JP4381945B2 - 受信機、受信方法及び携帯無線端末 - Google Patents

受信機、受信方法及び携帯無線端末 Download PDF

Info

Publication number
JP4381945B2
JP4381945B2 JP2004287230A JP2004287230A JP4381945B2 JP 4381945 B2 JP4381945 B2 JP 4381945B2 JP 2004287230 A JP2004287230 A JP 2004287230A JP 2004287230 A JP2004287230 A JP 2004287230A JP 4381945 B2 JP4381945 B2 JP 4381945B2
Authority
JP
Japan
Prior art keywords
signal
frequency
phase
calibration
quadrature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004287230A
Other languages
English (en)
Other versions
JP2006101388A (ja
JP2006101388A5 (ja
Inventor
功治 前田
聡 田中
維礼 丘
幸徳 赤峰
学 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004287230A priority Critical patent/JP4381945B2/ja
Priority to US11/179,553 priority patent/US7346325B2/en
Publication of JP2006101388A publication Critical patent/JP2006101388A/ja
Publication of JP2006101388A5 publication Critical patent/JP2006101388A5/ja
Application granted granted Critical
Publication of JP4381945B2 publication Critical patent/JP4381945B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線システムにおける受信機に関し、特に直交変調信号における同相成分と直交成分との振幅誤差及び位相誤差を補正する技術に関する。
送信するデータを同相成分と直交成分とに分け、これらにより互いに90度位相が異なる搬送波を変調して無線周波数の直交変調信号を生成する無線システムが携帯電話等で採用されている。このような無線システムに用いられる受信機において、無線周波数を一旦中間周波数(以下「IF(Intermediate Frequency)」と略記する)に変換してから同相信号、直交信号を得る従来のヘテロダイン方式に代わって、受信信号(無線周波数の直交変調信号)から直接に同相信号、直交信号を得るダイレクトコンバージョン方式、即ち零IF方式が用いられるようになってきている。この方式ではIFにおける増幅やろ波が行なわれないので、ヘテロダイン方式に比べて部品点数を減らすことでき、無線機に強く要求されている小型化、低コスト化に寄与することができる。
しかし、零IF方式では、同相信号、直交信号の間で位相誤差や振幅誤差が生じ易く、これらの誤差により、復調したデータにおいて符号誤りが生じ易い。このような不具合を避けるために、位相誤差及び振幅誤差を検出し、その検出結果を用いて位相誤差や振幅誤差を補正するようにした復調装置の例が特許文献1に開示されている。
特開2004−40678号公報
更に最近になり、受信信号を直流付近の低いIF周波数に周波数変換する低IF方式が用いられ始めている。低IF方式においては、低いIF周波数で増幅やろ波が行なわれるため、上記の通常のIFに変換する場合に比べて増幅器やフィルタが簡単化され、無線機の小型化、低コスト化が可能になる。
低IF方式と零IF方式の受信機は、ほとんど同様の構成で実現することができる。図15に、低IF方式又は零IF方式の受信機の構成例を示す。同図において、アンテナ137で受信されたRF(Radio Frequency)帯の受信信号は、LNA(Low Noise Amplifier)138によって増幅され、乗算器139、140に入力される。
ここで、低IF方式の受信機においては、基準信号149を基にPLL(Phase Locked Loop)148により、受信信号の無線周波数に比べてやや低い周波数を有する搬送波が生成される。生成された搬送波は2つの乗算器に入力されるが、一方は直接乗算器(ミキサ)139に入力され、他方は90度位相器147を介して乗算器(ミキサ)140に入力される。受信信号と搬送波とが乗算器139,140により乗算され、受信信号は直流付近の低いIF周波数に周波数変換される。その後、ローパスフィルタ141,142によって高調波成分が除去され、自動制御利得アンプ143,144により利得が調節された後、アナログ・ディジタル変換器(ADC)145,146によりディジタル信号に変換される。自動制御利得アンプ143,144の利得は、ベースバンド回路(BB)からの制御信号を入力するコントロール回路(CTRL)150によって制御される。
一方、零IF方式の受信機においては、PLL148が受信信号と同じ周波数を有する搬送波を生成し、受信信号が直接ベースバンド周波数に周波数変換される以外は、同様の処理が行なわれる。即ち、乗算器139,140から出力されるアナログベースバンド信号は、ローパスフィルタ141,142によって高調波成分が除去され、自動制御利得アンプ143,144により利得が調節された後、アナログ・ディジタル変換器145,146によりディジタルベースバンド信号となる。
低IF方式の受信機では、上述の零IF方式と共通の問題がある。即ち、PLL148から乗算器139,140に搬送波が入力されるまでに、それぞれ異なる遅延量を有すること、また、同相成分と直交成分が通過する経路のアナログ素子がそれぞれ異なる製造ばらつきを有していることにより、アナログ・ディジタル変換器145,146から出力される信号には、同相成分と直交成分との間に位相の誤差と振幅の誤差が付加されるという問題が生じる。この問題は、受信時において、符号誤り率即ちBER(Bit Error Rate)を劣化させる要因になる。特に、高速通信を目的とした16QAM(Quadrature Amplitude Modulation)や64QAMといった多値変調方式を用いた通信においては、位相と振幅の誤差はBERに多大な影響を及ぼす。
更に、低IF方式では、図16Aに示すように、周波数fLOの搬送波を用いて周波数がfLO+fIFの受信信号をIF周波数fIFに周波数変換する際に、受信信号近傍の妨害波(周波数がfLO−fIF)が周波数fIFのイメージ信号となり、受信信号に重畳してしまう。ここで図16Bのように、受信信号をIF帯からベースバンド帯に周波数変換する際にイメージ除去を行なうと、イメージ信号の周波数が2fIFになることにより、受信信号と重畳していたイメージ信号とを分別することができ、更にローパスフィルタ(LPF)を用いて高調波成分を除去することにより、受信信号のみを取り出すことができる。
しかし、イメージ除去は上記同相成分と直交成分との間の位相の誤差と振幅の誤差に対して、感度が高い。図17A、図17Bにイメージ除去比即ちIRR(Image Rejection Ratio)と位相誤差、振幅誤差の関係をそれぞれ示す。例えば携帯電話のGSM(Global System for Mobile communications)規格において、IF周波数を200kHzとしたとき、50dB以上のIRRが要求され、このとき、位相の誤差は約0.4度以下、振幅の誤差は約0.6%以下でなければならない。
上記の直交変調信号における同相成分と直交成分の誤差は、受信チャネルを設定する毎に異なる値を取り得る。
上記した特許文献1では、ベースバンド信号の同相成分に対する直交成分の位相差と振幅の誤差を検出し、収束演算を用いて誤差を補正することが行なわれる。一般的に、上記従来例のような収束演算を行なって高精度の補正を行なおうとすると、誤差成分の分散を抑えるために、出力誤差に対して長い時間平均化を行なう必要があり、収束時間が長くなるという問題が生じる。そのため、信号受信時において、例えばチャネルが切り替わった際に校正が終了していない場合があり得るため、従来の方法を適応すると目標とする誤差低減が得られず、BERを劣化させる恐れがある。
また、例えば、上記の従来例の構成をそのまま低IF方式に適応すると、希望波とイメージ波を同時に受信した場合に、イメージ信号が影響して正しい補正値が得られないという問題が生ずる。
本発明の目的は、同相信号及び直交信号の間の位相誤差及び振幅誤差を補正する際に、誤差演算の収束時間の短縮が可能な受信機を提供すること、又は受信方法を提供すること、或いは携帯無線端末を提供することにある。
上記目的を達成するための本発明の受信機は、同相成分と直交成分とを有する第1の周波数の受信信号を第2の周波数の直交変調信号に変換する乗算器と、上記乗算器が出力する上記直交変調信号をろ波及び増幅して出力する信号経路と、上記信号経路が出力する上記直交変調信号が有する同相成分と直交成分との間の位相誤差及び振幅誤差の補正を行なう位相・振幅誤差補正回路と、選択された上記乗算器又は上記信号経路が上記直交変調信号に代えて、同相成分と直交成分とを有する上記第2の周波数の校正信号を出力したときに、上記校正信号を上記第2の周波数よりも高い第3の周波数の校正信号に変換する周波数変換回路と、上記周波数変換回路が出力する上記第3の周波数の校正信号から、同相成分と直交成分との間の位相誤差及び振幅誤差を演算して演算結果を出力する演算回路とを具備して成り、上記位相・振幅誤差補正回路は、上記演算結果を用いて上記補正を行なうことを特徴とする。
位相誤差及び振幅誤差を演算するときの校正信号の周波数が第2の周波数(IF周波数)よりも高くなるので、後で詳述するように、演算のために行なう積分の時間が短くなり、誤差演算の収束時間の短縮が可能なる。なお、上記周波数変換回路は、上記第2の周波数の校正信号をベースバンド帯に変換し、変換後の不要波を除去してから上記第3の周波数の校正信号に変換することが望ましい。上記演算回路の収束を妨げる不要波の影響を受けることなく正しい誤差演算を行なうことが可能になる。また、校正信号として上記従来例のように受信信号を用いるのではなく、校正用の信号源を具備することで、受信方式として低IF方式を採用した場合においても、常に正確な補正を行なうことが可能になる。また、本発明は、零IF受信方式を採用した受信機及びそれとほぼ同様の構成の低IF受信方式を採用した受信機の双方に適用される。
本発明によれば、IF周波数よりも高い周波数の校正信号に対して誤差演算が行なわれるので、誤差演算の収束時間の短縮が可能になる。
以下、本発明に係わる受信機、受信方法又は携帯無線端末を図面に示した幾つかの実施形態を参照して更に詳細に説明する。
(第1の実施形態)
図1に本発明の第1の実施形態を示す。本実施形態は、低IF方式を採用した受信機である。同図に示す低IF受信機は、アンテナ1、スイッチ2,6,7,12,13,16,17、LNA3、アナログ乗算器(ミキサ)4,5、ローパスフィルタ8,9、自動利得制御アンプ10,11、アナログ・ディジタル変換器14,15、位相・振幅誤差補正回路(PAEC)18、ベースバンド信号の同相成分(I)及び直交成分(Q)を出力するイメージ除去回路(IR)19、90度位相器20,21、PLL22、水晶発振器23、無線周波数(第1の周波数)fRFの校正信号を発生するミキサ誤差校正信号発生回路(ME−CG)24、IF周波数(第2の周波数)fIFの校正信号を発生する信号経路誤差校正信号発生回路(SPE−CG)25、周波数変換回路(FC)26、メモリ(MEM)28、収束演算回路(CO)27、コントロール回路29を含んで構成される。
以下に、上記の構成における動作を説明する。
本実施形態の受信機には、アナログ乗算器4,5で生ずる位相と振幅の誤差を校正するミキサ誤差校正モード、乗算器4,5の出力を少なくとも増幅して出力する信号経路、即ち本実施形態ではローパスフィルタ8,9や自動利得制御アンプ10,11による信号経路で生ずる位相と振幅の誤差を校正する信号経路誤差校正モード、RF信号を受信してベースバンド信号に変換する受信モードの3つのモードがある。
図2を用いてミキサ誤差校正モードにおける校正動作を説明する。水晶発振器23で生成されるクロック信号を用いてミキサ誤差校正信号発生回路24で生成されるRF帯のミキサ誤差校正信号(周波数fRF)がスイッチ2を介して、LNA3に入力され増幅される。なお、クロック信号は、PLL22に与えられる基準信号となる他、受信機の各部への時間の基準となる信号として用いられる。
その後、ミキサ誤差校正信号は、アナログ乗算器4、5に入力されて直交変調されると同時にIF周波数に周波数変換される。水晶発振器23によって生成されたクロック信号を基にPLL22により生成された搬送波は、アナログ乗算器4に入力される。また、同搬送波は、90度位相器20を介してその直交成分となり、アナログ乗算器5に入力される。このとき、搬送波経路で生じる同相成分と直交成分との間の遅延とアナログ乗算器の不整合が主な原因で、アナログ乗算器4,5の出力には位相と振幅の誤差が付加される。
アナログ乗算器4,5から出力されるミキサ誤差校正信号は、スイッチ6,7を介してスイッチ12,13に入力され、アナログ・ディジタル変換器14,15によりディジタル信号に変換される。
その後ミキサ誤差校正信号は、スイッチ12,13を介して周波数変換器26に入力され、IF周波数より高い周波数(第3の周波数)に周波数変換された後、収束演算回路27に入力される。収束演算回路27は、入力されたミキサ誤差校正信号を用いてアナログ乗算器4,5で生じた位相と振幅の誤差を検出し、誤差に対する適切な補正値a,bを導出し、メモリ28にa,b(第1の演算結果)として書き込む。
上記アナログ乗算器4,5で生じる同相成分と直交成分における振幅と位相の誤差は、主に搬送波経路での遅延とアナログ乗算器4,5の製造ばらつきに起因するものであって、信号受信時において大きく変化しない。そのためミキサ校正モードでの校正は、本発明の受信機を搭載した携帯無線端末(無線機)が工場出荷されるとき、又は携帯無線端末の電源が投入されたときで良い。
なお、ミキサ誤差校正信号発生回路24、周波数変換器26、収束演算回路27の構成及び動作については、後で説明する。
続いて、信号経路誤差校正モードにおける校正動作を図3を用いて説明する。水晶発振器23で発生されるクロック信号を用いて信号経路校正信号発生回路25で生成されるIF帯の信号経路誤差校正信号(周波数fIF)がスイッチ6に入力される。また、同校正信号は、90度位相器21を介してその直交成分になり、スイッチ7に入力される。その後、信号経路誤差校正信号は、ローパスフィルタ8,9、自動利得制御アンプ10,11を介して、スイッチ12,13に入力される。このとき、ローパスフィルタ8,9、自動利得制御アンプ10,11からなる信号経路での不整合により、信号経路誤差校正信号における同相成分と直交成分との間に位相と振幅の誤差が付加される。
スイッチ12,13から出力された信号経路誤差校正信号は、アナログ・ディジタル変換器14,15によりディジタル信号に変換される。その後信号経路誤差校正信号は、スイッチ16,17を介して周波数変換器26に入力され、IF周波数よりも高い周波数、例えばナイキスト周波数近傍の周波数に周波数変換された後、収束演算回路27に入力される。収束演算回路27は、入力された信号経路誤差校正信号を用いて上記信号経路で生じた位相と振幅の誤差を検出し、誤差に対する適切な補正値a,bを導出し、メモリ28にa,b(第2の演算結果)として書き込む。
上記信号経路で生じる同相成分と直交成分における振幅と位相の誤差は、主にローパスフィルタ8,9及び自動利得制御アンプ10,11に起因するものである。ローパスフィルタ8,9の特性は温度依存性を有し、また自動利得制御アンプ10,11は受信チャネル選択を行なう度に異なる利得誤差を発生させる。そのため、信号経路誤差校正モードでの校正は、チャネル選択後、例えばバースト信号受信前に毎回となる。
信号経路誤差校正モードにおける校正のタイミングを、本発明をGSM方式に適用した場合を例にとって図4に示す。1つのフレーム(TDMA frm)は8つのバーストから成る。バースト信号を受信する前に、受信機は、前のフレームの受信バースト間で測定した電波環境を基に、AGCのゲイン等のパラメータを読み込む(PR150)、その後シンセサイザーの引き込みを行ない(SPI151)、DCオフセットキャリブレーション(DOC152)が終了した後、信号経路誤差校正モードでの校正が行なわれる(SPE−C153)。全てのキャリブレーションを終えた後に、バーストを受信する(RB154)。
なお、信号経路校正信号発生回路25の構成及び動作については、後で説明する。
以下に図5を用いて受信モードにおける動作を説明する。アンテナ1で受信された無線周波数(第1の周波数)の、同相成分と直交成分とを有する受信信号は、スイッチ2、LNA3を介してアナログ乗算器4,5に入力され直交変調されると同時にIF周波数に周波数変換される。これにより乗算器4,5からIF周波数の直交変調信号が出力される。この際、搬送波は水晶発振器23によって発生された基準信号を基にPLL22により生成され、直交成分は90度位相器20を介して、アナログ乗算器4,5に入力される。
その後、周波数変換された直交変調信号は、スイッチ6,7を介し、ローパスフィルタ8,9により高調波成分を除去された後に、自動利得制御アンプ10,11により適切なゲインに調整され、更にスイッチ12,13を介して、アナログ・ディジタル変換器14,15によりディジタル信号に変換される。ディジタル信号に変換された直交変調信号は、スイッチ16,17を介して、位相・振幅誤差補正回路18に入力される。
その後、周波数変換された直交変調信号は、スイッチ6,7を介し、ローパスフィルタ8,9により高調波成分を除去された後に、自動利得制御アンプ10,11により適切なゲインに調整され、更にスイッチ12,13を介して、アナログ・ディジタル変換器14,15によりディジタル信号に変換される。ディジタル信号に変換された直交変調信号は、スイッチ16,17を介して、位相・振幅誤差補正回路18に入力される。
位相・振幅誤差補正回路18は、上記したミキサ誤差校正モード及び信号経路誤差校正モードにおいて算出した位相と振幅の誤差に対する補正値a,b及びa,bの値をメモリ28から呼び出して使用し、直交変調信号の同相成分と直交成分の間の誤差を補正する。位相・振幅誤差補正回路18から出力された直交変調信号は、イメージ除去回路19により高い精度でイメージ信号が取り除かれると同時に、ベースバンド信号の同相成分と直交成分とに周波数変換される。
なお、位相・振幅誤差補正回路18及びイメージ除去回路19の構成及び動作について以下に説明する。
図6に本実施形態の位相・振幅誤差補正回路18の構成例を示す。同図に示す位相・振幅誤差補正回路18は、ディジタル乗算器30〜33、ディジタル加算器34,35、入力端子36〜41、出力端子42,43を含んで構成される。
同図の構成により、同相成分の信号を用いて直交成分の信号の位相と振幅を変化させることができる。例えば、入力端子40,41にそれぞれAcosωt,Aαsin(ωt+θ)を入力したとき、ディジタル加算器34の出力IMは、同図の構成から、下記の式(2.1)のように書け、これから更に式(2.2)のように書ける。
Figure 0004381945
ここで、αは振幅誤差、θは位相誤差とする。このとき、次の式(2.3)
Figure 0004381945
を満たすaとbの値を選ぶことにより、同相成分と振幅が等しく、正しく直交する直交信号を得ることができる。
図7に本実施形態の収束演算回路27の構成例を示す。同図に示す収束演算回路27は、ディジタル乗算器44,45,47,53,54、ディジタル加算器46,55,56,57、ディジタル二乗器48,49、ディジタル減算器50、ディジタル積分器51,52、遅延器58,59、入力端子62,63、出力端子60,61を含んで構成される。
同図の構成により、直交信号における同相成分と直交成分の位相と振幅の誤差を補正する適切な値a,bを算出することができる。乗算器44,45と加算器46による構成は、式(2.1)、式(2.2)、式(2.3)の原理で動作し、a,bの値を変化させることにより、直交成分の位相と振幅を変化させることができる。
もし、入力端子62から入力される直交信号の同相成分と加算器46から出力される直交成分の位相差が正確に90度で、且つ振幅が等しければ、積分器51,52の出力は、下記の式(3.1)及び式(3.2)の条件をそれぞれ満たし、零となる。ここで、入力信号の角周波数をω、周期をT、同相成分の振幅をRe、直交成分の振幅をImとする。
Figure 0004381945
式(3.1)は直交条件が満たされていることを意味し、式(3.2)は同相成分と直交成分の電力が等しいことを意味している。しかし同相成分と直交成分の間に誤差が存在すると積分器51,52は非零の誤差成分EpとEaを出力する。よって、この誤差成分が零に漸近するように乗算器53,54、加算器55〜57、遅延器58,59を用いた閉ループ制御が実行される。同図の構成においてaとbの値は下記の式(3.3)及び式(3.4)のように更新される。
Figure 0004381945
ここで、kとkはステップゲインであり、絶対値が1より小さな任意の定数である。式(3.3)、式(3.4)は古い推定量に、ある重み付けを行なった誤差成分を加えることで、新しい推定量が得られることを示している。
こうした手法は通常、推定値aとbの分散量が大きく収束時間が長くなるため、推定値を効果的に平均化する必要がある。積分器51,52において、例えば移動平均器を用いると、誤差の大きな過去の推定値を捨てながら平均化を行なえるため、短時間での収束が可能となる。この場合、更に平均回数の多い方が収束時間は短くなる。
図8に本実施形態の周波数変換回路26の構成例を示す。同図に示す周波数変換回路26は、ディジタル乗算器64〜71、ローパスフィルタ72〜75、ディジタル減算器80,81、ディジタル発振器76,77、ディジタル90度位相器78,79、入力端子82,83及び出力端子84,85を含んで構成される。
同図の構成により上記の各校正信号がIF周波数よりも高い周波数に周波数変換される。ディジタル発振器76とディジタル位相器78により、IF周波数の複素トーン信号を生成し、入力端子82,83から入力される校正信号と、乗算器64〜67を用いて乗算を行なうことにより、信号は一度ベースバンド帯に周波数変換される。ベースバンド帯に周波数変換を行なう際に、校正信号の同相成分と直交成分の位相と振幅の誤差情報は本構成によって失われない。
その後、ローパスフィルタ72〜75を用いて高調波成分が除去される。このとき、カットオフ周波数が信号帯域よりも低いローパスフィルタを用いると、校正信号をよりトーン信号に近づけることができると同時に、上記収束演算の収束性を劣化させるノイズ成分を除去することができ、収束時間が短くなる。
更にディジタル発振器77とディジタル90度位相器79により、IF周波数よりも高い周波数の複素トーン信号が生成され、この信号と、ローパスフィルタ72〜75から出力される校正信号とが乗算器68〜71によって乗算される。その結果、校正信号がIF周波数よりも高い周波数に周波数変換される。ここで、変換後の周波数は、ナイキスト周波数に近ければ近いほど良く、位相と振幅の誤差情報を失わない程度の周波数であれば良い。
収束演算回路に入力される校正信号の周波数が高ければ、上記積分器51,52において、単位時間に積分する周期が増えることになる。そのため、短い時間内でより多くの平均化が行なえるため、上記収束演算の収束時間を短くすることが可能になる。
図9に本実施形態のミキサ誤差校正信号発生回路24の構成例を示す。同図に示す校正信号発生回路24は、キャパシタ86,89、インダクタ87、接地88、インバータ90、入力端子92、出力端子91を含んで構成される。
同図の構成により、上記のミキサ誤差校正信号が生成される。水晶発振器23により生成された基準信号は、入力端子92よりミキサ誤差校正信号発生回路24に入力される。インバータ90の出力において基準信号は矩形波になる。矩形波には多数の高次の高調波が含まれる。その中の特定の次数の高調波がインダクタ87とキャパシタ89とから成る共振器によって取り出される。取り出された高調波の信号は、キャパシタ86によって直流成分がカットされる。キャパシタ86を通過した信号は、前記のミキサ誤差校正信号として用いられる。
図10に本実施形態の信号経路誤差校正信号発生回路25の構成例を示す。入力端子94より校正信号発生回路に入力される基準信号は、分周器93に入力され、IF周波数と等しい周波数に分周される。分周器93から出力端子95に出力される信号は、前記の信号経路校正信号として用いられる。
図11に本実施形態のイメージ信号除去回路19の構成例を示す。同図に示すイメージ信号除去回路19は、ディジタル乗算器96〜99、ディジタル90度位相器101、ディジタル加算器102、ディジタル減算器103、ローパスフィルタ104,105、ディジタル発振器100、入力端子106,107、出力端子108,109を含んで構成される。
入力端子106,107にそれぞれ下記の式(6.1)及び式(6.2)で示される、位相・振幅誤差補正回路18によって校正された、振幅が等しく正確に直交した直交変調信号IIFとQIFが入力される。
Figure 0004381945
ここで、A,Bはそれぞれ希望波とイメージ波の振幅、α、βはそれぞれ希望波とイメージ波の位相情報、ωIFはIF角周波数、tは時間をそれぞれ示す。
ディジタル発振器100は、IF周波数のトーン信号を発生する。同相成分と、ディジタル90度位相器101によって同相成分に対して正確に直交して生成される直交成分とは、乗算器96〜99に入力され、受信信号をベースバンド周波数に周波数変換する。ディジタル加算器102とディジタル減算器103の出力は、次の式(6.3)及び式(6.4)のI,Qで示される。
Figure 0004381945
イメージ信号は周波数で図16Bに示したように区別することができるため、ローパスフィルタ104,105で高調波成分を除去すると、次の式(6.5)及び式(6.6)のように、希望波のベースバンド信号を得ることができる。
Figure 0004381945
以上、本実施形態により、低IF方式の受信機において、位相誤差及び振幅誤差を短い時間内で零に収束させることが可能となった。図12は、直交変調信号の同相成分と直交成分に1dBの振幅誤差と3度の位相誤差があるときに、本実施形態の構成を用いて誤差を校正した場合の演算の収束性を示している。なお、ディジタル回路のビット数は全て14bitとしてシミュレーションを行なった。図12では、上段に位相の収束性、中段に振幅の収束性、下段にIRRの収束性をそれぞれ示す。
図12によれば、位相誤差及び振幅誤差は短い時間内で零に収束しており,20μsec以内に50dB以上のIRRを得ることができる。GSM規格においては、ガード信号受信期間内に校正を終えることができるため,常に高品質な通信を行なうことが可能であり、従来例に比べて、消費電力を大幅に削減することができる。また、ステップゲインk,kの値を変えることで更に高いIRRを得ることが可能である。
(第2の実施形態)
図13に本発明の第2の実施形態を示す。本実施形態は、零IF方式を採用した受信機である。同図に示す零IF受信機は、アンテナ110、スイッチ111,115,116,121,122,125,126、LNA112、アナログ乗算器113,114、ローパスフィルタ117,118、自動利得制御アンプ119,120、アナログ・ディジタル変換器123,124、位相・振幅誤差補正回路127、90度位相器128,129、PLL130、水晶発振器131、ミキサ誤差校正信号発生回路132、信号経路誤差校正信号発生回路133、周波数変換回路134、メモリ136、収束演算回路135を含んで構成される。
同図に示す受信機において、PLL130ではRF帯の搬送波が生成され、受信信号は直接にベースバンド帯に周波数変換される。零IF方式においては、受信信号と同じ周波数帯域に周波数変換される妨害波(イメージ信号)が存在しないため、低IF受信機で用いられたイメージ除去回路19は必要ない。なお、信号経路誤差校正モードで発生させる校正信号の周波数は、受信信号の帯域内であって、ローパスフィルタ117,118によって減衰されず、かつDCオフセットと混じると正確な誤差を検出できなくなる為、DCではない周波数が選択される。それ以外は、第1の実施形態で示した処理と同様の処理を行なう。
以上、本実施形態により、零IF方式の受信機において位相誤差及び振幅誤差を短い時間内で零に収束させることが可能となった。また、図13に示した本実施形態の構成は、図1に示した第1の実施形態の構成に比べて、イメージ除去回路19が省略される以外は同様である。
即ち、本発明によれば、低IF受信機と零IF受信機において同様の構成で同様の効果が期待できる。従って、例えば複数の無線通信規格に対応させるために,低IF方式と零IF方式を混載した受信機においても、回路規模を増大させることなく本発明を適用することができる。
例えば、GSM規格対応の受信機とW−CDMA(Wideband Code Division Multiple Access)規格対応の受信機とを混載した場合、GSM規格対応の受信機を低IF方式、W−CDMA規格対応の受信機を零IF方式とし、本発明を適用することで受信機におけるアナログ部の共用化が容易になる。
なお、GSM/EDGE(Enhanced Data rates for GSM Evolution)規格のようにTDMA(Time Division Multiple Access)方式の通信規格に対して零IF受信方式を適用した場合には、間欠受信時間を利用してDCオフセットを除去する方法が広く用いられている。
ここで、図18Aに、GSM/EDGE規格対応の零IF受信機の一般的な構成例を示す。同図において、アンテナで受信されたRF帯の受信信号は、LNA180によって増幅され、乗算器181,182に入力される。基準信号194を基にPLL193によって受信信号と同じ周波数を有する搬送波が生成され、生成された搬送波は2つの乗算器に入力されるが、一方は直接乗算器(ミキサ)181に入力され、他方は90度位相器192を介して乗算器(ミキサ)182に入力される。受信信号と搬送波とが乗算器181,182により乗算され、受信信号はベースバンド周波数に周波数変換される。その後、ローパスフィルタ183,185によって高調波成分が除去され、自動制御利得アンプ184,186により利得が調節された後、ADC187によってディジタルベースバンド信号に変換される。なお、図18Aは、直交信号経路を省略して同相信号経路のみを図示している。
GSM/EDGEの場合、信号帯域が260kHzと比較的狭く、中心周波数に強い電力を有している。そのため、ハイパスフィルタによるDCオフセット除去は信号劣化につながる。そこで、ADC189,191とDCオフセット検出器195,196によってDC成分を間欠時間にディジタル領域で検出し、受信中は検出した逆のDC成分を、ディジタル・アナログ変換器(DAC)188,190によってアナログ信号として与えることにより、DCオフセットを除去する方法が採用される。
一方、W−CDMAには間欠時間がなく、比較的信号帯域が広いために、ハイパスフィルタによってDCオフセットを除去することが可能である。図18Bに、W−CDMA規格対応の零IF受信機の一般的な構成例を示す。アンテナで受信されたRF帯の受信信号は、LNA197によって増幅され、乗算器198,199に入力される。基準信号209を基にPLL208により、受信信号と同じ周波数を有する搬送波が生成され、生成された搬送波は2つの乗算器に入力されるが、一方は直接乗算器(ミキサ)198に入力され、他方は90度位相器207を介して乗算器(ミキサ)199に入力される。受信信号と搬送波とが乗算器198,199により乗算され、受信信号はベースバンド周波数に周波数変換される。その後、ローパスフィルタ201,204によって高調波成分が除去され、自動制御利得アンプ200,203により利得が調節された後、ADC206によってディジタルベースバンド信号に変換される。ここで、DCオフセットは、前記と異なって、ハイパスフィルタ202,205によって除去される。なお、図18Bは、直交信号経路を省略して同相信号経路のみを図示している。
GSM/EDGE規格対応でも低IF方式とする場合は、IF周波数を例えば200kHzに選択することでDCオフセットをハイパスフィルタによって取り除くことができ、図18Bと同じ構成を採用することができる。従って、低IF方式のGSM/EDGE受信機は、従来のような複雑なDCオフセットキャリブレーションを必要としないだけでなく、零IF方式W−CDMA受信機とのアナログ部の共用化が可能である。共用化することにより、チップ面積の低減が期待される。
(第3の実施形態)
図19に本発明の第3の実施形態を示す。本実施形態は、GSM/EDGE/W−CDMA規格対応受信機である。同図に示すGSM/EDGE/W−CDMA規格対応受信機は、アンテナ301、スイッチ302,306,307,312,313,316,317,334,335、LNA303、アナログ乗算器304,305、可変ローパスフィルタ308,309、自動利得制御アンプ310,311、アナログ・ディジタル変換器314,315、位相・振幅誤差補正回路318、90度位相器320,321、PLL322、水晶発振器323、ミキサ誤差校正信号発生回路324、信号経路誤差校正信号発生回路325、周波数変換回路326、メモリ328、収束演算回路327、ハイパスフィルタ330,331,332,333、ローパスフィルタ336,337を含んで構成される。
上記構成の受信機は、電源が投下されたときに電波環境や送受信するデータに応じて、GSM規格、EDGE規格、W−CDMA規格の中から最適な通信方法が、受信機に接続されるベースバンド回路(BB)によって選択される。
GSM/EDGE規格に準じた通信方法が選択された場合、本実施形態の受信機は、低IF方式による受信を行ない、第1の実施形態で示した処理とほぼ同様の処理を行なう。この場合、可変ローパスフィルタ308,309の周波数特性は、ベースバンド回路からの制御信号を入力するコントロール回路(CTRL)329によって制御され、GSM/EDGE規格に適した周波数特性に設定される。
また、DCオフセットはハイパスフィルタ330,331,332,333によって精度良く除去されるため、DCオフセットキャリブレーションを行なう必要がない。そのため、前述の信号経路誤差校正モードにおける校正のタイミングは図4に示したのとはやや異なる。即ち、バースト信号を受信する前に、受信機は、前のフレームの受信バースト間で測定した電波環境を基に、AGCのゲイン等のパラメータを読み込み、その後シンセサイザーの引き込みを行なった後、信号経路誤差校正モードの校正を行ない、バーストを受信する。また、位相・振幅誤差補正回路318から出力された直交変調信号は、スイッチ334,335を介してイメージ除去回路319に入力され、高い精度でイメージ信号が取り除かれると同時に、ベースバンド信号の同相成分Iと直交成分Qとに周波数変換される。それ以外は、受信機は、第1の実施形態で示した処理と同様の処理を行なう。
W−CDMA規格に準じた通信方法を選択された場合、本実施形態の受信機は、零IF方式による受信を行なう。零IF方式によって受信を行なった場合、イメージ除去を行なう必要がなく、また受信信号はQPSK変調信号であり、通常のICが有する程度の位相・振幅誤差によってBERが大きく劣化することがないため、上記の信号経路で生ずる位相と振幅の誤差を校正する信号経路誤差校正モードを行なう必要がない。従って、アナログ乗算器304,305で生ずる位相と振幅の誤差を校正するミキサ誤差校正モードのみが電源投入後に行なわれる。W−CDMA規格に準じた通信方法を選択された場合、可変ローパスフィルタ308,309の周波数特性は、ベースバンド回路(BB)からの制御信号を入力するコントロール回路329によって制御され、W−CDMA規格に適した周波数特性に設定される。
また、位相・振幅誤差補正回路318から出力された同相成分Iと直交成分Qからなる直交変調信号は、スイッチ334,335を介してローパスフィルタ336,337に入力され、不要波を取り除かれた後にベースバンド回路に入力される。それ以外は、受信機は、第2の実施形態で示した処理と同様の処理を行なう。
本実施形態により、いずれの規格にたいしても位相誤差及び振幅誤差を短い時間内で零に収束させることが可能となると共に、アナログ回路の共用化によってGSM/EDGE/W−CDMA規格対応の受信機を回路規模を増大させることなく実現することが可能となる。回路の共用化により、チップ面積の低減が期待される。
(第4の実施形態)
図14に本発明の第4の実施形態を示す。本実施形態は、第1、第2又は第3の実施形態の受信機を用いた、携帯電話等の携帯無線端末である。同図に示す携帯無線端末は、アンテナ160、スイッチ161、バンドパスフィルタ162、受信整合回路(MN)163、図1又は図13に示した受信機(Rx)164、ベースバンド回路(BB)165、送信回路(Tx)166、電力増幅器167、送信整合回路(MN)168、ローパスフィルタ169を含んで構成される。
アンテナ160によって受信された受信信号は、送受信を切り替えるスイッチ161を経、更に、不要波を除去するバンドパスフィルタ162及び受信整合回路を経て受信機164に入力される。受信機164において得られた、位相誤差及び振幅誤差の補正されたベースバンド信号の同相成分(I)及び直交成分(Q)がベースバンド回路165に供給される。
ベースバンド回路165は、ベースバンド信号の同相成分及び直交成分の入出力のためのベースバンド信号処理を行ない、図示していないが、マイクロフォン、スピーカ、キーボード、表示装置等との間の信号で授受を行なう。更に、ベースバンド回路165は、端末内の各部を制御するための制御信号を生成する。
ベースバンド回路165において生成されたベースバンド信号の同相成分及び直交成分は、送信回路166に入力される。送信回路166は、入力された同相成分及び直交成分に直交変調を施して、直交変調信号である送信信号を出力する。送信信号は、送信整合回路168及び不要波を除去するローパスフィルタ169を経、更にスイッチ161を経てアンテナ160に導かれる。
本実施形態の携帯無線端末は、誤差演算の収束時間が短い本発明の受信機を採用することによって、素子ばらつきによって発生する直交信号における同相成分及び直交成分の位相と振幅の誤差を低減することができるため、受信時に高いBERを得ることできる。また、受信機を低IF方式とする場合、ディジタル領域で高精度のイメージ除去を行なうことができる。
本発明に係る受信機の第1の実施形態を説明するための構成図。 第1の実施形態のミキサ誤差校正モードにおける校正動作を説明するための構成図。 第1の実施形態の信号経路誤差校正モードにおける校正動作を説明するための構成図。 第1の実施形態の信号経路誤差校正モードにおいて校正を行なうタイミングを説明するための図。 第1の実施形態の受信モードにおける受信動作を説明するための構成図。 第1の実施形態の位相・振幅誤差補正回路を説明するための構成図。 第1の実施形態の収束演算回路を説明するための構成図。 第1の実施形態の周波数変換回路を説明するための構成図。 第1の実施形態のミキサ誤差校正信号発生回路を説明するための構成図。 第1の実施形態の信号経路誤差校正信号発生回路を説明するための構成図。 第1の実施形態のイメージ信号除去回路を説明するための構成図。 第1の実施形態における収束性を示す図。 本発明の第2の実施形態を説明するための構成図。 本発明の第4の実施形態を説明するための構成図。 受信機の一般的構成を説明するための構成図。 受信信号とイメージ信号の関係を示す第1の図。 受信信号とイメージ信号の関係を示す第2の図。 IRRの誤差に対する感度を示す第1の図。 IRRの誤差に対する感度を示す第2の図。 GSM/EDGE規格対応の零IF受信機の一般的な構成図。 W−CDMA規格対応の零IF受信機の一般的な構成図。 本発明の第3の実施形態を説明するための構成図。
符号の説明
1…アンテナ、2,6,7,12,13,16,17…スイッチ、3…LNA、4,5…アナログ乗算器、8,9…ローパスフィルタ、10,11…自動利得制御アンプ、14,15…アナログ・ディジタル変換器、18…位相・振幅誤差補正回路、19…イメージ除去回路、20,21…90度位相器、22…PLL、23…基準信号源、24…ミキサ誤差校正信号発生回路、25…信号経路誤差校正信号発生回路、26…周波数変換回路、27…収束演算回路、28…メモリ、29…コントロール回路、110…アンテナ、111,115,116,121,122,125,126…スイッチ、112…LNA、113,114…アナログ乗算器、117,118…ローパスフィルタ、119,120…自動利得制御アンプ、123,124…アナログ・ディジタル変換器、127…位相・振幅誤差補正回路、128,129…90度位相器、130…PLL、131…基準信号源、132…ミキサ誤差校正信号発生回路、133…信号経路誤差校正信号発生回路、134…周波数変換回路、135…収束演算回路、136…メモリ、137…コントロール回路、164…受信機、301…アンテナ、302,306,307,312,313,316,317,334,335…スイッチ、303…LNA、304,305…アナログ乗算器、308,309,336,337…ローパスフィルタ、310,311…自動利得制御アンプ、314,315…アナログ・ディジタル変換器、318…位相・振幅誤差補正回路、319…イメージ除去回路、320,321…90度位相器、322…PLL、323…基準信号源、324…ミキサ誤差校正信号発生回路、325…信号経路誤差校正信号発生回路、326…周波数変換回路、327…収束演算回路、328…メモリ、329…コントロール回路、330,331,332,333…ハイパスフィルタ。

Claims (20)

  1. 同相成分と直交成分とを有する第1の周波数の受信信号を第2の周波数の直交変調信号に変換する乗算器と、
    上記乗算器が出力する上記直交変調信号を少なくとも増幅して出力する信号経路と、
    上記信号経路が出力する上記直交変調信号が有する同相成分と直交成分との間の位相誤差及び振幅誤差の補正を行なう位相・振幅誤差補正回路と、
    選択された上記乗算器又は上記信号経路が上記直交変調信号に代えて、同相成分と直交成分とを有する上記第2の周波数の校正信号を出力したときに、上記校正信号を上記第2の周波数よりも高い第3の周波数の校正信号に変換する周波数変換回路と、
    上記周波数変換回路が出力する上記第3の周波数の校正信号から、同相成分と直交成分との間の位相誤差及び振幅誤差を演算して演算結果を出力する演算回路とを具備して成り、
    上記位相・振幅誤差補正回路は、上記演算結果を用いて上記補正を行なうことを特徴とする受信機。
  2. 請求項1において、
    上記信号経路が出力する上記校正信号は、上記第1の周波数の第1の校正信号を、上記受信信号に代えて上記乗算器に入力したときに上記乗算器が出力する第1の信号であり、更に、同相成分と直交成分とを有する上記第2の周波数の第2の校正信号を上記直交変調信号に代えて上記信号経路に入力したときに上記信号経路が出力する第2の信号であり、
    上記演算回路が出力する上記演算結果は、上記校正信号が第1の信号であるときに第1の演算結果となり、更に上記校正信号が第2の信号であるときに第2の演算結果となり、
    上記位相・振幅誤差補正回路は、上記第1の演算結果を用いて第1の補正を行ない、上記第2の演算結果を用いて第2の補正を行ない、上記補正が上記第1及び第2の補正から成ることを特徴とする受信機。
  3. 請求項1において、
    上記周波数変換回路は、上記第2の周波数の校正信号をベースバンド帯に変換し、変換後の不要波を除去してから上記第3の周波数の校正信号に変換することを特徴とする受信機。
  4. 請求項1において、
    上記演算結果を格納する不揮発性メモリを更に有し、上記位相・振幅誤差補正回路が上記補正に用いる上記演算結果が上記不揮発性メモリに格納された上記演算結果であることを特徴とする受信機。
  5. 請求項1において、
    上記信号経路は、その出力側にアナログ・ディジタル変換器を備えることによって、ディジタル化された上記直交変調信号を出力し、
    上記位相・振幅誤差補正回路は、ディジタル化された上記直交変調信号を入力し、ディジタル信号処理によって上記補正を行なうことを特徴とする受信機。
  6. 請求項2において、
    上記第1の演算結果及び上記第2の演算結果を格納する不揮発性メモリを更に有し、上記位相・振幅位相誤差補正回路が上記補正に用いる上記第1及び第2の演算結果が上記不揮発性メモリに格納された上記第1及び第2の演算結果であることを特徴とする受信機。
  7. 請求項6において、
    上記第1の演算結果が工場出荷時に算出され、上記不揮発性メモリに格納されることを特徴とする受信機。
  8. 請求項6において、
    上記受信信号が複数のバースト信号によって時間的に分割されている場合、上記第2の演算結果がバースト信号毎にバースト信号受信前に算出され、上記不揮発性メモリに格納されることを特徴とする受信機。
  9. 請求項2において、
    上記第1の校正信号は、上記受信機のクロック信号の高調波成分の中から取り出された上記第1の周波数の信号であることを特徴とする受信機。
  10. 請求項2において、
    上記第2の校正信号は、上記受信機のクロック信号を分周して得られる上記第2の周波数の信号であることを特徴とする受信機。
  11. 同相成分と直交成分とを有する第1の周波数の受信信号を乗算器によって第2の周波数の直交変調信号に変換するステップと、
    上記乗算器が出力する上記直交変調信号を少なくとも増幅して出力する信号経路を経た上記直交変調信号が有する同相成分と直交成分との間の位相誤差及び振幅誤差を補正するステップと、
    選択された上記乗算器が出力する上記直交変調信号又は上記信号経路を経た上記直交変調信号が、同相成分と直交成分とを有する上記第2の周波数の校正信号に変更されるときに、上記校正信号を上記第2の周波数よりも高い第3の周波数の校正信号に変換するステップと、
    上記第3の周波数の校正信号から、同相成分と直交成分との間の位相誤差及び振幅誤差を演算して演算結果を出力するステップとを具備して成り、
    上記位相誤差及び振幅誤差を補正するステップにおいて、補正が上記演算結果を用いて行なわれることを特徴とする受信方法。
  12. 請求項11において、
    上記校正信号は、上記第1の周波数の第1の校正信号が上記受信信号に代わって上記乗算器に入力されたときに上記乗算器によって変換されて得られる第1の信号であり、更に、同相成分と直交成分とを有する上記第2の周波数の第2の校正信号が上記直交変調信号に代わって上記信号経路に入力されたときに上記信号経路から出力される第2の信号であり、
    上記位相誤差及び振幅誤差の上記演算結果は、上記校正信号が第1の信号であるときに第1の演算結果となり、更に、上記校正信号が第2の信号であるときに第2の演算結果となり、
    上記位相誤差及び振幅誤差を補正するステップにおいて、上記第1の演算結果を用いて第1の補正が行なわれ、上記第2の演算結果を用いて第2の補正が行なわれ、上記補正が上記第1及び第2の補正から成ることを特徴とする受信方法。
  13. 請求項11において、
    上記第2の周波数の校正信号は、ベースバンド帯に変換され、変換後の不要波が除去されてから上記第3の周波数の校正信号に変換されることを特徴とする受信方法。
  14. 請求項11において、
    上記信号経路を経た上記直交変調信号はディジタル化されており、上記位相誤差及び振幅誤差を補正するステップにおいて、補正がディジタル化された上記直交変調信号に対して行なわれることを特徴とする受信方法。
  15. 請求項12において、
    上記第1の演算結果が工場出荷時に算出されることを特徴とする受信方法。
  16. 請求項12において、
    上記受信信号が複数のバースト信号によって時間的に分割されている場合、上記第2の演算結果がバースト信号毎にバースト信号受信前に算出されることを特徴とする受信方法。
  17. アンテナと、
    上記アンテナに接続され、接続を送受信で切り替えるスイッチと、
    上記スイッチの受信側に結合される受信機と、
    上記受信機から出力される同相成分と直交成分とを有するベースバンド受信信号を入力し、更に、同相成分と直交成分とを有するベースバンド送信信号を生成して出力するベースバンド回路と、
    上記ベースバンド送信信号に直交変調を施して第1の周波数の直交変調信号を出力する送信回路と、
    上記アンテナの送信側に結合され、上記第1の周波数の直交変調信号を増幅する電力増幅器とを具備して成り、
    上記受信機は、
    同相成分と直交成分とを有する上記第1の周波数の受信信号を第2の周波数の直交変調信号に変換する乗算器と、
    上記乗算器が出力する上記直交変調信号を少なくとも増幅して出力する信号経路と、
    上記信号経路が出力する上記直交変調信号が有する同相成分と直交成分との間の位相誤差及び振幅誤差の補正を行なう位相・振幅誤差補正回路と、
    選択された上記乗算器又は上記信号経路が上記直交変調信号に代えて、同相成分と直交成分とを有する上記第2の周波数の校正信号を出力したときに、上記校正信号を上記第2の周波数よりも高い第3の周波数の校正信号に変換する周波数変換回路と、
    上記周波数変換回路が出力する上記第3の周波数の校正信号から、同相成分と直交成分との間の位相誤差及び振幅誤差を演算して演算結果を出力する演算回路とを具備し、
    上記位相・振幅誤差補正回路は、上記演算結果を用いて上記補正を行なうことを特徴とする携帯無線端末。
  18. 請求項17において、
    上記校正信号は、上記第1の周波数の第1の校正信号を、上記受信信号に代えて上記乗算器に入力したときに上記乗算器が出力する第1の信号であり、更に、同相成分と直交成分とを有する上記第2の周波数の第2の校正信号を、上記直交変調信号に代えて上記信号経路に入力したときに上記信号経路が出力する第2の信号であり、
    上記演算回路が出力する上記演算結果は、上記校正信号が第1の信号であるときに第1の演算結果となり、更に上記校正信号が第2の信号であるときに第2の演算結果となり、
    上記位相・振幅誤差補正回路は、上記第1の演算結果を用いて第1の補正を行ない、上記第2の演算結果を用いて第2の補正を行ない、上記補正が上記第1及び第2の補正から成ることを特徴とする携帯無線端末。
  19. 請求項17において、
    上記周波数変換回路は、上記第2の周波数の校正信号をベースバンド帯に変換し、更に変換後の不要波を除去してから上記第3の周波数の校正信号に変換することを特徴とする携帯無線端末。
  20. 請求項17において、
    上記信号経路は、その出力側にアナログ・ディジタル変換器を備えることによって、ディジタル化された上記直交変調信号を出力し、
    上記位相・振幅誤差補正回路は、ディジタル化された上記直交変調信号を入力し、ディジタル信号処理によって上記補正を行なうことを特徴とする携帯無線端末。
JP2004287230A 2004-09-30 2004-09-30 受信機、受信方法及び携帯無線端末 Expired - Fee Related JP4381945B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004287230A JP4381945B2 (ja) 2004-09-30 2004-09-30 受信機、受信方法及び携帯無線端末
US11/179,553 US7346325B2 (en) 2004-09-30 2005-07-13 Receiver, receiving method and portable wireless apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287230A JP4381945B2 (ja) 2004-09-30 2004-09-30 受信機、受信方法及び携帯無線端末

Publications (3)

Publication Number Publication Date
JP2006101388A JP2006101388A (ja) 2006-04-13
JP2006101388A5 JP2006101388A5 (ja) 2007-04-12
JP4381945B2 true JP4381945B2 (ja) 2009-12-09

Family

ID=36099879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287230A Expired - Fee Related JP4381945B2 (ja) 2004-09-30 2004-09-30 受信機、受信方法及び携帯無線端末

Country Status (2)

Country Link
US (1) US7346325B2 (ja)
JP (1) JP4381945B2 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325976B2 (ja) * 2002-10-29 2009-09-02 Nsc株式会社 受信機
FR2859055B1 (fr) * 2003-08-18 2005-12-30 St Microelectronics Sa Procede et dispositif de traitement des defauts d'appariement entre deux voies en quadrature d'une chaine d'une reception adaptee par exemple a la reception d'un signal module selon une modulation du type ofdm
US6990324B2 (en) * 2004-04-15 2006-01-24 Flarion Technologies, Inc. Methods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
DE102005004105B4 (de) * 2005-01-28 2013-05-08 Intel Mobile Communications GmbH Signalverarbeitungseinrichtung und Verfahren zum Betreiben einer Signalverarbeitungseinrichtung
GB2439257A (en) * 2005-04-13 2007-12-19 Siano Mobile Silicon Ltd A method for tuning an rf base-band circuit of a receiver
GB2427089B (en) * 2005-06-08 2009-11-25 Zarlink Semiconductor Ltd Radio frequency tuner
JP4593430B2 (ja) 2005-10-07 2010-12-08 ルネサスエレクトロニクス株式会社 受信機
US7647026B2 (en) * 2006-02-16 2010-01-12 Broadcom Corporation Receiver architecture for wireless transceiver
US7580692B2 (en) * 2006-05-16 2009-08-25 Research In Motion Limited Mobile wireless communications device having low-IF receiver circuitry that adapts to radio environment
ATE410831T1 (de) * 2006-05-16 2008-10-15 Research In Motion Ltd Drahtloses mobiles kommunikationsgerät dessen empfangsschaltung mit niedriger zwischenfrequenz sich der funkumgebung anpasst
US7917091B2 (en) * 2006-06-28 2011-03-29 Maxlinear, Inc. Method and apparatus for calibrating the sideband rejection of a receiver
JP2008028530A (ja) * 2006-07-19 2008-02-07 Fujitsu Ltd ばらつき補正回路を備えた無線受信機
US8358993B2 (en) * 2006-07-25 2013-01-22 Analog Devices, Inc. Image rejection calibration system
KR101261527B1 (ko) * 2006-10-27 2013-05-06 삼성전자주식회사 직접 변환 구조의 rf 쿼드러쳐 송수신기에서 부정합을보상하는 방법 및 장치
JP4730840B2 (ja) 2006-11-15 2011-07-20 ルネサスエレクトロニクス株式会社 通信用半導体集積回路およびそれを用いた無線通信端末装置
WO2008089841A1 (en) * 2007-01-22 2008-07-31 Freescale Semiconductor, Inc. Calibration signal generator
US8005435B2 (en) * 2007-04-30 2011-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Ultra-wideband transceiver
JP4970192B2 (ja) 2007-08-20 2012-07-04 ルネサスエレクトロニクス株式会社 半導体集積回路
US7729724B2 (en) * 2007-11-19 2010-06-01 Broadcom Corporation RF front-end and applications thereof
JP4650554B2 (ja) 2008-10-22 2011-03-16 ソニー株式会社 無線受信機
JP5429191B2 (ja) * 2008-12-26 2014-02-26 日本電気株式会社 受信装置、イメージ信号の減衰方法及びミスマッチ補償方法
US8389526B2 (en) 2009-08-07 2013-03-05 Novartis Ag 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives
US8583049B2 (en) * 2009-09-08 2013-11-12 Bae Systems Information And Electronic Systems Integration Inc. Self-optimizing integrated RF converter
US8238865B2 (en) * 2009-10-09 2012-08-07 Analog Devices, Inc. Image calibration and correction for low-IF receivers
US20110096864A1 (en) * 2009-10-28 2011-04-28 Maxlinear, Inc. Programmable digital clock control scheme to minimize spur effect on a receiver
JP4991896B2 (ja) * 2010-03-26 2012-08-01 アンリツ株式会社 周波数変換装置及び周波数変換方法
JP5249390B2 (ja) * 2011-06-23 2013-07-31 株式会社アドバンテスト 信号測定装置、信号測定方法、プログラム、記録媒体
CN103095321B (zh) * 2011-11-01 2017-05-10 瑞典爱立信有限公司 用于tdd***中接收机校正的方法及相关的设备
WO2012167555A1 (zh) * 2011-11-15 2012-12-13 华为技术有限公司 一种校正同相正交信号的方法和装置
KR101932491B1 (ko) * 2012-02-13 2018-12-26 삼성전자주식회사 통신 기기에서 라디오 주파수 회로에 대한 켈리브레이션을 지원하는 장치 및 방법
US8442150B1 (en) * 2012-02-24 2013-05-14 National Instruments Corporation Measurement of transmitter impairments using offset local oscillators
TWI474622B (zh) * 2012-07-26 2015-02-21 Univ Nat Taiwan 應用雜訊濾波技巧的非整數頻率合成器及其操作方法
JP5820449B2 (ja) * 2013-09-30 2015-11-24 アンリツ株式会社 信号分析装置、同期システム、及び同期方法
DE102014221083B4 (de) * 2014-10-16 2021-04-01 Dialog Semiconductor B.V. Vorrichtung und Verfahren zur Erzeugung einer echten Zufallszahl in Ein-Chip-Systemen (Systems-on-Chip) und Computerprogrammprodukt hierfür
US9819524B2 (en) * 2014-11-21 2017-11-14 Silicon Laboratories Inc. Image rejection calibration with a passive network
EP3068044A1 (en) * 2015-03-11 2016-09-14 Nxp B.V. Module for a radio receiver
CN106685495A (zh) * 2015-11-05 2017-05-17 索尼公司 无线通信方法和无线通信设备
US10262006B2 (en) 2016-04-29 2019-04-16 Microsoft Technology Licensing, Llc Contextually triggered entry point
WO2021117386A1 (ja) * 2019-12-09 2021-06-17 ソニーセミコンダクタソリューションズ株式会社 受信装置
CN114978214B (zh) * 2022-05-23 2023-11-21 Oppo广东移动通信有限公司 直接变频接收机、数据接收方法、存储介质及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158586B2 (en) * 2002-05-03 2007-01-02 Atheros Communications, Inc. Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
JP2004040678A (ja) 2002-07-08 2004-02-05 Hitachi Kokusai Electric Inc 復調装置
US7146146B2 (en) * 2003-01-31 2006-12-05 Ditrans Ip, Inc. Systems and methods for coherent adaptive calibration in a receiver
US7254379B2 (en) * 2004-07-09 2007-08-07 Silicon Storage Technology, Inc. RF receiver mismatch calibration system and method

Also Published As

Publication number Publication date
JP2006101388A (ja) 2006-04-13
US7346325B2 (en) 2008-03-18
US20060068739A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4381945B2 (ja) 受信機、受信方法及び携帯無線端末
JP4593430B2 (ja) 受信機
US8411730B2 (en) Semiconductor integrated communication circuit and operation method thereof
JP3910167B2 (ja) 増幅回路
JP3316723B2 (ja) 受信装置の補償方法・受信装置及び送受信装置
US7224722B2 (en) Direct conversion RF transceiver with automatic frequency control
JP4901679B2 (ja) 無線送受信装置及び無線送信方法
US8867596B2 (en) Methods and apparatuses of calibrating I/Q mismatch in communication circuit
US7583765B2 (en) DC offset detection and cancellation in a receiver
US7512392B2 (en) System for adaptively filtering a received signal in a wireless receiver
JP4241765B2 (ja) 送信機及びキャリアリーク検出方法
US8391818B2 (en) Second-order distortion correcting receiver and second-order distortion correcting method
US20150381228A1 (en) Calibrating a transceiver circuit
KR101261527B1 (ko) 직접 변환 구조의 rf 쿼드러쳐 송수신기에서 부정합을보상하는 방법 및 장치
US8229047B2 (en) Complex signal processing circuit, receiver circuit, and signal reproduction device
JPWO2007052717A1 (ja) イメージ抑圧受信機
JP4941822B2 (ja) 受信装置、及び送信装置
WO2014199600A1 (ja) 無線受信装置及び無線受信方法
JP2023537021A (ja) 無線トランシーバのための機器及び方法
JP3441311B2 (ja) 受信機
EP3559700B1 (en) Systems and methods for frequency drift compensation for radio receivers
JP2003134183A (ja) ダイレクトコンバージョン受信機
JP2017034545A (ja) 受信機
JP2003163710A (ja) 直交復調器
JP2015070363A (ja) イメージリジェクションミキサ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees