JP4306026B2 - 有機電界発光素子の発光駆動方法 - Google Patents

有機電界発光素子の発光駆動方法 Download PDF

Info

Publication number
JP4306026B2
JP4306026B2 JP17633999A JP17633999A JP4306026B2 JP 4306026 B2 JP4306026 B2 JP 4306026B2 JP 17633999 A JP17633999 A JP 17633999A JP 17633999 A JP17633999 A JP 17633999A JP 4306026 B2 JP4306026 B2 JP 4306026B2
Authority
JP
Japan
Prior art keywords
voltage
waveform
light emission
drive
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17633999A
Other languages
English (en)
Other versions
JP2001006874A (ja
Inventor
佳久 寺阪
慶一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP17633999A priority Critical patent/JP4306026B2/ja
Publication of JP2001006874A publication Critical patent/JP2001006874A/ja
Application granted granted Critical
Publication of JP4306026B2 publication Critical patent/JP4306026B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板上に積層形成された陽極、有機発光膜及び陰極を含む有機電界発光素子の前記陽極と前記陰極間に電圧を印加して前記有機電界発光素子を発光駆動する有機電界発光素子の発光駆動方法に関する。
【0002】
【従来の技術】
有機電界発光素子は、通常、その陽極、陰極間に有機発光膜を有しており、該両電極間へ電圧を印加することで発光する。
有機電界発光素子は、有機物質や不安定な金属薄膜を構成要素として含んでいるため劣化し易いので、素子発光特性の安定性の向上が大きな課題となっている。
【0003】
このような課題に対し、素子発光駆動時の有機薄膜の酸化や分解或いは金属薄膜の酸化による素子劣化を抑制するために、発光素子を封止部材等で外部から遮断することが行われている。
また、上記の提案とは別に、素子特性の安定性を向上させるために、次のような提案がなされている。
【0004】
すなわち、特許第2747168号公報は、陽極と陰極間に加えられる基本駆動波形によって有機エレクトロルミネッセンス素子(有機電界発光素子)を駆動する有機エレクトロルミネッセンス素子の発光駆動方法において、基本駆動波形のピーク値よりも大きなピーク値を持つパルス波形列を重ね合わせた発光駆動波形によって、素子を駆動する有機エレクトロルミネッセンス素子の発光駆動方法を教えている。また、特開平7−230880号公報は、陽極及び陰極間に定常的に順方向直流電圧を印加し、さらに間欠的に順方向電圧を前記直流電圧に重畳印加し、駆動する有機EL(エレクトロルミネッセンス)表示装置を教えている。
【0005】
【発明が解決しようとする課題】
ところで、有機電界発光素子では、印加される電圧の波形として、例えば、単純な矩形波が用いられると、有機電界発光素子にかかる電界が急激に変化するので、有機電界発光素子における有機物質や不安定な金属からなる薄膜構造のわずかな不均質部、薄膜界面の不均質部にストレスがかかり、素子の劣化をはやめる。
【0006】
このような問題に対して、既述のように素子を封止部材で封止することや、特許第2747168号公報が教える有機エレクトロルミネセンス素子の発光駆動方法や特開平7−230880号公報が教える有機EL表示装置のいずれの従来技術においても、有機電界発光素子にかかる急激な電界変化を基本的に解消することは困難である。
【0007】
そこで本発明は、基板上に積層形成された陽極、有機発光膜及び陰極を含む有機電界発光素子の前記陽極と前記陰極間に電圧を印加して前記有機電界発光素子を発光駆動する有機電界発光素子の発光駆動方法であって、素子にかかる急激な電界変化を防止でき、それにより、素子劣化を抑制でき、素子発光寿命を向上させることができる有機電界発光素子の発光駆動方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は前記課題を解決するため、基板上に積層形成された陽極、有機発光膜及び陰極を含む有機電界発光素子の前記陽極と前記陰極間に電圧を印加して前記有機電界発光素子を発光駆動する有機電界発光素子の発光駆動方法であり、前記有機電界発光素子を発光駆動するための駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを徐々に変化させる有機電界発光素子の発光駆動方法を提供する。
【0009】
本発明に係る有機電界発光素子の発光駆動方法では、基板上に積層形成された陽極、有機発光膜及び陰極を含む有機電界発光素子の前記陽極と前記陰極間に電圧を印加することにより、前記有機発光膜が発光する。
本発明に係る有機電界発光素子の発光駆動方法によると、前記有機電界発光素子を発光駆動するための駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを徐々に、換言すれば緩やかに変化させるので、該駆動電圧又は駆動電流の立上り及び(又は)立下りの変化が緩和され、該有機電界発光素子にかかる急激な電界変化を防止できる。それにより、素子劣化を抑制でき、素子発光寿命を向上させることができる。
【0010】
前記駆動電圧又は駆動電流の波形の立上り時間及び(又は)立下り時間は、100μ秒以上とする。なお、前記駆動電圧又は駆動電流の波形の立上り時間とは、該駆動電圧又は駆動電流が振幅の10%から90%に達するに要する時間をいい、前記駆動電圧又は駆動電流の波形の立下り時間とは、該駆動電圧又は駆動電流が振幅の90%から10%に達するに要する時間をいう。
【0011】
前記駆動電圧又は駆動電流の波形の立上り時間及び(又は)立下り時間の値が大きい程、その立上り及び(又は)立下りを緩やかにでき、前記有機電界発光素子にかかる急激な電界変化を防止し易いが、その上限としては、表示の用途、形態の観点から、それには限定されないが、1秒以下を例示できる。
いずれにしても、前記駆動電圧又は駆動電流の立上り及び(又は)立下りを徐々に、換言すれば緩やかに変化させるための該駆動電圧又は駆動電流の波形の立上り及び(又は)立下りの変化については、例えば、次の場合を挙げることができる。すなわち、
▲1▼前記駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを立上りについては単調増加、換言すれば傾斜直線的増加により、立下りについては単調減少、換言すれば傾斜直線的減少により連続的に変化させる場合、
▲2▼前記駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを時定数を有する形で、換言すれば、立上りについては所定の正の時定数による指数関数的増加により、立下りについては所定の負の時定数による指数関数的減少により連続的に変化させる場合、
▲3▼前記駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを2以上の電圧レベル又は電流レベルからなる階段状波形で、換言すれば、立上りについては2以上の電圧レベル又は電流レベルの所定時間毎の段階的増加により、立下りについては2以上の電圧レベル又は電流レベルの所定時間毎の段階的減少により変化させる場合である。
【0012】
以下に、本発明の有機電界発光素子の発光駆動方法に用いることができる有機電界発光素子について記述する。
前記有機電界発光素子における有機発光膜としては次のものを例示できる。
▲1▼陽極側から陰極側へ、正孔移動関連層及び有機発光層を積層したもの、
▲2▼陽極側から陰極側へ、正孔移動関連層、有機発光層及び電子移動関連層を積層したもの、
▲3▼陽極側から陰極側へ、有機発光層及び電子移動関連層を積層したもの。
【0013】
正孔移動関連層や電子移動関連層は、電極の特性や有機発光層の特性にあわせて必要に応じて設けるようにすればよい。▲1▼〜▲3▼において、正孔移動関連層としては、a)正孔注入層、b)正孔輸送層、c)正孔注入層及び正孔輸送層、d)正孔注入輸送層からなる群より選択されるいずれかの層とすることができ、電子移動関連層としては、a)電子注入層、b)電子輸送層、c)電子注入層及び電子輸送層、d)電子注入輸送層からなる群より選択されるいずれかの層とすることができる。これらの各層も、電極の特性や有機発光層の特性に合わせて適当なものを選択して設けるようにすればよい。
【0014】
また▲1▼〜▲3▼において、有機発光層については、例えば正孔輸送層や正孔注入輸送層の全部若しくは一部、又は電子輸送層や電子注入輸送層の全部若しくは一部に、蛍光物質をドープすることで、これらの層の全部又は一部を発光層とすることもできる。
前記有機電界発光素子の陽極として使用される導電性材料として、4eV程度よりも大きい仕事関数を持つ導電性物質を用いることが好ましい。かかる物質として、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、銅、亜鉛、タングステン、銀、錫、金等及びそれらを含む合金のような金属のほか、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化ジルコニウム等の金属酸化物及びそれらの固溶体や混合体などの導電性金属化合物のような導電性化合物を例示できる。
【0015】
前記有機電界発光素子において発光が見られるように、少なくとも陽極或いは陰極は透明電極にする必要がある。
透明電極を形成する場合、透明基板上に、前記したような導電性物質を用い、蒸着、スパッタリング等の手法やゾルゲル法或いはかかる物質を樹脂等に分散させて塗布する等の手段を用いて所望の透光性と導電性が確保されるように形成すればよい。
【0016】
透明基板としては、適度の強度を有し、有機電界発光素子作製時、膜蒸着時等における熱に悪影響を受けず、透明なものであれば特に限定されないが、そのようなものを例示すると、ガラス基板、透明な樹脂、例えばポリエチレン、ポリプロピレン、ポリエーテルサルホン、ポリエーテルエーテルケトン等を挙げることができる。ガラス基板上に透明電極が形成されたものとしては、ガラス基板上にインジウム錫酸化物(ITO)からなる透明電極を設けたもの、NESAガラスと通称されているコーニング社製の、透明電極をガラス基板上に形成したもの等を使用してもよい。
【0017】
陽極は透明電極膜形成後、いろいろな形状にパターニングできる。陽極は正孔注入が起こりやすくするために、十分洗浄する必要がある。陽極の洗浄には必要に応じて、エキシマーランプの光照射による洗浄法、湿式洗浄法やプラズマ処理による洗浄法、紫外線(UV)/オゾン(O3 )による洗浄法等の清浄方法を用いることができる。またこれらの洗浄方法を組み合わせることによりさらに効果的な洗浄を行うことができる。
【0018】
例えば正孔注入輸送層の形成のために用いることができる正孔注入輸送材料としては、公知のものが使用可能である。
例えばN,N’―ジフェニル―N,N’―ビス(3―メチルフェニル)―1,1’―ジフェニル―4,4’―ジアミン、N,N’―ジフェニル―N,N’―ビス(4―メチルフェニル)―1,1’―ジフェニル―4,4’―ジアミン、N,N’―ジフェニル―N,N’―ビス(1―ナフチル)―1,1’―ジフェニル―4,4’―ジアミン、N,N’―ジフェニル―N,N’―ビス(2―ナフチル)―1,1’―ジフェニル―4,4’―ジアミン、N,N’―テトラ(4―メチルフェニル)―1,1’―ビス(3―メチルフェニル)―4,4’―ジアミン、N,N’―ジフェニル―N,N’―ビス(3―メチルフェニル)―1,1’―ビス(3―メチルフェニル)―4,4’―ジアミン、N,N’―ビス(N―カルバゾリル)―1,1’―ジフェニル―4,4’―ジアミン、4,4’,4”―トリス(N―カルバゾリル)トリフェニルアミン、N,N’,N”―トリフェニル―N,N’,N”―トリス(3―メチルフェニル)―1,3,5―トリ(4―アミノフェニル)ベンゼン、4,4’,4”―トリス[N,N’,N”―トリフェニル―N,N’,N”―トリス(3―メチルフェニル)]トリフェニルアミンなどを挙げることができる。これらのものは2種以上を混合して使用してもよい。
【0019】
正孔注入輸送層は、前記のような正孔注入輸送材料を蒸着して形成してもよいし、正孔注入輸送材料を溶解した溶液や正孔注入輸送材料を適当な樹脂とともに溶解した液を用い、ディップコート法やスピンコート法等の塗布法により形成してもよい。蒸着法で形成する場合、その厚さは30nm〜100nm程度とし、塗布法で形成する場合は、その厚さは50nm〜200nm程度に形成すればよい。
【0020】
正孔注入層や正孔輸送層を採用する場合も、それらの材料として公知のものを種々採用でき、前記の正孔注入輸送層と同様に形成できる。
有機発光層を形成するために用いる有機発光材料としては、公知のものが使用可能である。
例えばエピドリジン、2,5―ビス[5,7―ジ―t―ペンチル―2―ベンゾオキサゾリル]チオフェン、2,2’―(1,4―フェニレンジビニレン)ビスベンゾチアゾール、2,2’―(4,4’―ビフェニレン)ビスベンゾチアゾール、5―メチル―2―{2―[4―(5―メチル―2―ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2,5―ビス(5―メチル―2―ベンゾオキサゾリル)チオフェン、アントラセン、ナフタレン、フェナントレン、ピレン、クリセン、ペリレン、ペリノン、1,4―ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、アクリジン、スチルベン、2―(4―ビフェニル)―6―フェニルベンゾオキサゾール、アルミニウムトリスオキシン、マグネシウムビスオキシン、ビス(ベンゾ―8―キノリノール)亜鉛、ビス(2―メチル―8―キノリノール)アルミニウムオキサイド、インジウムトリスオキシン、アルミニウムトリス(5―メチルオキシン)、リチウムオキシン、ガリウムトリスオキシン、カルシウムビス(5―クロロオキシン)、ポリ亜鉛―ビス(8―ヒドロキシ―5―キノリノリル)メタン、ジリチウムエピンドリジオン、亜鉛ビスオキシン、1,2―フタロペリノン、1,2―ナフタロペリノン、トリス(8―ヒドロキシキノリン)アルミニウム錯体などを挙げることができる。また、一般的な蛍光染料、例えば蛍光クマリン染料、蛍光ペリレン染料、蛍光ピラン染料、蛍光チオピラン染料、蛍光ポリメチン染料、蛍光メシアニン染料、蛍光イミダゾール染料等も使用できる。このうち特に好ましいものとして、キレート化オキシノイド化合物を挙げることができる。
【0021】
有機発光層は前記発光物質からなる単層構成でもよいし、発光の色、発光の強度等の特性を調整するために、多層構成としてもよい。また、2種以上の発光物質を混合して形成したり、発光物質(例えばルブレンやクマリンなどの蛍光色素)をドープしたものでもよい。
有機発光層は、前記のような有機発光材料を蒸着して形成してもよいし、有機発光材料を溶解した溶液や有機発光材料を適当な樹脂とともに溶解した液を用い、ディップコート法やスピンコート法等の塗布法により形成してもよい。蒸着法で形成する場合、その厚さは1nm〜200nm程度とし、塗布法で形成する場合は、その厚さは5nm〜500nm程度に形成すればよい。
【0022】
有機発光層は、その膜厚が厚いほど発光させるための印加電圧を高くする必要があり発光効率が悪くなり、有機電界発光素子の劣化を招きやすい。また膜厚が薄くなると発光効率はよくなるがブレイクダウンしやすくなり有機電界発光素子の寿命が短くなる。従って、発光効率及び素子の寿命を考慮して前記の膜厚の範囲で形成すればよい。
【0023】
また、例えば電子注入輸送層を形成するための電子注入輸送材料としては、公知のものが使用可能である。
例えば、2―(4―ビフェニルイル)―5―(4―tert―ブチルフェニル)―1,3,4―オキサジアゾール、2―(1―ナフチル)―5―(4―tert―ブチルフェニル)―1,3,4―オキサジアゾール、1,4―ビス{2―[5―(4―tertブチルフェニル)―1,3,4―オキサジアゾリル]}ベンゼン、1,3―ビス{2―[5―(4―tert―ブチルフェニル)―1,3,4―オキサジアゾリル]}ベンゼン、4,4’―ビス{2―[5―(4―tert―ブチルフェニル)―1,3,4―オキサジアゾリル]}ビフェニル、2―(4―ビフェニルイル)―5―(4―tert―ブチルフェニル)―1,3,4―チアジアゾール、2―(1―ナフチル)―5―(4―tert―ブチルフェニル)―1,3,4―チアジアゾール、1,4―ビス{2―[5―(4―tert―ブチルフェニル)―1,3,4―チアジアゾリル]}ベンゼン、1,3―ビス{2―[5―(4―tert―ブチルフェニル)―1,3,4―チアジアゾリル]}ベンゼン、4,4’―ビス{2―[5―(4―tert―ブチルフェニル)―1,3,4―チアジアゾリル]}ビフェニル、3―(4―ビフェニルイル)―4―フェニル―5―(4―tert―ブチルフェニル)―1,2,4―トリアゾール、3―(1―ナフチル)―4―フェニル―5―(4―tert―ブチルフェニル)―1,2,4―トリアゾール、1,4―ビス{3―[4―フェニル―5―(4―tert―ブチルフェニル)―1,2,4―トリアゾリル]}ベンゼン、1,3―ビス{2―[1―フェニル―5―(4―tert―ブチルフェニル)―1,3,4―トリアゾリル]}ベンゼン、4,4’―ビス{2―[1―フェニル―5―(4―tert―ブチルフェニル)―1,3,4―トリアゾリル]}ビフェニル、1,3,5―トリス{2―[5―(4―tert―ブチルフェニル)―1,3,4―オキサジアゾリル]}ベンゼンなどを挙げることができる。これらのものは、2種以上を混合して使用してもよい。また、トリス(8―ヒドロキシキノリン)アルミニウム錯体など有機発光材料として用いられる物質のうち比較的電子輸送能の高いものを用いることもできる。
【0024】
電子注入輸送層は、前記のような電子注入輸送材料を蒸着して形成してもよいし、電子注入輸送材料を溶解した溶液や電子注入輸送材料を適当な樹脂とともに溶解した液を用い、ディップコート法やスピンコート法等の塗布法により形成してもよい。蒸着法で形成する場合、その厚さは1nm〜500nm程度とし、塗布法で形成する場合は、5nm〜1000nm程度に形成すればよい。
【0025】
電子注入層や電子輸送層を採用する場合も、それらの材料として公知のものを種々採用でき、前記の電子注入輸送層と同様に形成できる。
陰極を形成する材料としては、4eVよりも小さい仕事関数を持つ金属を含有するものがよく、マグネシウム、カルシウム、チタニウム、イットリウム、リチウム、ガドリニウム、イッテルビウム、ルテニウム、マンガン及びそれらを含有する合金を例示できる。
【0026】
【発明の実施の形態】
以下に本発明の実施の形態を図面を参照して説明する。
図11は本発明に係る有機電界発光素子の発光駆動方法を実施できる有機電界発光素子の1例の概略構成を示す断面図である。
図11に示す有機電界発光素子100(有機エレクトロルミネッセンス素子)は、ガラスからなる透明基板101上に透明電極である陽極102、有機正孔注入輸送層103、有機発光層104及び陰極105が、この順に積層形成されたものである。この素子100では、正孔注入輸送層103及び有機発光層104の2層で有機発光膜108を構成している。
【0027】
また、素子100は、封止部材109を有している。封止部材109は、ガラスからなる封止用基板106及び封止用樹脂107からなっている。さらに言うと、封止部材109は、陰極105の前記発光膜108に重ねられた部分の上方に設けた封止用基板106と、封止用基板106の周縁部分の下方領域を封止する封止用樹脂107からなり、封止用樹脂107は上端が封止用基板106に、下端が陽極102及び陰極105の端部をそれぞれ介在させる状態で基板101にそれぞれ気密に接続されている。そして、有機発光膜108の全体を覆って外気から遮断している。
【0028】
素子100において、陽極102と陰極105との間に所定の電圧を印加することにより有機発光層104が発光する。
次に、本発明に係る有機電界発光素子の発光駆動方法を実施する発光駆動装置について説明する。
図7から図10に本発明に係る有機電界発光素子の発光駆動方法を実施する発光駆動装置における電気回路例の概略構成のブロック図を示す。また、図1、図2及び図4にぞれぞれ図7、図8及び図10に示す電気回路から出力される駆動電圧の波形のグラフを示し、図3及び図5に図9に示す電気回路から出力される駆動電圧の波形のグラフを示す。
【0029】
図7に示す電気回路Aは、素子100に印加する駆動電圧の波形の立上り及び立下りを立上りについては単調増加、換言すれば傾斜直線的増加により、立下りについては単調減少、換言すれば傾斜直線的減少により連続的に変化させるものである。
電気回路Aにおいて、基準クロック発生回路3は基準クロックを発生させることができる。
【0030】
カウンタ回路2は基準クロック発生回路3からの基準クロックをカウントし、そのカウント値を定電流回路11、21に送ることができる。
定電流回路11はカウンタ回路2から送られてくるカウント値に基づいて、基準コンデンサ1に定電流を送り、基準コンデンサ1を充電することができる。
コンパレータ12は基準電圧Vm と基準コンデンサ1の端子電圧とを比較して基準コンデンサ1の端子電圧が基準電圧Vm に達した時点、換言すれば駆動電圧Vt が最大電圧VM (本例では6V)に達した時点で定電流回路11をOFFする。これにより定電流回路11の基準コンデンサ1に対する充電動作が停止される。
【0031】
定電流回路21はカウンタ回路2から送られてくるカウント値に基づいて、基準コンデンサ1から定電流を流し、基準コンデンサ1を放電することができる。
コンパレータ22は基準電圧Vs と基準コンデンサ1の端子電圧とを比較して基準コンデンサ1の端子電圧が基準電圧Vs となった時点、換言すれば駆動電圧Vt が最小電圧VS (本例では0V)となった時点で定電流回路21をOFFする。これにより定電流回路21の基準コンデンサ1に対する放電動作が停止される。
【0032】
バッファアンプ4は基準コンデンサ1の端子電圧に基づいた電圧を出力することができる。これにより、駆動電圧Vt を出力できる。
電気回路Aによると、基準クロック発生回路3にて発生した基準クロックがカウンタ回路2にてカウントされる。カウンタ回路2でカウントされたカウント値は定電流回路11、21に送られる。なお、このとき定電流回路11、21はいずれもOFFの状態である。
【0033】
カウンタ回路2が所定のカウント値をカウントしたとき、定電流回路11はONされ、基準コンデンサ1が充電される。これにより、基準コンデンサ1は所定の立上り速さで充電され、バッファアンプ4から単調増加、換言すれば傾斜直線的増加により連続的に変化する波形が出力される(波形の立上り:図1中a参照)。
【0034】
コンパレータ12にて基準コンデンサ1の端子電圧と基準電圧Vm とが比較され、基準コンデンサ1の端子電圧が基準電圧Vm に達した時点、換言すれば駆動電圧Vt が最大電圧VM (本例では6V)に達した時点で定電流回路11はOFFされ、定電流回路11の基準コンデンサ1に対する充電動作が停止される。これにより、基準コンデンサ1の端子電圧はホールドされ、バッファアンプ4から一定の最大電圧VM が出力される(図1中b参照)。
【0035】
最大電圧VM が所定時間出力された後、すなわちカウンタ回路2が所定のカウント値をカウントしたとき、定電流回路21はONされ、基準コンデンサ1が放電する。これにより、基準コンデンサ1は所定の立下り速さで放電し、バッファアンプ4から単調減少、換言すれば傾斜直線的減少により連続的に変化する波形が出力される(波形の立下り:図1中c参照)。
【0036】
コンパレータ22にて基準コンデンサ1の端子電圧と基準電圧Vs とが比較され、基準コンデンサ1の端子電圧が基準電圧Vs となった時点、換言すれば駆動電圧Vt が最小電圧VS (本例では0V)となった時点で定電流回路21はOFFされ、定電流回路21の基準コンデンサ1に対する放電動作が停止される。所定時間経過後、すなわちカウンタ回路2が所定のカウント値をカウントしたとき、定電流回路11は再びONされ、前記の動作が繰り返されて所定周期Tの駆動電圧Vt がバッファアンプ4から出力される。
【0037】
電気回路Aによる発光駆動方法によると、有機エレクトロルミネッセンス素子100を発光駆動するための駆動電圧の波形の立上り及び立下りを徐々に、換言すれば緩やかに変化させるので、該駆動電圧の波形の立上り及び立下りが緩和され、有機エレクトロルミネッセンス素子100にかかる急激な電界変化を防止できる。それにより、素子劣化を抑制でき、素子発光寿命を向上させることができる。
【0038】
図8に示す電気回路Bは、素子100に印加する駆動電圧の波形の立上り及び立下りを時定数を有する形で、換言すれば、立上りについては所定の正の時定数による指数関数的増加により、立下りについては所定の負の時定数による指数関数的減少により連続的に変化させるものである。
電気回路Bにおいて、基準波形(基準矩形波)発生回路5は駆動電圧Vt の波形の基準となる所定の電圧値、周波数、Duty ratioの基準矩形波を発生させることができる。
【0039】
時定数(CR時定数)回路6は図示を省略したコンデンサ及び抵抗器を備えており、基準波形発生回路5からの基準矩形波形の立上り及び立下りを所望の時定数を持たせて連続的に変化させることができる。
バッファアンプ4は時定数回路6の出力電圧に基づいた電圧を出力することができる。これにより、駆動電圧Vt を出力できる。
【0040】
電気回路Bによると、基準波形発生回路5にて発生した基準矩形波は時定数回路6に通され、バッファアンプ4から駆動電圧Vt として出力される。
すなわち、基準波形発生回路5からの基準矩形波形の立上りが時定数回路6に通されると、所定の時定数を有する形で、換言すれば所定の正の時定数による指数関数的増加により連続的に変化し、その出力波形がバッファアンプ4から出力される(波形の立上り:図2中a参照)。
【0041】
基準波形発生回路5からの基準矩形波形の半値幅部分が時定数回路6に通されると、その出力波形がバッファアンプ4から一定の最大電圧VM として出力される(図2中b参照)。
最大電圧VM (本例では6V)が所定時間出力された後、基準波形発生回路5からの基準矩形波形の立下りが時定数回路6に通されると、所定の時定数を有する形で、換言すれば所定の負の時定数による指数関数的減少により連続的に変化し、その出力波形がバッファアンプ4から出力される(波形の立下り:図2中c参照)。そのあと、基準波形発生回路5からの基準矩形波形の次の立上りが時定数回路6に通されると、前記の動作が繰り返されて所定周期Tの駆動電圧Vt がバッファアンプ4から出力される。
【0042】
電気回路Bによる発光駆動方法によると、有機エレクトロルミネッセンス素子100を発光駆動するための駆動電圧の波形の立上り及び立下りを徐々に、換言すれば緩やかに変化させるので、図7に示す電気回路Aによる発光駆動方法と同様の利点がある。
図9に示す電気回路Cは、素子100に印加する駆動電圧の波形の立上り及び立下り、又は立上りのみを2つの電圧レベルからなる階段状波形で、換言すれば、立上りについては2つの電圧レベルの所定時間毎の段階的増加により、立下りについては2つの電圧レベルの所定時間毎の段階的減少により変化させるものである。
【0043】
電気回路Cにおいて、基準クロック発生回路3は基準クロックを発生させることができる。
カウンタ回路2a、2b、2c、2dは基準クロック発生回路3からの基準クロックをカウントし、そのカウント値をそれぞれアナログSW(スイッチ)7a、7b、7c、7dに送ることができる。
【0044】
アナログSW7a〜7cはそれぞれカウンタ回路2a〜2cから送られてくるカウント値に基づいて、アナログスイッチをON/OFFでき、アナログSW7a〜7cがONのときにバッファアンプ4に対してそれぞれ基準電圧Va 、Vb 、Vm を入力できる。
アナログSW7dはカウンタ回路2dから送られてくるカウント値に基づいて、スイッチをON/OFFでき、アナログSW7dがONのときにバッファアンプ4の入力をGNDに接地できる。
【0045】
バッファアンプ4はアナログSW7a〜7dの出力電圧に基づいた電圧を出力することができる。これにより、駆動電圧Vt を出力できる。
電気回路Cによると、基準クロック発生回路3にて発生した基準クロックがカウンタ回路2a〜2dにてカウントされる。カウンタ回路2a〜2dでカウントされたカウント値はそれぞれアナログSW7a〜7dに送られる。なお、このときアナログSW7a〜7cはいずれもOFFの状態であり、アナログSW7dはONの状態である。これにより、バッファアンプ4の入力がGNDに接地され、バッファアンプ4から0Vが出力される。
【0046】
カウンタ回路2aが所定のカウント値をカウントしたとき、アナログSW7aはONされ、アナログSW7b〜7dはOFFされる。これにより、基準電圧Va がバッファアンプ4に入力され、バッファアンプ4から一定の第1の駆動電圧VA (本例では2V)が出力される(図3中a1参照)。
カウンタ回路2bが所定のカウント値をカウントしたとき、アナログSW7bはONされ、アナログSW7a、7c、7dはOFFされる。これにより、基準電圧Vb がバッファアンプ4に入力され、バッファアンプ4から一定の第2の駆動電圧VB (本例では4V)が出力される(図3中a2参照)。
【0047】
このようにして、バッファアンプ4から2つの電圧レベルからなる階段状波形で、換言すれば2つの電圧レベルの所定時間毎の段階的増加により変化する波形が出力される(波形の立上り:図3中a参照)。
さらに、カウンタ回路2cが所定のカウント値をカウントしたとき、アナログSW7cはONされ、アナログSW7a、7b、7dはOFFされる。これにより、基準電圧Vm がバッファアンプ4に入力され、バッファアンプ4から一定の最大電圧VM (本例では6V)が出力される(図3中b参照)。
【0048】
最大電圧VM が所定時間出力された後、すなわちカウンタ回路2bが所定のカウント値をカウントしたとき、アナログSW7bは再びONされ、アナログSW7a、7c、7dはOFFされる。これにより、基準電圧Vb がバッファアンプ4に入力され、バッファアンプ4から一定の第2の駆動電圧VB (本例では4V)が出力される(図3中c1参照)。
【0049】
カウンタ回路2aが所定のカウント値をカウントしたとき、アナログSW7aは再びONされ、アナログSW7b〜7dはOFFされる。これにより、基準電圧Va がバッファアンプ4に入力され、バッファアンプ4から一定の第1の駆動電圧VA (本例では2V)が出力される(図3中c2参照)。
このようにして、バッファアンプ4から2つの電圧レベルからなる階段状波形で、換言すれば2つの電圧レベルの所定時間毎の段階的減少により変化する波形が出力される(波形の立下り:図3中c参照)。
【0050】
さらに、カウンタ回路2dが所定のカウント値をカウントしたとき、アナログSW7dはONされ、アナログSW7a〜7cはOFFされる。これにより、バッファアンプ4がGNDに接地され、バッファアンプ4から0Vが出力される。所定時間経過後、すなわちカウンタ回路2aが所定のカウント値をカウントしたとき、アナログSW7aは再びONされ、アナログSW7b〜7dはOFFされ、前記の動作が繰り返されて所定周期Tの駆動電圧Vt がバッファアンプ4から出力される。
【0051】
また、この電気回路Cには次のように動作させてもよい。
すなわち、基準クロック発生回路3にて発生した基準クロックがカウンタ回路2a〜2dにてカウントされる。カウンタ回路2a〜2dでカウントされたカウント値はそれぞれアナログSW7a〜7dに送られる。なお、このときアナログSW7a〜7cはいずれもOFFの状態であり、アナログSW7dはONの状態である。これにより、バッファアンプ4がGNDに接地され、バッファアンプ4から0Vが出力される。
【0052】
カウンタ回路2aが所定のカウント値をカウントしたとき、アナログSW7aはONされ、アナログSW7b〜7dはOFFされる。これにより、基準電圧Va がバッファアンプ4に入力され、バッファアンプ4から一定の第1の駆動電圧VA (本例では2V)が出力される(図5中a1参照)。
カウンタ回路2bが所定のカウント値をカウントしたとき、アナログSW7bはONされ、アナログSW7a、7c、7dはOFFされる。これにより、基準電圧Vb がバッファアンプ4に入力され、バッファアンプ4から一定の第2の駆動電圧VB (本例では4V)が出力される(図5中a2参照)。
【0053】
このようにして、バッファアンプ4から2つの電圧レベルからなる階段状波形で、換言すれば2つの電圧レベルの所定時間毎の段階的増加により変化する波形が出力される(波形の立上り:図5中a参照)。
さらに、カウンタ回路2cが所定のカウント値をカウントしたとき、アナログSW7cはONされ、アナログSW7a、7b、7dはOFFされる。これにより、基準電圧Vm がバッファアンプ4に入力され、バッファアンプ4から一定の最大電圧VM (本例では6V)が出力される(図5中b参照)。
【0054】
最大電圧VM が所定時間出力された後、すなわちカウンタ回路2dが所定のカウント値をカウントしたとき、アナログSW7dはONされ、アナログSW7a〜7cはOFFされる。これにより、バッファアンプ4がGNDに接地され、バッファアンプ4から0Vが出力される。所定時間経過後、すなわちカウンタ回路2aが所定のカウント値をカウントしたとき、アナログSW7aは再びONされ、アナログSW7b〜7dはOFFされ、前記の動作が繰り返されて所定周期Tの駆動電圧Vt がバッファアンプ4から出力される。
【0055】
電気回路Cによる発光駆動方法によると、有機エレクトロルミネッセンス素子100を発光駆動するための駆動電圧の波形の立上り及び立下り、又は立上りのみを徐々に、換言すれば緩やかに変化させるので、図7に示す電気回路Aによる発光駆動方法と同様の利点がある。
図10に示す電気回路Dは、素子100に印加する駆動電圧の波形の立上りのみを単調増加、換言すれば傾斜直線的増加により連続的に変化させるものである。
【0056】
電気回路Dにおいて、基準クロック発生回路3は基準クロックを発生させることができる。
カウンタ回路2は基準クロック発生回路3からの基準クロックをカウントし、そのカウント値を定電流回路11に送ることができる。
定電流回路11はカウンタ回路2から送られてくるカウント値に基づいて、基準コンデンサ1に定電流を送り、基準コンデンサ1を充電することができる。
【0057】
コンパレータ12は基準電圧Vm と基準コンデンサ1の端子電圧とを比較して基準コンデンサ1の端子電圧が基準電圧Vm に達した時点、換言すれば駆動電圧Vt が最大電圧VM (本例では6V)に達した時点で定電流回路11をOFFする。これにより定電流回路11の基準コンデンサ1に対する充電動作が停止される。
【0058】
SW(スイッチ)8はカウンタ回路2から送られてくるカウント値に基づいて、基準コンデンサ1から電流を流し、基準コンデンサ1を放電することができる。
バッファアンプ4は基準コンデンサ1の端子電圧に基づいた電圧を出力することができる。これにより、駆動電圧Vt を出力できる。
【0059】
電気回路Dによると、基準クロック発生回路3にて発生した基準クロックがカウンタ回路2にてカウントされる。カウンタ回路2でカウントされたカウント値は定電流回路11、SW8に送られる。なお、このとき定電流回路11はOFFの状態であり、SW8はONの状態である。これにより、バッファアンプ4の入力がGNDに接地され、バッファアンプ4から0Vが出力される。
【0060】
カウンタ回路2が所定のカウント値をカウントしたとき、定電流回路11はON、SW8はOFFされ、基準コンデンサ1が充電される。これにより、基準コンデンサ1は所定の立上り速さで充電され、バッファアンプ4から単調増加、換言すれば傾斜直線的増加により連続的に変化する波形が出力される(波形の立上り:図4中a参照)。
【0061】
コンパレータ12にて基準コンデンサ1の端子電圧と基準電圧Vm とが比較され、基準コンデンサ1の端子電圧が基準電圧Vm に達した時点、換言すれば駆動電圧Vt が最大電圧VM (本例では6V)に達した時点で定電流回路11はOFFされ、定電流回路11の基準コンデンサ1に対する充電動作が停止される。これにより、基準コンデンサ1の端子電圧はホールドされ、バッファアンプ4から一定の最大電圧VM が出力される(図4中b参照)。
【0062】
最大電圧VM が所定時間出力された後、すなわちカウンタ回路2が所定のカウント値をカウントしたとき、SW8はONされ、基準コンデンサ1が放電され、バッファアンプ4からの駆動電圧Vt が0Vに低下する。所定時間経過後、すなわちカウンタ回路2が所定のカウント値をカウントしたとき、定電流回路11は再びONされ、前記の動作が繰り返されて所定周期Tの駆動電圧Vt がバッファアンプ4から出力される。
【0063】
電気回路Dによる発光駆動方法によると、有機エレクトロルミネッセンス素子100を発光駆動するための駆動電圧の波形の立上りを徐々に、換言すれば緩やかに変化させるので、図7に示す電気回路Aによる発光駆動方法と同様の利点がある。
なお、本例では、有機エレクトロルミネッセンス素子100を駆動する駆動波形として出力電圧を制御する例を示したが、駆動波形として、出力電流を制御する場合も同様の効果を得ることができる。
【0064】
また、本例においては電圧出力のOFFの期間の出力値を0Vに設定しているが、それに代えて有機エレクトロルミネッセンス素子に対して逆バイアス(逆方向電圧)とすることも可能であり、その場合、素子発光の安定性はさらに向上する。
次に、図11に示す有機エレクトロルミネッセンス素子100を用いて、本発明の有機電界発光素子の発光駆動方法を実施例1から実施例5として実施したので、比較例とともに以下に説明する。
【0065】
有機エレクトロルミネッセンス素子100の封止領域外の陽極部102a及び陰極部105aにリード線を接続し、後述する実施例1から実施例5及び比較例のように各種駆動電圧を印加し、素子100を発光させて発光輝度の変化及び素子の発光状態を評価、観察した。
先ず、実施例1から実施例5及び比較例に用いた有機エレクトロルミネッセンス素子100の作製について説明し、次いで、実施例1から実施例5及び比較例について説明する。
(有機エレクトロルミネッセンス素子の作製)
市販のITO(インジウム錫酸化物)膜コート済みのガラス基板(日本板硝子社製)101上のITO膜が2mm幅となるようにエッチングにより、該ITO膜に対してパターニングを行い、ガラス基板101上に陽極102を形成した。このパターニング後の基板101を界面活性剤水溶液で15分間超音波洗浄し、さらに基板101に波長172nmのエキシマランプによる光を5分間照射した後、その表面を酸素プラズマにて10分間洗浄した。
【0066】
このように洗浄したITO基板101上にN,N’―ジフェニル―N,N’―ビス(3―メチルフェニル)―1,1’―ジフェニル―4,4’―ジアミンを真空蒸着法により、蒸着速度1Å/secで60nm成膜し、正孔注入輸送層103を形成した。
続いて、トリス(8―ヒドロキシキノリン)アルミニウム錯体を正孔注入輸送層103と同様に、真空蒸着法により、蒸着速度1Å/secで60nm成膜し、発光層104を形成した。
【0067】
次に陰極105として、マグネシウムと銀を抵抗加熱の共蒸着により蒸着速度比10:1(マグネシウム:銀)にコントロールし、開口部2mm幅の成膜マスクを用いて、200nmの膜厚になるように薄膜を形成した。
以上のように作製した素子を、予め真空引き、窒素置換したグローブボックス中に持ち込み、素子上に洗浄済みの封止用ガラス基板106を載せ、その周辺の隙間を覆うように紫外線硬化樹脂107を塗布し、その後、その紫外線硬化樹脂にUV(紫外線)を200秒間照射し、該樹脂を硬化させ、有機エレクトロルミネッセンス素子100を作製した。
(実施例1)
図7に示す電気回路Aによる発光駆動方法によって、図1に示す波形、すなわち立上りについては単調増加により、立下りについては単調減少により連続的に変化する電圧波形の駆動電圧を以下の条件で有機エレクトロルミネッセンス素子100の陽極102及び陰極105間に印加した。
Figure 0004306026
この条件で、図1に示す電圧波形を連続的に印加し、有機エレクトロルミネッセンス素子100を発光駆動したところ、発光駆動開始から500時間経過後の発光輝度が、初期輝度に対して89%であった。
【0068】
また、ダークスポットの発生などの発光状態の変化は認められなかった。
(実施例2)
図8に示す電気回路Bによる発光駆動方法によって、図2に示す波形、すなわち立上り及び立下りが時定数を有する形で連続的に変化する電圧波形の駆動電圧を以下の条件で有機エレクトロルミネッセンス素子100の陽極102及び陰極105間に印加した。
Figure 0004306026
この条件で、図2に示す電圧波形を連続的に印加し、有機エレクトロルミネッセンス素子100を発光駆動したところ、発光駆動開始から500時間経過後の発光輝度が、初期輝度に対して86%であった。
【0069】
また、ダークスポットの発生などの発光状態の変化は認められなかった。
(実施例3)
図9に示す電気回路Cによる発光駆動方法によって、図3に示す波形、すなわち立上り及び立下りが2つの電圧レベルからなる階段状波形で変化する電圧波形の駆動電圧を以下の条件で有機エレクトロルミネッセンス素子100の陽極102及び陰極105間に印加した。
Figure 0004306026
この条件で、図3に示す電圧波形を連続的に印加し、有機エレクトロルミネッセンス素子100を発光駆動したところ、発光駆動開始から500時間経過後の発光輝度が、初期輝度に対して83%であった。
【0070】
また、ダークスポットの発生などの発光状態の変化は認められなかった。
(実施例4)
図10に示す電気回路Dによる発光駆動方法によって、図4に示す波形、すなわち立上りのみについて単調増加により連続的に変化する電圧波形の駆動電圧を以下の条件で有機エレクトロルミネッセンス素子100の陽極102及び陰極105間に印加した。
Figure 0004306026
この条件で、図4に示す電圧波形を連続的に印加し、有機エレクトロルミネッセンス素子100を発光駆動したところ、発光駆動開始から500時間経過後の発光輝度が、初期輝度に対して84%であった。
【0071】
また、ダークスポットの発生などの発光状態の変化は認められなかった。
(実施例5)
図9に示す電気回路Cによる発光駆動方法によって、図5に示す波形、すなわち立上りのみが2つの電圧レベルからなる階段状波形で変化する電圧波形の駆動電圧を以下の条件で有機エレクトロルミネッセンス素子100の陽極102及び陰極105間に印加した。
Figure 0004306026
この条件で、図5に示す電圧波形を連続的に印加し、有機エレクトロルミネッセンス素子100を発光駆動したところ、発光駆動開始から500時間経過後の発光輝度が、初期輝度に対して80%であった。
【0072】
また、ダークスポットの発生などの発光状態の変化は認められなかった。
(比較例)
図6に示す波形、すなわち単純な矩形波の駆動電圧を以下の条件で有機エレクトロルミネッセンス素子100の陽極102及び陰極105間に印加した。
Figure 0004306026
この条件で、図6に示す電圧波形を連続的に印加し、有機エレクトロルミネッセンス素子100を発光駆動したところ、発光駆動開始から500時間経過後の発光輝度が、初期輝度に対して63%であった。
【0073】
また、ダークスポットの発生が見られ、初期の均一な面発光状態が維持できていなかった。
このように実施例1から実施例5では、素子100にかかる急激な電界変化を防止でき、それにより、素子劣化を抑制でき、素子発光寿命を向上させることができることがわかった。これに対し、比較例では、単純な電圧矩形波を素子100に印加することで短時間で素子劣化を生じた。
【0074】
【発明の効果】
以上説明したように本発明によると、基板上に積層形成された陽極、有機発光膜及び陰極を含む有機電界発光素子の前記陽極と前記陰極間に電圧を印加して前記有機電界発光素子を発光駆動する有機電界発光素子の発光駆動方法であって、素子にかかる急激な電界変化を防止でき、それにより、素子劣化を抑制でき、素子発光寿命を向上させることができる有機電界発光素子の発光駆動方法を提供することができる。
【図面の簡単な説明】
【図1】図7に示す電気回路から出力される駆動電圧の波形のグラフであり、有機エレクトロルミネッセンス素子に印加する駆動電圧の波形の立上り及び立下りが立上りについては単調増加により、立下りについては単調減少により連続的に変化する波形のグラフである。
【図2】図8に示す電気回路から出力される駆動電圧の波形のグラフであり、有機エレクトロルミネッセンス素子に印加する駆動電圧の波形の立上り及び立下りが時定数を有する形で連続的に変化する波形のグラフである。
【図3】図9に示す電気回路から出力される駆動電圧の波形のグラフであり、有機エレクトロルミネッセンス素子に印加する駆動電圧の波形の立上り及び立下りが2つの電圧レベルからなる階段状波形で変化する波形のグラフである。
【図4】図10に示す電気回路から出力される駆動電圧の波形のグラフであり、有機エレクトロルミネッセンス素子に印加する駆動電圧の波形の立上りのみが単調増加により連続的に変化する波形のグラフである。
【図5】図9に示す電気回路から出力される駆動電圧の波形のグラフであり、有機エレクトロルミネッセンス素子に印加する駆動電圧の波形の立上りのみが2つの電圧レベルからなる階段状波形で変化する波形のグラフである。
【図6】単純な電圧矩形波を示すグラフである。
【図7】本発明に係る有機電界発光素子の発光駆動方法を実施する発光駆動装置における電気回路の1例の概略構成のブロック図である。
【図8】本発明に係る有機電界発光素子の発光駆動方法を実施する発光駆動装置における電気回路の他の例の概略構成のブロック図である。
【図9】本発明に係る有機電界発光素子の発光駆動方法を実施する発光駆動装置における電気回路のさらに他の例の概略構成のブロック図である。
【図10】本発明に係る有機電界発光素子の発光駆動方法を実施する発光駆動装置における電気回路のさらに他の例の概略構成のブロック図である。
【図11】本発明に係る有機電界発光素子の発光駆動方法に用いることができる有機電界発光素子の1例の概略構成を示す断面図である。
【符号の説明】
1 基準コンデンサ
2 カウンタ回路
2a、2b、2c、2d カウンタ回路
3 基準クロック発生回路
4 バッファアンプ
5 基準波形(基準矩形波)発生回路
6 時定数(CR時定数)回路
7a、7b、7c、7d アナログSW(スイッチ)
8 SW(スイッチ)
11、21 定電流回路
12、22 コンパレータ
100 有機電界発光素子(有機エレクトロルミネッセンス素子)
101 ガラスからなる透明基板
102 透明電極である陽極
102a 素子100の封止領域外の陽極部
103 有機正孔注入輸送層
104 有機発光層
105 陰極
105a 素子100の封止領域外の陰極部
106 ガラスからなる封止用基板
107 封止用樹脂
108 有機発光膜
109 封止部材
A、B、C、D 電気回路
r 立上り時間
f 立下り時間
T 繰り返し周期
τ 最大電圧VM の持続する時間
a 、Vb 、Vm 、Vs 基準電圧
A 第1の駆動電圧
B 第2の駆動電圧
M 最大電圧
S 最小電圧
t 駆動電圧

Claims (5)

  1. 基板上に積層形成された陽極、有機発光膜及び陰極を含む有機電界発光素子の前記陽極と前記陰極間に電圧を印加して前記有機電界発光素子を発光駆動する有機電界発光素子の発光駆動方法であり、前記有機電界発光素子を発光駆動するための駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを、その立上り時間及び(又は)立下り時間を100μ秒以上として徐々に変化させ、該徐々の変化は、前記有機電界発光素子の発光駆動電圧を立ちげる時間及び(又は)立ち下げる時間を遅らせる電気回路を用いて生じさせることを特徴とする有機電界発光素子の発光駆動方法。
  2. 前記駆動電圧又は駆動電流の波形の立上り時間及び(又は)立下り時間は、1秒以下である請求項1に記載の有機電界発光素子の発光駆動方法。
  3. 前記駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを立上りについては単調増加により、立下りについては単調減少により連続的に変化させる請求項1又は2記載の有機電界発光素子の発光駆動方法。
  4. 前記駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを時定数を有する形で連続的に変化させる請求項1又は2記載の有機電界発光素子の発光駆動方法。
  5. 前記駆動電圧又は駆動電流の波形の立上り及び(又は)立下りを2以上の電圧レベル又は電流レベルからなる階段状波形で変化させる請求項1又は2記載の有機電界発光素子の発光駆動方法。
JP17633999A 1999-06-23 1999-06-23 有機電界発光素子の発光駆動方法 Expired - Fee Related JP4306026B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17633999A JP4306026B2 (ja) 1999-06-23 1999-06-23 有機電界発光素子の発光駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17633999A JP4306026B2 (ja) 1999-06-23 1999-06-23 有機電界発光素子の発光駆動方法

Publications (2)

Publication Number Publication Date
JP2001006874A JP2001006874A (ja) 2001-01-12
JP4306026B2 true JP4306026B2 (ja) 2009-07-29

Family

ID=16011863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17633999A Expired - Fee Related JP4306026B2 (ja) 1999-06-23 1999-06-23 有機電界発光素子の発光駆動方法

Country Status (1)

Country Link
JP (1) JP4306026B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710682B2 (ja) * 2006-03-24 2011-06-29 株式会社デンソー El表示装置
US8334659B2 (en) * 2009-12-10 2012-12-18 General Electric Company Electronic driver dimming control using ramped pulsed modulation for large area solid-state OLEDs
JP5743244B2 (ja) * 2011-07-28 2015-07-01 Necライティング株式会社 有機el照明装置
TWI611215B (zh) * 2012-05-09 2018-01-11 半導體能源研究所股份有限公司 顯示裝置及電子裝置
JP5677689B2 (ja) * 2013-01-24 2015-02-25 サッポロビール株式会社 容器入り飲料、容器入り飲料の製造方法、容器入りアルコール飲料、容器入りアルコール飲料の製造方法及び風味付与方法
JP6284340B2 (ja) * 2013-10-23 2018-02-28 パイオニア株式会社 発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613181A (ja) * 1992-06-29 1994-01-21 Fuji Electric Co Ltd 有機薄膜発光素子の発光方法
US5552678A (en) * 1994-09-23 1996-09-03 Eastman Kodak Company AC drive scheme for organic led
JP3619299B2 (ja) * 1995-09-29 2005-02-09 パイオニア株式会社 発光素子の駆動回路
JP3229819B2 (ja) * 1996-07-26 2001-11-19 スタンレー電気株式会社 El素子の駆動方法
JP4219997B2 (ja) * 1997-06-18 2009-02-04 スタンレー電気株式会社 有機el駆動回路

Also Published As

Publication number Publication date
JP2001006874A (ja) 2001-01-12

Similar Documents

Publication Publication Date Title
JP4537207B2 (ja) 低い仕事関数の陽極を有する電界発光素子
US6908638B2 (en) Organic electroluminescent element and method of manufacturing same
JP2776040B2 (ja) 有機薄膜el素子
JP3736071B2 (ja) 有機エレクトロルミネセンス素子
JPH08180972A (ja) 有機led用のac駆動デバイス
US6180217B1 (en) Organic electroluminescent element
JPH04212287A (ja) 有機薄膜el素子
US6060826A (en) Organic electroluminescent element having an excimer light irradiated positive electrode and method of manufacturing the same
JP4306026B2 (ja) 有機電界発光素子の発光駆動方法
JP2000091078A (ja) 有機エレクトロルミネセンス素子
JPH11102786A (ja) 有機エレクトロルミネセンス素子
JP3948046B2 (ja) 有機エレクトロルミネセンス素子
JP3777812B2 (ja) 有機エレクトロルミネセンス素子
JPH07166160A (ja) 有機薄膜el素子
JP3772540B2 (ja) 有機エレクトロルミネセンス素子
JP4432143B2 (ja) 有機エレクトロルミネセンス素子及びその製造方法
JP2001035669A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JPH11111461A (ja) 有機エレクトロルミネセンス素子
JP2766063B2 (ja) 有機エレクトロルミネッセンス素子の駆動方法および該駆動方法を用いた発光装置
JP4474514B2 (ja) 有機電界発光素子
JPH11102787A (ja) 有機エレクトロルミネセンス素子
JP2001176663A (ja) 有機発光素子及びその製造方法
JP2001167890A (ja) 有機発光素子と有機発光ディスプレイパネル及びそれらの製造方法
JPH08306487A (ja) 有機薄膜el素子
JPH10245549A (ja) 電界発光素子

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

R150 Certificate of patent or registration of utility model

Ref document number: 4306026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees