JP4345335B2 - Water-based polyurethane resin and printing ink using the resin - Google Patents

Water-based polyurethane resin and printing ink using the resin Download PDF

Info

Publication number
JP4345335B2
JP4345335B2 JP2003093228A JP2003093228A JP4345335B2 JP 4345335 B2 JP4345335 B2 JP 4345335B2 JP 2003093228 A JP2003093228 A JP 2003093228A JP 2003093228 A JP2003093228 A JP 2003093228A JP 4345335 B2 JP4345335 B2 JP 4345335B2
Authority
JP
Japan
Prior art keywords
parts
resin
water
acid
polyurethane resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093228A
Other languages
Japanese (ja)
Other versions
JP2004300223A (en
Inventor
壽一 澤口
紀文 渡辺
敦 勝屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2003093228A priority Critical patent/JP4345335B2/en
Publication of JP2004300223A publication Critical patent/JP2004300223A/en
Application granted granted Critical
Publication of JP4345335B2 publication Critical patent/JP4345335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ポリウレタン樹脂を水性媒体中でエポキシ化合物により鎖延長して得られる水性ポリウレタン樹脂及び、それを使用した水性インキに関する。本発明のエポキシ化合物により鎖延長して得られた水性ポリウレタン樹脂は、プラスチックフィルム、プラスチックシートへの濡れ性、接着性、ラミネート性能に優れ、インキ、塗料、接着剤、特に水性印刷インキ分野に有用である。
【0002】
【従来の技術】
従来、ポリウレタンはその優れた機械的性質、耐摩耗性、耐薬品性、接着性などの特性を活かして、ゴムとプラスチックスの境界分野を埋める樹脂として、塗料、接着剤、人工皮革などの幅広い用途分野に浸透している。その中で、環境保全、省資源、安全性といった社会ニーズに対応すべく、水性ポリウレタンが急激に発展してきている。ウレタン樹脂の水中への乳化分散技術、アイオノマー化による自己乳化分散技術、さらには水中での高分子量化技術等に進歩により高性能の水性ポリウレタンが出現し、その性能は今日では溶剤系ポリウレタン樹脂に匹敵するレベルになり、各種の用途分野で実用化されるに至っている。
【0003】
しかしながら、水性ポリウレタンの問題点として、水性化する場合に必要な乳化剤やイオン基により、ポリウレタン樹脂本来の特性、例えば、耐溶剤性や耐熱性を阻害することがしばしばある。
【0004】
一般的に、水性ポリウレタン樹脂は、その製造方法から強制乳化法、ケトン法、プレポリマー水中攪拌法、溶融分散方法、ケチミン法、自己乳化方法が知られている。水性インキに用いられるウレタン樹脂は、顔料分散性、印刷適性、フィルムへの接着性、耐水性などから、一般的にケトン法、すなわちイソシアネート基を含むプレポリマーをケトン系溶媒などの有機溶剤等で合成し中和後、脱溶剤過程を経てエマルジョン、コロイダルデスパージョン、水溶解型等の水性ウレタン樹脂が使用されてきた。
【0005】
ケトン法により製造するポリウレタン樹脂は、水性ポリウレタン樹脂とするため脱溶剤工程を必要とする。この脱溶剤工程に要する時間、コスト、有機溶剤の再利用、焼却廃棄等を軽減するため、例えば特開昭59−138211号公報にはアクリルモノマー中でポリウレタン合成し、複合化させる方法が開示されている。この方法では、一般に活性水素を有しない不飽和単量体を必要としており、活性水素を有する通常の不飽和単量体を使用するとイソシアネ−トと不飽和単量体との反応が起こることからウレタン樹脂の分子量を伸ばすことが困難になる欠点があった。また、この方法では、鎖延長反応において著しく粘度上昇することからウレタン樹脂の濃度を下げることや、あるいは特殊な撹拌装置を必要とするなどの欠点もあった。
【0006】
かかる問題に対し、例えば、特開平6−306135号公報で末端イソシアネート基を有するウレタンプレポリマーを水に乳化分散した後ポリアミンで鎖延長し、得られたエマルジョンを架橋剤としてエポキシ樹脂を使用することが開示されている。しかしながら、この方法では使用する乳化剤のため充分な接着性、耐水性、ラミネート物性が得られない。特開平5−295076号公報ではイソシアネート末端プレポリマーを水中で乳化し、アミン基末端エポキシ樹脂で鎖延長する方法が開示されている。この方法では、乳化剤の悪影響が避けられない。
【0007】
特開2000−109681号公報では、水性ポリウレタン樹脂の製造時に使用する乳化剤よる性能低下を改善するため、エポキシ基を有する化合物とアミノ基を持つポリビニルアルコールを使用することを開示している。この方法ではある程度の耐溶剤性は得られるが、接着性は不十分であった。
【0008】
特開平11−279236号公報には有機溶媒として水酸基をもつアクリルモノマー中でポリウレタン樹脂を合成し、水中に分散後他のアクリルモノマーを重合するする方法が開示されている。この方法は脱溶媒工程を省く上で有効であるが、アクリル樹脂が全てポリウレタン樹脂に複合化されないため、フィルムへの接着性やラミネート強度は不十分であった。
エポキシ樹脂の接着性やポリウレタン樹脂の接着性、機械的性質に着眼し、エポキシ樹脂を用いた水性ポリウレタン樹脂も検討されている。
【0009】
【特許文献1】
特開昭59−138211号公報
【特許文献2】
特開平6−306135号公報
【特許文献3】
特開平5−295076号公報
【特許文献4】
特開2000−109681号公報
【特許文献5】
特開平11−279236号公報
【0010】
【発明が解決しようとする課題】
本発明は、水性ポリウレタン樹脂の製造において水転相時に乳化剤を含まず、かつプラスチックフィルムへの濡れ性、接着性、ラミネート適性に優れた水性ポリウレタン樹脂を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、ポリウレタン樹脂を水系媒体中でエポキシ化合物により鎖延長を行うことにより、脱有機溶剤工程の低減と、優れた顔料分散性、印刷物の外観品質(印刷効果)を有し、かつ基材への接着性などの諸特性が良好な水性ポリウレタン樹脂が得られること、更には水性ポリウレタン樹脂は印刷インキに極めて有用であることを見出し、本発明に至った。
【0012】
即ち、本発明は、ポリウレタン樹脂の水分散体/水可溶体を得た後、エポキシ化合物を添加し該ポリウレタン樹脂中のカルボキシル基と反応させる水性ポリウレタン樹脂の製造方法において、エポキシ化合物が分子内に少なくとも2個以上のオキシラン環を有し、ポリウレタン樹脂(固形分)100重量部当たり、エポキシ化合物を0.3〜20重量部の範囲で添加、反応させる、重量平均分子量が20000〜1500000であり、酸価が0.5〜70である水性ポリウレタン樹脂の製造方法により得られる水性ポリウレタン樹脂を含有することを特徴とする印刷インキに関する。
【0013】
以下、本発明の水性ポリウレタン樹脂液の製造方法を説明する。
本発明に用いられるポリウレタンプレポリマーは、実質的に、高分子ポリオール、有機ジイソシアネートおよび必要に応じて鎖伸長剤を、溶媒の存在下または不存在下で反応させて得られた、分子中にイソシアネート基を1個以上有するポリウレタンである。
【0014】
(ウレタン製造方法)
ポリウレタンプレポリマーの製造は、従来から公知の方法で行うことができ、30〜150℃の温度条件下で、有機溶媒の存在下または不存在下で行うことができる。この際用いることができる有機溶媒としては、アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジメチルホルムアミド、N−メチルピロリドン等のアミド類;トルエン、キシレン等の芳香族炭化水素等が挙げられ、エマルジョン製造後の溶媒除去の容易性を考慮すると、アセトン、メチルエチルケトン、酢酸エチル等の沸点が100℃未満の溶媒がより好ましい。また、プレポリマー製造後に、粘度低下等を目的として、上記の有機溶媒を添加、あるいは追加しても良い。
【0015】
ポリウレタンプレポリマーの製造に用いうる高分子ポリオールとしては、ポリエステルポリオール、ポリカーボネートポリオール、ポリエステルポリカーボネートポリオール、ポリエーテルポリオールなどを挙げることができ、ポリウレタンプレポリマーはこれらの高分子ポリオールの1種または2種以上を用いて形成されることができる。
【0016】
(ジオール)
ジオールとして、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル−1,5-ペンタンジオール、1,6-ヘキサンジオール、オクタンジオール、1,4-ブチレンジオール、ジプロピレングリコールなどの低分子ジオール類を用いることができる。また、酸化エチレン、酸化プロピレン、テトラヒドロフラン等の重合体もしくは共重合体等のポリエーテルポリオール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル−1,5-ペンタンジオール、1,6-ヘキサンジオール、オクタンジオール、1,4-ブチレンジオール、ジプロピレングリコールなどの飽和または不飽和の低分子ジオール類またはn-ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテルなどのアルキルグリシジルエーテル類、バーサティック酸グリシジルエステルなどのモノカルボン酸グリシジルエステル類と、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、こはく酸、しゅう酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などのジカルボン酸類あるいはこれらの無水物やダイマー酸を脱水縮合または重合させて得られるポリエステルポリオール類;環状エステル化合物を開環重合して得られるポリカプロラクトンジオールなどのポリエステルポリオール類;低分子ジオールとカーボネイトとを反応させて得られるポリ−カーボネートポリオール類;ポリブタジエングリコール類;ビスフェノールA、ビスフェノールF、水添ビスフェノールAに酸化エチレンまたは酸化プロピレンを付加させて得られるグリコール類など、ポリウレタン樹脂の製造に通常用いられる高分子ポリオールを例示することができる。
【0017】
(イソシアネート種類)
有機ジイソシアネートとしては、芳香族、脂肪族または脂環族の各種公知のジイソシアネート類を使用することができる。例えば、1,5-ナフチレンジイソシアネート、4,4'−ジフェニルメタンジイソシアネート、4,4'−ジフェニルジメチルメタンジイソシアネート、4,4'−ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、ブタン−1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4'-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネートやダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等を例示することができる。
【0018】
(酸基種類)
酸基を付与する成分として、例えば、2,2−ジメチロールプロピオン酸、2,2−ジメチロール酪酸、2,2−ジメチロール吉草酸等のジメチロールアルカン酸;グルタミン、アスパラギン、リジン、ジアミノプロピオン酸、オルニチン、ジアミノ安息香酸、ジアミノベンゼンスルホン酸等のジアミン型アミノ酸類;(A-3) グリシン、アラニン、グルタミン酸、タウリン、アスパラギン酸、アミノ酪酸、バリン、アミノカプロン酸、アミノ安息香酸、アミノイソフタル酸、スルファミン酸などのモノアミン型アミノ酸類を例示することができる。好ましくは、2,2−ジメチロールプロピオン酸、2,2−ジメチロール酪酸である。
【0019】
(ウレア基鎖延長)
本発明で使用するポリウレタン樹脂骨格は、エポキシ化合物による反応に先立ち、通常のポリウレタン樹脂に使用されるウレア反応により鎖延長することが出来る。ウレア基の導入はイソシアネート基末端ポリウレタン樹脂中のイソシアネート基が0.1重量%以上にすることが、エポキシ化合物による鎖延長を効果的にする。ウレア基鎖伸長剤成分としては、通常のポリウレタン樹脂の製造に従来から用いられている鎖伸長剤のいずれもが使用できるが、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量300以下の低分子ジアミン化合物を用いるのが好ましい。例えば、ジヒドラジン、エチレンジアミン、プロピレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンおよびその誘導体、フェニレンジアミン、トリレンジアミン、キシレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジドなどのジアミン類; これらのうち1種または2種以上を用いることができる。
【0020】
(ポリウレタン樹脂の重合溶媒について)
本発明で用いられるイソシアネートに対して不活性でかつ親水性の有機溶剤としては、例えばテトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N−メチルピロリドン等のアミド類等が挙げられるが、ポリウレタンの水性化後は通常減圧蒸留により除去されるため、また、脱溶剤しないで使用する場合でも乾燥速度を早めるため、好ましくは水より低沸点の溶剤の使用が望ましい。
【0021】
(ポリウレタン樹脂の分子量)
高分子ポリオール成分の数平均分子量は500〜10000であることが必要である。数平均分子量が500〜10000の範囲から外れる高分子ポリオールを用いて製造されたポリウレタンプレポリマーを使用する場合は、得られるポリウレタン組成物の耐寒性、耐熱性、耐溶剤性などが低下したものとなりやすい。
【0022】
(ウレタン化触媒)
ポリウレタンプレポリマーの製造の際には、必要に応じて反応触媒を添加することができ、このような触媒としては例えば、オクチル酸スズ、モノブチルスズトリアセテート、モノブチルスズモノオクチレート、モノブチルスズモノアセテート、モノブチルスズマレイン酸塩、ジブチルスズジアセテート、ジブチルスズジオクトエート、ジブチルスズジステアレート、ジブチルスズジラウレート、ジブチルスズマレイン酸塩などの有機スズ化合物;テトライソプロピルチタネート、テトラ−n−ブチルチタネートなどの有機チタン化合物;トリエチルアミン、N,N−ジエチルシクロヘキシルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、トリエチレンジアミンなどの3級アミンなどを挙げることができる。
【0023】
(水の添加方法)
ポリウレタン樹脂を水分散化する方法としては、該プレポリマー溶液を攪拌しながら水を滴下させて転相乳化させても良いし、或は良く攪拌している水中へプレポリマー溶液を滴下させてもよい。或はホモゲナイザ−、コロイドミル等による機械的なせんだん力を与えながら水分散化する方法は好ましい方法である。又、水分散化に際して超音波を使用する方法も好ましいものである。
【0024】
(中和剤の種類)
本発明で用いられるポリウレタン樹脂の酸基を中和する塩基性物質としては、アンモニア;モノエチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、メチルジエタノールアミン、モノエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン、N−メチルモルホリン、2-アミノ−2-メチル−1-プロパノール等の有機アミン類;水酸化ナトリウム、水酸化カリウム等の無機アルカリ類等が挙げられ、1種または2種以上を組み合わせて用いられるが、乾燥後の皮膜の耐水性を向上させるためには、水溶性であり、かつ熱によって容易に解離する揮発性の高いものが好ましく、特にアンモニア、トリメチルアミン、トリエチルアミンが好ましい。
【0025】
(中和剤の添加方法)
イソシアネート末端ポリウレタン樹脂は樹脂中に存在する酸成分の一部または全部を中和するためのアンモニアまたは揮発性アミンと共に水中に分散せしめるのであるが、その方法としてアルカリを含有する水を撹拌しつつ徐々にこの樹脂溶液を添加して分散溶解させるという方法によっても良いし、逆にこの樹脂溶液アルカリを含有する水を徐々に添加して分散溶解させる方法によっても良い。中和剤は、ポリウレタン樹脂に水を添加すると同時、もしくは水添加後に配合することが出来るが、水添加後が好ましい。更には、水添加に際しては、水の同時に少量のメタノール、エタノール、プロピルアルコールなどの共溶剤が使用できる。
【0026】
(有機溶媒の除去)
本発明のポリウレタン樹脂製造は溶媒存在下、非存在下で行われるが、有機溶剤は水性媒体への転相後、あるいはエポキシ化合物により鎖伸長反応後、膜による方法、もしくは常圧、減圧での蒸留で除去できる。
【0027】
かくして得られたポリウレタン樹脂に、分子内に少なくとも2個以上のオキシラン環を有するエポキシ化合物を添加し、ポリウレタン樹脂中のカルボキシル基、ヒドロキシル基、酸無水物のいづれかもしくは2種以上とオキシラン環が開環重合により鎖伸長される。
【0028】
添加量
エポキシ化合物に含まれるエポキシ基が、ポリウレタン樹脂100重量部(固形分)当り0.3から20重量部(固形分)の範囲で添加、反応させる。0.5重量部を下回ると接着性、耐水性、耐油性が不十分である。20重量部を越えるとコスト高になるばかりか、粘度上昇や低固形分化を生じる。
【0029】
(エポキシ反応条件)
ポリウレタン樹脂にエポキシ化合物を添加する際の温度は、エポキシ化合物の副反応を避けるため50〜90℃が好ましい。
【0030】
(エポキシ化合物)
本発明で使用するエポキシ化合物はモノアルキルアルコールもしくは多価アルキルアルコールのポリグリシジルエーテルからなる樹脂である。これらのエポキシ化合物のエポキシ当量は好ましくは100〜2000、特に好ましくは100〜1000である。
【0031】
エポキシ化合物としては、分子内に1又は2個以上のオキシシラン環を有する樹脂である。オキシシラン環を分子内に2個以上有する化合物としては、ビスフェノールAジグリシジルエーテル、ビスフェノールAジβメチルグリシジルエーテル、ビスフェノールFジグリシジルエーテル、テトラヒドロキシフェニルメタンテトラグリシジルエーテル、レゾルシノールジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル、クロル化ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル、ビスフェノールAアルキレンオキサイド付加物のジグリシジルエーテル、ノボラックグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、エポキシウレタン樹脂等のグリシジルエーテル型;P−オキシ安息香酸グリシジルエーテル・エステル等のグリシジルエーテル・エステル型;フタル酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、アクリル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等のグリシジルエステル型;グリシジルアニリン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルイソシアヌレート、トリグリシジルアミノフェノール等のグリシジルアミン型;エポキシ化ポリブタジエン、エポキシ化大豆油等の線状脂肪族エポキシ化合物;3,4エポキシ−6メチルシクロヘキシルメチル−3,4エポキシ−6メチルシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルメチル(3,4−エポキシシクロヘキサン)カルボキシレート、ビス(3,4−エポキシ−6メチルシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキサイド、ジシクロペンタジエンオキサイド、ビス(2,3−エポキシシクロペンチル)エーテル、リモネンジオキサイド等の脂環族エポキシ化合物などが挙げられる。
【0032】
なかでも、水溶性エポキシ化合物が好ましく、一例としては、ソルビトールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリチリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシデルトリス(2−ヒドロキシエチル)イソシアヌレート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグルシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6ヘキサンジオールジグリシジルエーテル、エチレン/プロピレングリコールジグリシジルエーテル等各種のものが挙げられる。
【0033】
ウレタンと他種樹脂との反応
また、カルボキシル基、ヒドロキシル基、酸無水物のいづれかもしくは2種以上の反応基もつポリウレタン以外の水性・水分散性樹脂を、
エポキシ化合物を介してポリウレタン樹脂と反応させることが出来る。
反応基を持つ水性もしくは水分散樹脂としては、アクリル樹脂、ポリオレフィン樹脂、ポリビニルアルコール、ポリエステルポリオール、ポリカーボネートポリオール、ポリエステルポリカーボネートポリオール、ポリエーテルポリオール等各種のものが挙げられる。
【0034】
分子量
上記水性ポリウレタン樹脂を印刷インキ用途として用いる場合、重量平均分子量は好ましくは20000〜1500000、より好ましくは30000〜500000の範囲である。20000を下回ると、耐ブロッキング性、耐水性、ラミネート適性が低下する。1500000を上回ると顔料分散性、再溶解性が低下する。
【0035】
酸価
同様に酸価は好ましくは0.5〜70、より好ましくは20〜50の範囲である。0.5を下回るとインキの安定性が低下し70を上回ると、耐水性、ラミネート適性が低下する。
【0036】
本発明の水性印刷インキには、上記水性ポリウレタン樹脂の他、必要に応じてシェラック、ロジン変性マレイン酸樹脂、水性アクリル系樹脂、水性ポリエステル樹脂、既存の水性ポリウレタン樹脂などの水性樹脂を本発明の目的を妨げない範囲で配合できる。さらに水性印刷インキとしての必要な特性を付与するため、顔料などの着色剤、体質顔料、ワックス類、消泡剤、増粘剤、硬化剤、水および水混和性有機溶剤などが必要に応じて適宜添加され、アトライター、サンドミルなどの練肉機を使用して分散を行ない、所定の粘度になる様調整を行って水性印刷インキが製造される。かくして得られた水性印刷インキは、印刷時に適性粘度になるまで水または水混和性有機溶剤、例えばエチルアルコール、イソプロピルアルコール、ノルマルプロピルアルコールなどのアルコール系有機溶剤を混合した溶剤を用いて希釈し、グラビア印刷またはフレキソ印刷方式でプラスチックフィルムなどに印刷される。
【0037】
本発明方法により得られるポリウレタン水性分散液は,フィルムや金属表面に対する接着性に優れ,且つ優れた耐水性、機械的性質を有している。印刷インキ分野では優れた印刷適性とラミネート適性が得られる。またスプレ−塗装やロ−ルコ−テイング等を用いて塗装され良好な塗膜を得ることが出来る。また特に金属等無機物に対する塗装性に優れ,従来のポリウレタン水性樹脂液では適用することが出来なかった多くの用途に供することができる。自動車塗料用や家庭塗料用ビヒクルをはじめガラスプラスチック、織物,紙,皮革,木材,金属の被覆,繊維及び織物への薄膜コ−テイング,毛皮用の表面コ−テイング,各種接着剤等広範囲の用途に使用することが出来る。
【実施例】
次に本発明を実施例により更に説明する。本実施例中の部及び%は特に断りのない限り重量基準である。
【0038】
製造例1A(プレポリマーの製造)
温度計、撹拌装置、還流冷却管を備えた4つ口フラスコに分子量2000のポリテトラメチレングリコール184.8部、ジメチロールブタン酸20部を加え高真空下100℃、20分間加熱を行い、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート45.3部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万5千、酸価は30であった。次に、温度を維持しながら水644.3部、28%アンモニア水5.8部、イソプロピルアルコール100部を加えこれを水溶化した。
【0039】
製造例1B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液400部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。固形分25%、pH7.6、重量平均分子量12万、酸価27の樹脂溶液(a−1)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0040】
製造例2A(プレポリマーの製造)
製造例1Aと同様な装置に、分子量2000のポリテトラメチレングリコール332.6部、ジメチロールブタン酸36部、メチルエチルケトン180部を加え高真空下100℃でメチルエチルケトン90部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート81.5部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万、酸価は30であった。次に、温度を維持しながら水1339.7部、28%アンモニア水10.4部を加えこれを水溶化した。
【0041】
製造例2B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.4、重量平均分子量12万、酸価27の樹脂溶液(a−2)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0042】
製造例3A(プレポリマーの製造)
製造例1Aと同様な装置に、
分子量1800の共重合ポリテトラメチレンエーテルグリコール(旭化成株式会社PTXG1800)183部、ジメチロールブタン酸20部メチルエチルケトン100部を加え高真空下100℃でメチルエチルケトン50部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート47部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万、酸価は30であった。次に、温度を維持しながら水744.3部、28%アンモニア水5.8部を加えこれを水溶化した。
【0043】
製造例3B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.4、重量平均分子量120万、酸価27の樹脂溶液(a−3)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0044】
製造例4A(プレポリマーの製造)
製造例1Aと同様な装置に、分子量2000のポリプロピレンアジペート184.8部、ジメチロールブタン酸20部メチルエチルケトン100部を加え高真空下100℃でメチルエチルケトン50部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート45.3部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万、酸価は30であった。次に、温度を維持しながら水744.3部、28%アンモニア水5.8部を加えこれを水溶化した。
【0045】
製造例4B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.4、重量平均分子量12万、酸価27の樹脂溶液(a−4)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0046】
製造例5A(プレポリマーの製造)
製造例1Aと同様な装置に、分子量2000のポリテトラメチレングリコール180部、分子量400のポリエチレングリコール3.5部、ジメチロールブタン酸20部メチルエチルケトン100部を加え高真空下100℃でメチルエチルケトン50部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート46.5部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は3万4千、酸価は30であった。次に、温度を維持しながら水744.3部、28%アンモニア水5.8部を加えこれを水溶化した。
【0047】
製造例5B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.4、重量平均分子量10万、酸価27の樹脂溶液(a−5)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0048】
製造例6A(プレポリマーの製造)
製造例1Aと同様な装置に、分子量2000のポリテトラメチレングリコール163.8部、ジメチロールブタン酸29.8部メチルエチルケトン100部を加え高真空下100℃でメチルエチルケトン50部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート56.5部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万3千、酸価は45であった。次に、温度を維持しながら水741部、28%アンモニア水9部を加えこれを水溶化した。
【0049】
製造例6B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル1.1部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.6、重量平均分子量14万、酸価40の樹脂溶液(a−6)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0050】
製造例7A(プレポリマーの製造)
製造例1Aと同様な装置に、分子量2000のポリテトラメチレングリコール195.3部、ジメチロールブタン酸19.8部メチルエチルケトン100部を加え高真空下100℃でメチルエチルケトン50部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しヘキサメチレンジイソシアネート35部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万、酸価は30であった。次に、温度を維持しながら水744.3部、28%アンモニア水5.8部を加えこれを水溶化した。
【0051】
製造例7B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.4、重量平均分子量12万、酸価27の樹脂溶液(a−7)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0052】
製造例8A(プレポリマーの製造)
製造例1Aと同様な装置に、分子量2000のポリテトラメチレングリコール185部、ジメチロールブタン酸20部、メチルエチルケトン100部を加え高真空下100℃でメチルエチルケトン50部を留去し、水分を除去した。乾燥窒素雰囲気中で50℃に冷却しイソホロンジイソシアネート45部を加えた。発熱反応を利用し徐々に昇温し80℃、5時間保持した。得られた樹脂の重量平均分子量は4万5千、酸価は30であった。次に、温度を維持しながら水709.8部、ジエチルアミノエタノール40.3部を加えこれを水溶化した。
【0053】
製造例8B(エポキシ化合物との反応)
製造例1Aと同様な装置に、Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル0.8部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.8、重量平均分子量12万、酸価27の樹脂溶液(a−8)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0054】
製造例9(エポキシ化合物との反応)
製造例1Aと同様な装置に、製造例2Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量268のエチレンジグリシジルエーテル1.4部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.4、重量平均分子量12万、酸価27の樹脂溶液(a−9)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0055】
製造例10(エポキシ化合物との反応)
製造例1Aと同様な装置に、製造例2Aで得られたウレタン樹脂水溶液420部(樹脂分100部)、エポキシ当量143のグリコールポリグリシジルエーテル1.5部を加え昇温し80℃、10時間の反応を行った。高真空下100℃でメチルエチルケトン20部を留去した。固形分25%、pH7.6、重量平均分子量32万、酸価24の樹脂溶液(a−10)を得た。粗大粒子が無く40℃2週間でも状態は安定していた。
【0056】
実施例1(水性印刷インキの製造)
製造例1で得た樹脂溶液(a−1)20.0部 、酸化チタン40.0、 消泡剤0.1部、 水19.9部の混合物をペイントコンデイショナーで顔料分散しインキベ−スを得た。次に、製造例1で得た樹脂溶液、水、イソプロピルアルコールを加え印刷インキを作成した。得られた印刷インキにカルボジイミド硬化剤を加え、水/イソプロピルアルコール=1/1(重量比)の混合溶剤を用いて希釈し、印刷粘度に調整、グラビア印刷機にてポリエチレンテレフタレートフイルム(以下PET)、ナイロンフィルム(以下NY)に印刷して、塗膜外観、密着性、さらにNYについては耐ボイル適性を評価した。
塗膜外観:印刷物の光沢を目視により判定した。
◎非常に光沢がある
○光沢がやや劣る
△光沢がない
×全く光沢がない
密着性評価:印刷物のセロファンテープ剥離試験を行い、印刷皮膜の外観よりその密着性を目視判定した。
◎印刷皮膜が全く剥がれない。
○ 印刷皮膜の20%以下が剥がれる。
△印刷皮膜の20%〜50%が剥がれる。
× 印刷皮膜の50%以上が剥がれる。
耐ボイル性:NYフイルム上に印刷した印刷インキ面にイソシアネート系接着剤を塗布した後に、押し出しラミネート機によって前記接着剤層上に溶融ポリエチレンを積層し、ラミネート加工物を得た。このラミネート加工物を製袋し、密封後90℃の熱水中で30分間加熱し、ラミ状態を外部から目視観察した。
◎全くラミ浮きがない。
○ピンホール状にラミ浮きがでる。
△すじ状にデラミネーションが生じる。
× 全面にデラミネーションが生じる。
結果を表1に示す。
【表1】

Figure 0004345335
【0057】
実施例2〜10
製造例2〜10で得た樹脂溶液(a-2)〜(a-10)を実施例1と同様にそれぞれインキ化、印刷評価を行った。結果を表1に示す。
【0058】
比較例1〜8
製造例1A〜8Aで得た(エポキシによる鎖延長を行なっていない)樹脂溶液を実施例1と同様にそれぞれインキ化、印刷評価を行った。結果を表1に示す。
【0059】
【発明の効果】
実施例、比較例より明らかなように本発明の水性ポリウレタン樹脂は、凝集物もなく、さらに本発明の水性樹脂液を含有する水性印刷インキは、接着性、耐ボイル性に優れ、水性印刷用インキに好適である。[0001]
[Industrial application fields]
The present invention relates to an aqueous polyurethane resin obtained by chain-extending a polyurethane resin with an epoxy compound in an aqueous medium, and an aqueous ink using the aqueous polyurethane resin. The aqueous polyurethane resin obtained by chain extension with the epoxy compound of the present invention is excellent in wettability to plastic films and plastic sheets, adhesiveness, and laminating performance, and is useful in the field of inks, paints and adhesives, especially aqueous printing inks. It is.
[0002]
[Prior art]
Conventionally, polyurethane is a resin that fills the boundary between rubber and plastics by taking advantage of its excellent mechanical properties, wear resistance, chemical resistance, adhesiveness, etc., and it has a wide range of materials such as paints, adhesives, and artificial leather. It has permeated application fields. Under such circumstances, water-based polyurethane has been rapidly developed in order to meet social needs such as environmental protection, resource saving and safety. High-performance water-based polyurethanes have emerged as a result of advances in emulsifying and dispersing technology for urethane resins in water, self-emulsifying and dispersing technology by ionomerization, and high molecular weight technology in water. It has become a comparable level and has been put to practical use in various application fields.
[0003]
However, as a problem of aqueous polyurethane, the emulsifier and ionic group necessary for making it aqueous often impair the inherent properties of the polyurethane resin, such as solvent resistance and heat resistance.
[0004]
Generally, a forced emulsification method, a ketone method, a prepolymer underwater stirring method, a melt dispersion method, a ketimine method, and a self-emulsification method are known for the aqueous polyurethane resin from its production method. Urethane resins used in water-based inks generally have a ketone method, that is, an isocyanate group-containing prepolymer with an organic solvent such as a ketone solvent because of pigment dispersibility, printability, film adhesion, water resistance, etc. After synthesis and neutralization, an aqueous urethane resin such as an emulsion, a colloidal dispersion, and a water-soluble type has been used through a solvent removal process.
[0005]
The polyurethane resin produced by the ketone method requires a solvent removal step in order to obtain an aqueous polyurethane resin. In order to reduce the time and cost required for this solvent removal step, reuse of organic solvents, incineration disposal, etc., for example, JP-A-59-138211 discloses a method of synthesizing and combining polyurethanes in an acrylic monomer. ing. This method generally requires an unsaturated monomer having no active hydrogen, and the reaction between an isocyanate and an unsaturated monomer occurs when a normal unsaturated monomer having active hydrogen is used. There was a drawback that it was difficult to increase the molecular weight of the urethane resin. In addition, this method has drawbacks such as a significant increase in viscosity in the chain extension reaction, and thus the concentration of the urethane resin is lowered or a special stirring device is required.
[0006]
To solve this problem, for example, in JP-A-6-306135, a urethane prepolymer having a terminal isocyanate group is emulsified and dispersed in water and then chain-extended with a polyamine, and an epoxy resin is used as a crosslinking agent. Is disclosed. However, in this method, sufficient adhesion, water resistance and laminate properties cannot be obtained due to the emulsifier used. JP-A-5-295076 discloses a method of emulsifying an isocyanate-terminated prepolymer in water and extending the chain with an amine-terminated epoxy resin. In this method, the adverse effect of the emulsifier is unavoidable.
[0007]
Japanese Patent Application Laid-Open No. 2000-109681 discloses the use of a compound having an epoxy group and a polyvinyl alcohol having an amino group in order to improve performance degradation due to an emulsifier used in the production of an aqueous polyurethane resin. This method provides a certain degree of solvent resistance, but the adhesion is insufficient.
[0008]
Japanese Patent Application Laid-Open No. 11-279236 discloses a method of synthesizing a polyurethane resin in an acrylic monomer having a hydroxyl group as an organic solvent and polymerizing another acrylic monomer after being dispersed in water. This method is effective in omitting the desolvation step, but since the acrylic resin is not combined with the polyurethane resin, the adhesion to the film and the laminate strength are insufficient.
A water-based polyurethane resin using an epoxy resin is also being studied, focusing on the adhesiveness of the epoxy resin, the adhesiveness of the polyurethane resin, and the mechanical properties.
[0009]
[Patent Document 1]
JP 59-138211
[Patent Document 2]
JP-A-6-306135
[Patent Document 3]
JP-A-5-295076
[Patent Document 4]
JP 2000-109681 A
[Patent Document 5]
JP-A-11-279236
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide an aqueous polyurethane resin that does not contain an emulsifier during water phase transition in the production of an aqueous polyurethane resin and is excellent in wettability to a plastic film, adhesiveness, and laminate suitability.
[0011]
[Means for Solving the Problems]
In the present invention, the polyurethane resin is chain-extended with an epoxy compound in an aqueous medium, thereby reducing the deorganic solvent process, excellent pigment dispersibility, and appearance quality (printing effect) of printed matter, and a base material The present inventors have found that an aqueous polyurethane resin having good properties such as adhesion to the resin can be obtained, and that the aqueous polyurethane resin is extremely useful for printing inks, and has led to the present invention.
[0012]
That is, the present invention adds an epoxy compound after obtaining an aqueous dispersion / water-soluble polyurethane resin. And carboxyl groups in the polyurethane resin In the method for producing an aqueous polyurethane resin to be reacted, the epoxy compound has at least two oxirane rings in the molecule, and the epoxy compound is in the range of 0.3 to 20 parts by weight per 100 parts by weight of the polyurethane resin (solid content). A method for producing an aqueous polyurethane resin having a weight average molecular weight of 20,000 to 1500,000 and an acid value of 0.5 to 70. A printing ink comprising an aqueous polyurethane resin obtained by About.
[0013]
Hereafter, the manufacturing method of the aqueous polyurethane resin liquid of this invention is demonstrated.
The polyurethane prepolymer used in the present invention is substantially an isocyanate in a molecule obtained by reacting a high-molecular polyol, an organic diisocyanate and, if necessary, a chain extender in the presence or absence of a solvent. A polyurethane having one or more groups.
[0014]
(Urethane production method)
The production of the polyurethane prepolymer can be carried out by a conventionally known method, and can be carried out at a temperature of 30 to 150 ° C. in the presence or absence of an organic solvent. Examples of organic solvents that can be used include ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; esters such as ethyl acetate and butyl acetate; amides such as dimethylformamide and N-methylpyrrolidone; Aromatic hydrocarbons such as xylene, and the like, and considering the ease of solvent removal after emulsion production, a solvent having a boiling point of less than 100 ° C., such as acetone, methyl ethyl ketone, and ethyl acetate, is more preferable. Further, after the prepolymer is produced, the above organic solvent may be added or added for the purpose of reducing the viscosity or the like.
[0015]
Examples of the polymer polyol that can be used for the production of the polyurethane prepolymer include polyester polyol, polycarbonate polyol, polyester polycarbonate polyol, and polyether polyol. The polyurethane prepolymer is one or more of these polymer polyols. Can be used.
[0016]
(Diol)
Diols include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, and 3-methyl. Low molecular weight diols such as 1,5-pentanediol, 1,6-hexanediol, octanediol, 1,4-butylenediol, dipropylene glycol and the like can be used. Also, polyether polyols such as polymers or copolymers of ethylene oxide, propylene oxide, tetrahydrofuran, etc .; ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3 -Butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, octanediol, 1,4-butylenediol, dipropylene glycol, etc. Saturated or unsaturated low molecular weight diols or alkyl glycidyl ethers such as n-butyl glycidyl ether and 2-ethylhexyl glycidyl ether, monocarboxylic acid glycidyl esters such as versatic acid glycidyl ester, adipic acid, phthalic acid, Isophthalic acid, te Dehydration condensation or polymerization of dicarboxylic acids such as phthalic acid, maleic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid or their anhydrides and dimer acids. Polyester polyols obtained by ring-opening polymerization of a cyclic ester compound; polyester polyols such as polycaprolactone diol; poly-carbonate polyols obtained by reacting a low-molecular diol with carbonate; polybutadiene glycols; bisphenol Examples thereof include polymer polyols usually used in the production of polyurethane resins, such as glycols obtained by adding ethylene oxide or propylene oxide to A, bisphenol F, and hydrogenated bisphenol A.
[0017]
(Isocyanate type)
As the organic diisocyanate, various known aromatic, aliphatic or alicyclic diisocyanates can be used. For example, 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 4,4′-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3- Phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4- Trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, lysine diisocyanate, Examples include dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexane diisocyanate, m-tetramethylxylylene diisocyanate, dimerisocyanate obtained by converting the carboxyl group of dimer acid to an isocyanate group, and the like. be able to.
[0018]
(Acid group type)
Examples of the component that gives an acid group include dimethylol alkanoic acids such as 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid and 2,2-dimethylolvaleric acid; glutamine, asparagine, lysine, diaminopropionic acid, Diamine-type amino acids such as ornithine, diaminobenzoic acid, diaminobenzenesulfonic acid; (A-3) glycine, alanine, glutamic acid, taurine, aspartic acid, aminobutyric acid, valine, aminocaproic acid, aminobenzoic acid, aminoisophthalic acid, sulfamine Examples thereof include monoamine type amino acids such as acids. Preferred are 2,2-dimethylolpropionic acid and 2,2-dimethylolbutyric acid.
[0019]
(Urea group chain extension)
Prior to the reaction with the epoxy compound, the polyurethane resin skeleton used in the present invention can be chain-extended by the urea reaction used in ordinary polyurethane resins. The introduction of the urea group makes the chain extension by the epoxy compound effective when the isocyanate group in the isocyanate group-terminated polyurethane resin is 0.1% by weight or more. As the urea group chain extender component, any of chain extenders conventionally used in the production of ordinary polyurethane resins can be used, but it has two or more active hydrogen atoms that can react with isocyanate groups in the molecule. It is preferable to use a low molecular diamine compound having a molecular weight of 300 or less. For example, diamines such as dihydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, phenylenediamine, tolylenediamine, xylenediamine, adipic acid dihydrazide, isophthalic acid dihydrazide; Two or more kinds can be used.
[0020]
(Polyurethane resin polymerization solvent)
Examples of the inert and hydrophilic organic solvent for the isocyanate used in the present invention include ethers such as tetrahydrofuran and dioxane, esters such as ethyl acetate, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, dimethylformamide, Amides such as N-methylpyrrolidone and the like can be mentioned, but since polyurethane is usually removed by distillation under reduced pressure, and in order to increase the drying speed even when used without solvent removal, it is preferably lower than water. The use of a boiling solvent is desirable.
[0021]
(Molecular weight of polyurethane resin)
The number average molecular weight of the polymer polyol component needs to be 500 to 10,000. When a polyurethane prepolymer produced using a polymer polyol having a number average molecular weight outside the range of 500 to 10,000 is used, the resulting polyurethane composition has reduced cold resistance, heat resistance, solvent resistance, and the like. Cheap.
[0022]
(Urethane catalyst)
In the production of the polyurethane prepolymer, a reaction catalyst can be added as necessary. Examples of such a catalyst include tin octylate, monobutyltin triacetate, monobutyltin monooctylate, monobutyltin monoacetate, Organotin compounds such as monobutyltin maleate, dibutyltin diacetate, dibutyltin dioctoate, dibutyltin distearate, dibutyltin dilaurate, dibutyltin maleate; organotitanium compounds such as tetraisopropyl titanate, tetra-n-butyl titanate; triethylamine And tertiary amines such as N, N-diethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, and triethylenediamine.
[0023]
(Method of adding water)
As a method of dispersing the polyurethane resin in water, water may be added dropwise while stirring the prepolymer solution for phase inversion emulsification, or the prepolymer solution may be added dropwise to well-stirred water. Good. Alternatively, a method of dispersing in water while applying a mechanical tension by a homogenizer, a colloid mill or the like is a preferable method. In addition, a method of using ultrasonic waves for water dispersion is also preferable.
[0024]
(Type of neutralizer)
The basic substance for neutralizing the acid group of the polyurethane resin used in the present invention is ammonia; monoethylamine, diethylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, triethanolamine, methyldiethanolamine, monoethanolamine, dimethyl. Organic amines such as ethanolamine, diethylethanolamine, morpholine, N-methylmorpholine, 2-amino-2-methyl-1-propanol; inorganic alkalis such as sodium hydroxide and potassium hydroxide, and the like. Alternatively, two or more types may be used in combination, but in order to improve the water resistance of the dried film, a water-soluble and highly volatile substance that is easily dissociated by heat is preferable. Particularly, ammonia, trimethylamine, Triethyl Min is preferable.
[0025]
(Method of adding neutralizing agent)
The isocyanate-terminated polyurethane resin is dispersed in water together with ammonia or volatile amine for neutralizing a part or all of the acid component present in the resin. As a method, the water containing alkali is gradually stirred. Alternatively, the resin solution may be added and dispersed and dissolved, or conversely, water containing the resin solution alkali may be gradually added and dispersed and dissolved. The neutralizing agent can be blended simultaneously with the addition of water to the polyurethane resin or after the addition of water, but preferably after the addition of water. Furthermore, when adding water, a small amount of a co-solvent such as methanol, ethanol, propyl alcohol or the like can be used simultaneously with water.
[0026]
(Removal of organic solvent)
The production of the polyurethane resin of the present invention is carried out in the presence or absence of a solvent, but the organic solvent is subjected to a method using a membrane after phase inversion to an aqueous medium or after chain extension reaction with an epoxy compound, or at normal pressure or reduced pressure. Can be removed by distillation.
[0027]
An epoxy compound having at least two or more oxirane rings in the molecule is added to the polyurethane resin thus obtained, and the oxirane ring is opened with one or more of carboxyl group, hydroxyl group and acid anhydride in the polyurethane resin. It is chain extended by ring polymerization.
[0028]
Addition amount
The epoxy group contained in the epoxy compound is added and reacted in the range of 0.3 to 20 parts by weight (solid content) per 100 parts by weight (solid content) of the polyurethane resin. If it is less than 0.5 parts by weight, the adhesion, water resistance and oil resistance are insufficient. If it exceeds 20 parts by weight, not only will the cost be increased, but also viscosity increase and low solidification will occur.
[0029]
(Epoxy reaction conditions)
The temperature at which the epoxy compound is added to the polyurethane resin is preferably 50 to 90 ° C. in order to avoid side reactions of the epoxy compound.
[0030]
(Epoxy compound)
The epoxy compound used in the present invention is a resin made of polyglycidyl ether of monoalkyl alcohol or polyvalent alkyl alcohol. The epoxy equivalent of these epoxy compounds is preferably 100 to 2000, particularly preferably 100 to 1000.
[0031]
The epoxy compound is a resin having one or more oxysilane rings in the molecule. Compounds having two or more oxysilane rings in the molecule include bisphenol A diglycidyl ether, bisphenol A diβ methyl glycidyl ether, bisphenol F diglycidyl ether, tetrahydroxyphenylmethane tetraglycidyl ether, resorcinol diglycidyl ether, brominated bisphenol. A diglycidyl ether, chlorinated bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol A alkylene oxide adduct diglycidyl ether, novolac glycidyl ether, polyalkylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol Diglycidyl ether, glycidyl ether such as epoxy urethane resin Glycidyl ether ester type such as P-oxybenzoic acid glycidyl ether ester; phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, acrylic acid diglycidyl ester, dimer acid diglycidyl Glycidyl ester types such as esters; Glycidyl amine types such as glycidyl aniline, tetraglycidyl diaminodiphenylmethane, triglycidyl isocyanurate, and triglycidyl aminophenol; Linear aliphatic epoxy compounds such as epoxidized polybutadiene and epoxidized soybean oil; Epoxy-6 methylcyclohexylmethyl-3,4 epoxy-6 methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl (3,4-epoxy Hexane) carboxylate, bis (3,4-epoxy-6methylcyclohexylmethyl) adipate, vinylcyclohexene diepoxide, dicyclopentadiene oxide, bis (2,3-epoxycyclopentyl) ether, limonene dioxide and other alicyclic epoxies Compound etc. are mentioned.
[0032]
Among these, water-soluble epoxy compounds are preferable, and examples thereof include sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2 -Hydroxyethyl) isocyanurate, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, 1,6 hexanediol diglycidyl ether, ethylene / propylene glycol diglycidyl ether and the like.
[0033]
Reaction of urethane with other resins
Also, an aqueous / water-dispersible resin other than polyurethane having either a carboxyl group, a hydroxyl group, an acid anhydride, or two or more reactive groups,
It can be made to react with a polyurethane resin through an epoxy compound.
Examples of the aqueous or water-dispersed resin having a reactive group include various resins such as acrylic resin, polyolefin resin, polyvinyl alcohol, polyester polyol, polycarbonate polyol, polyester polycarbonate polyol, and polyether polyol.
[0034]
Molecular weight
When using the said water-based polyurethane resin as a printing ink use, Preferably a weight average molecular weight is the range of 20000-1500000, More preferably, it is the range of 30000-500000. When it is less than 20000, blocking resistance, water resistance and laminate suitability are lowered. If it exceeds 1500,000, the pigment dispersibility and re-dissolvability will decrease.
[0035]
Acid value
Similarly, the acid value is preferably in the range of 0.5 to 70, more preferably 20 to 50. When it is less than 0.5, the stability of the ink is lowered, and when it is more than 70, the water resistance and the suitability for lamination are lowered.
[0036]
In the water-based printing ink of the present invention, in addition to the above-mentioned water-based polyurethane resin, water-based resins such as shellac, rosin-modified maleic acid resin, water-based acrylic resin, water-based polyester resin, and existing water-based polyurethane resin are used according to the present invention. It can be blended as long as the purpose is not hindered. Furthermore, in order to give the necessary properties as water-based printing ink, coloring agents such as pigments, extender pigments, waxes, antifoaming agents, thickeners, curing agents, water and water-miscible organic solvents are used as necessary. A water-based printing ink is produced by appropriately adding, dispersing using a kneader such as an attritor or sand mill, and adjusting the viscosity to a predetermined viscosity. The aqueous printing ink thus obtained is diluted with water or a water-miscible organic solvent such as ethyl alcohol, isopropyl alcohol, normal propyl alcohol or the like mixed with a solvent until a suitable viscosity is obtained during printing, Printed on plastic film etc. by gravure printing or flexographic printing.
[0037]
The aqueous polyurethane dispersion obtained by the method of the present invention has excellent adhesion to films and metal surfaces, and has excellent water resistance and mechanical properties. In the printing ink field, excellent printability and lamination suitability can be obtained. Moreover, it can be painted using spray coating, roll coating or the like to obtain a good coating film. In particular, it is excellent in paintability for inorganic materials such as metals, and can be used for many applications that could not be applied with conventional polyurethane aqueous resin liquids. A wide range of applications, including automotive and household paint vehicles, glass plastics, fabrics, paper, leather, wood, metal coatings, thin film coatings for fibers and fabrics, surface coatings for fur, and various adhesives Can be used.
【Example】
Next, the present invention will be further described with reference to examples. Unless otherwise indicated, parts and% in this example are based on weight.
[0038]
Production Example 1A (Prepolymer production)
To a four-necked flask equipped with a thermometer, a stirrer, and a reflux condenser, add 184.8 parts of polytetramethylene glycol having a molecular weight of 2000 and 20 parts of dimethylolbutanoic acid, and heat at 100 ° C. for 20 minutes under high vacuum. Was removed. Cool to 50 ° C. in a dry nitrogen atmosphere and add 45.3 parts of isophorone diisocyanate. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The obtained resin had a weight average molecular weight of 45,000 and an acid value of 30. Next, while maintaining the temperature, 644.3 parts of water, 5.8 parts of 28% ammonia water, and 100 parts of isopropyl alcohol were added to make it water-soluble.
[0039]
Production Example 1B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 400 parts of the urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added and the temperature was raised. Went. A resin solution (a-1) having a solid content of 25%, a pH of 7.6, a weight average molecular weight of 120,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0040]
Production Example 2A (Prepolymer production)
Add 332.6 parts of polytetramethylene glycol having a molecular weight of 2000, 36 parts of dimethylolbutanoic acid and 180 parts of methyl ethyl ketone to the same apparatus as in Production Example 1A, and distill off 90 parts of methyl ethyl ketone at 100 ° C. under high vacuum to remove moisture. did. The mixture was cooled to 50 ° C. in a dry nitrogen atmosphere, and 81.5 parts of isophorone diisocyanate was added. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The weight average molecular weight of the obtained resin was 40,000, and the acid value was 30. Next, while maintaining the temperature, 1339.7 parts of water and 10.4 parts of 28% aqueous ammonia were added to make it water-soluble.
[0041]
Production Example 2B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-2) having a solid content of 25%, a pH of 7.4, a weight average molecular weight of 120,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0042]
Production Example 3A (Prepolymer Production)
In the same device as in Production Example 1A,
183 parts of copolymerized polytetramethylene ether glycol (Asahi Kasei Corporation PTXG1800) having a molecular weight of 1800 and 20 parts of dimethylolbutanoic acid 100 parts of methyl ethyl ketone were added, and 50 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum to remove water. Cool to 50 ° C. in a dry nitrogen atmosphere and add 47 parts of isophorone diisocyanate. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The weight average molecular weight of the obtained resin was 40,000, and the acid value was 30. Next, while maintaining the temperature, 744.3 parts of water and 5.8 parts of 28% aqueous ammonia were added to make it water-soluble.
[0043]
Production Example 3B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-3) having a solid content of 25%, a pH of 7.4, a weight average molecular weight of 1,200,000 and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0044]
Production Example 4A (Prepolymer production)
184.8 parts of polypropylene adipate having a molecular weight of 2000 and 20 parts of dimethylolbutanoic acid 100 parts of methyl ethyl ketone were added to the same apparatus as in Production Example 1A, and 50 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum to remove moisture. Cool to 50 ° C. in a dry nitrogen atmosphere and add 45.3 parts of isophorone diisocyanate. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The weight average molecular weight of the obtained resin was 40,000, and the acid value was 30. Next, while maintaining the temperature, 744.3 parts of water and 5.8 parts of 28% aqueous ammonia were added to make it water-soluble.
[0045]
Production Example 4B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-4) having a solid content of 25%, a pH of 7.4, a weight average molecular weight of 120,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0046]
Production Example 5A (Prepolymer production)
In the same apparatus as in Production Example 1A, 180 parts of polytetramethylene glycol having a molecular weight of 2000, 3.5 parts of polyethylene glycol having a molecular weight of 400, 20 parts of dimethylolbutanoic acid and 100 parts of methyl ethyl ketone were added, and 50 parts of methyl ethyl ketone was added at 100 ° C. under high vacuum. Distilled off to remove moisture. The mixture was cooled to 50 ° C. in a dry nitrogen atmosphere, and 46.5 parts of isophorone diisocyanate was added. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The obtained resin had a weight average molecular weight of 34,000 and an acid value of 30. Next, while maintaining the temperature, 744.3 parts of water and 5.8 parts of 28% aqueous ammonia were added to make it water-soluble.
[0047]
Production Example 5B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-5) having a solid content of 25%, a pH of 7.4, a weight average molecular weight of 100,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0048]
Production Example 6A (Prepolymer production)
In a device similar to Production Example 1A, 163.8 parts of polytetramethylene glycol having a molecular weight of 2000, 29.8 parts of dimethylolbutanoic acid and 100 parts of methyl ethyl ketone were added, and 50 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum to remove moisture. Removed. Cool to 50 ° C. in a dry nitrogen atmosphere and add 56.5 parts of isophorone diisocyanate. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The obtained resin had a weight average molecular weight of 43,000 and an acid value of 45. Next, while maintaining the temperature, 741 parts of water and 9 parts of 28% aqueous ammonia were added to make it water-soluble.
[0049]
Production Example 6B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of the urethane resin aqueous solution obtained in A (100 parts of resin) and 1.1 parts of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-6) having a solid content of 25%, a pH of 7.6, a weight average molecular weight of 140,000, and an acid value of 40 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0050]
Production Example 7A (Prepolymer Production)
In the same apparatus as in Production Example 1A, 195.3 parts of polytetramethylene glycol having a molecular weight of 2000, 19.8 parts of dimethylolbutanoic acid and 100 parts of methyl ethyl ketone were added, 50 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum, and water was removed. Removed. Cool to 50 ° C. in a dry nitrogen atmosphere and add 35 parts of hexamethylene diisocyanate. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The weight average molecular weight of the obtained resin was 40,000, and the acid value was 30. Next, while maintaining the temperature, 744.3 parts of water and 5.8 parts of 28% aqueous ammonia were added to make it water-soluble.
[0051]
Production Example 7B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-7) having a solid content of 25%, a pH of 7.4, a weight average molecular weight of 120,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0052]
Production Example 8A (Prepolymer production)
In the same apparatus as in Production Example 1A, 185 parts of polytetramethylene glycol having a molecular weight of 2000, 20 parts of dimethylolbutanoic acid, and 100 parts of methyl ethyl ketone were added, and 50 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum to remove moisture. Cool to 50 ° C. in a dry nitrogen atmosphere and add 45 parts of isophorone diisocyanate. Using an exothermic reaction, the temperature was gradually raised and maintained at 80 ° C. for 5 hours. The obtained resin had a weight average molecular weight of 45,000 and an acid value of 30. Next, while maintaining the temperature, 709.8 parts of water and 40.3 parts of diethylaminoethanol were added to make it water-soluble.
[0053]
Production Example 8B (reaction with epoxy compound)
In the same apparatus as in Production Example 1A, 420 parts of urethane resin aqueous solution obtained in A (100 parts of resin) and 0.8 part of glycol polyglycidyl ether having an epoxy equivalent of 143 were added, and the temperature was raised and the reaction was carried out at 80 ° C. for 10 hours. Went. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-8) having a solid content of 25%, a pH of 7.8, a weight average molecular weight of 120,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0054]
Production Example 9 (Reaction with Epoxy Compound)
In the same apparatus as in Production Example 1A, 420 parts of the urethane resin aqueous solution obtained in Production Example 2A (resin content: 100 parts) and 1.4 parts of ethylenediglycidyl ether having an epoxy equivalent of 268 were added and heated to 80 ° C. for 10 hours. The reaction was performed. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-9) having a solid content of 25%, a pH of 7.4, a weight average molecular weight of 120,000, and an acid value of 27 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0055]
Production Example 10 (Reaction with Epoxy Compound)
To the same apparatus as in Production Example 1A, 420 parts of the urethane resin aqueous solution obtained in Production Example 2A (resin content: 100 parts) and 1.5 parts of glycol polyglycidyl ether having an epoxy equivalent of 143 were added and heated to 80 ° C. for 10 hours. The reaction was performed. 20 parts of methyl ethyl ketone was distilled off at 100 ° C. under high vacuum. A resin solution (a-10) having a solid content of 25%, a pH of 7.6, a weight average molecular weight of 320,000, and an acid value of 24 was obtained. There were no coarse particles and the state was stable even at 40 ° C. for 2 weeks.
[0056]
Example 1 (Production of water-based printing ink)
A mixture of 20.0 parts of the resin solution (a-1) obtained in Production Example 1, 40.0 titanium oxide, 0.1 part of an antifoaming agent, and 19.9 parts of water was dispersed in a pigment with a paint conditioner to obtain an ink base. I got. Next, the resin solution obtained in Production Example 1, water, and isopropyl alcohol were added to prepare a printing ink. Carbodiimide curing agent is added to the obtained printing ink, diluted with a mixed solvent of water / isopropyl alcohol = 1/1 (weight ratio), adjusted to the printing viscosity, polyethylene terephthalate film (hereinafter referred to as PET) with a gravure printing machine. The film was printed on a nylon film (hereinafter referred to as “NY”), and the appearance and adhesion of the coating film were evaluated.
Appearance of coating film: The gloss of the printed matter was visually determined.
◎ very shiny
○ Slightly inferior in gloss
△ No gloss
× No gloss
Adhesion evaluation: A cellophane tape peeling test was performed on the printed matter, and the adhesion was visually determined from the appearance of the printed film.
◎ The printed film does not peel off at all.
○ 20% or less of the printed film is peeled off.
Δ 20% to 50% of the printed film is peeled off.
X 50% or more of the printed film is peeled off.
Boil resistance: An isocyanate adhesive was applied to the printing ink surface printed on the NY film, and then molten polyethylene was laminated on the adhesive layer by an extrusion laminating machine to obtain a laminated product. The laminated product was made into a bag, and after sealing, heated in 90 ° C. hot water for 30 minutes, and the laminated state was visually observed from the outside.
◎ There is no Lami float.
○ Lami floats like a pinhole.
Δ Delamination occurs in a streak shape.
× Delamination occurs on the entire surface.
The results are shown in Table 1.
[Table 1]
Figure 0004345335
[0057]
Examples 2-10
The resin solutions (a-2) to (a-10) obtained in Production Examples 2 to 10 were inked and evaluated for printing in the same manner as in Example 1. The results are shown in Table 1.
[0058]
Comparative Examples 1-8
The resin solutions obtained in Production Examples 1A to 8A (not subjected to chain extension by epoxy) were inked and evaluated for printing in the same manner as in Example 1. The results are shown in Table 1.
[0059]
【The invention's effect】
As is clear from the examples and comparative examples, the aqueous polyurethane resin of the present invention has no aggregates, and the aqueous printing ink containing the aqueous resin liquid of the present invention is excellent in adhesion and boil resistance, and is suitable for aqueous printing. Suitable for ink.

Claims (1)

ポリウレタン樹脂の水分散体/水可溶体を得た後、エポキシ化合物を添加し該ポリウレタン樹脂中のカルボキシル基と反応させる水性ポリウレタン樹脂の製造方法において、エポキシ化合物が分子内に少なくとも2個以上のオキシラン環を有し、ポリウレタン樹脂(固形分)100重量部当たり、エポキシ化合物を0.3〜20重量部の範囲で添加、反応させる、重量平均分子量が20000〜1500000であり、酸価が0.5〜70である水性ポリウレタン樹脂の製造方法により得られる水性ポリウレタン樹脂を含有することを特徴とする印刷インキIn the method for producing an aqueous polyurethane resin in which an epoxy compound is added and reacted with a carboxyl group in the polyurethane resin after obtaining an aqueous dispersion / water-soluble body of the polyurethane resin, the epoxy compound has at least two oxiranes in the molecule. It has a ring, and an epoxy compound is added and reacted in the range of 0.3 to 20 parts by weight per 100 parts by weight of the polyurethane resin (solid content). The weight average molecular weight is 20,000 to 1500,000, and the acid value is 0.5. A printing ink comprising an aqueous polyurethane resin obtained by a method for producing an aqueous polyurethane resin of ~ 70.
JP2003093228A 2003-03-31 2003-03-31 Water-based polyurethane resin and printing ink using the resin Expired - Fee Related JP4345335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093228A JP4345335B2 (en) 2003-03-31 2003-03-31 Water-based polyurethane resin and printing ink using the resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093228A JP4345335B2 (en) 2003-03-31 2003-03-31 Water-based polyurethane resin and printing ink using the resin

Publications (2)

Publication Number Publication Date
JP2004300223A JP2004300223A (en) 2004-10-28
JP4345335B2 true JP4345335B2 (en) 2009-10-14

Family

ID=33406078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093228A Expired - Fee Related JP4345335B2 (en) 2003-03-31 2003-03-31 Water-based polyurethane resin and printing ink using the resin

Country Status (1)

Country Link
JP (1) JP4345335B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584180C (en) * 2005-02-18 2010-01-20 东洋油墨制造株式会社 Electromagnetic-wave-shielding adhesive film, process for producing the same, and method of shielding adherend from electromagnetic wave
JP5549387B2 (en) * 2010-06-04 2014-07-16 東洋インキScホールディングス株式会社 Non-yellowing water-soluble printing ink composition
WO2012035827A1 (en) * 2010-09-17 2012-03-22 Dic株式会社 Binder for inkjet printing ink, inkjet printing ink containing same, and printed matter
JP5831022B2 (en) * 2011-08-04 2015-12-09 Dic株式会社 Method for producing a binder for ink jet printing ink
JP6330603B2 (en) * 2014-09-19 2018-05-30 東洋インキScホールディングス株式会社 Water-based ink resin composition and water-based ink composition
JP7187438B2 (en) * 2017-03-22 2022-12-12 株式会社Adeka Aqueous polyurethane resin composition
JP2020193321A (en) 2019-05-27 2020-12-03 花王株式会社 Water-based ink for printing with printing plate
CN114729181B (en) * 2019-12-20 2024-06-28 Dic株式会社 Aqueous urethane resin dispersion, synthetic leather, and method for producing synthetic leather
CN111732850B (en) * 2020-07-15 2022-11-08 沾化神茂皮革助剂有限公司 Formula of waterborne polyurethane ink binder for food flexible packaging and preparation method thereof
CN113528246B (en) * 2021-05-21 2024-04-12 东莞市浩彩油墨科技有限公司 Preparation method of multifunctional water-based vegetable oil binder and water-based ink

Also Published As

Publication number Publication date
JP2004300223A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP3493796B2 (en) Waterborne polyurethane resin paint
JP3001358B2 (en) Aqueous printing ink composition for plastic film, adhesive for aqueous lamination, and method for producing a laminated product using the same
JP4345335B2 (en) Water-based polyurethane resin and printing ink using the resin
GB2382545A (en) Coated film and method of laminating the same
JP2019112583A (en) Ink set and decorative material
JP5035742B2 (en) Aqueous polyurethane emulsion composition
JPH11323300A (en) Polyurethane emulsion for aqueous adhesive and aqueous adhesive produced by using the emulsion
JPH11228655A (en) Polyurethane-based emulsion for water-based printing ink and water-based printing ink using the same
JPH11293191A (en) Polyurethane-based emulsion for aqueous printing ink, and aqueous printing ink using the same
JP3767034B2 (en) Self-crosslinking water-based polyurethane resin, process for producing the same, and water-based printing ink using the same as a binder
JPH0827243A (en) Aqueous polyurethane resin and its production
JP4029231B2 (en) Binder for printing ink
JP3255953B2 (en) Aqueous printing ink composition for lamination
JP3047586B2 (en) Polyurethane having rosin skeleton
JPH10152639A (en) Water-base printing ink
JP2005048046A (en) Adhesive for dry laminate
JP2004115670A (en) Polyurethane resin and printing ink using the same
JPH101636A (en) Water-base printing ink and its production
JPH0680754A (en) Water-base polyurethane having rosin backbone
JPH05302050A (en) Printing ink
JP4573155B2 (en) Water-based polyurethane resin, water-based polyurethane resin aqueous dispersion, printing ink binder and printing ink composition
JPH07157526A (en) Production of self-emulsifiable urethane emulsion
JPH0827242A (en) Aqueous polyurethane resin and its production
JP3214288B2 (en) Printing ink composition and printed matter
JPH11279471A (en) Water-based printing ink composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4345335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees