JP2003192994A - Coating liquid for forming transparent electroconductive coating film, substrate with transparent electroconductive coating film and display device - Google Patents

Coating liquid for forming transparent electroconductive coating film, substrate with transparent electroconductive coating film and display device

Info

Publication number
JP2003192994A
JP2003192994A JP2001397933A JP2001397933A JP2003192994A JP 2003192994 A JP2003192994 A JP 2003192994A JP 2001397933 A JP2001397933 A JP 2001397933A JP 2001397933 A JP2001397933 A JP 2001397933A JP 2003192994 A JP2003192994 A JP 2003192994A
Authority
JP
Japan
Prior art keywords
transparent conductive
forming
film
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001397933A
Other languages
Japanese (ja)
Other versions
JP4002435B2 (en
Inventor
Mitsuaki Kumazawa
沢 光 章 熊
Toshiharu Hirai
井 俊 晴 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001397933A priority Critical patent/JP4002435B2/en
Publication of JP2003192994A publication Critical patent/JP2003192994A/en
Application granted granted Critical
Publication of JP4002435B2 publication Critical patent/JP4002435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating liquid for forming a transparent electroconductive coating film which can form a transparent electroconductive coating film having a surface resistivity as low as about 10<SP>2</SP>-10<SP>8</SP>Ω/sq., exhibiting excellence in antistatic properties, electromagnetic shielding properties and reflection-preventing properties and excellent in adhesion to a substrate and also in scratch resistance, and a substrate with a transparent electroconductive coating film. <P>SOLUTION: The coating liquid for forming a transparent electroconductive coating film comprises an electroconductive polymer, an inorganic oxide particle having a refractive index within the range of 1.28-1.42 and a polar solvent. The substrate with a transparent electroconductive coating film is formed using the coating liquid for forming a transparent electroconductive coating film. The substrate with a transparent electroconductive coating film comprises a transparent electroconductive layer formed using the coating liquid for forming a transparent electroconductive coating film comprising an electroconductive polymer, an inorganic oxide particle having a refractive index within the range of 1.5-2.8 and a polar solvent and, formed thereon, the transparent coating film comprising an inorganic oxide particle having a refractive index within the range of 1.28-1.42. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、導電性高分子と無機酸化
物粒子と極性溶媒とからなることを特徴とする透明導電
性被膜形成用塗布液、該塗布液を用いて形成された透明
導電性被膜付基材、該基材を備えた表示装置に関する。
さらに詳しくは、導電性高分子と無機酸化物粒子とを用
いた透明導電性被膜が基材との密着性や耐擦傷性等に優
れ、帯電防止性能、電磁波遮蔽性能に優れるとともに反
射防止性能にも優れた透明導電性被膜の形成に使用可能
な透明導電性被膜形成用塗布液、および該塗布液を用い
て得られる透明導電性被膜付き基材、該基材を備えた表
示装置に関する。
TECHNICAL FIELD The present invention relates to a coating liquid for forming a transparent conductive film, which comprises a conductive polymer, inorganic oxide particles and a polar solvent, and a transparent conductive film formed using the coating liquid. TECHNICAL FIELD The present invention relates to a base material with a hydrophilic coating and a display device including the base material.
More specifically, a transparent conductive coating using a conductive polymer and inorganic oxide particles has excellent adhesion to a substrate, scratch resistance, etc., and has excellent antistatic performance, electromagnetic wave shielding performance, and antireflection performance. Also relates to a coating liquid for forming a transparent conductive coating, which can be used for forming an excellent transparent conductive coating, a substrate with a transparent conductive coating obtained by using the coating liquid, and a display device provided with the substrate.

【0002】[0002]

【発明の技術的背景】従来より、陰極線管、蛍光表示
管、液晶表示板などの表示パネルのような透明基材の表
面の帯電防止および反射防止を目的として、これらの表
面に帯電防止機能および反射防止機能を有する透明被膜
を形成することが行われていた。また、陰極線管などか
ら放出される電磁波が人体に影響を及ぼすことから従来
の帯電防止、反射防止に加えてこれらの電磁波および電
磁波の放出に伴って形成される電磁場を遮蔽することが
望まれている。
2. Description of the Related Art Conventionally, for the purpose of antistatic and antireflection of the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube, a liquid crystal display panel, etc. It has been performed to form a transparent film having an antireflection function. Further, since electromagnetic waves emitted from a cathode ray tube and the like affect the human body, it is desired to shield the electromagnetic fields formed by the emission of these electromagnetic waves and electromagnetic waves in addition to the conventional antistatic and antireflection. There is.

【0003】これらの電磁波などを遮蔽する方法の一つ
として、陰極線管などの表示パネルの表面に電磁波遮断
用の導電性被膜を形成する方法がある。しかし、従来の
帯電防止用導電性被膜であれば表面抵抗が少なくとも1
7Ω/□程度の表面抵抗を有していれば十分であるの
に対し、電磁遮蔽用の導電性被膜では102〜104Ω/
□のような低い表面抵抗を有することが必要であった。
As one of the methods of shielding these electromagnetic waves and the like, there is a method of forming a conductive coating for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. However, the conventional antistatic conductive coating has a surface resistance of at least 1.
It is sufficient to have a surface resistance of about 0 7 Ω / □, whereas a conductive coating for electromagnetic shielding has a surface resistance of 10 2 to 10 4 Ω /
It was necessary to have a low surface resistance such as □.

【0004】このように表面抵抗の低い導電性被膜を、
従来のSbドープ酸化錫またはSnドープ酸化インジウム
のような導電性酸化物を含む塗布液を用いて形成しよう
とすると、従来の帯電防止性被膜の場合よりも膜厚を厚
くする必要があった。しかしながら、導電性被膜の膜厚
は、10〜200nm程度にしないと反射防止効果は発現
しないため、従来のSbドープ酸化錫またはSnドープ酸
化インジウムのような導電性酸化物では、表面抵抗が低
く、電磁波遮断性に優れるとともに、反射防止にも優れ
た導電性被膜を得ることが困難であるという問題があっ
た。
A conductive film having a low surface resistance is
If a conventional coating solution containing a conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide is used, it is necessary to make the film thicker than in the case of the conventional antistatic coating. However, since the antireflection effect is not exhibited unless the thickness of the conductive coating is set to about 10 to 200 nm, conventional conductive oxides such as Sb-doped tin oxide or Sn-doped indium oxide have a low surface resistance, There is a problem in that it is difficult to obtain a conductive coating film that is excellent in electromagnetic wave shielding properties and also in antireflection.

【0005】また、低表面抵抗の導電性被膜を形成する
方法の一つとして、Agなどの金属微粒子を含む導電性
被膜形成用塗布液を用いて基材の表面に金属微粒子含有
被膜を形成する方法がある。この方法では、金属微粒子
含有被膜形成用塗布液として、コロイド状の金属微粒子
が極性溶媒に分散したものが用いられている。このよう
な塗布液では、コロイド状金属微粒子の分散性を向上さ
せるために、金属微粒子表面がポリビニルアルコール、
ポリビニルピロリドンまたはゼラチンなどの有機系安定
剤で表面処理されている。しかしながら、このような金
属微粒子含有被膜形成用塗布液を用いて形成された導電
性被膜は、被膜中で金属微粒子同士が安定剤を介して接
触するため、粒界抵抗が大きく、被膜の表面抵抗が低く
ならないことがあった。このため、製膜後、400℃程
度の高温で焼成して安定剤を分解除去する必要がある
が、安定剤の分解除去をするため高温で焼成すると、金
属微粒子同士の融着や凝集が起こり、導電性被膜の透明
性やヘーズが低下するという問題があった。また、陰極
線管などの場合は、高温に晒すと劣化してしまうという
問題もあった。
Further, as one of the methods for forming a conductive film having a low surface resistance, a coating film containing metal fine particles is formed on the surface of a substrate by using a coating liquid for forming a conductive film containing metal fine particles such as Ag. There is a way. In this method, as a coating liquid for forming a coating film containing metal fine particles, a colloidal metal fine particle dispersed in a polar solvent is used. In such a coating liquid, in order to improve the dispersibility of the colloidal metal fine particles, the surface of the metal fine particles is polyvinyl alcohol,
It is surface-treated with an organic stabilizer such as polyvinylpyrrolidone or gelatin. However, a conductive coating formed using such a coating solution for forming a coating containing metal fine particles has a large grain boundary resistance because the metal fine particles come into contact with each other through a stabilizer in the coating, and the surface resistance of the coating is large. Sometimes did not go down. For this reason, after film formation, it is necessary to bake at a high temperature of about 400 ° C. to decompose and remove the stabilizer, but if it is baked at a high temperature to decompose and remove the stabilizer, fusion and agglomeration of metal fine particles occur. However, there is a problem that the transparency and haze of the conductive coating are reduced. Further, in the case of a cathode ray tube or the like, there is a problem that it deteriorates when exposed to high temperature.

【0006】さらに従来のAg等の金属微粒子を含む透
明導電性被膜では、金属が酸化されたり、イオン化によ
る粒子成長したり、また場合によっては腐食が発生する
ことがあり、塗膜の導電性や光透過率が低下し、表示装
置が信頼性を欠くという問題があった。そこで導電性酸
化物微粒子または金属微粒子からなる導電性被膜上には
通常反射防止性能を付与して表示性能を向上するため
に、あるいは導電性被膜を保護するために反射防止膜あ
るいは保護膜が形成されている。
Furthermore, in the conventional transparent conductive coating containing fine metal particles such as Ag, the metal may be oxidized, particles may grow due to ionization, and corrosion may occur depending on the case. There is a problem that the light transmittance is lowered and the display device lacks reliability. Therefore, an antireflection film or a protective film is usually formed on a conductive coating composed of conductive oxide fine particles or metal fine particles in order to impart antireflection performance to improve display performance or to protect the conductive coating. Has been done.

【0007】このときの反射防止膜の形成には、下層の
導電性被膜よりも屈折率の低い被膜形成成分を含む反射
防止膜形成用塗布液が用いられ、たとえば被膜形成成分
としては、樹脂、有機ケイ素化合物の加水分解物やこれ
らに低屈折率粒子としてフッ化マグネシウムやシリカ粒
子などが配合されて用いられている。しかしながら、上
記した導電性金属微粒子、導電性酸化物微粒子を用いた
導電性被膜は可撓性がなく、またこのようなナノサイズ
のゾル粒子を用いると粒子によっては均一に分散でき
ず、不安定で凝集して沈降することがあり、得られる導
電性被膜の外観が低下(筋、傷の発生)したり、透明性
が不充分となったりすることがあった。
In forming the antireflection film at this time, a coating liquid for forming an antireflection film containing a film forming component having a refractive index lower than that of the lower conductive film is used. For example, as the film forming component, resin, A hydrolyzate of an organosilicon compound and magnesium fluoride, silica particles or the like as a low refractive index particle are mixed and used. However, the conductive coating film using the above-mentioned conductive metal fine particles and conductive oxide fine particles is not flexible, and when such nano-sized sol particles are used, some particles cannot be uniformly dispersed and are unstable. In some cases, the resulting conductive coating film may deteriorate in appearance (streaks and scratches may occur) or may have insufficient transparency.

【0008】このため、特開2000−149661号
公報に、導電性材料として導電性高分子を用いること
で、当該導電性高分子が可撓性を有しているために、柔
軟な基材に使用することが可能となることが提案されて
いる。しかしながら、このような導電性高分子を用いる
と、基材との密着性が不充分であったり、耐擦傷性が低
かったりするなどの問題点があった。また、基材の屈折
率によっては充分な反射防止性能が得られない場合があ
った。
Therefore, in JP-A-2000-149661, when a conductive polymer is used as the conductive material, the conductive polymer has flexibility, so that a flexible base material is obtained. It is proposed that it can be used. However, when such a conductive polymer is used, there are problems such as insufficient adhesion to the base material and low scratch resistance. Further, depending on the refractive index of the base material, sufficient antireflection performance may not be obtained in some cases.

【0009】さらに、特開2000−230152号公
報には、導電性高分子層上にフルオロアルキルシランか
ら誘導される保護膜を設けた陰極線管が開示されてい
る。しかしながら、このようなフルオロアルキルシラン
から誘導された保護膜では、導電性高分子層との屈折率
差が小さいために反射防止性能が充分ではないという問
題点があった。
Further, Japanese Patent Application Laid-Open No. 2000-230152 discloses a cathode ray tube in which a conductive polymer layer is provided with a protective film derived from fluoroalkylsilane. However, the protective film derived from such a fluoroalkylsilane has a problem that the antireflection performance is not sufficient because the difference in refractive index from the conductive polymer layer is small.

【0010】さらにまた、特開2000−195334
号公報には、酸化チタン粒子等の高屈折率粒子を含む導
電性高分子層上にシリカゾルを塗布して、低屈折率膜を
形成することが提案されている。しかしながら、このよ
うなものではボトム反射率は低いものの、視感反射率
(400〜700nmの範囲の平均反射率)が高目であ
るために目で感じる反射(映り込み)が強く感じられた
り、反射色の色付きを抑えたりすることが困難であるこ
とがあった。
Furthermore, Japanese Patent Laid-Open No. 2000-195334.
In the publication, it is proposed that silica sol is applied on a conductive polymer layer containing high refractive index particles such as titanium oxide particles to form a low refractive index film. However, although such a product has a low bottom reflectance, since the luminous reflectance (average reflectance in the range of 400 to 700 nm) is high, the reflection (reflection) felt by the eye is strongly felt, It has been difficult to suppress the coloring of the reflection color.

【0011】このため、さらなる反射防止性能に優れた
導電性被膜付基材の出現が求められていた。
For this reason, the appearance of a substrate with a conductive film which is further excellent in antireflection performance has been demanded.

【0012】[0012]

【発明の目的】本発明は、上記のような従来技術の問題
点を解決し、102〜108Ω/□程度の低い表面抵抗を
有し、優れた帯電防止性、電磁遮蔽性および反射防止性
を併せ持つともに、基材との密着性に優れ、耐擦傷性に
も優れた透明導電性被膜を形成しうる透明導電性被膜形
成用塗布液、透明導電性被膜付基材および該基材を備え
た表示装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the above problems of the prior art and has a low surface resistance of about 10 2 to 10 8 Ω / □, excellent antistatic property, electromagnetic shielding property and reflection property. A coating solution for forming a transparent conductive film, which has excellent adhesion to a substrate and also has excellent scratch resistance, and also has a preventive property, a substrate with a transparent conductive film, and the substrate. An object of the present invention is to provide a display device provided with.

【0013】[0013]

【発明の概要】本発明に係る透明導電性被膜形成用塗布
液は、導電性高分子と屈折率が1.28〜1.42の範囲
にある無機酸化物粒子と極性溶媒とからなることを特徴
としている。本発明に係る塗布液には、さらに、マトリ
ックス形成成分を含んでいることが望ましい。
SUMMARY OF THE INVENTION The coating liquid for forming a transparent conductive film according to the present invention comprises a conductive polymer, inorganic oxide particles having a refractive index in the range of 1.28 to 1.42, and a polar solvent. It has a feature. It is desirable that the coating liquid according to the present invention further contains a matrix-forming component.

【0014】本発明に係る透明導電性被膜付基材は、前
記記載の透明導電性被膜形成用塗布液を用いて形成され
てなることを特徴としている。本発明に係る透明導電性
被膜付基材は、導電性高分子と屈折率が1.5〜2.8の
範囲にある無機酸化物粒子と極性溶媒とからなる透明導
電性被膜形成用塗布液を用いて形成された透明導電層上
に、屈折率が1.28〜1.42の範囲にある無機酸化物
粒子を含む透明被膜が設けられていることを特徴として
いる。
The substrate with a transparent conductive film according to the present invention is characterized by being formed by using the above-mentioned coating liquid for forming a transparent conductive film. The transparent conductive film-coated substrate according to the present invention is a coating liquid for forming a transparent conductive film, which comprises a conductive polymer, inorganic oxide particles having a refractive index in the range of 1.5 to 2.8, and a polar solvent. It is characterized in that a transparent coating film containing inorganic oxide particles having a refractive index in the range of 1.28 to 1.42 is provided on the transparent conductive layer formed using.

【0015】本発明に係る表示装置は、前記記載の透明
導電性被膜付基材で構成された前面板を備え、該前面板
の外表面に透明導電性被膜が形成されていることを特徴
としている。
A display device according to the present invention comprises a front plate composed of the above-mentioned base material with a transparent conductive film, and a transparent conductive film is formed on the outer surface of the front plate. There is.

【0016】[0016]

【発明の具体的説明】以下、本発明について具体的に説
明する。透明導電性被膜形成用塗布液 まず、本発明に係る透明導電性被膜形成用塗布液につい
て説明する。 [導電性高分子]本発明の透明導電性被膜形成用塗布液
に用いる導電性高分子としては、帯電防止性、電磁遮蔽
性を示す導電性高分子であれば従来公知の導電性高分子
を用いることができ、具体的には、ポリチオフェン系樹
脂、ポリピロール系樹脂、ポリアニリン系樹脂、ポリア
セチレン系樹脂、ポリパラフェニレン系樹脂、ポリセレ
ノフェン系樹脂等の樹脂および、これらの混合物等が挙
げられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. Coating Liquid for Forming Transparent Conductive Film First, the coating liquid for forming a transparent conductive film according to the present invention will be described. [Conductive Polymer] As the conductive polymer used in the coating liquid for forming the transparent conductive coating film of the present invention, a conventionally known conductive polymer may be used as long as it is a conductive polymer having antistatic properties and electromagnetic shielding properties. It can be used, and specific examples thereof include resins such as polythiophene-based resins, polypyrrole-based resins, polyaniline-based resins, polyacetylene-based resins, polyparaphenylene-based resins, and polyselenophene-based resins, and mixtures thereof.

【0017】中でもポリチオフェン系樹脂、ポリピロー
ル系樹脂は導電性が高く好ましい。塗布液中の導電性高
分子の濃度は0.01〜3重量%、さらには0.1〜2重
量%の範囲にあることが好ましい。塗布液中の導電性高
分子の濃度が前記範囲未満の場合は、濃度が低すぎて得
られる透明導電性被膜の膜厚が薄く充分な導電性が得ら
れないことがある。
Among them, polythiophene-based resins and polypyrrole-based resins are preferable because of their high conductivity. The concentration of the conductive polymer in the coating liquid is preferably in the range of 0.01 to 3% by weight, more preferably 0.1 to 2% by weight. If the concentration of the conductive polymer in the coating liquid is less than the above range, the concentration may be too low and the resulting transparent conductive coating may have a small film thickness and may not have sufficient conductivity.

【0018】塗布液中の導電性高分子の濃度が前記範囲
を越えると、塗布ムラができたり、膜厚が厚すぎて透過
率が低下したり、基材との密着性に劣ることがある。 [無機酸化物粒子]本発明に用いる無機酸化物粒子とし
てはSiO2、Al23、ZrO2、SnO2等の酸化物粒子
およびこれらの1種または2種以上からなる複合酸化物
粒子が挙げられる。
If the concentration of the conductive polymer in the coating liquid exceeds the above range, coating unevenness may occur, the film thickness may be too thick and the transmittance may be reduced, or the adhesion to the substrate may be poor. . [Inorganic Oxide Particles] The inorganic oxide particles used in the present invention include oxide particles such as SiO 2 , Al 2 O 3 , ZrO 2 and SnO 2 and composite oxide particles composed of one or more of these. Can be mentioned.

【0019】このような無機酸化物粒子は、平均粒子径
が1〜300nm、さらには2〜200nmの範囲にあ
ることが好ましい。平均粒子径が前記範囲の下限未満の
場合は、粒子が凝集する傾向にあり導電性高分子樹脂中
に高分散できないことがあり、このため基材との密着性
をかえって低下させることがある。平均粒子径が前記範
囲の上限を越えると、膜形成性が低下したり、この場合
も基材との密着性が低下することがあり、さらに通常採
用する膜厚よりも大きく表面に凹凸ができる。
Such inorganic oxide particles preferably have an average particle size of 1 to 300 nm, more preferably 2 to 200 nm. If the average particle size is less than the lower limit of the above range, the particles tend to aggregate and may not be highly dispersed in the conductive polymer resin, which may rather reduce the adhesion to the substrate. If the average particle size exceeds the upper limit of the above range, the film formability may be deteriorated, and in this case as well, the adhesion with the substrate may be deteriorated, and the surface may have irregularities larger than the film thickness usually adopted. .

【0020】前記無機酸化物粒子は屈折率が1.28〜
1.42、さらには1.30〜1.40の範囲にあること
が好ましい。屈折率が1.28未満の無機酸化物粒子
は、得ることが困難であり、屈折率が1.42を越える
と、得られる透明導電性被膜の屈折率があまり低下せ
ず、用いる基材の屈折率によっては双方の屈折率差が小
さく、たとえば屈折率差が0.03以内と小さい場合は
反射防止性能が不充分となることがある。
The inorganic oxide particles have a refractive index of 1.28 to
It is preferably 1.42, more preferably 1.30 to 1.40. Inorganic oxide particles having a refractive index of less than 1.28 are difficult to obtain, and when the refractive index exceeds 1.42, the refractive index of the transparent conductive coating obtained does not decrease so much and Depending on the refractive index, the difference in refractive index between the two may be small. For example, when the difference in refractive index is as small as 0.03 or less, the antireflection performance may be insufficient.

【0021】無機酸化物粒子の屈折率が上記範囲にあれ
ば、別に反射防止用の透明被膜を設けることなく反射防
止性能に優れた透明導電性被膜付基材を得ることができ
る。このような無機酸化物粒子としては屈折率が上記範
囲にあれば特に制限はなく従来公知の無機酸化物粒子を
用いることができる。なかでも、本願出願人の出願によ
る特開平7−133105号公報に開示したシリカ系微
粒子、WO00/37359号公報に開示したシリカ系
微粒子は屈折率が1.40以下と低く、特に内部に空洞
を有するシリカ系微粒子屈折率が低く、このようなシリ
カ系微粒子を用いて得られる透明導電性被膜付基材は反
射防止性能に優れ、視感反射率が低く、このため目で感
じる反射(映り込み)は弱く、反射色の色付きを抑える
ことができる。
When the refractive index of the inorganic oxide particles is within the above range, it is possible to obtain a transparent conductive film-coated substrate having excellent antireflection performance without separately providing a transparent antireflection film. Such inorganic oxide particles are not particularly limited as long as the refractive index is within the above range, and conventionally known inorganic oxide particles can be used. Among them, the silica-based fine particles disclosed in Japanese Patent Application Laid-Open No. 7-133105 and the silica-based fine particles disclosed in WO00 / 37359, which are filed by the applicant of the present application, have a low refractive index of 1.40 or less, and particularly have a cavity inside. The silica-based fine particles have a low refractive index, and the transparent conductive film-coated substrate obtained by using such silica-based fine particles has excellent antireflection performance and low luminous reflectance, and therefore the reflection (reflection) that is felt by the eye ) Is weak and can suppress the coloring of the reflection color.

【0022】さらに、前記無機酸化物粒子は、塗布液中
での分散性、導電性高分子との親和性等を向上させるた
めにシランカップリング剤等で表面処理して用いること
ができる。シランカップリング剤としては従来公知のシ
ランカップリング剤を用いることができ、たとえば、ビ
ニルトリクロルシラン、ビニルトリス(β-メトキシエ
トキシ)シラン、ビニルトリエトキシシラン、ビニルト
リメトキシシラン、γ−グリシドキシプロピルトリメト
キシシラン、γ−グリシドキシプロピルメチルジエトキ
シシラン、γ−アミノプロピルトリエトキシシラン等が
挙げられる。
Further, the above-mentioned inorganic oxide particles can be used after being surface-treated with a silane coupling agent or the like in order to improve dispersibility in a coating liquid, affinity with a conductive polymer and the like. As the silane coupling agent, a conventionally known silane coupling agent can be used. For example, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-glycidoxypropyl. Examples thereof include trimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane.

【0023】表面処理方法としては特に制限はなく、従
来公知の方法を採用することができ、たとえば、無機酸
化物粒子分散液にシランカップリング剤を添加し、必要
に応じて加熱したり、硝酸などの酸を添加したりして処
理することができる。塗布液中の無機酸化物粒子の濃度
は導電性高分子の濃度にもよるが、0.0001〜1.
5重量%、さらには0.005〜1.2重量%の範囲にあ
ることが好ましい。
The surface treatment method is not particularly limited, and a conventionally known method can be adopted. For example, a silane coupling agent is added to a dispersion liquid of inorganic oxide particles, and if necessary, heated or nitric acid is added. It is possible to add or treat an acid such as. The concentration of the inorganic oxide particles in the coating liquid depends on the concentration of the conductive polymer, but 0.0001-1.
It is preferably in the range of 5% by weight, and more preferably 0.005 to 1.2% by weight.

【0024】また、塗布液中の無機酸化物粒子の重量
(WP)と導電性高分子の重量(WR)との重量比(W
P)/(WR)は0.01〜0.5、さらには0.05〜
0.4の範囲にあることが好ましい。この重量比(W
P)/(WR)が前記範囲の下限未満の場合は、得られ
る透明導電性被膜中の無機酸化物粒子が少なく、充分な
基材との密着性や、耐擦傷性が得られないことがある。
また、重量比(WP)/(WR)が前記範囲の上限を越
えると、無機酸化物粒子が多すぎて基材との密着性が低
下することがあり、また用いる無機酸化物粒子が絶縁性
微粒子の場合は導電性が不充分となることがあり、この
ため充分な帯電防止性能や電磁波遮蔽性能が得られない
ことがある。
The weight ratio (W) of the weight (WP) of the inorganic oxide particles and the weight (WR) of the conductive polymer in the coating solution.
P) / (WR) is 0.01 to 0.5, and further 0.05 to
It is preferably in the range of 0.4. This weight ratio (W
When P) / (WR) is less than the lower limit of the above range, the amount of inorganic oxide particles in the obtained transparent conductive coating is small, and sufficient adhesion to a substrate and scratch resistance may not be obtained. is there.
If the weight ratio (WP) / (WR) exceeds the upper limit of the above range, the amount of the inorganic oxide particles may be too large and the adhesion to the substrate may be lowered. In the case of fine particles, the conductivity may be insufficient, so that sufficient antistatic performance and electromagnetic wave shielding performance may not be obtained.

【0025】透明導電性被膜形成用塗布液中の固形分濃
度(導電性高分子と無機酸化物粒子の重量、なお後述す
るマトリックス形成成分、カーボン微粒子、染料、顔料
などの添加剤を含む場合はそれらを加えた総量)は、塗
布液の流動性、塗布液中の導電性高分子と無機酸化物粒
子など粒状成分の分散性などの点から、10重量%以
下、好ましくは0.15〜5重量%であることが好まし
い。
The solid content concentration in the coating liquid for forming the transparent conductive film (weight of the conductive polymer and the inorganic oxide particles, when the additives such as matrix-forming components, carbon fine particles, dyes and pigments described later are included) The total amount including them) is 10% by weight or less, preferably 0.15 to 5 from the viewpoints of fluidity of the coating liquid, dispersibility of the conductive polymer in the coating liquid and granular components such as inorganic oxide particles. It is preferably in the weight%.

【0026】このような透明導電性被膜形成用塗布液に
は、前記導電性高分子および無機酸化物微粒子以外に微
粒子カーボン、染料、顔料など着色剤が含まれていても
よい。これらの微粒子カーボンなどの平均粒径は、前記
無機酸化物粒子と同様の範囲にあることが好ましい。
In addition to the conductive polymer and the inorganic oxide fine particles, the coating liquid for forming the transparent conductive coating film may contain a colorant such as fine particle carbon, a dye or a pigment. It is preferable that the average particle size of these fine particle carbons is in the same range as that of the inorganic oxide particles.

【0027】微粒子カーボンなど着色剤の含有量は、前
記導電性高分子1重量部当たり、0.5重量部以下、好
ましくは0.2重量部以下の量で含まれていればよい。
微粒子カーボンなどが0.5重量部を超える場合は、透
過率が低くなり過ぎることがあり、また得られる透明導
電性被膜の厚さが不均一になるとともに導電性が低下し
電磁波遮蔽効果が低下することがあるので好ましくな
い。
The content of the coloring agent such as fine particle carbon may be 0.5 parts by weight or less, preferably 0.2 parts by weight or less, based on 1 part by weight of the conductive polymer.
If the amount of fine carbon particles exceeds 0.5 parts by weight, the transmittance may be too low, and the thickness of the resulting transparent conductive coating may be non-uniform and the conductivity may decrease, resulting in a decrease in the electromagnetic wave shielding effect. It is not preferable because it may occur.

【0028】本発明に係る透明低反射導電性被膜形成用
塗布液には、被膜形成後の導電性高分子、無機酸化物粒
子と基材との間のバインダーとして作用するマトリック
ス形成成分が含まれていてもよい。このようなマトリッ
クス形成成分としては、ポリビニルアルコール、ポリビ
ニルアセテート、ハイドロキシプロピルセルロース等の
水溶性高分子あるいは下記シリカ系のマトリックス形成
成分が好ましい。
The coating liquid for forming the transparent low-reflective conductive coating film according to the present invention contains the conductive polymer after forming the coating film, and the matrix forming component which acts as a binder between the inorganic oxide particles and the substrate. May be. As such a matrix-forming component, a water-soluble polymer such as polyvinyl alcohol, polyvinyl acetate, hydroxypropyl cellulose or the following silica-based matrix-forming component is preferable.

【0029】シリカ系のマトリックス形成成分として具
体的には、下記式[1]で表されるアルコキシシランな
どの有機ケイ素化合物の加水分解重縮合物またはアルカ
リ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸
重縮合物などが挙げられる。このマトリックス形成成分
は、前記導電性高分子と無機酸化物粒子の合計重量1重
量部当たり、固形分として0.01〜0.5重量部、好ま
しくは0.03〜0.3重量部の量で含まれていればよ
い。
The silica-based matrix-forming component is specifically obtained by dealkalizing a hydrolyzed polycondensate of an organosilicon compound such as an alkoxysilane represented by the following formula [1] or an alkali metal silicate aqueous solution. Examples thereof include silicic acid polycondensates. This matrix-forming component is in an amount of 0.01 to 0.5 parts by weight, preferably 0.03 to 0.3 parts by weight, as a solid content, based on 1 part by weight of the total weight of the conductive polymer and the inorganic oxide particles. Should be included in.

【0030】RaSi(OR')4-a [1] (式中、Rはビニル基、アリール基、アクリル基、炭素
数1〜8のアルキル基、水素原子またはハロゲン原子で
あり、R'はビニル基、アリール基、アクリル基、炭系
数1〜8のアルキル基、−C24OCn2n+1(n=1
〜4)または水素原子であり、aは1〜3の整数であ
る。) このようなアルコキシランとしては、テトラメトキシシ
ラン、テトラエトキシシラン、テトライソプロポキシシ
ラン、テトラブトキシシラン、テトラオクチルシラン、
メチルトリメトキシシラン、メチルトリエトキシシラ
ン、エチルトリエトキシシラン、メチルトリイソプロポ
キシシラン、ビニルトリメトキシシラン、フェニルトリ
メトキシシラン、ジメチルジメトキシシラン、ジメトキ
シメチル-3,3,3-トリフルオロプロピルシラン、3,
3,3-トリフルオロプロピルトリメトキシシランなどが
挙げられる。
R a Si (OR ') 4-a [1] (In the formula, R is a vinyl group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, and R' vinyl group, an aryl group, an acrylic group, an alkyl group of carbon-based number 1~8, -C 2 H 4 OC n H 2n + 1 (n = 1
To 4) or a hydrogen atom, and a is an integer of 1 to 3. ) Such alkoxylanes include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane,
Methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, dimethoxymethyl-3,3,3-trifluoropropylsilane, 3 ,
Examples include 3,3-trifluoropropyltrimethoxysilane and the like.

【0031】上記のアルコキシシランの1種または2種
以上を、たとえば水−アルコール混合溶媒中で酸触媒の
存在下、加水分解すると、アルコキシシランの加水分解
重縮合物であるマトリックス形成成分分散液が得られ
る。このようなマトリックス形成成分分散液に導電性高
分子と無機酸化物粒子を分散させることによってマトリ
ックス形成成分を含む透明導電性被膜形成用塗布液が得
られる。 [極性溶媒]本発明で用いられる極性溶媒としては、
水;メタノール、エタノール、プロパノール、ブタノー
ル、ジアセトンアルコール、フルフリルアルコール、テ
トラヒドロフルフリルアルコール、エチレングリコー
ル、ヘキシレングリコールなどのアルコール類;酢酸メ
チルエステル、酢酸エチルエステルなどのエステル類;
ジエチルエーテル、エチレングリコールモノメチルエー
テル、エチレングリコールモノエチルエーテル、エチレ
ングリコールモノブチルエーテル、ジエチレングリコー
ルモノメチルエーテル、ジエチレングリコールモノエチ
ルエーテルなどのエーテル類;アセトン、メチルエチル
ケトン、アセチルアセトン、アセト酢酸エステルなどの
ケトン類などが挙げられる。これらは単独で使用しても
よく、また2種以上混合して使用してもよい。
When one or more of the above alkoxysilanes are hydrolyzed in the presence of an acid catalyst in, for example, a water-alcohol mixed solvent, a matrix-forming component dispersion liquid, which is a hydrolytic polycondensate of alkoxysilane, is obtained. can get. By dispersing a conductive polymer and inorganic oxide particles in such a matrix-forming component dispersion liquid, a transparent conductive film-forming coating liquid containing a matrix-forming component can be obtained. [Polar solvent] As the polar solvent used in the present invention,
Water; alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol; esters such as acetic acid methyl ester, acetic acid ethyl ester;
Examples thereof include ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, acetoacetic acid ester, and the like. These may be used alone or in combination of two or more.

【0032】第1の透明導電性被膜付基材 次に、本発明に係る透明導電性被膜付基材について具体
的に説明する。本発明に係る第1の透明導電性被膜付基
材では、ガラス、プラスチック、セラミックなどからな
るフィルム、シートあるいはその他の成形体などの基材
上に、前記した本発明に係る透明導電性被膜形成用塗布
液を用いて導電層が形成されている。
First Substrate with a Transparent Conductive Film Next, the substrate with a transparent conductive film according to the present invention will be specifically described. In the first substrate with a transparent conductive film according to the present invention, the above-mentioned transparent conductive film according to the present invention is formed on a substrate such as a film, sheet or other molded body made of glass, plastic, ceramic or the like. The conductive layer is formed by using the coating liquid.

【0033】[導電層の形成]導電層は、前記した本発明
に係る導電性被膜形成用を使用して形成することができ
る。導電層を形成する方法としては、たとえば、前記透
明導電性被膜形成用塗布液をディッピング法、スピナー
法、スプレー法、ロールコーター法、フレキソ印刷法な
どの方法で、基材上に塗布したのち、常温〜約90℃の
範囲の温度で乾燥する。
[Formation of Conductive Layer] The conductive layer can be formed by using the above-described conductive coating forming film according to the present invention. As a method for forming a conductive layer, for example, after coating the transparent conductive film forming coating solution on a substrate by a method such as a dipping method, a spinner method, a spray method, a roll coater method, or a flexographic printing method, Dry at a temperature ranging from room temperature to about 90 ° C.

【0034】透明導電性被膜形成用塗布液中に上記のよ
うなマトリックス形成成分が含まれている場合には、マ
トリックス前駆体の硬化処理を行ってもよい。たとえ
ば、透明導電性被膜形成用塗布液を塗布して形成した被
膜を、乾燥時、または乾燥後に、150℃以上で加熱す
るか、未硬化の被膜に可視光線よりも波長の短い紫外
線、電子線、X線、γ線などの電磁波を照射するか、あ
るいはアンモニアなどの活性ガス雰囲気中に晒してもよ
い。このようにすると、被膜形成成分の硬化が促進さ
れ、得られる被膜の硬度が高くなる。
When the coating liquid for forming the transparent conductive film contains the above-mentioned matrix-forming components, the matrix precursor may be cured. For example, a coating formed by applying a coating liquid for forming a transparent conductive coating is heated at 150 ° C. or higher during or after drying, or an uncured coating is exposed to ultraviolet rays or electron beams having a wavelength shorter than visible light. Electromagnetic waves such as X-rays and γ-rays may be irradiated, or the atmosphere may be exposed to an active gas atmosphere such as ammonia. By doing so, the hardening of the film-forming component is promoted, and the hardness of the film obtained is increased.

【0035】上記のような方法によって形成された透明
導電性被膜の膜厚は5〜200nm、さらには10〜1
50nmの範囲が望ましく、この範囲の膜厚であれば帯
電防止性および電磁遮蔽性に優れ、基材との密着性にも
優れた透明導電性被膜付基材を得ることができる。ま
た、本発明に係る透明導電性被膜形成用塗布液を用いて
形成された第1の透明導電性被膜付基材は、導電性被膜
の屈折率が概ね1.3〜1.45の範囲にあり、反射防止
性能にも優れている。さらに、透明導電性被膜が導電性
高分子を含んで構成されているので可撓性を有し、プラ
スチック基材なども好適に採用でき、この場合は加工性
にも優れている。
The transparent conductive film formed by the above method has a thickness of 5 to 200 nm, more preferably 10 to 1
The range of 50 nm is desirable, and if the film thickness is within this range, it is possible to obtain a substrate having a transparent conductive film, which is excellent in antistatic property and electromagnetic shielding property, and is also excellent in adhesion to the substrate. The first transparent conductive film-coated substrate formed using the transparent conductive film-forming coating solution according to the present invention has a refractive index of the conductive film within a range of approximately 1.3 to 1.45. Yes, it has excellent anti-reflection performance. Furthermore, since the transparent conductive coating film contains a conductive polymer, it has flexibility, and a plastic substrate or the like can be preferably used. In this case, it has excellent processability.

【0036】第2の透明導電性被膜付基材 本発明に係る第2の透明導電性被膜付基材は、導電性高
分子と屈折率が1.5〜2.8の範囲にある無機酸化物粒
子Aと極性溶媒とからなる透明導電性被膜形成用塗布液
を用いて形成された透明導電層上に、屈折率が1.28
〜1.42の範囲にある無機酸化物粒子Bを含む透明被
膜が設けられていることを特徴としている。無機酸化物
粒子AとBとの間の屈折率差は0.1〜1.5、好まし
くは0.3〜1.2の範囲にあることが望ましい。
Second Substrate with a Transparent Conductive Film The second substrate with a transparent conductive film according to the present invention comprises a conductive polymer and an inorganic oxide having a refractive index in the range of 1.5 to 2.8. Having a refractive index of 1.28 on the transparent conductive layer formed by using the coating liquid for forming a transparent conductive film, which comprises the material particles A and a polar solvent.
It is characterized in that a transparent coating film containing the inorganic oxide particles B in the range of to 1.42 is provided. It is desirable that the difference in refractive index between the inorganic oxide particles A and B is in the range of 0.1 to 1.5, preferably 0.3 to 1.2.

【0037】基材としては、前記第1の透明導電性被膜
付基材で例示したものと同様に、ガラス、プラスチッ
ク、セラミックなどからなるフィルム、シートあるいは
その他の成形体などが好適に使用される。 [導電層の形成]導電層は、以下に示す第2の導電性被膜
形成用塗布液を使用して形成することができる。
As the substrate, a film, sheet, or other molded body made of glass, plastic, ceramics or the like is preferably used, as in the case of the above-mentioned first substrate having a transparent conductive film. . [Formation of Conductive Layer] The conductive layer can be formed using the second coating liquid for forming a conductive film described below.

【0038】透明導電性微粒子層を形成する方法として
は、たとえば、塗布液をディッピング法、スピナー法、
スプレー法、ロールコーター法、フレキソ印刷法などの
方法で、基材上に塗布したのち、常温〜約90℃の範囲
の温度で乾燥する。第2の透明導電性被膜形成用塗布液
には、屈折率が1.5〜2.8、さらには1.7〜2.7の
範囲にある無機酸化物粒子と、前記したような導電性高
分子を含む。
As the method for forming the transparent conductive fine particle layer, for example, a coating solution is dipping method, spinner method,
After being applied on a substrate by a method such as a spray method, a roll coater method, or a flexographic printing method, it is dried at a temperature in the range of room temperature to about 90 ° C. The second transparent conductive coating film-forming coating liquid contains inorganic oxide particles having a refractive index in the range of 1.5 to 2.8, more preferably 1.7 to 2.7, and the above-mentioned conductivity. Contains macromolecules.

【0039】このような無機酸化物粒子としては、Zr
2、TiO2、Al23、SnO2、In 23、Sb25、M
gO等の他これらの2種以上からなる複合酸化物、さら
にSiO2など屈折率が1.5未満の酸化物であってもこ
れを複合化して屈折率が1.5〜2.8の複合酸化物粒子
などが挙げられる。特に、導電性を有するものが好適で
あり、SnドープIn23、SnドープSb25等は導電性
が高いので好適である。
Examples of such inorganic oxide particles include Zr.
O2, TiO2, Al2O3, SnO2, In 2O3, Sb2OFive, M
In addition to gO, other complex oxides composed of two or more of these,
To SiO2Even if the oxide has a refractive index of less than 1.5,
Composite oxide particles having a refractive index of 1.5 to 2.8
And so on. In particular, those having conductivity are preferable.
Yes, Sn-doped In2O3, Sn-doped Sb2OFiveEtc. are conductive
Is preferable because of high value.

【0040】なお、第2の透明導電性被膜形成用塗布液
は、このような屈折率が1.5〜2.8の範囲にある無機
酸化物粒子を用いる以外は前記した本発明に係る透明導
電性被膜形成用塗布液と使用される導電性高分子、任意
で含んでいてもよいマトリックス形成成分、カーボン微
粒子、染料、顔料などの添加剤の種類、量はこのような
透明導電性被膜形成用塗布液には、前記透明導電性被膜
形成用塗布液と同様である。
The second coating liquid for forming a transparent conductive film is transparent according to the present invention except that the inorganic oxide particles having such a refractive index in the range of 1.5 to 2.8 are used. The type and amount of the conductive polymer used for forming the conductive film, the conductive polymer used, the matrix-forming component which may be optionally contained, the carbon fine particles, the dye, the pigment, etc. are such that the transparent conductive film is formed. The coating liquid for use is the same as the coating liquid for forming the transparent conductive film.

【0041】本発明の第2の透明導電性被膜形成用塗布
液を用いて得られる透明導電性被膜は屈折率が高く、概
ね1.50〜2.50の範囲にある。透明導電性被膜形成
用塗布液中に上記のようなマトリックス形成成分が含ま
れている場合には、マトリックス形成成分の硬化処理を
行ってもよい。たとえば、前記第1の透明導電性被膜付
基材で例示した方法が採用される。
The transparent conductive film obtained by using the second coating liquid for forming a transparent conductive film of the present invention has a high refractive index, and is generally in the range of 1.50 to 2.50. When the coating liquid for forming the transparent conductive film contains the above-mentioned matrix-forming component, the matrix-forming component may be cured. For example, the method exemplified for the first transparent conductive film-coated substrate is adopted.

【0042】上記のような方法によって形成された透明
導電性被膜の膜厚は5〜200nm、さらには10〜1
50nmの範囲が望ましく、この範囲の膜厚であれば帯
電防止性および電磁遮蔽性に優れ、基材との密着性にも
優れた透明導電性被膜付基材を得ることができる。透明
導電性被膜が導電性高分子を含んで構成されているので
可撓性を有し、プラスチック基材なども好適に採用で
き、この場合は加工性にも優れている。
The film thickness of the transparent conductive film formed by the above method is 5 to 200 nm, more preferably 10 to 1
The range of 50 nm is desirable, and if the film thickness is within this range, it is possible to obtain a substrate having a transparent conductive film, which is excellent in antistatic property and electromagnetic shielding property, and is also excellent in adhesion to the substrate. Since the transparent conductive film is composed of a conductive polymer, it has flexibility, and a plastic substrate can be preferably used. In this case, it has excellent processability.

【0043】このような透明導電性被膜上に以下のよう
に屈折率の低い透明被膜(以下、反射防止膜、保護膜、
ハードコート膜等ということがある)を形成すると、基
材の屈折率がたとえば1.5以下と低い場合であっても
得られる透明導電性被膜付基材は反射防止性能に優れ、
視感反射率が低く、このため目で感じる反射(映り込
み)は弱く、反射色の色付きを抑えることができる。ま
た、耐擦傷性の高い透明導電性被膜付基材が得られる。 [透明被膜の形成]本発明に係る第2の透明導電性被膜
付基材では、透明導電性被膜の上に、該透明導電性被膜
よりも屈折率の低い透明被膜が形成されている。
On such a transparent conductive film, a transparent film having a low refractive index (hereinafter referred to as antireflection film, protective film,
When a hard coat film or the like) is formed, the transparent conductive film-coated substrate obtained even when the refractive index of the substrate is as low as 1.5 or less has excellent antireflection performance,
Since the luminous reflectance is low, the reflection (reflection) felt by the eye is weak, and the coloring of the reflected color can be suppressed. Further, a transparent conductive film-coated substrate having high scratch resistance can be obtained. [Formation of transparent coating] In the second substrate with a transparent conductive coating according to the present invention, a transparent coating having a refractive index lower than that of the transparent conductive coating is formed on the transparent conductive coating.

【0044】透明被膜は、マトリックス形成成分と屈折
率が1.28〜1.42の範囲にある無機酸化物粒子を
含む被膜形成用塗布液を用いて形成される。マトリック
ス形成成分としては前記した透明導電性被膜形成用塗布
液と同じものを用いることができる。屈折率が1.28
〜1.42の範囲にある無機酸化物粒子としては、前記
本発明に係る透明導電性被膜形成用塗布液で例示したも
のと同様のものが使用される。
The transparent film is formed by using a coating solution for forming a film, which contains a matrix-forming component and inorganic oxide particles having a refractive index in the range of 1.28 to 1.42. As the matrix-forming component, the same one as the above-mentioned coating liquid for forming a transparent conductive film can be used. Refractive index is 1.28
As the inorganic oxide particles in the range of to 1.42, the same ones as those exemplified in the coating liquid for forming the transparent conductive film according to the present invention are used.

【0045】このような無機酸化物粒子を用いると、得
られる透明導電性被膜付基材は、ボトム反射率および視
感反射率が低く、優れた反射防止性能を発揮することが
できる。塗布液中の無機酸化物粒子の使用量は、透明被
膜中の無機酸化物粒子の含有量が酸化物に換算して、1
0〜90重量%、好ましくは20〜80重量%の範囲と
なるように用いることが望ましい。
When such an inorganic oxide particle is used, the base material with a transparent conductive film obtained has low bottom reflectance and luminous reflectance, and can exhibit excellent antireflection performance. The amount of the inorganic oxide particles used in the coating liquid is 1 when the content of the inorganic oxide particles in the transparent coating is converted into oxide.
It is desirable to use it in the range of 0 to 90% by weight, preferably 20 to 80% by weight.

【0046】さらに、上記透明被膜形成用塗布液には、
フッ化マグネシウムなどの低屈折率材料で構成された微
粒子、透明被膜の透明度および反射防止性能を阻害しな
い程度に少量の導電性微粒子および/または染料または
顔料などの添加剤が含まれていてもよい。透明被膜の形
成方法としては、前記透明被膜形成用塗布液をディッピ
ング法、スピナー法、スプレー法、ロールコーター法、
フレキソ印刷法などの湿式薄膜形成方法を採用すること
ができる。透明導電性被膜上に塗布したのち、マトリッ
クス形成成分の硬化処理を行ってもよい。
Further, the above coating liquid for forming a transparent film contains
Fine particles composed of a low-refractive index material such as magnesium fluoride, a small amount of conductive fine particles and / or additives such as dyes or pigments may be contained to the extent that they do not impair the transparency and antireflection performance of the transparent coating. . As a method for forming the transparent film, the coating solution for forming the transparent film is subjected to a dipping method, a spinner method, a spray method, a roll coater method,
A wet thin film forming method such as a flexographic printing method can be adopted. After coating on the transparent conductive coating, the matrix-forming component may be cured.

【0047】硬化処理としては、このような透明被膜形
成用塗布液を塗布して形成した被膜を、乾燥時、または
乾燥後に、150℃以上で加熱するか、未硬化の被膜に
可視光線よりも波長の短い紫外線、電子線、X線、γ線
などの電磁波を照射するか、あるいはアンモニアなどの
活性ガス雰囲気中に晒してもよい。このようにすると、
マトリックス形成成分の硬化が促進され、得られる被膜
の硬度が高く、耐擦傷性に優れた第2の透明導電性被膜
付基材を得ることができる。
As the curing treatment, the coating film formed by applying such a transparent coating film-forming coating solution is heated at 150 ° C. or higher during or after drying, or the uncured coating film is exposed to more visible light than visible light. It may be irradiated with electromagnetic waves such as ultraviolet rays having a short wavelength, electron rays, X rays and γ rays, or may be exposed to an atmosphere of active gas such as ammonia. This way,
The hardening of the matrix-forming component is accelerated, the hardness of the obtained coating is high, and the second substrate with a transparent conductive coating having excellent scratch resistance can be obtained.

【0048】このときの透明被膜の膜厚は、50〜30
0nm、好ましくは80〜200nmの範囲にあること
が好ましい。透明被膜の膜厚が50nm未満の場合は、
膜の強度や反射防止性能が劣ることがある。透明被膜の
膜厚が300nmを越えると、膜にクラックが発生した
り膜の強度が低下することがあり、また膜が厚すぎて反
射防止性能が不充分となることがある。
The thickness of the transparent coating film at this time is 50 to 30.
It is preferably in the range of 0 nm, preferably 80 to 200 nm. When the thickness of the transparent film is less than 50 nm,
The strength and antireflection performance of the film may be poor. If the film thickness of the transparent film exceeds 300 nm, cracks may occur in the film or the strength of the film may decrease, and the film may be too thick and the antireflection performance may be insufficient.

【0049】なお、第2の透明導電性被膜形成用塗布液
を用いて形成された第2の透明導電性被膜付基材は、導
電性被膜の屈折率が概ね1.5〜2.5の範囲にあり、該
導電性被膜上に形成された透明被膜の屈折率が概ね1.
35〜1.45の範囲にあり、導電性被膜と透明被膜の
屈折率差が0.05以上あるので、得られる第2の透明
導電性被膜付基材は反射防止性能に優れ、視感反射率が
低く、このため目で感じる反射(映り込み)は弱く、反
射色の色付きを抑えることができる。
The second transparent conductive film-coated substrate formed by using the second transparent conductive film-forming coating liquid has a refractive index of the conductive film of about 1.5 to 2.5. Within the range, the transparent coating formed on the conductive coating has a refractive index of about 1.
Since it is in the range of 35 to 1.45 and the difference in refractive index between the conductive coating and the transparent coating is 0.05 or more, the second substrate with the transparent conductive coating obtained has excellent antireflection performance, and has a visual reflection. Since the rate is low, the reflection (reflection) felt by the eye is weak, and the coloring of the reflected color can be suppressed.

【0050】表示装置 本発明に係る透明導電性被膜付基材は、帯電防止、電磁
遮蔽に必要な102〜108Ω/□の範囲の表面抵抗を有
し、また可視光領域および近赤外領域で充分な反射防止
性能を有し、このため透明低反射導電性被膜付基材は、
表示装置の前面板として好適に用いられる。
Display Device The transparent conductive film-coated substrate according to the present invention has a surface resistance in the range of 10 2 to 10 8 Ω / □ required for antistatic and electromagnetic shielding, and also in the visible light region and near red. It has sufficient antireflection performance in the outer region, and therefore the substrate with a transparent low reflection conductive coating is
It is preferably used as a front plate of a display device.

【0051】本発明に係る表示装置は、ブラウン管(C
RT)、蛍光表示管(FIP)、プラズマディスプレイ
(PDP)、液晶用ディスプレイ(LCD)などのよう
な電気的に画像を表示する装置であり、上記のような透
明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、前面板
に画像が表示されると同時に電磁波が前面板から放出さ
れ、この電磁波が観察者の人体に影響を及ぼすが、本発
明に係る表示装置では、前面板が102〜104Ω/□の
表面抵抗を有する透明導電性被膜付基材で構成されてい
る場合は、このような電磁波、およびこの電磁波の放出
に伴って生じる電磁場を効果的に遮蔽することができ
る。
The display device according to the present invention comprises a cathode ray tube (C
RT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like, which is an apparatus for electrically displaying an image, and is composed of the transparent conductive film-coated substrate as described above. It has a front plate.
When a conventional display device having a front plate is operated, an image is displayed on the front plate and electromagnetic waves are emitted from the front plate at the same time, and the electromagnetic waves affect the human body of an observer. In the device, when the front plate is made of a transparent conductive film-coated substrate having a surface resistance of 10 2 to 10 4 Ω / □, such an electromagnetic wave and an electromagnetic field generated by the emission of this electromagnetic wave are generated. It can be effectively shielded.

【0052】また、前面板が104〜108Ω/□の表面
抵抗を有する透明導電性被膜付基材で構成されている場
合は、優れた帯電防止性を発揮する。また、表示装置の
前面板で反射光が生じると、この反射光によって表示画
像が見にくくなるが、本発明に係る表示装置では、前面
板が可視光領域および近赤外領域で充分な反射防止性能
を有する透明導電性被膜付基材で構成されているので、
このような反射光を効果的に防止することができる。
Further, when the front plate is made of a transparent conductive film-coated substrate having a surface resistance of 10 4 to 10 8 Ω / □, excellent antistatic property is exhibited. Further, when reflected light is generated on the front plate of the display device, the reflected light makes it difficult to see the display image. However, in the display device according to the present invention, the front plate has sufficient antireflection performance in the visible light region and the near infrared region. Since it is composed of a transparent conductive film-coated substrate having
Such reflected light can be effectively prevented.

【0053】さらに、表示装置の前面板が、本発明に係
る透明導電性被膜付基材で構成され、この透明低反射導
電性被膜に少量の微粒子カーボン、染料または顔料が含
まれている場合には、これらの微粒子カーボン、染料ま
たは顔料がそれぞれ固有な波長の光を吸収し、これによ
りたとえばブラウン管から放映される表示画像のコント
ラストを向上させることができる。
Further, in the case where the front plate of the display device is composed of the base material with the transparent conductive film according to the present invention, and this transparent low reflection conductive film contains a small amount of fine carbon, dye or pigment. The fine carbon particles, the dye or the pigment absorbs light having a specific wavelength, thereby improving the contrast of a display image projected from, for example, a cathode ray tube.

【0054】また、表示装置の前面板が本発明に係る第
2の透明導電性被膜付基材で構成されている場合は、硬
度の高い透明被膜(保護膜)が形成されているので耐擦
傷性に優れている。
When the front plate of the display device is composed of the second base material with a transparent conductive film according to the present invention, since a transparent hard film (protective film) having a high hardness is formed, it is scratch resistant. It has excellent properties.

【0055】[0055]

【発明の効果】本発明による第1の透明導電性被膜形成
用塗布液を用いると、透明低反射導電性被膜形成用塗布
液には導電性高分子と無機酸化物粒子が含まれているの
で、この塗布液を基材上に塗布し、乾燥して得られる透
明導電性被膜は、帯電防止性、電磁遮蔽性を有し、基材
との密着性に優れ、可撓性を有するとともに膜の強度が
高く、屈折率が低いので反射防止性能に優れている。ま
た基材がプラスチック等の場合は加工性にも優れてい
る。
When the first coating liquid for forming a transparent conductive coating film according to the present invention is used, the coating liquid for forming a transparent low reflective conductive coating film contains a conductive polymer and inorganic oxide particles. A transparent conductive film obtained by applying this coating solution on a substrate and drying the film has antistatic properties and electromagnetic shielding properties, has excellent adhesion to the substrate, is flexible, and is a film. Has a high strength and a low refractive index, and therefore has excellent antireflection performance. Further, when the base material is plastic or the like, it has excellent processability.

【0056】本発明による第2の透明導電性被膜形成用
塗布液を用いると、透明低反射導電性被膜形成用塗布液
には導電性高分子と、所定の屈折率の無機酸化物粒子が
含まれているので、この塗布液を基材上に塗布し、乾燥
して得られる透明導電性被膜は、帯電防止性、電磁遮蔽
性を有し、基材との密着性に優れ、膜の強度にも優れて
いる。
When the second coating liquid for forming a transparent conductive coating film according to the present invention is used, the coating liquid for forming a transparent low reflection conductive coating film contains a conductive polymer and inorganic oxide particles having a predetermined refractive index. Therefore, the transparent conductive film obtained by applying this coating solution on the substrate and drying it has antistatic properties and electromagnetic shielding properties, has excellent adhesion to the substrate, and has strong film strength. Is also excellent.

【0057】さらに、得られる第2の透明導電性被膜付
基材は透明導電性被膜上に透明導電性被膜より屈折率の
低い透明被膜が形成されているので、耐擦傷性に優れる
とともに基材の屈折率が低い場合であっても反射防止性
能に優れている。このような透明導電性被膜付基材を表
示装置の前面板として用いれば、帯電防止性、電磁遮蔽
性に優れるとともに反射防止性にも優れた表示装置を得
ることができる。
Further, since the second substrate with a transparent conductive coating obtained has a transparent coating having a lower refractive index than the transparent conductive coating on the transparent conductive coating, it is excellent in scratch resistance and the substrate. The antireflection performance is excellent even when the refractive index of is low. By using such a transparent conductive film-coated substrate as a front plate of a display device, it is possible to obtain a display device having excellent antistatic properties and electromagnetic shielding properties as well as antireflection properties.

【0058】[0058]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0059】[0059]

【製造実施例】導電性高分子(A-1)分散液の調製 メタノール130重量部に塩化第二鉄6水和物(和光純
薬(株)製)50重量部を溶解させた。この溶液に3−
ヘキシチオフェン(東京化成(株)製)20重量部を添
加し、−20℃にて10時間反応させ液状の導電性高分
子を得た。ついで、イオン交換樹脂(三菱化学(株)
製:SMNUPB)を用いて脱イオンを行い、さらにメタノー
ルで希釈して濃度5重量%のポリチオフェン導電性高分
子(A-1)分散液を得た。導電性高分子(A-1)の体積固有抵
抗値は室温で6.5×102Ω・cmであった。
Production Example Preparation of Conductive Polymer (A-1) Dispersion 50 parts by weight of ferric chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 130 parts by weight of methanol. 3-into this solution
Hexthiophene (manufactured by Tokyo Kasei Co., Ltd.) (20 parts by weight) was added, and the mixture was reacted at −20 ° C. for 10 hours to obtain a liquid conductive polymer. Next, ion exchange resin (Mitsubishi Chemical Corporation)
(Manufactured by: SMNUPB), and then diluted with methanol to obtain a polythiophene conductive polymer (A-1) dispersion having a concentration of 5% by weight. The volume resistivity of the conductive polymer (A-1) was 6.5 × 10 2 Ω · cm at room temperature.

【0060】導電性高分子(A-2)分散液の調製 ガラス製反応容器に純水50ml、パラトルエンスルホ
ン酸30mmol、アニリン1.00Ggを入れ0℃で
混合した。この溶液に重クロム酸アンモニウム0.85
gと22mmolのパラトルエンスルホン酸を含む水溶
液を滴下し、0℃で2時間攪拌した。濃緑色の生成物を
洗浄および乾燥してパラトルエンスルホン酸をドーパン
トとするポリアニリン粉末を調製した。このポリアニリ
ン粉末を濃度15重量%のアンモニア水溶液中に分散さ
せ、60分間脱ドーピングして洗浄、および乾燥して中
性のポリアニリンを得た。次に、中性のポリアニリンを
10mlの硫酸と共に室温で攪拌して溶解し、濃い青色
の溶液を得た。得られた上記のろ液をイオン交換樹脂
(三菱化学製 SMNUPB)を用いて脱塩を行い、ついで濃
縮し、濃度5重量%のポリスルホアニリン導電性高分子
(A-2)分散液を得た。導電性高分子(A-2)の体積固有抵抗
は室温で1.1×102Ω・cmであった。
Preparation of Conductive Polymer (A-2) Dispersion Liquid 50 ml of pure water, 30 mmol of paratoluenesulfonic acid and 1.00 Gg of aniline were placed in a glass reaction vessel and mixed at 0 ° C. Ammonium dichromate 0.85 in this solution
An aqueous solution containing g and 22 mmol of paratoluenesulfonic acid was added dropwise, and the mixture was stirred at 0 ° C. for 2 hours. The dark green product was washed and dried to prepare polyaniline powder having paratoluenesulfonic acid as a dopant. The polyaniline powder was dispersed in an aqueous ammonia solution having a concentration of 15% by weight, dedoped for 60 minutes, washed, and dried to obtain a neutral polyaniline. Next, neutral polyaniline was dissolved with 10 ml of sulfuric acid by stirring at room temperature to obtain a dark blue solution. The obtained filtrate was desalted using an ion exchange resin (SMNUPB manufactured by Mitsubishi Chemical) and then concentrated to give a polysulfoaniline conductive polymer having a concentration of 5% by weight.
(A-2) A dispersion was obtained. The volume resistivity of the conductive polymer (A-2) was 1.1 × 10 2 Ω · cm at room temperature.

【0061】マトリックス形成成分液(B-1)の調製 正珪酸メチル(多摩化学(株)製:メチルシリケート5
1)1.57gにエタノール7.21g添加し、ついで純
水7.12gと濃度61重量%の硝酸を0.12g添加
し、室温で1時間攪拌し、SiO2換算で濃度5重量%の
マトリックス形成成分液(B-1)を調製した。
Preparation of matrix forming component liquid (B-1) Methyl orthosilicate (manufactured by Tama Chemical Co., Ltd .: methyl silicate 5)
1) To 1.57 g, add 7.21 g of ethanol, then add 7.12 g of pure water and 0.12 g of nitric acid with a concentration of 61% by weight, stir at room temperature for 1 hour, and then add a matrix with a concentration of 5% by weight in terms of SiO 2. A forming component liquid (B-1) was prepared.

【0062】マトリックス形成成分液(B-2)の調製 有機ケイ素化合物として ジメトキシメチル-3,3,3-トリ
フルオロ-プロピルシラン(信越シリコーン(株)製:
LS-1080)1.68gにエタノールを27.93g添加
し、これに純水2.5gと濃度61重量%の硝酸を0.0
5g添加し、60℃で2時間攪拌し、固形分として濃度
5重量%のマトリックス形成成分液(B-2)を調製した。
Preparation of Matrix Forming Component Liquid (B-2) As an organosilicon compound, dimethoxymethyl-3,3,3-trifluoro-propylsilane (manufactured by Shin-Etsu Silicone Co., Ltd .:
LS-1080) 1.68 g, ethanol 27.93 g was added, and pure water 2.5 g and concentration 61 wt% nitric acid 0.0.
5 g was added, and the mixture was stirred at 60 ° C. for 2 hours to prepare a matrix-forming component liquid (B-2) having a solid content of 5% by weight.

【0063】マトリックス形成成分液(B-3)の調製 光を遮断する為に、銀薄紙で包んだビーカーに、ジペン
タエリスリトルヘキサアクリレート40g、ペンタエリ
スリトリアクリレート20gおよびN-ビニルピロリドン
5gを添加した後、ブチルアセテート30gおよびイソ
プロピルアルコール30gを入れて攪拌機で30分間攪
拌し、ついでイソプロピルアルコールで希釈して固形分
濃度5重量%のマトリックス形成成分液(B-3)を調製し
た。
Preparation of Matrix Forming Component Liquid (B-3) To block light, a beaker wrapped with thin silver paper was charged with 40 g of dipentaerythritol hexaacrylate, 20 g of pentaerythritriacrylate and 5 g of N-vinylpyrrolidone. After that, 30 g of butyl acetate and 30 g of isopropyl alcohol were added, the mixture was stirred for 30 minutes with a stirrer, and then diluted with isopropyl alcohol to prepare a matrix-forming component liquid (B-3) having a solid content concentration of 5% by weight.

【0064】無機酸化物粒子(C-1)分散液 平均粒径5nm、SiO2濃度20重量%のシリカゾル
10gと純水190gとを混合して反応母液を調製し、
95℃に加温した。この反応母液のpHは10.5であ
り、同母液にSiO2として1.5重量%のケイ酸ナト
リウム水溶液24,900gと、Al23として0.5
重量%のアルミン酸ナトリウム水溶液36,800gと
を同時に添加した。その間、反応液の温度を95℃に保
持した。反応液のpHは、ケイ酸ナトリウムおよびアル
ミン酸ナトリウムの添加直後、12.5に上昇し、その
後、ほとんど変化しなかった。添加終了後、反応液を室
温まで冷却し、限外濾過膜で洗浄して固形分濃度20重
量%のSiO2・Al23多孔質物質前駆体粒子の分散
液(F)を調製した。
Inorganic oxide particle (C-1) dispersion liquid A reaction mother liquor was prepared by mixing 10 g of silica sol having an average particle size of 5 nm and a SiO 2 concentration of 20% by weight with 190 g of pure water.
Warmed to 95 ° C. The pH of this reaction mother liquor was 10.5, and 24,900 g of a 1.5 wt% sodium silicate aqueous solution as SiO 2 and 0.5 as Al 2 O 3 were added to the mother liquor.
A 36% by weight aqueous solution of sodium aluminate of 36,800 g was added at the same time. During that time, the temperature of the reaction solution was maintained at 95 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition of sodium silicate and sodium aluminate, and thereafter hardly changed. After the addition was completed, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a dispersion liquid (F) of SiO 2 .Al 2 O 3 porous material precursor particles having a solid content concentration of 20% by weight.

【0065】ついで、この多孔質物質前駆体粒子の分散
液(F)500gを採取し、純水1,700gを加えて
98℃に加温し、この温度を保持しながら、ケイ酸ナト
リウム水溶液を陽イオン交換樹脂で脱アルカリして得ら
れたケイ酸液(SiO2濃度3.5重量%)3,000
gを添加して多孔質物質前駆体粒子表面にシリカ保護膜
を形成した。得られた多孔質物質前駆体粒子の分散液
を、限外濾過膜で洗浄して固形分濃度13重量%に調整
したのち、多孔質物質前駆体粒子の分散液500gに純
水1,125gを加え、さらに濃塩酸(35.5%)を
滴下してpH1.0とし、脱アルミニウム処理を行った
のち、pH3の塩酸水溶液10Lと純水5Lを加えなが
ら限外濾過膜で溶解したアルミニウム塩を分離し、粒子
前駆体分散液を調製した。
Then, 500 g of the dispersion liquid (F) of the porous material precursor particles was sampled, 1,700 g of pure water was added, and the mixture was heated to 98 ° C. While maintaining this temperature, an aqueous sodium silicate solution was added. Silica solution obtained by dealkalization with cation exchange resin (SiO 2 concentration 3.5% by weight) 3,000
g was added to form a silica protective film on the surface of the porous material precursor particles. The obtained dispersion liquid of porous material precursor particles was washed with an ultrafiltration membrane to adjust the solid content concentration to 13% by weight, and 1,125 g of pure water was added to 500 g of the dispersion material of porous material precursor particles. In addition, concentrated hydrochloric acid (35.5%) was added dropwise to adjust the pH to 1.0, and after dealumination treatment, aluminum salt dissolved in the ultrafiltration membrane was added while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water. Separation was performed to prepare a particle precursor dispersion liquid.

【0066】上記粒子前駆体分散液1500gと、純水
500g、エタノール1,750gおよび28%アンモ
ニア水626gとの混合液を35℃に加温した後、エチ
ルシリケート(SiO228重量%)104gを添加
し、粒子前駆体表面にエチルシリケートの加水分解重縮
合物でシリカ外殻層を形成することによって、外殻層内
部に空洞を有する粒子を作製した。ついで、エバポレー
ターで固形分濃度5重量%まで濃縮した後、濃度15重
量%のアンモニア水を加えてpH10とし、オートクレ
ーブで180℃、2時間加熱処理し、限外濾過膜を用い
て溶媒をエタノールに置換した固形分濃度20重量%の
低屈折率粒子(C-1)の分散液を調製した。
A mixture of 1500 g of the above particle precursor dispersion, 500 g of pure water, 1,750 g of ethanol and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethyl silicate (28% by weight of SiO 2 ) was added. Then, a silica outer shell layer was formed from the hydrolyzed polycondensate of ethyl silicate on the surface of the particle precursor to prepare particles having voids inside the outer shell layer. Then, after concentration to a solid content concentration of 5% by weight with an evaporator, 15% by weight concentration of aqueous ammonia was added to adjust the pH to 10, and the mixture was heated at 180 ° C. for 2 hours in an autoclave, and the solvent was converted to ethanol using an ultrafiltration membrane. A dispersion liquid of the low-refractive-index particles (C-1) having a solid content concentration of 20% by substitution was prepared.

【0067】無機酸化物粒子(C-2)分散液 無機酸化物粒子としてシリカゾル(触媒化成工業(株)
製:SI-550、平均粒子径5nm)を水で濃度5重量%に
希釈して無機酸化物粒子(C-2)分散液とした。無機酸化物粒子(C-3)分散液 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、錫酸カリウム12.7gを濃度10重量%
の水酸化カリウム溶液に溶解して得られた溶液とを調製
し、これらの溶液を、50℃に保持された1000gの
純水に2時間かけて添加した。この間、系内のpHを1
1に保持した。得られたSnドープ酸化イン ジウム水和
物分散液からSnドープ酸化インジウム水和物を濾別・
洗浄した後、乾燥し、ついで空気中で350℃の温度で
3時間焼成し、さらに空気中で600℃の温度で2時間
焼成することによりSnドープ酸化インジウム微粒子を
得た。 これを濃度が30重量%となるように純水に分
散させ、さらに硝酸水溶液でpHを3.5に調製した
後、この混合液を30℃に保持しながらサンドミルで、
4時間粉砕してゾルを調製した。次に、このゾルをイオ
ン交換樹脂で処理して硝酸イオンを除去し、純水を加え
て表1に示す濃度のSnドープ酸化インジウム微粒子(C-
3)の分散液を調製した。
Inorganic Oxide Particle (C-2) Dispersion Silica sol as an inorganic oxide particle (Catalyst Kasei Kogyo Co., Ltd.)
(Manufactured by: SI-550, average particle size 5 nm) was diluted with water to a concentration of 5% by weight to prepare an inorganic oxide particle (C-2) dispersion. Inorganic oxide particle (C-3) dispersion solution A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and 12.7 g of potassium stannate at a concentration of 10% by weight.
And a solution obtained by dissolving it in a potassium hydroxide solution of 1. were prepared, and these solutions were added to 1000 g of pure water kept at 50 ° C. over 2 hours. During this period, the pH of the system is set to 1
It was held at 1. The Sn-doped indium oxide hydrate dispersion was filtered from the obtained Sn-doped indium oxide hydrate dispersion.
After washing, it was dried, and then calcined in air at a temperature of 350 ° C. for 3 hours and further in air at a temperature of 600 ° C. for 2 hours to obtain Sn-doped indium oxide fine particles. Disperse this in pure water to a concentration of 30% by weight, further adjust the pH to 3.5 with an aqueous nitric acid solution, and then hold this mixed solution at 30 ° C. in a sand mill,
A sol was prepared by grinding for 4 hours. Next, this sol was treated with an ion exchange resin to remove nitrate ions, and pure water was added to the Sn-doped indium oxide fine particles (C-
A dispersion liquid of 3) was prepared.

【0068】無機酸化物粒子の屈折率の測定方法 (1)マトリックス形成成分液(B-1)と無機化合物粒
子(C-1)とを、酸化物換算の重量比(マトリックス(Si
O2):無機化合物粒子(MOx+SiO2))が、それぞれ100:0、
90:10、80:20、60:40、50:50、25:75となるように、混
合した屈折率測定用塗布液を調製した。 (2)各塗布液を、表面を50℃に保ったシリコンウェ
ハー上に300rpm、スピナー法で各々塗布し、ついで
160℃で30分加熱処理した後、エリプソメーターで
形成した屈折率測定用被膜の屈折率を測定した。 (3)ついで、得られた屈折率と粒子混合割合(粒子:
(MOx+SiO2)/[粒子:(MOx+SiO2)+マトリック
ス:SiO2})をプロットし、外挿によって粒子が10
0%のときの屈折率を求める。 (4)空隙率は、求めた屈折率を用いて、純粋なSiO
2の屈折率(1.45)との差から、空気に換算して含
まれている空隙を算出して求めた。
Method for Measuring Refractive Index of Inorganic Oxide Particles (1) A matrix-forming component liquid (B-1) and an inorganic compound particle (C-1) were mixed in an oxide-based weight ratio (matrix (Si
O 2 ): inorganic compound particles (MO x + SiO 2 )) are 100: 0,
The mixed coating solutions for refractive index measurement were prepared so that the ratios were 90:10, 80:20, 60:40, 50:50, and 25:75. (2) Each coating solution was applied on a silicon wafer whose surface was kept at 50 ° C. by a spinner method at 300 rpm, and then heat-treated at 160 ° C. for 30 minutes, and then a film for refractive index measurement formed by an ellipsometer was applied. The refractive index was measured. (3) Next, the obtained refractive index and particle mixing ratio (particles:
(MO x + SiO 2 ) / [particle: (MO x + SiO 2 ) + matrix: SiO 2 }) is plotted, and the particle is 10 by extrapolation.
The refractive index at 0% is calculated. (4) For the porosity, pure SiO 2 is obtained by using the obtained refractive index.
From the difference with the refractive index (1.45) of 2, the voids included in the air were calculated and calculated.

【0069】[0069]

【実施例1〜6、比較例1〜3】透明導電性被膜形成用
塗布液(L-1)〜(L-9)の調製 上記導電性高分子(A-1)、(A-2)分散液、マトリックス形
成成分液(B-1)〜(B-3)、無機酸化物粒子(C-1)、(C-2)分
散液およびイソプロピルアルコール/水(7:3重量
比)の混合溶媒とを、各成分の組成比が表1のようにな
るように混合して透明導電性被膜形成用塗布液(L-1)〜
(L-9)を調製した。
Examples 1 to 6 and Comparative Examples 1 to 3 For forming transparent conductive film
Preparation of coating liquid (L-1) ~ (L-9) conductive polymer (A-1), (A-2) dispersion, matrix forming component liquid (B-1) ~ (B-3), Mix the inorganic oxide particles (C-1) and (C-2) dispersion and a mixed solvent of isopropyl alcohol / water (7: 3 weight ratio) so that the composition ratio of each component is as shown in Table 1. And then a transparent conductive film forming coating solution (L-1) ~
(L-9) was prepared.

【0070】透明被膜形成用塗布液(M)の調製 マトリックス形成成分液(B-1)、無機酸化物粒子(C-1)分
散液およびイソプロピルアルコール/水(7:3重量
比)の混合溶媒とを、各成分の組成比が表1のようにな
るように混合して透明被膜形成用塗布液(M)を調製し
た。透明導電性被膜付パネルガラスの製造(実施例1,2,
4,6、比較例1と2) ブラウン管用パネルガラス(17")の表面を45℃に保
持しながら、スピナー法で200rpm、100秒の条件
で上記透明導電性被膜形成用塗布液(L-1)、(L-2)、(L-
4)、(L-6)、(L-7)、(L-8)をそれぞれ塗布し乾燥した。
ついで、各々160℃で5分間焼成して透明導電性被膜
付基材を得た。
Preparation of coating liquid (M) for forming transparent film Matrix forming component liquid (B-1), inorganic oxide particle (C-1) dispersion liquid, and mixed solvent of isopropyl alcohol / water (7: 3 weight ratio) And were mixed so that the composition ratio of each component was as shown in Table 1 to prepare a coating liquid (M) for forming a transparent film. Production of panel glass with transparent conductive coating (Examples 1, 2,
4, 6 and Comparative Examples 1 and 2) While maintaining the surface of the panel glass (17 ") for CRT at 45 ° C, the spinner method was used at 200 rpm for 100 seconds to form the transparent conductive film forming coating solution (L- 1), (L-2), (L-
4), (L-6), (L-7) and (L-8) were applied and dried.
Then, each was baked at 160 ° C. for 5 minutes to obtain a substrate with a transparent conductive film.

【0071】これらの透明導電性被膜付基材の表面抵抗
を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘ
ーズをへーズコンピューター(日本電色(株)製:3000A)
で測定した。透過率は日本分光(株)製:U-Vest56
0で測定した。反射率は反射率計(大塚電子(株)製:MCP
D-2000)を用いて測定し、波長400〜700nmの範囲
における平均反射率を視感反射率として表示した。
The surface resistance of these transparent conductive film-coated substrates was measured with a surface resistance meter (Mitsubishi Oil Chemical Co., Ltd .: LORESTA), and the haze was measured by a haze computer (Nippon Denshoku Co., Ltd .: 3000A).
It was measured at. The transmittance is U-Vest56 manufactured by JASCO Corporation.
It was measured at 0. The reflectance is a reflectometer (Otsuka Electronics Co., Ltd .: MCP
D-2000) and the average reflectance in the wavelength range of 400 to 700 nm was displayed as the luminous reflectance.

【0072】結果を表2に合わせて示す。透明導電性被膜付パネルガラスの製造(実施例5) ブラウン管用パネルガラス(17")の表面を45℃に保
持しながら、スピナー法で200rpm、100秒の条件
で上記透明導電性被膜形成用塗布液(L-5)を塗布し乾燥
したのち、さらに同条件で透明被膜形成用塗布液(M)を
塗布し乾燥した。ついで、160℃で5分間焼成して透
明導電性被膜付基材を得た。
The results are shown in Table 2 together. Production of Panel Glass with Transparent Conductive Coating (Example 5) While maintaining the surface of the panel glass for cathode ray tubes (17 ") at 45 ° C, the above spin coating method was applied at 200 rpm for 100 seconds to form the transparent conductive coating. Solution (L-5) was applied and dried, and then a transparent coating film forming coating solution (M) was further applied and dried under the same conditions, followed by baking at 160 ° C. for 5 minutes to give a transparent conductive film-coated substrate. Obtained.

【0073】得られた透明導電性被膜付基材の表面抵
抗、透過率、反射率は上記と同様にして評価した。(な
お、実施例5では透明被膜が形成されたパネルガラスに
ついて評価した。) 結果を表2に合わせて示す。透明導電性被膜付樹脂基材の製造(実施例3と比較例3) PETフィルム(屈折率1.66)に、バーコーター法
で上記透明導電性被膜形成用塗布液(L-3)、(L-9)をそれ
ぞれ塗布し、70℃で1分間乾燥した。
The surface resistance, the transmittance and the reflectance of the obtained transparent conductive film-coated substrate were evaluated in the same manner as above. (In addition, in Example 5, it evaluated about the panel glass in which the transparent film was formed.) The results are also shown in Table 2. Production of Resin Substrate with Transparent Conductive Film ( Example 3 and Comparative Example 3) A PET film (refractive index: 1.66) was coated with the above-mentioned transparent conductive film-forming coating solution (L-3) by a bar coater method ( L-9) was applied to each and dried at 70 ° C. for 1 minute.

【0074】ついで、高圧水銀灯(10000mj/cm2)を1
分間照射して硬化させ、透明導電性被膜付基材を得た。
これらの透明導電性被膜付基材の表面抵抗、透過率、反
射率は上記と同様にして評価した。結果を表2に合わせ
て示す。
Then, the high pressure mercury lamp (10000 mj / cm 2 ) was set to 1
It was irradiated for a minute and cured to obtain a substrate with a transparent conductive film.
The surface resistance, the transmittance, and the reflectance of these transparent conductive film-coated substrates were evaluated in the same manner as above. The results are also shown in Table 2.

【0075】密着性の評価 上記のようにして形成した透明導電性被膜をカッターナ
イフで縦横各11本の線引きにより100個の升目を作
り、これにセロテープ(R)を貼り、ついで剥離したと
きにセロテープ(R)に付着して剥離した透明導電性被
膜の升目の数により、以下の基準で評価した。
Evaluation of Adhesiveness The transparent conductive coating formed as described above was drawn with a cutter knife to draw 11 squares in each length and width, and 100 squares were formed. Then, cellophane tape (R) was attached to this and then peeled off. The number of squares of the transparent conductive film adhered to and removed from the cellophane tape (R) was evaluated according to the following criteria.

【0076】 剥離した升目の数が0個 :◎ 剥離した升目の数が1〜3個 :○ 剥離した升目の数が4〜10個 :△ 剥離した升目の数が11個以上 :×耐擦傷性の評価 消しゴム(ライオン(株)製:GAZA 1K)を被膜上に置
き、1Kgの加重を掛けて50往復させた後の傷のつき
方を観察し、以下の基準で評価した。
The number of peeled squares is 0: ◎ The number of peeled squares is 1 to 3: ○ The number of peeled squares is 4 to 10: △ The number of peeled squares is 11 or more: × Scratch resistance Evaluation of sex Eraser (GAZA 1K, manufactured by Lion Co., Ltd.) was placed on the film, and after applying a load of 1 Kg and reciprocating 50 times, the scratching was observed and evaluated according to the following criteria.

【0077】 全く傷が認められない :◎ 僅かに傷が認められる :○ 明瞭に傷が認められる :△ 膜の大部分が剥離している :× 結果を表2に合わせて示す。[0077] No scratches are observed: ◎ Slight scratches are observed: ○ Clearly visible scratches: △ Most of the film is peeled off: × The results are also shown in Table 2.

【0078】[0078]

【表1】 [Table 1]

【0079】[0079]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA17A AA17C AK01A AK01C AT00B BA02 BA03 BA07 BA10A BA10B DE01A DE01C EH46A EH46C GB41 JD08 JG01 JG01A JG01C JG03 JL11 JN01A JN01C JN06 JN18A JN18C YY00A YY00C 4J038 BA031 CE021 CF021 DC002 DJ002 DK002 DL031 DN012 HA216 HA446 NA01 NA20 5G307 FA01 FA02 FB03 FC01 FC05 FC08 FC10    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4F100 AA17A AA17C AK01A AK01C                       AT00B BA02 BA03 BA07                       BA10A BA10B DE01A DE01C                       EH46A EH46C GB41 JD08                       JG01 JG01A JG01C JG03                       JL11 JN01A JN01C JN06                       JN18A JN18C YY00A YY00C                 4J038 BA031 CE021 CF021 DC002                       DJ002 DK002 DL031 DN012                       HA216 HA446 NA01 NA20                 5G307 FA01 FA02 FB03 FC01 FC05                       FC08 FC10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】導電性高分子と屈折率が1.28〜1.42
の範囲にある無機酸化物粒子と極性溶媒とからなること
を特徴とする透明導電性被膜形成用塗布液。
1. A conductive polymer and a refractive index of 1.28 to 1.42.
A coating liquid for forming a transparent conductive film, which comprises an inorganic oxide particle in the range of 5 and a polar solvent.
【請求項2】さらに、マトリックス形成成分を含むこと
を特徴とする請求項1に記載の透明導電性被膜形成用塗
布液。
2. The coating liquid for forming a transparent conductive film according to claim 1, further comprising a matrix-forming component.
【請求項3】請求項1または2に記載の透明導電性被膜
形成用塗布液を用いて形成されてなることを特徴とする
透明導電性被膜付基材。
3. A substrate with a transparent conductive film, which is formed by using the coating liquid for forming a transparent conductive film according to claim 1 or 2.
【請求項4】導電性高分子と屈折率が1.5〜2.8の範
囲にある無機酸化物粒子と極性溶媒とからなる透明導電
性被膜形成用塗布液を用いて形成された透明導電層上
に、屈折率が1.28〜1.42の範囲にある無機酸化物
粒子を含む透明被膜が設けられていることを特徴とする
透明導電性被膜付基材。
4. A transparent conductive film formed by using a coating liquid for forming a transparent conductive film, which comprises a conductive polymer, inorganic oxide particles having a refractive index in the range of 1.5 to 2.8, and a polar solvent. A substrate with a transparent conductive film, wherein a transparent film containing inorganic oxide particles having a refractive index in the range of 1.28 to 1.42 is provided on the layer.
【請求項5】請求項3または4に記載の透明導電性被膜
付基材で構成された前面板を備え、該前面板の外表面に
透明導電性被膜が形成されていることを特徴とする表示
装置。
5. A front plate comprising the base material with a transparent conductive film according to claim 3 or 4, wherein a transparent conductive film is formed on an outer surface of the front plate. Display device.
JP2001397933A 2001-12-27 2001-12-27 Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device Expired - Lifetime JP4002435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397933A JP4002435B2 (en) 2001-12-27 2001-12-27 Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397933A JP4002435B2 (en) 2001-12-27 2001-12-27 Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007071173A Division JP4782054B2 (en) 2007-03-19 2007-03-19 Substrate with transparent conductive film and display device

Publications (2)

Publication Number Publication Date
JP2003192994A true JP2003192994A (en) 2003-07-09
JP4002435B2 JP4002435B2 (en) 2007-10-31

Family

ID=27603560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397933A Expired - Lifetime JP4002435B2 (en) 2001-12-27 2001-12-27 Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device

Country Status (1)

Country Link
JP (1) JP4002435B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148376A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Film and reflection preventing film
JP2005332754A (en) * 2004-05-21 2005-12-02 Kri Inc Application liquid for transparent conductive film formation, and transparent conductive film
JP2006257407A (en) * 2005-02-16 2006-09-28 Fuji Photo Film Co Ltd Curable resin composition, cured film, anti-reflective film, polarizing plate, and liquid crystal display device
JP2006286418A (en) * 2005-03-31 2006-10-19 Tdk Corp Transparent conductor
JP2007529586A (en) * 2004-03-18 2007-10-25 オルメコン・ゲーエムベーハー Composition comprising a colloidal conductive polymer and carbon
WO2015037198A1 (en) * 2013-09-11 2015-03-19 ナガセケムテックス株式会社 Composition for forming functional film, and functional film laminate
WO2020009138A1 (en) * 2018-07-04 2020-01-09 日産化学株式会社 Charge-transporting composition
CN115011161A (en) * 2017-01-18 2022-09-06 日产化学株式会社 Charge-transporting film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148376A (en) * 2003-11-14 2005-06-09 Sumitomo Osaka Cement Co Ltd Film and reflection preventing film
JP2007529586A (en) * 2004-03-18 2007-10-25 オルメコン・ゲーエムベーハー Composition comprising a colloidal conductive polymer and carbon
JP2005332754A (en) * 2004-05-21 2005-12-02 Kri Inc Application liquid for transparent conductive film formation, and transparent conductive film
JP2006257407A (en) * 2005-02-16 2006-09-28 Fuji Photo Film Co Ltd Curable resin composition, cured film, anti-reflective film, polarizing plate, and liquid crystal display device
JP2006286418A (en) * 2005-03-31 2006-10-19 Tdk Corp Transparent conductor
US7482056B2 (en) 2005-03-31 2009-01-27 Tdk Corporation Transparent conductor
WO2015037198A1 (en) * 2013-09-11 2015-03-19 ナガセケムテックス株式会社 Composition for forming functional film, and functional film laminate
CN115011161A (en) * 2017-01-18 2022-09-06 日产化学株式会社 Charge-transporting film
WO2020009138A1 (en) * 2018-07-04 2020-01-09 日産化学株式会社 Charge-transporting composition
CN112368857A (en) * 2018-07-04 2021-02-12 日产化学株式会社 Charge transport composition
JPWO2020009138A1 (en) * 2018-07-04 2021-08-02 日産化学株式会社 Charge transporting composition
TWI816825B (en) * 2018-07-04 2023-10-01 日商日產化學股份有限公司 charge transport composition
JP7392644B2 (en) 2018-07-04 2023-12-06 日産化学株式会社 Charge transporting composition

Also Published As

Publication number Publication date
JP4002435B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
US7575803B2 (en) Inorganic compound particle and process for preparation thereof
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
US20040016914A1 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4837376B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4519343B2 (en) Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP4782054B2 (en) Substrate with transparent conductive film and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP4902048B2 (en) Substrate with transparent conductive film and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term