 (ja) * 2012-06-29 2016-07-06 三菱自動車工業株式会社 エンジンの制御装置
JP6314870B2 (ja) * 2014-04-25 2018-04-25 トヨタ自動車株式会社 内燃機関の制御装置
JP6079816B2 (ja) * 2015-04-14 2017-02-15 トヨタ自動車株式会社 内燃機関の制御装置
CN106704041A (zh) * 2015-09-02 2017-05-24 北汽福田汽车股份有限公司 碳罐脱附***的控制方法、控制装置及碳罐电磁阀
DE102017102367B4 (de) * 2017-02-07 2023-10-12 Volkswagen Aktiengesellschaft Verfahren zur Anhebung der Tankentlüftungsspülmenge durch Vollausblendung der Einspritzung mindestens eines Zylinders
JP6801597B2 (ja) * 2017-07-21 2020-12-16 トヨタ自動車株式会社 内燃機関の制御装置
JP6844488B2 (ja) * 2017-10-03 2021-03-17 トヨタ自動車株式会社 内燃機関の制御装置
JP7000947B2 (ja) * 2018-03-26 2022-01-19 トヨタ自動車株式会社 内燃機関の制御装置
KR20240009563A (ko) * 2022-07-13 2024-01-23 현대자동차주식회사 배출 가스 정화 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967113B2 (ja) 1991-06-12 1999-10-25 株式会社豊田中央研究所 排気浄化方法
JP3156534B2 (ja) 1994-12-28 2001-04-16 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP3525688B2 (ja) 1997-07-22 2004-05-10 日産自動車株式会社 内燃機関の蒸発燃料処理装置
WO2000009881A1 (fr) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Dispositif de traitement de carburant evapore, de moteur a combustion interne
JP4365920B2 (ja) 1999-02-02 2009-11-18 キヤノン株式会社 分離方法及び半導体基板の製造方法
JP2000230445A (ja) 1999-02-08 2000-08-22 Mazda Motor Corp エンジンの空燃比制御装置
JP2000356125A (ja) * 1999-06-14 2000-12-26 Honda Motor Co Ltd 内燃機関の排気ガス浄化装置
US6467259B1 (en) * 2001-06-19 2002-10-22 Ford Global Technologies, Inc. Method and system for operating dual-exhaust engine
US6543219B1 (en) * 2001-10-29 2003-04-08 Ford Global Technologies, Inc. Engine fueling control for catalyst desulfurization
JP3966040B2 (ja) * 2002-03-15 2007-08-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6925982B2 (en) * 2002-06-04 2005-08-09 Ford Global Technologies, Llc Overall scheduling of a lean burn engine system
US6868827B2 (en) * 2002-06-04 2005-03-22 Ford Global Technologies, Llc Method for controlling transitions between operating modes of an engine for rapid heating of an emission control device
US7159387B2 (en) * 2004-03-05 2007-01-09 Ford Global Technologies, Llc Emission control device
JP4338586B2 (ja) * 2004-05-26 2009-10-07 株式会社日立製作所 エンジンの排気系診断装置
US7503167B2 (en) * 2005-11-18 2009-03-17 Ford Global Technologies, Llc Internal combustion engine with multiple combustion modes and fuel vapor purging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127848A (ja) * 2018-01-22 2019-08-01 株式会社デンソー 内燃機関の制御装置
JP7035554B2 (ja) 2018-01-22 2022-03-15 株式会社デンソー 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2007162581A (ja) 2007-06-28
US20090000276A1 (en) 2009-01-01
CN101326355A (zh) 2008-12-17
DE602006013037D1 (de) 2010-04-29
WO2007069032A3 (en) 2007-09-13
EP1963645A2 (en) 2008-09-03
WO2007069032A2 (en) 2007-06-21
CN101326355B (zh) 2011-06-29
EP1963645B1 (en) 2010-03-17
US8220250B2 (en) 2012-07-17

Similar Documents

Publication Publication Date Title
JP4389867B2 (ja) 内燃機関の制御装置
JP3680217B2 (ja) 内燃機関の空燃比制御装置
JP4088412B2 (ja) 内燃機関の空燃比制御装置
US8028517B2 (en) Exhaust gas purification device for an engine
US20100217506A1 (en) Internal combustion engine air-fuel ratio control apparatus and method
JP2004108360A (ja) 内燃機関の制御装置
US8904762B2 (en) Control apparatus for an internal combustion engine
US5944003A (en) Evaporated fuel treatment device of an engine
US20030005916A1 (en) Evaporated fuel processing apparatus for internal combustion engine
JPH07305662A (ja) 内燃機関の蒸発燃料処理装置
JPH09303219A (ja) 内燃機関の蒸発燃料処理装置
JP3620261B2 (ja) 内燃機関の蒸発燃料処理装置
JP3116752B2 (ja) 内燃機関の蒸発燃料処理装置
US8887491B2 (en) Control apparatus for an internal combustion engine
JP3264221B2 (ja) 内燃機関の空燃比制御装置
US7305978B2 (en) Vaporized fuel purge system
JPH08261045A (ja) 内燃機関の空燃比制御装置
JP2013142370A (ja) 内燃機関の空燃比制御装置
JP4428286B2 (ja) 内燃機関の排気浄化装置
JP3620568B2 (ja) 希薄燃焼内燃機関
JPH0791337A (ja) 内燃機関の蒸発燃料蒸散防止装置
JP2006125304A (ja) 内燃機関の空燃比制御装置
JP3587010B2 (ja) 内燃機関の蒸発燃料処理装置
JP2006307806A (ja) 内燃機関の排気浄化装置
JP2006002619A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees