WO2006118006A1 - Electrochemical reaction process and method for forming composite material - Google Patents

Electrochemical reaction process and method for forming composite material Download PDF

Info

Publication number
WO2006118006A1
WO2006118006A1 PCT/JP2006/307968 JP2006307968W WO2006118006A1 WO 2006118006 A1 WO2006118006 A1 WO 2006118006A1 JP 2006307968 W JP2006307968 W JP 2006307968W WO 2006118006 A1 WO2006118006 A1 WO 2006118006A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electrolyte solution
reaction
electrochemical reaction
plating
Prior art date
Application number
PCT/JP2006/307968
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Sone
Takashi Yamamoto
Muhammad Ziaur Rahman
Koji Ikeda
Original Assignee
National University Corporation Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Tokyo University Of Agriculture And Technology filed Critical National University Corporation Tokyo University Of Agriculture And Technology
Publication of WO2006118006A1 publication Critical patent/WO2006118006A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the present invention relates to an electrochemical reaction method such as electroplating.
  • the electrochemical reaction referred to in the present invention refers to a chemical reaction involving the transfer and transfer of electric charges (ions, electrons), and is a so-called use of phenomena such as electrolysis and electrophoresis caused by applying an external electric field. This includes not only an electrochemical reaction but also an acid reduction reaction that is performed without applying an electric field, such as electroless plating.
  • the electrical plating process can be roughly divided into a pretreatment process, a plating process, and a post-treatment process.
  • the pretreatment process involves degreasing and pickling. These are usually realized by storing a predetermined treatment liquid in a dedicated bath and heating it, and immersing the object to be treated in this treatment liquid for a predetermined time. Therefore, this work requires multiple baths and their work space, which increases the equipment cost and makes the work in a situation where the processing liquid is scattered and harmful gases are generated! The working environment is poor, and the immersion takes a long time and the productivity is poor! There was a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-317991
  • each treatment process can be performed safely, rationally and quickly using supercritical or subcritical carbon dioxide, and dioxidation after use.
  • Improve productivity by improving the quality of the product, recycle them, and dramatically improve the mess around. Almost achieve uniform plating and improve productivity, while eliminating the bathtub required for each treatment, reducing the size and weight, reducing the cost of equipment and reducing installation space, etc.
  • the electrochemical Management method and an electrochemical reactor has been developed.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-321798
  • a compound stake distributed stake
  • a uniform suspension is prepared by adding the necessary inert fine particles (fine particles that do not react with the electrolytic bath) in the form of fibers or particles for imparting the various functions described above to an aqueous solution containing metal ions. To form.
  • electrolysis plating is performed using the suspension as a plating bath, and the inert fine particles adsorbed on the metal surface are embedded in the plating film by the deposited metal.
  • the inert fine particles prayed for in the above are taken into the metal matrix to form a plating film made of a composite material formed by forming a dispersed phase.
  • composite plating using a plating bath in which inert fine particles of a micrometer order are dispersed in an aqueous solution containing metal ions has already been industrially used. This is used to improve wear resistance in the engine cylinder!
  • the shear stress acting on the agglomerated particles may become smaller as the particle size becomes smaller, and the particles are agglomerated and embedded in the adhesive film to form a homogeneous composite material film. For this reason, composite materials have the problem that stable mechanical, chemical or physical properties are not achieved. Disclosure of the Invention
  • the present invention has been made in view of the above-described background art, and an object thereof is to provide an electrochemical reaction method for forming a composite material in which particles are uniformly dispersed. There is.
  • a first aspect of the present invention includes a substance in a subcritical state, an electrolyte solution, and particles, and the particles are located at an interface between the phase of the substance in the subcritical state and the phase of the electrolyte solution.
  • the electrochemical reaction method is characterized in that the reaction is carried out in a bath.
  • the subcritical state refers to a state in which any one of the temperature and pressure exceeds 70% of the critical value.
  • a second aspect of the present invention includes a substance in a supercritical state, an electrolyte solution, and particles, and the particles are located at an interface between the phase of the substance in the supercritical state and the phase of the electrolyte solution.
  • the electrochemical reaction method is characterized in that the reaction is carried out in a bath.
  • the bath is homogenized by the supercritical substance having a high diffusion constant, and the particles are homogeneous under extremely advantageous conditions in which ions are efficiently supplied to the periphery of the electrode and the like to increase the reactivity. It is possible to form a composite material that is dispersed in the composition.
  • the supercritical state is a state in which the temperature, pressure, and temperature are above the critical point of the entropy diagram in the phase diagram! .
  • a third aspect of the present invention is that the reaction is performed in a bath containing a liquid, an electrolyte solution that is phase-separated from the liquid, and soot particles that are not dissolved in any of the liquid and the electrolyte solution. Yuki, an electrochemical reaction method characterized by causing the particles to pray together.
  • FIG. 1 is a diagram showing a reaction process of a first embodiment.
  • FIG. 2 is a diagram showing a reaction process of a second embodiment.
  • FIG. 3 SEM photograph of a film formed by a plating method using a supercritical diacid-carbon-carbon Z plating solution Z surfactant.
  • FIG. 4 is a SEM photograph of a coating film of this example using supercritical carbon dioxide Z plating solution Z surfactant Z carbon nanotubes.
  • FIG. 5 SEM photograph of coating film by plating method using plating solution Z carbon nanotubes.
  • FIG. 7 is an optical micrograph of the coating film formed by plating using Z-carbon nanotubes.
  • FIG. 8 is a diagram showing X-ray diffraction of a Ni—C composite adhesive film.
  • the following embodiment is a case in which an electrode is placed in a reaction bath and an external electric field is applied. Therefore, electroplating, electrolysis, formation of an anodized film, electropolishing, electrolysis It can be applied in common to each method such as caloe, electrophoretic coating, and electrolytic purification. Even when an external electric field such as electroless plating or chemical conversion treatment is not applied, the object can be immersed in the same manner as when an electric field is applied instead of the cathode and anode. Can be implemented.
  • Figure 1 shows the reaction process.
  • Fig. 1 shows the state before the reaction
  • (b) shows the state during the reaction
  • (c) shows the state after the reaction.
  • the bath to be reacted contains an electrolyte solution 1, a substance 2 below the critical point, and particles.
  • the state (b), that is, the substance 2 below the critical point is transferred to the supercritical state to be in a uniformly dispersed state 3 with the electrolyte solution.
  • the supercritical state it is possible to realize a very advantageous condition that the bath is homogenized by a supercritical substance having a high diffusion constant, and ions are efficiently supplied to the periphery of the electrode and the like to increase the reactivity.
  • the reaction rate can be obtained quickly despite the mild conditions that are easy to realize. Stir and fast reaction speed with or without critical or subcritical state It ’s easy to get a degree.
  • the supercritical state is usually achieved by increasing the pressure and temperature using a compressor, a heat exchanger, or the like.
  • the surface of the electrode 4 is naturally degreased and washed due to the flow generated in the system in the process of raising the temperature and pressure to the supercritical state. Therefore, the degreasing work of the electrode 4 performed in advance before the reaction process can be omitted.
  • the power used in general degreasing operations using solvents such as trichlorethylene, tetrachloroethylene, and trichloroethane. These solvents are highly toxic and may cause environmental pollution, which may cause safety problems. there were.
  • the solvent-based degreasing agent is not necessary, so that an environment-conserving system can be realized. The above description does not prevent the electrode from being degreased and cleaned in advance.
  • the reaction is carried out in the state (b). Since the material in the supercritical state has a high diffusion constant, metal ions and the like in the electrolyte solution are efficiently supplied around the electrode 4, and the deposition / dissolution rate on the surface of the electrode 4 increases. In addition, since the system is always homogenized, throwing power and film uniformity are also improved. Furthermore, since a small amount of electrolyte solution 1 is used while maintaining high reaction efficiency, the amount of waste liquid to be processed can be reduced, which is preferable in terms of environmental protection and cost.
  • the substance in the supercritical state is transferred again to a state below the critical point by reducing the pressure or lowering the temperature, and the phase separation state of (c) is obtained.
  • the supercritical substance is rapidly vaporized or liquidated, causing a violent flow in the system, and the impurities on the surface of the electrode 4 are blown away and washed. Therefore, washing with water or the like performed after the reaction becomes unnecessary, and waste liquid such as water used for washing does not occur.
  • the phase-separated electrolyte solution 1 can be recovered and reused after appropriately replenishing the electrolyte lost by the reaction and adjusting the concentration.
  • the particles unlike a general composite plating method, a wide selection of particle types is possible. It is. For example, inactive fine particles of micro-order to nano-order that are difficult to disperse in the plating solution.
  • the particles may be organic particles or inorganic particles.
  • Teflon (PTFE) particles carbon nanotubes, fullerenes, graphites, and nanodiamonds.
  • Use of Teflon particles can be expected to add water repellency, and use of carbon nanotubes, fullerenes, graphite, and nanodiamonds can add strength and abrasion resistance.
  • Teflon is a registered trademark indicating the trade name of fluorine resin (tetrafluoroethylene resin).
  • nickel, copper, chromium, nickel phosphorus, nickel tungsten, cobalt plating, etc. are often used to improve functions such as wear resistance, self-lubrication, and corrosion resistance.
  • Alumina, silicon nitride Further, ceramics such as silicon carbide, organic substances such as fluorine resin (PTFE, PFA, etc.), fine particles such as diamond, carbon fluoride, and molybdenum sulfide may be used.
  • dispersed particles used for improving wear resistance due to electroless composite adhesion such as silicon carbide, diamond, tungsten carbide, acid-aluminum, acid-zirconium, nitrogenation. Boron, titanium oxide, chromium oxide, and titanium carbide may be used. Also, PTFE, fluorocarbon, boron nitride, and molybdenum disulphide, which are dispersed particles used to improve self-lubricity and releasability in electroless composite plating, may be used.
  • silica particles, particles fixed with a silane coupling agent, alumina particles, microcapsules, tin Z silver nanoparticles that can be lead-free soldered and abbreviated as UDDOJltra Dispersed Diamond
  • Diamond fine particles oxides (silicon dioxide, alumina, zirconium oxide, tungsten oxide, titanium dioxide, etc.), carbides (carbon carbide, chromium carbide, tungsten carbide, boron carbide, etc.), oxides of molybdenum, boron nitride
  • a high molecular fluorine compound may be used.
  • the substance to be in a supercritical state is not particularly limited, and is appropriately selected from conventionally known gas and liquid substances in consideration of the critical temperature and critical pressure inherent to the substance.
  • Can. Specific examples include carbon dioxide, trifluoromethane (fluoroform), ethane, propane, butane, benzene, methyl ether, black mouth form, and the like.
  • carbon dioxide is most preferably used in terms of cost, safety, critical conditions, and the like.
  • carbon dioxide has a critical temperature of 304.5K and a critical pressure of 7.387MPa It can shift to a supercritical state in the above range.
  • the electrolyte solution a solution in which various electrolytes such as one or two or more kinds of metal salts, organic electrolytes, acids such as phosphoric acid, and alkaline substances are dissolved in a solvent is used. It is done.
  • the solvent are not particularly limited as long as they are polar solvents.
  • the solvent include alcohols such as water, ethanol and methanol, cyclic carbonates such as ethylene carbonate and propylene carbonate, dimethyl carbonate and ethyl. Examples thereof include linear carbonates such as methyl carbonate and dimethyl carbonate, or a mixed solvent thereof.
  • the metal salt may be appropriately selected in consideration of the type of metal, alloy, oxide, etc. to be precipitated.
  • Metals that can be electrochemically deposited include Cu, Zn, Ga, As, Cr, Se, Mn, Fe, Co, Ni-Ag, Cd, In, Sn, Sb, Te, Ru, Rh, Pd Au, Hg, Tl, Pb, Bi, W, Po, Re, Os, Ir, and Pt.
  • examples of the organic electrolyte include, but are not limited to, an anionic electrolyte such as polyacrylic acid and a cationic electrolyte such as polyethyleneimine.
  • the electrolyte solution may contain one or more substances in addition to the above substances for the purpose of stabilizing the solution. Specifically, (1) substances that form complex salts with precipitated metal ions, (2) irrelevant salts for improving the conductivity of the electrolyte solution, (3) stabilizers for the electrolyte solution, (4) electrolyte solution Buffer, (5) substances that enhance the physical properties of the deposited metal, (6) substances that aid the dissolution of the cathode, (7) substances that change the properties of the electrolyte solution or the properties of the deposited metal, and (8) two or more metals.
  • the stabilizer of the mixed solution containing can be mentioned.
  • the main components of the electrolyte solution in the main electrochemical reaction method are as follows, but are not limited thereto.
  • nickel When depositing nickel; (1) nickel sulfate, ammonium salt, and boric acid, (2) nickel sulfate, nickel chloride, and boric acid, (3) nickel sulfamate, nickel chloride, And boric acid [0049] When precipitating chromium; (1) chromic acid and sulfuric acid, (2) chromic acid, barium acetate, and acetic acid
  • the charging ratio in the bath of the substance to be in the supercritical state and the electrolyte solution as described above is not particularly limited, and is appropriately set in consideration of the concentration of the electrolyte solution, reaction conditions, and the like. be able to. However, if the amount of the electrolyte solution is too small, it becomes difficult for the reaction to proceed. Therefore, it is preferable to contain at least 0.01 wt% or more of the electrolyte solution 1 with respect to the substance 2 below the critical point.
  • a surfactant can be included.
  • carbon dioxide is selected as the material to be brought into the supercritical state
  • carbon dioxide is incompatible with the electrolyte solution. End up. Therefore, by adding a surfactant, the system becomes milky and uniform, and the reaction efficiency is improved.
  • the surfactant at least one or more of conventionally known anionic, nonionic, cationic and zwitterionic surfactants can be appropriately selected and used.
  • anionic surfactant examples include sarcophagus, alpha olefin sulfonate, alkylbenzene sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether sulfate ester salt, and methyl taurate salt.
  • alkyl ether sulfates, perfluorophenyl ether sulfates, perfluoromethyl taurates, sulfoperfluorosuccinates, and fluorofluorosulfonates Not limited to
  • cation of the salt of the anionic cation surfactant sodium, potassium, strength rumum, tetraethylammonium, triethylmethylammonium, jetyldimethylammonium, tetramethylammonium Any force that can be electrolyzed can be used.
  • Nonionic surfactants include Cl-25 alkylphenol, Cl-20 alkanol, polyalkylene glycol, alkylolamide, Cl-22 fatty acid ester, Cl-22 aliphatic amine, Alkylamine ethylene oxide adduct, aryl alkenyl phenol, Cl-25 alkyl naphthol, Cl-25 alkoxylated phosphoric acid (salt), sorbitan ester, styrenated phenol, alkylamine ethylene oxide Z propylene oxide adduct, alkylamine oxide , Cl to 25 alkoxylated phosphoric acid (salt), perfluoronoluenol series, perfluoro higher alcohol series, perfluoropolyalkylene glycol series, perfluoroalkylolamide series, perfluoro fatty acid ester series, perfluoro With loalkylamine ethylene oxide Additive, perfluoroalkyl Forces that can include amine amine oxide / perfluoro
  • lauryl trimethyl ammonium salt As the cationic surfactant, lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, dimethylbenzyl lauryl ammonium salt, cetyl dimethyl benzyl ammonium salt- Um salt, octadecyl dimethyl benzam-um salt, trimethylbenzylam-um salt, hexadecyl pyridinium salt, lauryl pyridinium salt, dodecylpicolium salt, stearylamine acetate, laurylamine acetate, Octadecylamine acetate, monoalkyl ammonium chloride, dialkyl ammonium chloride, ethylene oxide addition type ammonium chloride, alkylbenzil ammonium chloride, tetramethyl ammonium chloride, trimethylphenol ammonium -Um chloride, tetraptylammonum -um chlor
  • Examples of the zwitterionic surfactant include betaine, sulfobetaine, aminocarboxylic acid, and the like, and also a sulfated product of a condensation product of ethylene oxide and Z or propylene oxide and alkylamine or diamine. Examples thereof include, but are not limited to, sulfonic acid salt adducts.
  • the amount of the surfactant used is not particularly limited, but is preferably about 0.0001 to 20 wt% with respect to the electrolyte solution, and more preferably 0.001 to 10 wt%.
  • the reaction conditions in the state of FIG. 1 (b) can be set as appropriate.
  • carbon dioxide when carbon dioxide is selected as the material to be in the supercritical state, it is essential that the reaction be performed at the critical point of temperature 304.5K and pressure 7.387 MPa or more.
  • the reaction temperature is not particularly limited as long as it is 304.5K or higher, but it is preferably in the range of 304.5K to 573.2 kg, and most preferably in the range of 304.5 kg to 473.2 kg.
  • the reaction pressure is not particularly limited as long as it is 7.387 7 MPa or more, but is preferably in the range of 7.387 MPa to 40.387 MPa, and most preferably 7.4 MPa to 20.387 MPa.
  • the reaction time varies depending on the thickness of the film to be deposited and is not particularly limited. A time of about 0.001 seconds to several months is set as needed.
  • FIG. 2 a second embodiment is shown in FIG.
  • the electrolyte solution 1 the substance 2 below the critical point, and the particles are contained in the bath in the state (a) before the reaction.
  • the material 2 below the critical point is transferred to the supercritical material 5 by increasing the pressure, etc., it becomes a phase-separated state as shown in (b) and the density of the supercritical material 5 Is higher than that of the electrolyte solution 1, the supercritical substance 5 is positioned below the electrolyte solution 1.
  • the electrochemical reaction is carried out in the state of (b), and after the reaction is completed, the upper layer is formed while the supercritical substance 5 is rapidly vaporized or liquidified by moving again to a state below the critical point.
  • a flow is generated in the system, and the surface of the electrode 4 is cleaned.
  • the composition of each component in the bath, reaction conditions, and the like are the same as in the first embodiment.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to these, and the composition, concentration, and the like of substances, electrolyte solutions, surfactants, and the like that are in a supercritical state are not limited thereto.
  • Reaction conditions such as current, reaction method, and the like can be changed as appropriate.
  • a pure nickel plate was used as the anode, and a brass plate for Hull cell test was used as the cathode.
  • a nickel watt bath was used as the electrolyte solution. The composition is shown below.
  • Carbon dioxide and electrolyte solution volume ratio at atmospheric pressure is 1Z2, temperature 50 ° C (323K), pressure 10MPa, current density 5. Reaction at OAZdm for 10 minutes Went.
  • the obtained plating film had a thickness of about 8.8 m on the front surface and about 8. O / zm on the back surface.
  • FIG. 3 is a SEM photograph of the skin film by the supercritical dioxide-carbon carbon Z plating solution Z plating method using a surfactant. The reaction is carried out under the condition that no particles are added, and the reaction time is 10 minutes. In Fig. 3, the smooth surface of the Ni plating film is observed.
  • FIG. 4 is a SEM photograph of the coating film of this example using supercritical carbon dioxide Z plating solution Z surfactant Z carbon nanotubes.
  • Fig. 5 is an SEM photograph of a film formed by a plating method using plating solution Z carbon nanotubes.
  • FIG. 6 is an optical micrograph of a coating film according to the present proposal using supercritical carbon dioxide Z plating solution Z surfactant Z carbon nanotubes.
  • FIG. 7 is an optical micrograph of a film formed by a plating method using plating solution Z carbon nanotubes.
  • the size of the nickel particles formed by this example is approximately 80 nm or less, which is larger than the size of the nickel particles formed by ordinary electric plating. It is small in strength.
  • the irregularities on the surface of the film are due to the deposition of carbon nanotubes, but the irregularities are also much smaller than in the case of the deposition of carbon nanotubes by the usual electric plating.
  • the nickel and carbon particles are uniformly dispersed in the film formed according to this example.
  • FIG. 8 is a diagram showing X-ray diffraction of the N—C composite plating film according to this example.
  • the reaction is super The reaction is carried out in the presence of carbon dioxide in the critical state and the reaction time is 10 minutes.
  • Figure 8 shows that peaks derived from nickel and carbon nanotubes are present in the Ni-C composite plating film.
  • Figure 8 also shows that the N-to-C composite plating film is free of impurities and has a good quality film that may affect the metal structure and its properties! / RU
  • a film can be formed under relatively mild conditions even with a low reduction potential metal.
  • reaction rate and the dispersion state can be controlled by pressure.
  • this embodiment or example is a new material coating that pursues further performance by combining a metal with excellent wear resistance with other fine particles with excellent heat resistance and wear resistance.
  • Lubricated composite skins that are originally lubricious, such as disulfuric acid molybdenum, graphite, and tetrafluoroethylene. Even if it is applied to the one used for the purpose of reducing friction and adhesiveness (lubricant film) such as those that obtain films, sliding parts of mechanical parts that deposit materials together with copper, and plastic injection molds Good.
  • composite plating that co-deposits organic pigments colored plating
  • composite plating that co-deposits fluorescent pigments fluorescent plating
  • plating that improves mechanical strength by co-praying fibers stripping
  • adding metal to the fiber and adding various functions metal-impregnated fiber (antibacterial fiber, fire fighting clothing, electromagnetic shielding clothing, anti-static fiber, etc.)
  • paper and pulp containing metal It may be applied to the addition of various functions ((metal impregnated paper 'pulp) antibacterial note, simple electromagnetic wave shield, etc.), parts for various electronic devices, some decorative items (metalization of ceramic materials).
  • the present invention can be applied to various electrochemical reactions such as complex staking.

Abstract

Disclosed is an electrochemical reaction process for forming a composite material wherein particles are homogeneously dispersed. Specifically disclosed is an electrochemical reaction process wherein a reaction is carried out in a bath containing a liquid, an electrolyte solution and particles, with the particles being located at the interface between the liquid phase and the electrolyte solution phase. By this process, there can be obtained a composite material, wherein particles are homogeneously dispersed, under easily realizable mild conditions. Also specifically disclosed is an electrochemical reaction process wherein a reaction is carried out in a bath containing a liquid, an electrolyte solution forming a phase separation with the liquid, and particles which are insoluble in both the liquid and the electrolyte solution, thereby codepositing the particles. By this process, there can be also obtained a composite material, wherein particles are homogeneously dispersed, under easily realizable mild conditions.

Description

明 細 書  Specification
電気化学的反応方法及び複合材料形成方法  Electrochemical reaction method and composite material forming method
技術分野  Technical field
[0001] 本発明は、電気めつき (メツキ)等の電気化学的反応方法に関する。なお、本発明で いう電気化学的反応とは、電荷 (イオン、電子)の移動、授受を伴う化学反応をいい、 外部電界を加えることによって起きる電気分解、電気泳動等の現象を利用したいわ ゆる電気化学反応のみならず、例えば無電解メツキ等の、電界を加えずに行う酸ィ匕 還元反応をも含むものである。  [0001] The present invention relates to an electrochemical reaction method such as electroplating. The electrochemical reaction referred to in the present invention refers to a chemical reaction involving the transfer and transfer of electric charges (ions, electrons), and is a so-called use of phenomena such as electrolysis and electrophoresis caused by applying an external electric field. This includes not only an electrochemical reaction but also an acid reduction reaction that is performed without applying an electric field, such as electroless plating.
背景技術  Background art
[0002] 電気メツキ工程は、前処理工程、メツキ工程及び後処理工程に大きく分けることがで きる。前処理工程は脱脂洗浄や酸洗いを伴う。これらは、専用の浴槽に所定の処理 液を収容して加温し、この処理液に被処理物を所定時間浸漬することが通常実現さ れている。したがって、この作業には、複数の浴槽とその作業スぺ—スを要し、設備 費が高価になるとともに、処理液の飛散や有害なガスが発生する状況下での作業を 強!、られて作業環境が悪く、しかも前記浸漬に長時間を要して生産性が悪 、と!、う 問題があった。  [0002] The electrical plating process can be roughly divided into a pretreatment process, a plating process, and a post-treatment process. The pretreatment process involves degreasing and pickling. These are usually realized by storing a predetermined treatment liquid in a dedicated bath and heating it, and immersing the object to be treated in this treatment liquid for a predetermined time. Therefore, this work requires multiple baths and their work space, which increases the equipment cost and makes the work in a situation where the processing liquid is scattered and harmful gases are generated! The working environment is poor, and the immersion takes a long time and the productivity is poor! There was a problem.
[0003] そこで、超臨界状態とした物質、電解質溶液及び界面活性剤を反応浴槽に導入し、 これらの乳濁状態の下で電気メツキし、メツキ後に超臨界物質を気化させ、これを浴 槽外に排出することによって、洗浄液を要することなく反応浴槽や電極等を洗浄でき るようにした電気化学的反応方法が開発されて 、る。  [0003] Therefore, a supercritical substance, an electrolyte solution, and a surfactant are introduced into the reaction bath, electroplating is performed under these emulsion conditions, and the supercritical substance is vaporized after the plating, and this is bathed. An electrochemical reaction method has been developed in which the reaction bath and the electrodes can be cleaned without draining the cleaning liquid by discharging to the outside.
[0004] 特許文献 1 :特開 2003— 321791  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-317991
[0005] また、電気メツキ等の電気化学的処理に好適で、反応浴槽を加圧して電気化学的反 応させ、電解溶液の溶媒の電気分解を抑制して、電気化学的反応を合理的かつ効 率良く行い、緻密で薄厚の金属皮膜を得られるとともに、生産性の向上と設備の小形 軽量化とを図れ、また各処理工程を安全で合理的に行え、し力も各処理工程におけ る廃液量を低減し、環境汚染を防止し得るようにした電気メツキ等の電気化学的処理 方法およびその電気化学的反応装置が開発されている。 [0006] 特許文献 2 :特開 2003— 321793 [0005] In addition, it is suitable for electrochemical treatment such as electroplating, and pressurizes the reaction bath to cause an electrochemical reaction, thereby suppressing the electrolysis of the solvent of the electrolytic solution to make the electrochemical reaction rational and efficient. It is efficient and can obtain a dense and thin metal film, improve productivity, reduce the size and weight of the equipment, perform each treatment process safely and rationally, and the strength of each treatment process Electrochemical treatment methods such as electroplating and an electrochemical reaction apparatus for reducing the amount of waste liquid and preventing environmental pollution have been developed. [0006] Patent Document 2: JP 2003-321793 A
[0007] さらに、電気メツキ等の電気化学的処理に好適で、超臨界または亜臨界二酸化炭素 を用いて、各処理工程を安全で合理的かつ速やかに行うことができ、使用後の二酸 化炭素および処理溶液等を合理的かつ迅速に処理するとともに、酸洗い液ゃメツキ 液等の使用量を抑制し、更にメツキ作業力も発生する廃液量を低減して、環境汚染 を防止し、作業環境を改善して生産性を向上するとともに、それらの再利用を図り、ま たメツキのつき廻りを飛躍的に向上し、美麗な仕上がりを得られるとともに、被処理物 の裏面や凹部にも緻密かつ一様なメツキを容易に実現し、その生産性を向上する一 方、各処理に要する浴槽を省略かつ小形軽量化し、設備費の軽減と設置スペースの コンパクトィ匕を図れるようにした電気メツキ等の電気化学的処理方法およびその電気 化学的反応装置が開発されている。  [0007] Furthermore, it is suitable for electrochemical treatment such as electroplating, and each treatment process can be performed safely, rationally and quickly using supercritical or subcritical carbon dioxide, and dioxidation after use. Treats carbon and treatment solutions reasonably and quickly, suppresses the amount of pickling solution, etc., and reduces the amount of waste solution that generates a lot of work, thereby preventing environmental pollution and working environment. Improve productivity by improving the quality of the product, recycle them, and dramatically improve the mess around. Easily achieve uniform plating and improve productivity, while eliminating the bathtub required for each treatment, reducing the size and weight, reducing the cost of equipment and reducing installation space, etc. The electrochemical Management method and an electrochemical reactor has been developed.
[0008] 特許文献 3 :特開 2003— 321798  [0008] Patent Document 3: Japanese Patent Application Laid-Open No. 2003-321798
[0009] 一方、近年、めっき皮膜に、耐磨耗性、耐熱性、自己潤滑性その他の機能性の付カロ 、あるいはこれらの機能性を有する複合材料を皮膜として製造することを目的として、 複合めつき (分散めつき)の技術が開発されてきて 、る。複合めつき (分散めつき)は 次の手順で一般に実現される。まず、上述と同様に、金属イオンを含む水溶液に、上 記各種機能を付与するための繊維状や粒子状の所要の不活性微粒子 (電解浴と反 応しない微粒子)をカ卩えて均一なサスペンションを形成させる。その後、このサスペン シヨンをめつき浴として電解めつきを行い、金属表面に吸着する上記不活性微粒子を 析出する金属によってめつき皮膜中に埋め込ませる。これにより上記共祈した不活性 微粒子を金属マトリックス内に取り込ませ、分散相を形成させてなる複合材料による めっき皮膜を形成させる。たとえば、金属イオンを含む水溶液に、マイクロメートルォ ーダ一の不活性微粒子を分散させためっき浴を用いた複合めつきは既に工業的に 利用されてきて 、る。これはエンジンシリンダ内の耐摩耗性向上等に用!、られて 、る  [0009] On the other hand, in recent years, for the purpose of manufacturing a plating film with a wear-resistant, heat-resistant, self-lubricating, or other functionally attached composite material or a composite material having these functionalities as a film, The technology of “metsuki” (distributed mecha) has been developed. A compound stake (distributed stake) is generally realized by the following procedure. First, in the same manner as described above, a uniform suspension is prepared by adding the necessary inert fine particles (fine particles that do not react with the electrolytic bath) in the form of fibers or particles for imparting the various functions described above to an aqueous solution containing metal ions. To form. Thereafter, electrolysis plating is performed using the suspension as a plating bath, and the inert fine particles adsorbed on the metal surface are embedded in the plating film by the deposited metal. As a result, the inert fine particles prayed for in the above are taken into the metal matrix to form a plating film made of a composite material formed by forming a dispersed phase. For example, composite plating using a plating bath in which inert fine particles of a micrometer order are dispersed in an aqueous solution containing metal ions has already been industrially used. This is used to improve wear resistance in the engine cylinder!
[0010] しかしながら、金属イオンを含む水溶液に不活性微粒子を分散させてなるめっき浴を 用いて行う上述の複合めつきでは、ナノ (ナノメートル)オーダーの粒子、ウイスカ(「猫 のひげ」と呼ばれる金属めつき皮膜表面等に発生するヒゲ状の結晶生成物)、繊維、 カーボンナノチューブ、フラーレン等の不活性微粒子を、金属イオンを含む電解浴に 分散させる場合、水溶液中では高いイオン強度により拡散二重層が圧縮されるため ナノオーダーの不活性粒子等が凝集し易ぐまた、凝集した粒子に働く剪断応力は 粒径が小さくなればなるほど小さくなることもあり、粒子が凝集したままめつき皮膜中 に埋め込まれてしまい均質な複合材料の膜が形成されに《なる。このため、複合材 料では、安定した機械的、化学的又は物理的性質が達成されないという問題がある 発明の開示 [0010] However, in the above-mentioned composite nudity performed using a plating bath in which inert fine particles are dispersed in an aqueous solution containing metal ions, nano-scale particles, whiskers (called "cat's whiskers") Beard-like crystal product generated on the surface of a metal plating film), fiber, When inert fine particles such as carbon nanotubes and fullerenes are dispersed in an electrolytic bath containing metal ions, the diffusion double layer is compressed due to high ionic strength in aqueous solution, so that nano-order inert particles easily aggregate. The shear stress acting on the agglomerated particles may become smaller as the particle size becomes smaller, and the particles are agglomerated and embedded in the adhesive film to form a homogeneous composite material film. For this reason, composite materials have the problem that stable mechanical, chemical or physical properties are not achieved. Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、上述の背景技術に鑑みてなされたものであり、その目的とするところは、 粒子が均質に分散してなる複合材料を形成する電気化学的反応方法を提供しようと することにある。  [0011] The present invention has been made in view of the above-described background art, and an object thereof is to provide an electrochemical reaction method for forming a composite material in which particles are uniformly dispersed. There is.
課題を解決するための手段  Means for solving the problem
[0012] この発明によれば、上述の目的を達成するために、特許請求の範囲に記載のとおり の構成を採用している。以下、この発明を詳細に説明する。  [0012] According to the present invention, in order to achieve the above-mentioned object, the configuration as described in the claims is adopted. Hereinafter, the present invention will be described in detail.
[0013] 本発明の第 1の側面は、亜臨界状態である物質と電解質溶液と粒子とを含み、前記 粒子が前記亜臨界状態である物質の相と前記電解質溶液の相との界面に位置する 浴中で反応を行うことを特徴とする電気化学的反応方法である。 [0013] A first aspect of the present invention includes a substance in a subcritical state, an electrolyte solution, and particles, and the particles are located at an interface between the phase of the substance in the subcritical state and the phase of the electrolyte solution. The electrochemical reaction method is characterized in that the reaction is carried out in a bath.
[0014] 本構成によれば、温和な実現しやすい条件下であるにもかかわらず速い反応速度で 粒子が均質に分散してなる複合材料を形成することができる。 [0014] According to this configuration, it is possible to form a composite material in which particles are uniformly dispersed at a high reaction rate in spite of mild and easy to realize conditions.
[0015] なお、ここで亜臨界状態とは、温度力圧力のいずれか一方が臨界値の 70%を超えて いる状態をいう。 [0015] Here, the subcritical state refers to a state in which any one of the temperature and pressure exceeds 70% of the critical value.
[0016] 本発明の第 2の側面は、超臨界状態である物質と電解質溶液と粒子とを含み、前記 粒子が前記超臨界状態である物質の相と前記電解質溶液の相との界面に位置する 浴中で反応を行うことを特徴とする電気化学的反応方法である。  [0016] A second aspect of the present invention includes a substance in a supercritical state, an electrolyte solution, and particles, and the particles are located at an interface between the phase of the substance in the supercritical state and the phase of the electrolyte solution. The electrochemical reaction method is characterized in that the reaction is carried out in a bath.
[0017] 本構成によれば、高い拡散定数を有する超臨界物質により浴が均質化され、電極等 の周辺にイオンが効率よく供給されて反応性が高まるという極めて有利な条件下で 粒子が均質に分散してなる複合材料を形成することができる。 [0018] なお、ここで超臨界状態とは、状態図で温度、圧力、エントロピ一線図の臨界点より 上の温度 ·圧力下にある状態を!、 、、気体でも液体でもな 、性質を示す。 [0017] According to this configuration, the bath is homogenized by the supercritical substance having a high diffusion constant, and the particles are homogeneous under extremely advantageous conditions in which ions are efficiently supplied to the periphery of the electrode and the like to increase the reactivity. It is possible to form a composite material that is dispersed in the composition. [0018] Here, the supercritical state is a state in which the temperature, pressure, and temperature are above the critical point of the entropy diagram in the phase diagram! .
[0019] 本発明の第 3の側面は、液体と、前記液体と相分離する電解質溶液と、前記液体、前 記電解質溶液の ヽずれにも溶解しな ヽ粒子とを含む浴中で反応を行 ヽ、前記粒子 を共祈させることを特徴とする電気化学的反応方法である。 [0019] A third aspect of the present invention is that the reaction is performed in a bath containing a liquid, an electrolyte solution that is phase-separated from the liquid, and soot particles that are not dissolved in any of the liquid and the electrolyte solution. Yuki, an electrochemical reaction method characterized by causing the particles to pray together.
[0020] 本構成によれば、温和な実現しやすい条件下で粒子が均質に分散してなる複合材 料が得られる。 [0020] According to this configuration, a composite material in which particles are homogeneously dispersed under mild and easy to realize conditions can be obtained.
発明の効果  The invention's effect
[0021] 本発明によれば、粒子を均質に分散させることによって、付加される機械的、化学的 又は物理的性質のばらつきを小さくおさえた複合材料が得られるという利点がある。  [0021] According to the present invention, there is an advantage that a composite material can be obtained in which variation in added mechanical, chemical, or physical properties is reduced by uniformly dispersing particles.
[0022] 本発明のさらに他の目的、特徴又は利点は、後述する本発明の実施の形態や添付 する図面に基づきより詳細な説明によって明らかになるであろう。 [0022] Still other objects, features, or advantages of the present invention will become apparent from a more detailed description based on embodiments of the present invention described later and the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]第 1の実施形態の反応過程を示す図である。 FIG. 1 is a diagram showing a reaction process of a first embodiment.
[図 2]第 2の実施形態の反応過程を示す図である。  FIG. 2 is a diagram showing a reaction process of a second embodiment.
[図 3]超臨界二酸ィ匕炭素 Zめっき液 Z界面活性剤を用いためっきの方法による皮膜 の SEM写真である。  [Fig. 3] SEM photograph of a film formed by a plating method using a supercritical diacid-carbon-carbon Z plating solution Z surfactant.
[図 4]超臨界二酸ィヒ炭素 Zめっき液 Z界面活性剤 Zカーボンナノチューブを用いた 本実施例による皮膜の SEM写真である。  FIG. 4 is a SEM photograph of a coating film of this example using supercritical carbon dioxide Z plating solution Z surfactant Z carbon nanotubes.
[図 5]めっき液 Zカーボンナノチューブを用いためっきの方法による皮膜の SEM写真 である。  [Fig. 5] SEM photograph of coating film by plating method using plating solution Z carbon nanotubes.
[図 6]超臨界二酸ィヒ炭素 Zめっき液 Z界面活性剤 Zカーボンナノチューブを用いた 本提案による皮膜の光学顕微鏡写真である。  [Fig. 6] Supercritical carbon dioxide Z-plating solution Z surfactant Z-carbon nanotubes are optical micrographs of the proposed film.
[図 7]めっき液 Zカーボンナノチューブを用いためっきの方法による皮膜の光学顕微 鏡写真である。  FIG. 7 is an optical micrograph of the coating film formed by plating using Z-carbon nanotubes.
[図 8]Ni-C複合めつき膜の X線回折を示す図である。  FIG. 8 is a diagram showing X-ray diffraction of a Ni—C composite adhesive film.
符号の説明  Explanation of symbols
[0024] 1 電解質溶液 [0024] 1 Electrolyte solution
2  2
臨界点以下の物質  Subcritical material
3  Three
均一状態  Uniform state
4  Four
電極  Electrode
5  Five
超臨界状態の物質  Supercritical material
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0026] なお、以下の実施の形態は、反応させる浴中に電極を設置して外部電界を加える場 合であり、したがって、電気めつき、電铸、陽極酸化皮膜の形成、電解研磨、電解カロ ェ、電気泳動塗装、電解精鍊等の各方法に共通して適用することができる。また、無 電解めつき、化成処理等の外部電界を加えない場合であっても、陰極及び陽極に替 えて被めつき物 (被処理物)を浸漬させることにより、電界を加える場合と同様にして 実施することができる。 [0026] The following embodiment is a case in which an electrode is placed in a reaction bath and an external electric field is applied. Therefore, electroplating, electrolysis, formation of an anodized film, electropolishing, electrolysis It can be applied in common to each method such as caloe, electrophoretic coating, and electrolytic purification. Even when an external electric field such as electroless plating or chemical conversion treatment is not applied, the object can be immersed in the same manner as when an electric field is applied instead of the cathode and anode. Can be implemented.
[0027] 《第 1の実施形態》 << First Embodiment >>
[0028] まず、第 1の実施形態について説明する。図 1は反応過程を示す図である。図 1にお いて (a)は反応前、(b)は反応中、(c)は反応後の各状態を表している。まず (a)の状 態では、反応させる浴中に電解質溶液 1、臨界点以下の物質 2及び粒子を含んでい る。  [0028] First, the first embodiment will be described. Figure 1 shows the reaction process. In Fig. 1, (a) shows the state before the reaction, (b) shows the state during the reaction, and (c) shows the state after the reaction. First, in the state (a), the bath to be reacted contains an electrolyte solution 1, a substance 2 below the critical point, and particles.
[0029] この状態から、必要に応じて、(b)の状態、すなわち臨界点以下の物質 2を超臨界状 態に移行させ、電解質溶液と均一分散状態 3にする。超臨界状態とすれば、高い拡 散定数を有する超臨界物質により浴が均質化され、電極等の周辺にイオンが効率よ く供給されて反応性が高まるという極めて有利な条件が実現できる。また、亜臨界状 態とすれば、温和な実現しやす ヽ条件下であるにもかかわらず速!、反応速度を得る ことができる。臨界状態又は亜臨界状態の有無にかかわらず、攪拌させ速い反応速 度を得ることちでさる。 [0029] From this state, if necessary, the state (b), that is, the substance 2 below the critical point is transferred to the supercritical state to be in a uniformly dispersed state 3 with the electrolyte solution. In the supercritical state, it is possible to realize a very advantageous condition that the bath is homogenized by a supercritical substance having a high diffusion constant, and ions are efficiently supplied to the periphery of the electrode and the like to increase the reactivity. Moreover, in the subcritical state, the reaction rate can be obtained quickly despite the mild conditions that are easy to realize. Stir and fast reaction speed with or without critical or subcritical state It ’s easy to get a degree.
[0030] 浴中に界面活性剤を加えて乳濁させると系がさらに安定化し望ましい。  [0030] It is desirable to add a surfactant to the bath to make it emulsified and to further stabilize the system.
[0031] なお、超臨界状態にするためには、通常、コンプレッサーや熱交換器等を用いて、圧 力、温度を上げることにより行う。  [0031] The supercritical state is usually achieved by increasing the pressure and temperature using a compressor, a heat exchanger, or the like.
[0032] 電極 4の表面は、温度 ·圧力を上げて超臨界状態とする過程で、系に生じた流れの ため自然に脱脂洗浄される。したがって、反応工程前に予め行う電極 4の脱脂作業 を省略することができる。一般の脱脂作業では、トリクロロエチレン、テトラクロロェチレ ン、トリクロロェタン等の溶剤を用いて行っている力 これらの溶剤は毒性が強ぐ環 境汚染を引き起こす恐れがあり、安全面にも問題があった。本実施形態では、上記 溶剤系脱脂剤が不要となるため、環境保全型のシステムを実現することができる。な お、以上の説明は、電極を予め脱脂洗浄することを妨げるものではない。  [0032] The surface of the electrode 4 is naturally degreased and washed due to the flow generated in the system in the process of raising the temperature and pressure to the supercritical state. Therefore, the degreasing work of the electrode 4 performed in advance before the reaction process can be omitted. The power used in general degreasing operations using solvents such as trichlorethylene, tetrachloroethylene, and trichloroethane. These solvents are highly toxic and may cause environmental pollution, which may cause safety problems. there were. In the present embodiment, the solvent-based degreasing agent is not necessary, so that an environment-conserving system can be realized. The above description does not prevent the electrode from being degreased and cleaned in advance.
[0033] 続いて、(b)の状態で反応を行う。超臨界状態とした物質は、高い拡散定数を有する ため、電解質溶液中の金属イオン等が電極 4の周囲に効率良く供給され、電極 4の 表面の析出 ·溶解速度が大きくなる。また、系が常に均質化されるため、つきまわり性 、皮膜の均一性も向上する。さらに、高い反応効率は維持しつつ、使用する電解質 溶液 1は少量で済むため、処理すべき廃液の量を削減でき、環境保全、コストの面で 好ましい。  [0033] Subsequently, the reaction is carried out in the state (b). Since the material in the supercritical state has a high diffusion constant, metal ions and the like in the electrolyte solution are efficiently supplied around the electrode 4, and the deposition / dissolution rate on the surface of the electrode 4 increases. In addition, since the system is always homogenized, throwing power and film uniformity are also improved. Furthermore, since a small amount of electrolyte solution 1 is used while maintaining high reaction efficiency, the amount of waste liquid to be processed can be reduced, which is preferable in terms of environmental protection and cost.
[0034] 次に、反応を行った後、減圧するか又は温度を下げることにより、超臨界状態の物質 を、再び臨界点以下の状態へ移行させ、(c)の相分離した状態とする。この過程で、 超臨界状態の物質が急激に気化又は液ィ匕するため系に激しい流れが生じ、それに 伴い電極 4表面の不純物が吹き飛ばされて洗浄される。したがって、反応後に行う水 等による洗浄が不要となり、洗浄に用いた水等の廃液が生じない。なお、相分離した 電解質溶液 1は回収し、反応により失われた電解質を適宜補充し濃度を調整した上 で再利用することができる。  [0034] Next, after the reaction is performed, the substance in the supercritical state is transferred again to a state below the critical point by reducing the pressure or lowering the temperature, and the phase separation state of (c) is obtained. In this process, the supercritical substance is rapidly vaporized or liquidated, causing a violent flow in the system, and the impurities on the surface of the electrode 4 are blown away and washed. Therefore, washing with water or the like performed after the reaction becomes unnecessary, and waste liquid such as water used for washing does not occur. The phase-separated electrolyte solution 1 can be recovered and reused after appropriately replenishing the electrolyte lost by the reaction and adjusting the concentration.
[0035] このようにして、浴中で様々な機能を持った粒子を共祈させることによって新たな機 能を形成される膜に与えることができる。  In this manner, a new function can be imparted to the film to be formed by causing the particles having various functions to co-pray in the bath.
[0036] 次に、反応させる浴中の各成分についてそれぞれ説明する。  Next, each component in the bath to be reacted will be described.
[0037] 本実施形態では、一般の複合めつき方法と異なり、粒子の種類の幅広い選択が可能 である。例えば、めっき液に難分散性を示すマイクロオーダーからナノオーダーの不 活性微粒子が挙げられる。また、粒子は、有機粒子でも無機粒子でもよい。 [0037] In this embodiment, unlike a general composite plating method, a wide selection of particle types is possible. It is. For example, inactive fine particles of micro-order to nano-order that are difficult to disperse in the plating solution. The particles may be organic particles or inorganic particles.
[0038] 具体的には、テフロン(PTFE)粒子、カーボンナノチューブ、フラーレン、グラフアイト、 ナノダイヤが挙げられる。テフロン粒子を使用すると撥水性の付加が、カーボンナノ チューブ、フラーレン、グラフアイト、ナノダイヤを使用すると強度と対磨耗性の付加が 期待できる。なお、テフロンは、フッ素榭脂 (4フッ化工チレン榭脂)の商品名を示す登 録商標である。 Specific examples include Teflon (PTFE) particles, carbon nanotubes, fullerenes, graphites, and nanodiamonds. Use of Teflon particles can be expected to add water repellency, and use of carbon nanotubes, fullerenes, graphite, and nanodiamonds can add strength and abrasion resistance. Teflon is a registered trademark indicating the trade name of fluorine resin (tetrafluoroethylene resin).
[0039] また、ニッケル、銅、クロム、ニッケルリン、ニッケルタングステン、コバルトめっき等に 耐摩耗性や自己潤滑性、耐食性等の機能を向上させるために使用されることが多い 、アルミナ、チッ化シリコン、炭化シリコン等のセラミックスやフッ素榭脂(PTFE, PFA 等)の有機物、ダイヤモンド、フッ化カーボン、硫ィ匕モリブデン等の微粒子でもよい。  [0039] In addition, nickel, copper, chromium, nickel phosphorus, nickel tungsten, cobalt plating, etc. are often used to improve functions such as wear resistance, self-lubrication, and corrosion resistance. Alumina, silicon nitride Further, ceramics such as silicon carbide, organic substances such as fluorine resin (PTFE, PFA, etc.), fine particles such as diamond, carbon fluoride, and molybdenum sulfide may be used.
[0040] また、無電解複合めつきで耐摩耗性を向上させるため等に使用される分散粒子であ る、炭化シリコン、ダイヤモンド、炭化タングステン、酸ィ匕アルミニウム、酸ィ匕ジルコユウ ム、窒素化ホウ素、酸化チタン、酸化クロム、炭化チタンでもよい。また、無電解複合 めっきで自己潤滑性、離型性を向上させるため等に使用される分散粒子である、 PT FE、フッ化炭素、窒化ホウ素、二硫ィ匕モリブデンでもよい。  [0040] Further, dispersed particles used for improving wear resistance due to electroless composite adhesion, such as silicon carbide, diamond, tungsten carbide, acid-aluminum, acid-zirconium, nitrogenation. Boron, titanium oxide, chromium oxide, and titanium carbide may be used. Also, PTFE, fluorocarbon, boron nitride, and molybdenum disulphide, which are dispersed particles used to improve self-lubricity and releasability in electroless composite plating, may be used.
[0041] さらに、シリカ粒子、シランカップリング剤を固定ィ匕した粒子、アルミナ粒子、マイクロ カプセル、鉛フリーはんだめつきも可能となるスズ Z銀ナノ粒子、 UDDOJltra Dispers ed Diamond)と略称されるダイヤモンド質微粒子、酸化物(二酸化ケイ素、アルミナ、 ジルコユア、酸化タングステン、二酸ィ匕チタンなど)、炭化物 (炭化ケィ素、炭化クロム 、炭化タングステン、炭化ホウ素など)、二酸ィ匕モリブデン、窒化ホウ素、高分子フッ 素化合物でもよい。  [0041] Further, silica particles, particles fixed with a silane coupling agent, alumina particles, microcapsules, tin Z silver nanoparticles that can be lead-free soldered, and abbreviated as UDDOJltra Dispersed Diamond) Diamond fine particles, oxides (silicon dioxide, alumina, zirconium oxide, tungsten oxide, titanium dioxide, etc.), carbides (carbon carbide, chromium carbide, tungsten carbide, boron carbide, etc.), oxides of molybdenum, boron nitride Alternatively, a high molecular fluorine compound may be used.
[0042] 超臨界状態とする物質は、特に限定されるものではなぐその物質に固有の臨界温 度、臨界圧力を考慮して、従来知られた気体、液体物質の中から適宜選択して用い ることができる。具体例として、二酸化炭素、 3フッ化メタン (フルォロホルム)、ェタン、 プロパン、ブタン、ベンゼン、メチルエーテル、クロ口ホルム等を挙げることができる。 その中でも二酸ィ匕炭素が、コスト、安全性、臨界条件等の点で最も好ましく用いられ る。例えば、二酸化炭素は、臨界温度 304. 5K、臨界圧力 7. 387MPaであり、それ 以上の範囲で超臨界状態に移行することができる。 [0042] The substance to be in a supercritical state is not particularly limited, and is appropriately selected from conventionally known gas and liquid substances in consideration of the critical temperature and critical pressure inherent to the substance. Can. Specific examples include carbon dioxide, trifluoromethane (fluoroform), ethane, propane, butane, benzene, methyl ether, black mouth form, and the like. Of these, carbon dioxide is most preferably used in terms of cost, safety, critical conditions, and the like. For example, carbon dioxide has a critical temperature of 304.5K and a critical pressure of 7.387MPa It can shift to a supercritical state in the above range.
[0043] 次に、電解質溶液としては、溶媒に対して、一種又は二種以上の金属の塩、有機電 解質、リン酸等の酸、アルカリ物質等の各種電解質を溶解させたものが用いられる。 上記溶媒は、極性溶媒であれば特に限定されるものではなぐ具体例として、水、ェ タノール、メタノール等のアルコール類、エチレンカーボネート、プロピレンカーボネ ート等の環状カーボネート類、ジメチルカーボネート、ェチルメチルカーボネート、ジ ェチルカーボネート等の直鎖状カーボネート類、あるいはこれらの混合溶媒が挙げら れる。  [0043] Next, as the electrolyte solution, a solution in which various electrolytes such as one or two or more kinds of metal salts, organic electrolytes, acids such as phosphoric acid, and alkaline substances are dissolved in a solvent is used. It is done. Specific examples of the solvent are not particularly limited as long as they are polar solvents. Examples of the solvent include alcohols such as water, ethanol and methanol, cyclic carbonates such as ethylene carbonate and propylene carbonate, dimethyl carbonate and ethyl. Examples thereof include linear carbonates such as methyl carbonate and dimethyl carbonate, or a mixed solvent thereof.
[0044] 金属の塩としては、析出させようとする金属、合金、酸化物の種類等を考慮して適宜 選択すれば良い。電気化学的に析出させることができる金属としては、 Cu、 Zn、 Ga 、 As、 Cr、 Se、 Mn、 Fe、 Co、 Niゝ Ag、 Cd、 In、 Sn、 Sb、 Te、 Ru、 Rh、 Pd、 Au、 H g、 Tl、 Pb、 Bi、 W、 Po、 Re、 Os、 Ir、 Pt等が挙げられる。また、有機電解質としては 、ポリアクリル酸等の陰イオン系電解質、ポリエチレンィミン等の陽イオン系電解質が 挙げられる力 これに限定されるものではない。  [0044] The metal salt may be appropriately selected in consideration of the type of metal, alloy, oxide, etc. to be precipitated. Metals that can be electrochemically deposited include Cu, Zn, Ga, As, Cr, Se, Mn, Fe, Co, Ni-Ag, Cd, In, Sn, Sb, Te, Ru, Rh, Pd Au, Hg, Tl, Pb, Bi, W, Po, Re, Os, Ir, and Pt. In addition, examples of the organic electrolyte include, but are not limited to, an anionic electrolyte such as polyacrylic acid and a cationic electrolyte such as polyethyleneimine.
[0045] 電解質溶液には、上記物質の他にも、溶液の安定化等を目的として一種又はそれ以 上の物質を含むことができる。具体的には、(1)析出する金属のイオンと錯塩をつくる 物質、(2)電解質溶液の導電性をよくするための無関係塩、(3)電解質溶液の安定 剤、(4)電解質溶液の緩衝剤、(5)析出金属の物性を力える物質、(6)陰極の溶解 を助ける物質、(7)電解質溶液の性質あるいは析出金属の性質を変える物質、 (8) 二種以上の金属を含む混合溶液の安定剤等を挙げることができる。  [0045] The electrolyte solution may contain one or more substances in addition to the above substances for the purpose of stabilizing the solution. Specifically, (1) substances that form complex salts with precipitated metal ions, (2) irrelevant salts for improving the conductivity of the electrolyte solution, (3) stabilizers for the electrolyte solution, (4) electrolyte solution Buffer, (5) substances that enhance the physical properties of the deposited metal, (6) substances that aid the dissolution of the cathode, (7) substances that change the properties of the electrolyte solution or the properties of the deposited metal, and (8) two or more metals. The stabilizer of the mixed solution containing can be mentioned.
[0046] さらに具体的に、主な電気化学的反応方法における電解質溶液の主成分を挙げれ ば以下の通りであるが、これらに限定されるものではない。  [0046] More specifically, the main components of the electrolyte solution in the main electrochemical reaction method are as follows, but are not limited thereto.
[0047] 銅を析出させる場合;(1)結晶硫酸銅及び硫酸、(2)ホウフッ化銅及びホウフッ酸、( 3)シアン化銅及びシアンィ匕ソーダ、(4)ピロリン酸銅、ピロリン酸カリウム、及びアンモ ニァ水  [0047] When copper is deposited; (1) crystalline copper sulfate and sulfuric acid, (2) copper borofluoride and borofluoric acid, (3) copper cyanide and cyanobium soda, (4) copper pyrophosphate, potassium pyrophosphate, And ammonia water
[0048] ニッケルを析出させる場合;(1)硫酸ニッケル、塩ィ匕アンモ-ゥム、及びホウ酸、(2) 硫酸ニッケル、塩化ニッケル、及びホウ酸、(3)スルファミン酸ニッケル、塩化ニッケル 、及びホウ酸 [0049] クロムを析出させる場合;(1)クロム酸及び硫酸、(2)クロム酸、酢酸バリウム、及び酢 酸 [0048] When depositing nickel; (1) nickel sulfate, ammonium salt, and boric acid, (2) nickel sulfate, nickel chloride, and boric acid, (3) nickel sulfamate, nickel chloride, And boric acid [0049] When precipitating chromium; (1) chromic acid and sulfuric acid, (2) chromic acid, barium acetate, and acetic acid
[0050] 亜鉛を析出させる場合;(1)硫酸亜鉛、塩ィ匕アンモ-ゥム、硫酸アンモ-ゥム、ホウ酸 、及びデキストリン、 (2)酸ィ匕亜鉛、シアンィ匕ソーダ、及び苛性ソーダ、(3)酸化亜鉛 及び苛性ソーダ  [0050] When precipitating zinc; (1) zinc sulfate, salt ammonium, ammonium sulfate, boric acid, and dextrin, (2) acid zinc, cyanide soda, and caustic soda, (3) Zinc oxide and caustic soda
[0051] カドミウムを析出させる場合;(1)酸ィ匕カドミウム、シアン化ソーダ、ゼラチン、及びデ キストリン  [0051] When precipitating cadmium; (1) acid cadmium, sodium cyanide, gelatin, and dextrin
[0052] スズを析出させる場合;(1)硫酸第一スズ、硫酸、クレゾ一ルスルホン酸、 j8—ナフト ール、及びゼラチン、(2)スズ酸カリ及び遊離苛性カリ  [0052] When precipitating tin; (1) stannous sulfate, sulfuric acid, cresol sulfonic acid, j8-naphthol, and gelatin, (2) potassium stannate and free caustic potash
[0053] 銀を析出させる場合;(1)シアンィ匕銀及びシアンィ匕カリ金を析出させる場合;(1)金、 シアン化カリ、炭酸カリ、及びリン酸水素カリ [0053] When precipitating silver; (1) When precipitating cyanide silver and cyanide potassium; (1) Gold, potassium cyanide, potassium carbonate, and potassium hydrogen phosphate
[0054] 白金を析出させる場合;(1)塩化白金酸、第二リン酸アンモ-ゥム、及び第二リン酸ソ ーダ、(2)塩化白金酸及び酢酸塩 [0054] When depositing platinum; (1) chloroplatinic acid, ammonium diphosphate, and dibasic phosphate soda, (2) chloroplatinic acid and acetate
[0055] ロジウムを析出させる場合;(1)濃硫酸及びロジウム、(2)リン酸及びリン酸ロジウム [0056] ルテニウムを析出させる場合;(1)ルテニウム錯体 [0055] When depositing rhodium; (1) Concentrated sulfuric acid and rhodium, (2) Phosphoric acid and rhodium phosphate [0056] When depositing ruthenium; (1) Ruthenium complex
[0057] 黄銅を析出させる場合;(1)シアンィ匕第一銅、シアンィ匕亜鉛、シアンィ匕ナトリウム、及 び炭酸ナトリウム  [0057] When precipitating brass; (1) Cyan 匕 cuprous, Cyan 匕 zinc, Cyan 匕 sodium, and sodium carbonate
[0058] スズ鉛合金を析出させる場合;(1)スズ、鉛、遊離ホウフッ酸、及びペプトン、(2)スズ 、鉛、遊離ホウフッ化水素酸、及びペプトン  [0058] When depositing a tin-lead alloy; (1) tin, lead, free borofluoric acid, and peptone; (2) tin, lead, free borohydrofluoric acid, and peptone
[0059] 鉄ニッケル合金を析出させる場合;(1)スルファミン酸ニッケル、スルファミン酸第一鉄 、及び酢酸ナトリウム  [0059] When depositing an iron-nickel alloy; (1) nickel sulfamate, ferrous sulfamate, and sodium acetate
[0060] コバルト燐を析出させる場合;(1)塩化コバルト、亜リン酸、及びリン酸  [0060] When depositing cobalt phosphorus; (1) Cobalt chloride, phosphorous acid, and phosphoric acid
[0061] また、上述したような、超臨界状態とする物質及び電解質溶液の、浴中での仕込み 比は特に限定されるものではなぐ電解質溶液の濃度や反応条件等を考慮して適宜 設定することができる。しかし、電解質溶液が少な過ぎると反応が進み難くなるため、 臨界点以下の物質 2に対して少なくとも 0. 01wt%以上の電解質溶液 1を含むことが 好ましい。  [0061] Further, the charging ratio in the bath of the substance to be in the supercritical state and the electrolyte solution as described above is not particularly limited, and is appropriately set in consideration of the concentration of the electrolyte solution, reaction conditions, and the like. be able to. However, if the amount of the electrolyte solution is too small, it becomes difficult for the reaction to proceed. Therefore, it is preferable to contain at least 0.01 wt% or more of the electrolyte solution 1 with respect to the substance 2 below the critical point.
[0062] さら〖こ、反応させる浴中には、上述したような超臨界状態とする物質及び電解質溶液 に加えて、界面活性剤を含むことができる。例えば、超臨界状態とする物質として二 酸化炭素を選択した場合、二酸ィ匕炭素は電解質溶液とは非相溶であり、そのため、 超臨界状態に移行させたときに通常は相分離してしまう。そこで界面活性剤を加える ことにより、系を乳濁させて均一とし、反応効率を向上させるものである。界面活性剤 としては、従来知られた陰イオン性、非イオン性、陽イオン性、及び両性イオン性界 面活性剤の中から、少なくとも一種以上を適宜選択して使用することができる。 [0062] Further, in the bath to be reacted, the substance and the electrolyte solution that are brought into the supercritical state as described above In addition, a surfactant can be included. For example, when carbon dioxide is selected as the material to be brought into the supercritical state, carbon dioxide is incompatible with the electrolyte solution. End up. Therefore, by adding a surfactant, the system becomes milky and uniform, and the reaction efficiency is improved. As the surfactant, at least one or more of conventionally known anionic, nonionic, cationic and zwitterionic surfactants can be appropriately selected and used.
[0063] 陰イオン性界面活性剤としては、石鹼、アルファオレフインスルホン酸塩、アルキルべ ンゼンスルホン酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、 フエ-ルエーテル硫酸エステル塩、メチルタウリン酸塩、スルホコハク酸塩、エーテル スルホン酸塩、硫酸化油、リン酸エステル、パーフルォロォレフインスルホン酸塩、ノ 一フルォロアルキルベンゼンスルホン酸塩、パーフルォロアルキル硫酸エステル塩、 パーフルォロアルキルエーテル硫酸エステル塩、パーフルオロフェ-ルエーテル硫 酸エステル塩、パーフルォロメチルタウリン酸塩、スルホパーフルォロコハク酸塩、ノ 一フルォロエーテルスルホン酸塩等が挙げられるがこれらに限定されるものではない  [0063] Examples of the anionic surfactant include sarcophagus, alpha olefin sulfonate, alkylbenzene sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether sulfate ester salt, and methyl taurate salt. , Sulfosuccinate, ether sulfonate, sulfated oil, phosphate ester, perfluororefin sulfonate, neurofluorobenzenesulfonate, perfluoroalkyl sulfate, perfluoro Examples include alkyl ether sulfates, perfluorophenyl ether sulfates, perfluoromethyl taurates, sulfoperfluorosuccinates, and fluorofluorosulfonates. Not limited to
[0064] 上記陰イオン性ァ-オン界面活性剤の塩のカチオンとしては、ナトリウム、カリウム、力 ルシゥム、テトラエチルアンモ-ゥム、トリェチルメチルアンモ-ゥム、ジェチルジメチ ルアンモ-ゥム、テトラメチルアンモ -ゥム等が挙げられる力 これらに限定されるもの ではなぐ電解可能な陽イオンであれば用いることができる。 [0064] As the cation of the salt of the anionic cation surfactant, sodium, potassium, strength rumum, tetraethylammonium, triethylmethylammonium, jetyldimethylammonium, tetramethylammonium Any force that can be electrolyzed can be used.
[0065] 非イオン性界面活性剤としては、 Cl〜25アルキルフエノール系、 Cl〜20アルカノ ール、ポリアルキレングリコール系、アルキロールアミド系、 Cl〜22脂肪酸エステル 系、 Cl〜22脂肪族ァミン、アルキルアミンエチレンォキシド付加体、ァリールアルキ ルフエノール、 Cl〜25アルキルナフトール、 Cl〜25アルコキシ化リン酸(塩)、ソル ビタンエステル、スチレン化フエノール、アルキルアミンエチレンォキシド Zプロピレン ォキシド付加体、アルキルアミンオキサイド、 Cl〜25アルコキシ化リン酸 (塩)、パー フルォロノ-ルフエノール系、パーフルォロ高級アルコール系、パーフルォロポリアル キレングリコール系、パーフルォロアルキロールアミド系、パーフルォロ脂肪酸エステ ル系、パーフルォロアルキルアミンエチレンォキシド付加体、パーフルォロアルキル ァミンエチレンォキシド/パーフルォロプロピレンォキシド付カ卩体、パーフルォロアル キルアミンオキサイド等を挙げることができる力 これらに限定されるものではない。 [0065] Nonionic surfactants include Cl-25 alkylphenol, Cl-20 alkanol, polyalkylene glycol, alkylolamide, Cl-22 fatty acid ester, Cl-22 aliphatic amine, Alkylamine ethylene oxide adduct, aryl alkenyl phenol, Cl-25 alkyl naphthol, Cl-25 alkoxylated phosphoric acid (salt), sorbitan ester, styrenated phenol, alkylamine ethylene oxide Z propylene oxide adduct, alkylamine oxide , Cl to 25 alkoxylated phosphoric acid (salt), perfluoronoluenol series, perfluoro higher alcohol series, perfluoropolyalkylene glycol series, perfluoroalkylolamide series, perfluoro fatty acid ester series, perfluoro With loalkylamine ethylene oxide Additive, perfluoroalkyl Forces that can include amine amine oxide / perfluoropropylene oxide-added bodies, perfluoroalkylamine oxides, and the like, but are not limited thereto.
[0066] 陽イオン性界面活性剤としては、ラウリルトリメチルアンモ -ゥム塩、ステアリルトリメチ ルアンモ -ゥム塩、ラウリルジメチルェチルアンモ -ゥム塩、ジメチルベンジルラウリル アンモニゥム塩、セチルジメチルベンジルアンモ -ゥム塩、ォクタデシルジメチルベン ジルアンモ -ゥム塩、トリメチルベンジルアンモ -ゥム塩、へキサデシルピリジ-ゥム塩 、ラウリルピリジ-ゥム塩、ドデシルピコリュウム塩、ステアリルアミンアセテート、ラウリ ルァミンアセテート、ォクタデシルァミンアセテート、モノアルキルアンモ-ゥムクロライ ド、ジアルキルアンモ-ゥムクロライド、エチレンォキシド付加型アンモ-ゥムクロライド 、アルキルべンジルアンモ -ゥムクロライド、テトラメチルアンモ -ゥムクロライド、トリメ チルフエ-ルアンモ -ゥムクロライド、テトラプチルアンモ -ゥムクロライド、酢酸モノァ ルキルアンモ-ゥム、イミダゾリ-ゥムベタイン系、ァラニン系、アルキルべタイン系、 モノパーフノレオロアノレキノレアンモニゥムクロライド、ジパーフノレオロアノレキノレアンモニ ゥムクロライド、パーフルォロエチレンォキシド付加型アンモ-ゥムクロライド、パーフ ルォロアルキルべンジルアンモ -ゥムクロライド、テトラパーフルォロメチルアンモ-ゥ ムクロライド、トリパーフルォロメチルフエ-ルアンモ -ゥムクロライド、テトラパーフルォ ロブチルアンモ-ゥムクロライド、酢酸モノパーフルォロアルキルアンモ-ゥム、パー フルォロアルキルべタイン系等を挙げることができる力 これらに限定されるものでは ない。  [0066] As the cationic surfactant, lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, dimethylbenzyl lauryl ammonium salt, cetyl dimethyl benzyl ammonium salt- Um salt, octadecyl dimethyl benzam-um salt, trimethylbenzylam-um salt, hexadecyl pyridinium salt, lauryl pyridinium salt, dodecylpicolium salt, stearylamine acetate, laurylamine acetate, Octadecylamine acetate, monoalkyl ammonium chloride, dialkyl ammonium chloride, ethylene oxide addition type ammonium chloride, alkylbenzil ammonium chloride, tetramethyl ammonium chloride, trimethylphenol ammonium -Um chloride, tetraptylammonum -um chloride, monoalkyl ammonium acetate, imidazolium-betaine, alanine, alkylbetaine, monoperfluoroolenorequinoleum monumum chloride, zippernoreo-anorequinoleummonium , Perfluoroethylene oxide addition type ammonium chloride, perfluoroalkylbenzyl ammonium chloride, tetraperfluoromethyl ammonium chloride, triperfluoromethyl phenol ammonium chloride, tetraperfluorobutyl ammonium chloride, acetic acid The ability to include monoperfluoroalkyl ammonium, perfluoroalkyl betaine, and the like is not limited to these.
[0067] 両性イオン性界面活性剤としては、ベタイン、スルホベタイン、アミノカルボン酸等が 挙げられ、また、エチレンオキサイド及び Z又はプロピレンォキシドとアルキルアミン 又はジァミンとの縮合生成物の硫酸ィ匕又はスルホン酸ィ匕付加物等を挙げることがで きるが、これらに限定されるものではない。  [0067] Examples of the zwitterionic surfactant include betaine, sulfobetaine, aminocarboxylic acid, and the like, and also a sulfated product of a condensation product of ethylene oxide and Z or propylene oxide and alkylamine or diamine. Examples thereof include, but are not limited to, sulfonic acid salt adducts.
[0068] 界面活性剤の使用量は特に限定されないが、電解質溶液に対して、 0. 0001〜20 wt%程度とすることが好ましぐ特に 0. 001〜10wt%とすることが好ましい。  [0068] The amount of the surfactant used is not particularly limited, but is preferably about 0.0001 to 20 wt% with respect to the electrolyte solution, and more preferably 0.001 to 10 wt%.
[0069] また、図 1 (b)の状態での反応条件は適宜設定できる。例えば、超臨界状態とする物 質として二酸ィ匕炭素を選択した場合には、その臨界点である温度 304. 5Kかつ圧力 7. 387MPa以上の条件で反応させることが必須とされる。なお、二酸化炭素の場合 の反応温度は 304. 5K以上である限り特に限定されないが、好ましくは 304. 5K〜 573. 2Κ、最も好ましくは 304. 5Κ〜473. 2Κの範囲である。また反応圧力は 7. 38 7MPa以上である限り特に限定されないが、好ましくは 7. 387MPa〜40. 387MPa 、最も好ましくは 7. 4MPa〜20. 387MPaの範囲である。また、反応時間は、析出さ せようとする皮膜の厚さ等により異なり、特に限定されない。必要に応じて 0. 001秒 〜数ケ月程度の時間が適宜設定される。 [0069] The reaction conditions in the state of FIG. 1 (b) can be set as appropriate. For example, when carbon dioxide is selected as the material to be in the supercritical state, it is essential that the reaction be performed at the critical point of temperature 304.5K and pressure 7.387 MPa or more. In the case of carbon dioxide The reaction temperature is not particularly limited as long as it is 304.5K or higher, but it is preferably in the range of 304.5K to 573.2 kg, and most preferably in the range of 304.5 kg to 473.2 kg. The reaction pressure is not particularly limited as long as it is 7.387 7 MPa or more, but is preferably in the range of 7.387 MPa to 40.387 MPa, and most preferably 7.4 MPa to 20.387 MPa. The reaction time varies depending on the thickness of the film to be deposited and is not particularly limited. A time of about 0.001 seconds to several months is set as needed.
[0070] 《第 2の実施形態》 [0070] << Second Embodiment >>
[0071] 次に、第 2の実施形態を図 2に示す。図 2の例においては、反応前の(a)の状態で浴 中に電解質溶液 1、臨界点以下の物質 2、粒子を含むことは上記第 1の実施の形態と 同様であるが、系の圧力を上げる等して、臨界点以下の物質 2を超臨界状態の物質 5に移行させたときに、(b)に示すように相分離した状態となり、かつ超臨界状態の物 質 5の密度が電解質溶液 1のそれよりも高いために、超臨界状態の物質 5が電解質 溶液 1よりも下側に位置するようになる。(b)の状態で電気化学的反応を行い、反応 を終えた後、再び臨界点以下の状態に移行させることにより、超臨界状態の物質 5が 急激に気化又は液ィヒしつつ上側の層に移動するため上記第 1の実施の形態と同様 に系に流れが生じ、電極 4の表面が洗浄される。なお、浴中の各成分の組成、反応 条件等は第 1の実施形態の場合に準ずる。  Next, a second embodiment is shown in FIG. In the example of FIG. 2, it is the same as in the first embodiment that the electrolyte solution 1, the substance 2 below the critical point, and the particles are contained in the bath in the state (a) before the reaction. When the material 2 below the critical point is transferred to the supercritical material 5 by increasing the pressure, etc., it becomes a phase-separated state as shown in (b) and the density of the supercritical material 5 Is higher than that of the electrolyte solution 1, the supercritical substance 5 is positioned below the electrolyte solution 1. The electrochemical reaction is carried out in the state of (b), and after the reaction is completed, the upper layer is formed while the supercritical substance 5 is rapidly vaporized or liquidified by moving again to a state below the critical point. As in the first embodiment, a flow is generated in the system, and the surface of the electrode 4 is cleaned. The composition of each component in the bath, reaction conditions, and the like are the same as in the first embodiment.
実施例  Example
[0072] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定される ものではなぐ超臨界状態とする物質、電解質溶液、界面活性剤等の組成、濃度、及 び電流等の反応条件、反応方法等は適宜変更することができる。  [0072] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these, and the composition, concentration, and the like of substances, electrolyte solutions, surfactants, and the like that are in a supercritical state are not limited thereto. Reaction conditions such as current, reaction method, and the like can be changed as appropriate.
[0073] 陽極に純ニッケル板、陰極にハルセル試験用真鍮板を用い、二酸化炭素を超臨界 状態とし電気めつきを行った。電解質溶液としてはニッケルワット浴を用いた。その組 成を以下に示す。  [0073] A pure nickel plate was used as the anode, and a brass plate for Hull cell test was used as the cathode. A nickel watt bath was used as the electrolyte solution. The composition is shown below.
[0074] (めっき浴組成)  [0074] (Plating bath composition)
[0075] 二酸化炭素(純度 99. 9%以上)、硫酸ニッケル 370gZl、塩ィ匕ニッケル 88gZl、ホ ゥ酸 95gZl、 ρΗ4. 70、 CNT (カーボンナノチューブ、直径 1. 22-1. 50nm、長さ 1 -4 μ m、純度 50- 70%) [0076] 界面活性剤として、非イオン性界面活性剤ォクタ (エチレンォキシド)ドデシルエーテ ル (H(OCH CH ) 0(CH ) H)を上記電解質溶液に対して 3. (^%加えた。超臨界状 [0075] Carbon dioxide (purity 99.9% or more), nickel sulfate 370gZl, salt-nickel 88gZl, phosphoric acid 95gZl, ρΗ4.70, CNT (carbon nanotube, diameter 1.22-1.50nm, length 1 -4 μm, purity 50-70%) [0076] As the surfactant, nonionic surfactant Octa (ethylene oxide) dodecyl ether (H (OCH 2 CH 3) 0 (CH 3) 2 H) was added to the above electrolyte solution 3. (^%). Supercritical state
2 2 8 2 12  2 2 8 2 12
態とする物質として二酸ィ匕炭素を用い、二酸化炭素と常圧における電解質溶液の体 積比を 1Z2とし、温度 50°C (323K)、圧力 10MPa、電流密度 5. OAZdmで 10分 間反応を行った。その結果、電極表面に、ほどよく均一な Ni-C複合めつき膜が形成 された。得られためっき膜の膜厚は表面で約 8. 8 m、裏面で約 8. O /z mであった。  Carbon dioxide and electrolyte solution volume ratio at atmospheric pressure is 1Z2, temperature 50 ° C (323K), pressure 10MPa, current density 5. Reaction at OAZdm for 10 minutes Went. As a result, a reasonably uniform Ni-C composite adhesive film was formed on the electrode surface. The obtained plating film had a thickness of about 8.8 m on the front surface and about 8. O / zm on the back surface.
[0077] 次に、上述の方法により得られためっき膜について考察する。 Next, the plating film obtained by the above method will be considered.
[0078] 図 3は、超臨界二酸ィ匕炭素 Zめっき液 Z界面活性剤を用いためっきの方法による皮 膜の SEM写真である。反応は、粒子を加えない条件下で行い、反応時間は 10分間 である。図 3では Niめっき膜の滑らかな表面が観察される。 [0078] FIG. 3 is a SEM photograph of the skin film by the supercritical dioxide-carbon carbon Z plating solution Z plating method using a surfactant. The reaction is carried out under the condition that no particles are added, and the reaction time is 10 minutes. In Fig. 3, the smooth surface of the Ni plating film is observed.
[0079] 図 4は、超臨界二酸ィヒ炭素 Zめっき液 Z界面活性剤 Zカーボンナノチューブを用い た本実施例による皮膜の SEM写真である。 [0079] FIG. 4 is a SEM photograph of the coating film of this example using supercritical carbon dioxide Z plating solution Z surfactant Z carbon nanotubes.
[0080] 図 5は、めっき液 Zカーボンナノチューブを用いためっきの方法による皮膜の SEM写 真である。 [0080] Fig. 5 is an SEM photograph of a film formed by a plating method using plating solution Z carbon nanotubes.
[0081] 図 6は、超臨界二酸ィヒ炭素 Zめっき液 Z界面活性剤 Zカーボンナノチューブを用い た本提案による皮膜の光学顕微鏡写真である。  [0081] FIG. 6 is an optical micrograph of a coating film according to the present proposal using supercritical carbon dioxide Z plating solution Z surfactant Z carbon nanotubes.
[0082] 図 7は、めっき液 Zカーボンナノチューブを用いためっきの方法による皮膜の光学顕 微鏡写真である。  FIG. 7 is an optical micrograph of a film formed by a plating method using plating solution Z carbon nanotubes.
[0083] 図 6と図 7とを比較することにより、図 6に記載した、本実施例による皮膜は、めっき液 [0083] By comparing FIG. 6 and FIG. 7, the film according to the present example described in FIG.
Zカーボンナノチューブを用いた通常のめっきの方法による皮膜と比較し、カーボン ナノチューブの分散がより均一なニッケル皮膜であることがわかる。 Compared with the coating film by the usual plating method using Z carbon nanotubes, it can be seen that the dispersion of carbon nanotubes is a more uniform nickel coating.
[0084] 図 4〜図 7によると、本実施例により成膜されたニッケル粒子の大きさはほぼ 80nm以 下であり、これは、通常の電気めつきにより成膜されたニッケル粒子の大きさよりもは る力に小さい。皮膜表面の凹凸はカーボンナノチューブの堆積によるものであるが、 その凹凸もまた通常の電気めつきによるカーボンナノチューブの堆積の場合よりもは るかに小さい。図 4及び図 6に示すように、本実施例により成膜された皮膜中において ニッケルと炭素粒子は均質に分散されて 、る。  [0084] According to FIGS. 4 to 7, the size of the nickel particles formed by this example is approximately 80 nm or less, which is larger than the size of the nickel particles formed by ordinary electric plating. It is small in strength. The irregularities on the surface of the film are due to the deposition of carbon nanotubes, but the irregularities are also much smaller than in the case of the deposition of carbon nanotubes by the usual electric plating. As shown in FIGS. 4 and 6, the nickel and carbon particles are uniformly dispersed in the film formed according to this example.
[0085] 図 8は、本実施例による Nト C複合めつき膜の X線回折を示す図である。反応は、超 臨界状態の二酸化炭素の存在下で行い、反応時間は 10分間である。図 8は、 Ni-C 複合めつき膜中にニッケルとカーボンナノチューブとに由来するピークが存在してい ることを示している。また、図 8は、この Nト C複合めつき膜中には金属構造やその特 性に影響を与えかねな 、不純物がなく、良質の膜が成膜されて 、ることも示して!/、る FIG. 8 is a diagram showing X-ray diffraction of the N—C composite plating film according to this example. The reaction is super The reaction is carried out in the presence of carbon dioxide in the critical state and the reaction time is 10 minutes. Figure 8 shows that peaks derived from nickel and carbon nanotubes are present in the Ni-C composite plating film. Figure 8 also shows that the N-to-C composite plating film is free of impurities and has a good quality film that may affect the metal structure and its properties! / RU
[0086] 上述のように、本実施形態又は本実施例によれば、還元電位の低!ヽ金属であっても 比較的穏やかな条件の下で皮膜を形成できる。 [0086] As described above, according to this embodiment or the present example, a film can be formed under relatively mild conditions even with a low reduction potential metal.
[0087] また、粒子径が小さくなるほど不活性微粒子の複合めつき皮膜中に含有される粒子 数が減少することが問題として一般に存在した。たとえば、マイクロオーダーの粒子 では 5〜15vol%含有する条件であっても、ナノオーダーの粒子では 0. lvol%以下 に減少してしまう。この原因としては、親水性である不活性微粒子の表面に吸着した 水分子と、析出する金属の表面に吸着した水分子との間に働く斥力の影響が指摘さ れていた。し力しながら、本実施形態又は本実施例によれば、ナノオーダーサイズの 粒子であっても粒子が皮膜中で均質に分散されているという優れた利点を有する複 合材料を得ることができる。特に、本実施形態又は本実施例では界面を利用して二 次元的に粒子を分散させることができるため、超音波等を使用する一般の分散方法 よりも優れている。  [0087] Further, it has generally existed as a problem that the number of particles contained in the composite adhesive film of inert fine particles decreases as the particle size decreases. For example, even if the micro-order particles contain 5-15 vol%, the nano-order particles will decrease to 0.1 lvol% or less. The cause of this was pointed out by the repulsive force acting between the water molecules adsorbed on the surface of the inert fine particles that are hydrophilic and the water molecules adsorbed on the surface of the deposited metal. However, according to the present embodiment or the present example, a composite material having an excellent advantage that even in the case of nano-order size particles, the particles are uniformly dispersed in the film can be obtained. . In particular, this embodiment or the present example is superior to a general dispersion method using ultrasonic waves or the like because particles can be dispersed two-dimensionally using an interface.
[0088] さらに、本実施形態又は本実施例によれば、粒子の種類の選択の幅を大きく広げる ことができるという利点もある。このことは、電解質溶液に分散が困難であるため使用 が困難であった粒子を、本実施形態又は本実施例によれば使用することができるよう になる点で大きな意義を有する。  [0088] Furthermore, according to the present embodiment or the present example, there is an advantage that the range of selection of the type of particles can be greatly increased. This has a great significance in that particles that are difficult to use because they are difficult to disperse in the electrolyte solution can be used according to this embodiment or this example.
[0089] また、圧力によって反応速度や分散状態を制御できるという利点もある。  [0089] There is also an advantage that the reaction rate and the dispersion state can be controlled by pressure.
[0090] 特に、超臨界状態を利用して反応を行った場合には水の電気分解による水素ガスで 生成されるピンホールの生成が少なぐ良質の膜を得ることができる。  [0090] In particular, when the reaction is carried out using the supercritical state, it is possible to obtain a high-quality film in which the generation of pinholes generated by hydrogen gas by electrolysis of water is small.
[0091] なお、本実施形態又は本実施例は、耐摩耗性に優れた金属と、その他の耐熱性、耐 摩耗性に優れた微粒子とを組み合わせ、更なる性能を追求した新 、素材の皮膜を 析出させることを狙ったもの(耐摩耗性皮膜)、共祈させる素材として二硫ィ匕モリブデ ン、グラフアイト、四弗化工チレンなど元々潤滑性のあるものによって潤滑性複合皮 膜を得るもの、素材を銅と一緒に析出させる機械部品の摺動部やプラスチック射出 成型の金型等の摩擦や粘着性を減少させる目的で用いられるもの (潤滑性皮膜)に 適用してもよい。さらに、有機顔料を共析する複合めつき (カラーめつき)、蛍光顔料 を共析する複合めつき (蛍光めつき)、繊維を共祈して、機械的強度の向上を図った めっき (強化金属)、繊維中に金属を含ませて、様々な機能の付加 (金属含浸繊維( 抗菌繊維、消防服、電磁波シールド服、静電防止繊維等))、紙、パルプ中に金属を 含ませて様々な機能の付加 ((金属含浸紙'パルプ)抗菌ノート、簡易電磁波シールド 等)、各種電子機器用部品、装飾品の一部等 (セラミック材料の金属化)に適用しても よい。 Note that this embodiment or example is a new material coating that pursues further performance by combining a metal with excellent wear resistance with other fine particles with excellent heat resistance and wear resistance. Lubricated composite skins that are originally lubricious, such as disulfuric acid molybdenum, graphite, and tetrafluoroethylene. Even if it is applied to the one used for the purpose of reducing friction and adhesiveness (lubricant film) such as those that obtain films, sliding parts of mechanical parts that deposit materials together with copper, and plastic injection molds Good. In addition, composite plating that co-deposits organic pigments (colored plating), composite plating that co-deposits fluorescent pigments (fluorescent plating), and plating that improves mechanical strength by co-praying fibers (strengthening) Metal), adding metal to the fiber and adding various functions (metal-impregnated fiber (antibacterial fiber, fire fighting clothing, electromagnetic shielding clothing, anti-static fiber, etc.)), paper and pulp containing metal It may be applied to the addition of various functions ((metal impregnated paper 'pulp) antibacterial note, simple electromagnetic wave shield, etc.), parts for various electronic devices, some decorative items (metalization of ceramic materials).
[0092] また、自動車、オートバイ部品金型、宇宙産業用機器材及び航空機用機器材、化学 プラント、コンピュータ用又は電子機器要素及び部品又は OA機器用又はカメラ等の 光学機器用要素及び部品 (記憶素子、スイッチング素子等)及び磁気テープ又は C D等記録媒体の等の摺動性、潤滑性、耐摩耗性、耐熱性、耐熱膨張性、耐剥離性、 耐水耐薬品及び耐ガス腐食性の改善、外観及び触感の改善、色調の改善、比重密 度の改善を目的にして、潤滑油組成物、燃料組成物、グリースのようなペースト状組 成物、成形用榭脂組成物、ゴム組成物、金属材料、セラミック組成物等への添加、ま たは、粉末の形態自体で機械の摺動部位等に存在させ、或いは吸着材、イオン交換 材として生体内へ経口投与する等、各種用途に適用することも考えられる。  [0092] In addition, automobile parts, motorcycle parts molds, space industry equipment materials and aircraft equipment materials, chemical plants, computer or electronic equipment elements and parts, OA equipment or optical equipment elements and parts such as cameras (memory) Slidability, lubricity, wear resistance, heat resistance, heat expansion resistance, peeling resistance, water chemical resistance and gas corrosion resistance of recording media such as magnetic tape or CD) For the purpose of improving the appearance and touch, improving the color tone, and improving the density of specific gravity, a lubricating oil composition, a fuel composition, a paste-like composition such as grease, a resin composition for molding, a rubber composition, Applicable to various applications such as addition to metal materials, ceramic compositions, etc., or powder form itself at the sliding part of the machine, or oral administration to the living body as an adsorbent or ion exchange material Can also be considered
[0093] 以上、特定の実施形態及び実施例を参照しながら、本発明について説明してきた。  The present invention has been described above with reference to specific embodiments and examples.
しかしながら、本発明の要旨を逸脱しない範囲で当業者が実施形態、実施例の修正 又は代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示し てきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の 要旨を判断するためには、冒頭に記載した特許請求の範囲の欄を参酌すべきである  However, it is obvious that those skilled in the art can make modifications or substitutions of the embodiments, examples without departing from the gist of the present invention. That is, the present invention has been disclosed in the form of exemplification, and the contents described in this specification should not be interpreted in a limited manner. In order to determine the gist of the present invention, the column of the claims described at the beginning should be considered.
[0094] また、この発明の説明用の実施形態及び実施例が上述の目的を達成することは明ら かであるが、多くの変更や他の実施例を当業者が行うことができることも理解されると ころである。特許請求の範囲、明細書、図面及び説明用の各実施形態のエレメント 又はコンポーネントを他の 1つまたは組み合わせとともに採用してもよい。特許請求の 範囲は、かかる変更や他の実施形態及び実施例をも範囲に含むことを意図されてお り、これらは、この発明の技術思想および技術的範囲に含まれる。 [0094] Although it is clear that the illustrative embodiments and examples of the present invention achieve the above-mentioned object, it is understood that many modifications and other examples can be made by those skilled in the art. It is about time. The elements or components of each embodiment for the claims, specification, drawings, and description may be employed together with one or a combination of the other. Patented The scope is intended to include such modifications and other embodiments and examples, and these are included in the technical concept and technical scope of the present invention.
産業上の利用可能性 Industrial applicability
複合めつきを例とする様々な電気化学的反応に適用できる。 The present invention can be applied to various electrochemical reactions such as complex staking.

Claims

請求の範囲 The scope of the claims
[1] 亜臨界状態である物質と電解質溶液と粒子とを含み、前記粒子が前記亜臨界状態 である物質の相と前記電解質溶液の相との界面に位置する浴中で反応を行うことを 特徴とする電気化学的反応方法。  [1] The reaction is performed in a bath including a substance in a subcritical state, an electrolyte solution, and particles, and the particles are located at an interface between the phase of the substance in the subcritical state and the phase of the electrolyte solution. A characteristic electrochemical reaction method.
[2] 超臨界状態である物質と電解質溶液と粒子とを含み、前記粒子が前記超臨界状態 である物質の相と前記電解質溶液の相との界面に位置する浴中で反応を行うことを 特徴とする電気化学的反応方法。  [2] The reaction is performed in a bath including a substance in a supercritical state, an electrolyte solution, and particles, and the particles are located at an interface between the phase of the substance in the supercritical state and the phase of the electrolyte solution. A characteristic electrochemical reaction method.
[3] 反応を終えた後、前記超臨界状態である物質を臨界点以下の状態へ移行させること を特徴とする請求項 2記載の電気化学的反応方法。 [3] The electrochemical reaction method according to claim 2, wherein after the reaction is completed, the substance in the supercritical state is transferred to a state below the critical point.
[4] 前記物質は二酸ィ匕炭素であることを特徴とする請求項 1又は 2記載の電気化学的反 応方法。 [4] The electrochemical reaction method according to claim 1 or 2, wherein the substance is carbon dioxide.
[5] 前記浴は界面活性剤をさらに含むことを特徴とする請求項 1又は 2記載の電気化学 的反応方法。  [5] The electrochemical reaction method according to claim 1 or 2, wherein the bath further contains a surfactant.
[6] 複合めつきであることを特徴とする請求項 1又は 2記載の電気化学的反応方法。  [6] The electrochemical reaction method according to claim 1 or 2, wherein the electrochemical reaction is complex.
[7] 液体と、前記液体と相分離する電解質溶液と、前記液体、前記電解質溶液の!/ヽずれ にも溶解しな 、粒子とを含む浴中で反応を行 、、前記粒子を共祈させることを特徴と する電気化学的反応方法。  [7] A reaction is performed in a bath containing a liquid, an electrolyte solution that is phase-separated from the liquid, and particles that do not dissolve even when the liquid or the electrolyte solution is mixed. An electrochemical reaction method characterized by
[8] 請求項 1、 2又は 7記載の電気化学的反応方法によって、分散された前記粒子を有す る複合材料を形成することを特徴とする複合材料形成方法。 [8] A composite material forming method comprising forming a composite material having the dispersed particles by the electrochemical reaction method according to claim 1, 2 or 7.
PCT/JP2006/307968 2005-04-28 2006-04-14 Electrochemical reaction process and method for forming composite material WO2006118006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-133106 2005-04-28
JP2005133106A JP2008169402A (en) 2005-04-28 2005-04-28 Electrochemical reaction process

Publications (1)

Publication Number Publication Date
WO2006118006A1 true WO2006118006A1 (en) 2006-11-09

Family

ID=37307808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307968 WO2006118006A1 (en) 2005-04-28 2006-04-14 Electrochemical reaction process and method for forming composite material

Country Status (2)

Country Link
JP (1) JP2008169402A (en)
WO (1) WO2006118006A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293068A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Method for forming compound plating film, and manufacturing method of inkjet recording head
JP2011162856A (en) * 2010-02-10 2011-08-25 Vision Development Co Ltd Method of forming metal coating film containing fine carbonaceous material
CN113394017A (en) * 2021-06-10 2021-09-14 北京工业大学 Method for sintering neodymium iron boron by electroplating electrophoresis in cooperation with deposition diffusion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470524B1 (en) 2009-06-30 2014-12-08 한화케미칼 주식회사 Blending improvement carbon-composite having Carbon-nanotube and its continuous manufacturing method
CN102146573B (en) * 2011-03-14 2013-05-08 江苏理工学院 Method for preparing nano composite material by supercritical fluid electroforming
JP6400512B2 (en) * 2015-03-18 2018-10-03 株式会社東芝 Electroplating method and electroplating apparatus
JP2017190473A (en) * 2016-04-11 2017-10-19 新日鐵住金株式会社 Slide member, method for producing slide member and plating solution for producing slide member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256026A (en) * 1975-10-04 1977-05-09 Akzo Nv Method of prectpitating metallic coating containing polyfluorocarbon resin particles
JP2003321798A (en) * 2000-12-28 2003-11-14 Hideo Yoshida Method and apparatus for electrical treatment such as electroplating
JP2003321791A (en) * 2000-08-24 2003-11-14 Hideo Yoshida Electrochemical reaction method
JP2005089836A (en) * 2003-09-18 2005-04-07 Shinko Electric Ind Co Ltd Heat radiation member, and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256026A (en) * 1975-10-04 1977-05-09 Akzo Nv Method of prectpitating metallic coating containing polyfluorocarbon resin particles
JP2003321791A (en) * 2000-08-24 2003-11-14 Hideo Yoshida Electrochemical reaction method
JP2003321798A (en) * 2000-12-28 2003-11-14 Hideo Yoshida Method and apparatus for electrical treatment such as electroplating
JP2005089836A (en) * 2003-09-18 2005-04-07 Shinko Electric Ind Co Ltd Heat radiation member, and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293068A (en) * 2008-06-03 2009-12-17 Fujifilm Corp Method for forming compound plating film, and manufacturing method of inkjet recording head
JP2011162856A (en) * 2010-02-10 2011-08-25 Vision Development Co Ltd Method of forming metal coating film containing fine carbonaceous material
CN113394017A (en) * 2021-06-10 2021-09-14 北京工业大学 Method for sintering neodymium iron boron by electroplating electrophoresis in cooperation with deposition diffusion
CN113394017B (en) * 2021-06-10 2023-11-03 北京工业大学 Method for diffusion sintering of neodymium iron boron through electroplating and electrophoresis collaborative deposition

Also Published As

Publication number Publication date
JP2008169402A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
WO2006118006A1 (en) Electrochemical reaction process and method for forming composite material
Sudagar et al. Electroless nickel, alloy, composite and nano coatings–A critical review
JP5554718B2 (en) Electrolytic deposits of metal-based composite coatings containing nanoparticles
JP6076138B2 (en) Composite of carbon black and metal
CN103433485B (en) A kind of Al contained Ni and preparation method
RU2746861C1 (en) Method for producing a composite metal-dispersed coating, dispersed system for precipitation of composite metal-dispersed coating and method of its production
GB2497725A (en) A sliding bearing having a composite layer
CN112368423A (en) Silver electrolyte for depositing a silver dispersion layer and a contact surface with a silver dispersion layer
CN105506526A (en) Preparation method of Ni-SiC compound coating on surface of aluminum alloy and electroplating solution thereof
Parhizkar et al. Electrochemical deposition of Ni–TiN nanocomposite coatings and the effect of sodium dodecyl sulphate surfactant on the coating properties
CN100567587C (en) Zn-Ni-Al 2O 3Nano-composite plate and preparation method thereof
JP5342976B2 (en) Granules and method for producing the same
JP3571627B2 (en) Electrochemical reaction method
Li et al. Preparation and characterization of Cu-GO and Cu-GO-YSZ nanocomposite coating by electrochemical deposition for improved mechanical and anti-corrosion properties
Han et al. A smart electroplating approach to fabricate mechanically robust and fluorine-free Ni-W alloys based superhydrophobic coating on Al alloy
Ariffah et al. Surface roughness, wear and thermal conductivity of ternary electroless Ni–Ag–P coating on copper substrate
EP3167097A1 (en) Composite electroless nickel plating
Fayomi et al. Structural characterization and corrosion properties of electroless processed NiPMnO2 composite coatings on SAE 1015 steel for advanced applications
Danilov et al. Electrodeposition of composite coatings using electrolytes based on deep eutectic solvents: a mini-review
CA3092257A1 (en) Electroless plating of objects with carbon-based material
Henuset et al. Effect of Ceramic Particle Pretreatment & Surface Chemistry on Electrocomposite Coatings
CN105803510A (en) Deposition method for abrasion-resisting electric conduction nickel plating layer on surface of magnesium-lithium alloy
JPS6048599B2 (en) Composite plating film
Palaniappa et al. Effect of zincation/sonication on electroplated gold deposited on aluminum substrate
Sharma et al. Co-electrodeposition of nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06731904

Country of ref document: EP

Kind code of ref document: A1