JP4297555B2 - 超音波カラー・ドップラー速度/方向撮像 - Google Patents

超音波カラー・ドップラー速度/方向撮像 Download PDF

Info

Publication number
JP4297555B2
JP4297555B2 JP13118999A JP13118999A JP4297555B2 JP 4297555 B2 JP4297555 B2 JP 4297555B2 JP 13118999 A JP13118999 A JP 13118999A JP 13118999 A JP13118999 A JP 13118999A JP 4297555 B2 JP4297555 B2 JP 4297555B2
Authority
JP
Japan
Prior art keywords
velocity
color
angle
vector
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13118999A
Other languages
English (en)
Other versions
JP2000201931A (ja
JP2000201931A5 (ja
Inventor
グレゴリー・シャラット・リン
Original Assignee
ダイアソニックス・ウルトラサウンド・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイアソニックス・ウルトラサウンド・インコーポレーテッド filed Critical ダイアソニックス・ウルトラサウンド・インコーポレーテッド
Publication of JP2000201931A publication Critical patent/JP2000201931A/ja
Publication of JP2000201931A5 publication Critical patent/JP2000201931A5/ja
Application granted granted Critical
Publication of JP4297555B2 publication Critical patent/JP4297555B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8984Measuring the velocity vector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Metallurgy (AREA)
  • Hematology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般に医学装置に関し、詳細には複雑な媒質内の流れの絶対速度および方向の超音波撮像に関する。
【0002】
【従来の技術】
超音波撮像技術は、生体の内部構造を調べるための重要な手段になっている。様々な医学条件を診断する場合、超音波撮像は、体内の軟組織を調べて内部組織および流体流の構造上の詳細を示すうえで有用であることが多い。
【0003】
体内構造を調べる場合、トランスデューサを使用して超音波の非常に短いパルスを生成し、パルスを体内へ送り、体内の組織からのエコーの特性(たとえば、振幅や位相)を測定することによって超音波画像が形成される。「超音波ビーム」と呼ばれる集束された超音波パルスが、体内の当該の特定の組織領域に当てられる。通常、解像度または画質を向上させるために超音波ビームは体内で様々なステップで集束される。トランスデューサがエコーを受け取り、当該の領域内の組織または目標の画像を生成するように処理する。結果として得られる画像を通常、B走査画像と呼ぶ。
【0004】
生体内の血(およびその他の体液)流の測定および撮像は通常、ドップラーの原理を使用して行われる。この原理では、特定の周波数で送られる超音波のバーストが、移動する血球から反射され、そのため、反射される超音波の周波数が血流の方向での速度に応じて変化する。送られた信号に対する反射信号の周波数シフト(ドップラー・シフト)は、流体流の速度に比例する。この周波数を検出しビデオ表示装置上に表示し、患者内の移動する組織構造および流体流のグラフィック画像を生成することができる。
【0005】
現在の超音波技法には、組織運動の周波数シフト・カラー・ドップラー撮像およびパワー・カラー・ドップラー撮像と、カラー・マッピング組織運動に関する変位および平均速度の相互相関超音波推定(CVIと呼ばれ、Philips Corp.によって開発された)が含まれる。これらの現在知られている超音波撮像法は、複雑な媒質内の流れの速度および方向に関する比較的限られた情報を与える。たとえば、現在のカラー・ドップラー・フロー撮像技法(CDI)は、流体流または組織運動の速度と、超音波ビームと流れまたは運動の方向との間のドップラー角度とに依存する周波数シフト・データしか与えない。この方法は、流れまたは運動の絶対速度も、あるいは流れまたは運動の方向も示さない。相互相関技法(CVI)は流れまたは運動の速度の限られた範囲を生成し表示する。CVIシステムは絶対速度および流れ方向を生成するように較正することができるが、使用されるアルゴリズムが複雑であり、計算を多用し、したがって、処理時間を延長しコンピュータ資源を増加させる必要がある。さらに、速度および方向の相互相関推定値の不確実性が大きくなる傾向があるので、この方法の信号対雑音比は不十分なものになる可能性がある。
【0006】
【発明が解決しようとする課題】
軟生体組織を含め、複雑な媒質内の流れまたは運動の絶対平均速度および方向の超音波撮像を行うシステムを提供する。
【0007】
【課題を解決するための手段】
異なるように向きを変えらる2本の従来型の超音波カラー・ドップラー・ビームの間の交差点でサンプリングが行われるように、この2本のカラー・ドップラー・ビームが2つの異なる角度で向きを制御される。二重カラー・ドップラー・サンプル・ボリュームとは、それぞれの異なる角度からのビームで決められる重なり合った2つのサンプル・ボリュームである。この種のオーバー・サンプリングは、それから音響リフレクタの流れまたは運動の絶対平均速度および方向を算出するのに十分な周波数シフト情報を与える。速度および方向のデータが、二重カラー・ドップラー・サンプル・ボリュームの二次元アレイについて算出され、カラー・スケール上にマップされ、音響リフレクタの流れまたは運動の速度または方向の空間分布を示す。この技法の主要な応用分野は、生体内の血流または軟組織運動の絶対速度および方向の視覚化である。
【0008】
本発明の他の特徴は添付の図面および以下の詳細な説明から明らかになろう。
【0009】
本発明は添付の図面中の図に限定的なものではなく例として図示する。図面中同じ参照番号は同じ要素を示す。
【0010】
【発明の実施の形態】
軟生体組織を含め、複雑な媒質内の流れまたは運動の絶対平均速度および方向の超音波撮像を行うシステムについて説明する。それぞれの異なる角度で導入される2本の超音波カラー・ドップラー・ビームの間の交差点でサンプリングが行われるように、この2本のビームを使用して目標組織が撮像される。サンプル・ボリュームでの周波数シフト情報から、目標組織内の音響リフレクタの流れまたは運動の絶対平均速度および方向が算出される。
【0011】
本発明の実施形態の意図される利点は、複雑な媒質内の流体流または組織運動の絶対速度および方向の超音波カラー・ドップラー撮像を行う装置が提供されることである。
【0012】
本発明の実施形態の意図される他の利点は、体内の動脈血流と静脈血流の間の色差分を表示するシステムが提供されることである。
【0013】
本発明の様々な実施形態は、離散ハードウェア構成要素で実装することも、あるいはコンパイルされ、リンクされ、次いで実行時に実行できるようにディスクベースの記憶域からロードされるソフトウェアを使用してデジタル信号プロセッサなどのプログラム済み処理ユニットで実装することもできる。これらの実施形態で使用される方法を含む様々なプログラムは、ファームウェアまたは他の同様な非揮発性記憶手段に存在することもできる。
【0014】
図1は、本発明の実施形態を組み込んだ超音波撮像システムのブロック図を示す。撮像システム100は超音波トランスデューサ101(「プローブ」とも呼ぶ)を含む。超音波トランスデューサ101は通常、圧電素子の多素子アレイであり、患者などの被験体を調べるときに超音波信号を送りかつ受け取る。プローブ101は信号パス110を通して送受信回路102に結合される。送受信回路102は、超音波撮像分野で知られている原理に従って較正されるが、話を簡単にするために、この回路について詳しくは論じない。
【0015】
送受信回路102は、バス120を通して制御ユニット109に結合され、超音波信号を送るときにも受け取るときにもプローブ101内の要素は人体内の特定の点で集束するように制御される。送受信回路102および制御ユニット109は、プローブ101を人体に対して移動せずに二次元画像画素を生成できるように走査機能を備えることも多い。
【0016】
超音波信号が体内へ送られた後、送受信回路102の受信機(「ビームフォーマ」と呼ぶ)によって反射信号が処理される。プローブ101の個々の各要素からの信号の大きさが単一の信号に変換され、この信号が信号パス111を通して無線周波数(RF)プロセッサ103へ送られる。本発明の一実施形態では、送受信機102内のビームフォーマ回路は、向けられたカラー・ドップラー・パルスを受け取り、このパルスが、人体の目標領域内の音響リフレクタの流れの平均速度および方向を算出するのに十分な周波数シフト情報を与える。
【0017】
RFプロセッサ103は信号情報を処理し、復調された包絡線信号と、同位相(I)ドップラー信号および直角(Q)ドップラー信号を生成する。包絡線信号は、人体から返されたエコーの振幅を表わし、さらに信号パス114を通して走査変換器105へ送られる。走査変換器105は通常、大型デジタル電子メモリとして実装される。
【0018】
二次元画像を構築し、信号パス116を通してビデオ・プロセッサ127へ送ることができるように、走査変換器105は、包絡線エコー情報を、走査プロセスの結果として得られる体内でのこのような情報の幾何学的位置と共に、1ラインずつ記憶する。
【0019】
カラー・ドップラー情報がないとき、ビデオ・プロセッサ127は単に、画像信号を信号パス119を通してビデオ表示モニタ130へ送る。この二次元画像は、通常は白黒であり、体内のエコー生成部位の分布を表わす。次いで、いわゆるB走査画像が、人体の病変を探索するためにオペレータによって使用されるか、あるいは診断を下すために医師によって使用される。
【0020】
スペクトル・ドップラーに関するI信号およびQ信号は、信号パス113を通してドップラー・プロセッサ106へ送られる。ドップラー・プロセッサ106は、バス120を介した制御ユニット109の制御の下で、受け取ったいくつかの連続するエコーから得た信号を比較し、体内の単一の領域内のドップラー・シフトを求める。この単一の領域は一般に、サンプル・ボリュームとして知られる。ドップラー・プロセッサ106は連続時系列のスペクトル・ドップラー情報も生成し、この情報では、血流速度が1つまたは複数の心周期(通常は数秒)にわたってビデオ・ディスプレイ130上に白黒で表示される。ドップラー情報は、信号パス115を通して走査変換器105へ送られ、次いで信号パス116を通してビデオ・プロセッサ127へ送られ、最終的にビデオ・ディスプレイ130上に表示される。
【0021】
RFプロセッサ103はI信号およびQ信号を信号パス112を通してカラー・フロー・プロセッサ104へ送る。カラー・フロー・プロセッサ104は通常、体内の所与の走査方向に沿っていくつかのサンプル・ボリュームを処理する。カラー・フロー・プロセッサは信号を信号パス117を通してカラー走査変換器108に渡す。カラー走査変換器108では、カラー・コード化信号が、走査プロセスの結果として得られる体内でのこのような情報の幾何学的位置と共に、1ラインずつ記憶される。このようにして、二次元カラー・ビデオ画像が構築され、信号パス118を通してビデオ・プロセッサ127へ送られる。
【0022】
カラー・フロー・プロセッサ104から得られた走査ライン情報を補間するために使用することもできるカラー走査変換器108は次いで、カラー・ドップラー情報を、ビデオ・ディスプレイ130上に表示できるように信号パス118を通してビデオ・プロセッサ127へ送る。ビデオ・プロセッサ127は通常、2次元画像の所与の特定の部分が、流れの結果として得られるカラー情報を有するかどうか、あるいは静的組織からのエコー情報のみを有するかどうかを選択する判定回路を含む。流れが存在する場合、白黒画像情報ではなくカラー情報が画像中の正しい点に表示される。本発明の一実施形態では、カラー・フロー・プロセッサ104は、システム100が体内の組織運動および流体流に関する速度/方向情報を算出し表示することを可能にする命令を処理する。
【0023】
速度/方向撮像
本発明の一実施形態では、図1の超音波システムは、電子ビーム方向制御を行うことのできる線形アレイ超音波トランスデューサおよびカラー・ドップラー超音波スキャナを組み込んでおり、電子ビーム方向制御は、複雑な媒質内の音響リフレクタ流の速度および方向を測定するために使用される。カラー・ドップラー・ビームは方向を制御され、2つの等しいが互いに逆向きの角度で組織に導入される。互いに逆方向に向けられる2本のカラー・ドップラー・ビームの間の各交差点で一致する(二重)カラー・ドップラー・サンプル・ボリュームが見付けられる。この方法は、組織内の同じ点で2つの独立の周波数シフトを生成する。
【0024】
図2は、導管または同様な組織構造内の点を通して流体流を検出する二重カラー・ドップラー・サンプル・ボリュームを示す。導管212は、通常は血管であり、当該の領域208内の目標組織または目標領域を含む。線形アレイ・トランスデューサ202は、目標組織領域208に入射する2つの別々のドップラー・ベクトルを生成する。この2つのベクトルは、ドップラー・ベクトル1 204とドップラー・ベクトル2 206として示されている。2つのドップラー・ベクトル204および206の目的は、目標組織208の流れを表わすフロー・ベクトル210の絶対大きさおよび方向を判定することである。
【0025】
移動する組織または流体に関する正確なデータを与えるために、2つのドップラー・ベクトルを使用して得られる2つのドップラー・サンプルを互いに非常に近い時間に得なければならないことに留意されたい。本発明の一実施形態では、角度インタリーブされ方向制御されるカラー・ドップラー・ベクトルのシーケンスが、当該のカラー・ドップラー領域の長さ、たとえば図2の組織領域208の長さを横切って励振される。角度インタリーブされ方向制御されるカラー・ドップラー・ベクトルのシーケンスは、線形アレイ・トランスデューサ202によって生成される。当該の領域は、互いに交差するベクトル対に位置する画素を含む領域の、オペレータによって決められるサブセットによって形成される。
【0026】
図3は、本発明の一実施形態による、角度インタリーブされ方向制御されるカラー・ドップラー・ベクトルの交差ベクトル対を使用した当該の領域の生成を示す。線形アレイ・トランスデューサ202は、一連のベクトルを第1の角度で生成する。第1の角度の第1のベクトルはベクトル302として示され、この角度の最後のベクトルはベクトル304として示されている。この2つのベクトルの間にこれと同じ角度のいくつかの追加のベクトルがある。線形アレイ・トランスデューサ202はまた一連のベクトルを第2の角度で生成する。第2の角度の第1のベクトルはベクトル306として示され、この角度の最後のベクトルはベクトル308として示されている。この2つのベクトルの間にこれと同じ角度のいくつかの追加のベクトルがある。2組のベクトル・シーケンスの交差部は当該の領域310を決める。当該の領域内の個々の画素は、一方のベクトルがこの画素に第1の角度で入射し、他方のベクトルがこの画素に第2の角度で入射するベクトル対の交差部によって決められる。
【0027】
図4は、当該の領域内の画素に関する速度ベクトルの計算を示す。画素p402は、線形アレイ・トランスデューサ202によって生成される2つのドップラー・ベクトル、ドップラー・ベクトル1およびドップラー・ベクトル2の交差部にある画素を表わす。画素pでの運動は速度ベクトル
【数1】
Figure 0004297555
412によって表わされる。画素pで交差する2つのカラー・ドップラー・ベクトルはそれぞれ、速度ベクトル
【数2】
Figure 0004297555
のそれぞれの軸方向成分に比例する周波数シフトを返す。ドップラー・ベクトル1、404に沿った軸方向成分はν1 408として示され、ドップラー・ベクトル2、406に沿った軸方向成分はν2 410として示されている。
【0028】
速度ベクトル
【数3】
Figure 0004297555
412の大きさおよび方向は、図5に示すように、軸方向速度成分ν1およびν2とそれらのベクトル角度θ1およびθ2から算出することができる。画素pを中心とするデカルト座標系を使用する場合、軸方向速度成分は、方向制御されるカラー・ドップラー・ベクトル408および410の線上に位置する。これらの軸方向速度成分の角関係は次式によって与えられる。
ν1に対して y=tanθ1・x [1]
ν2に対して y=tanθ2・x [2]
【0029】
速度ベクトル
【数4】
Figure 0004297555
412は、方向制御される各カラー・ドップラー・ベクトル上に投影されると、以下の垂線を各カラー・ドップラー・ベクトルに落とすことによって軸方向速度成分に分解される。
【数5】
Figure 0004297555
【数6】
Figure 0004297555
【0030】
各軸方向速度成分vnは、次式に示すように、それぞれのカラー・ドップラー・ベクトルに沿って周波数シフト△fnから直接較正される。
【数7】
Figure 0004297555
上式で、cは音が伝達する媒質内の音響の速度であり、fは、送られる超音波ビームの周波数である。
【0031】
本発明の一実施形態では、2つのカラー・ドップラー・ベクトルは、線形アレイ・トランスデューサの面からの垂線に対して、等しいが互いに逆向きの角度θ2および−θ2に方向制御される。したがって、以下の角関係が適用される。
θ=π−θ2 [6]
cosθ1=−cosθ2 [7]
tanθ1=−tanθ2 [8]
速度ベクトル
【数8】
Figure 0004297555
の端点座標(x,y)414に関して連立方程式3および4を解くと次式が得られる。
【数9】
Figure 0004297555
【数10】
Figure 0004297555
【0032】
算出されたxおよびyの値から、次式を使用して速度ベクトル
【数11】
Figure 0004297555
の大きさおよび方向を算出することができる。
【数12】
Figure 0004297555
【数13】
Figure 0004297555
【0033】
本発明の一実施形態では、各角度で得られた速度ベクトルがカラー・スケール上にマップされ、このカラー・スケールでは、暗い色相が低い速度を表わし、明るい色相がより高い速度を表わす。図6は、本発明の一実施形態による、流速が色の階調で表わされるカラー・スケールの円形表現を示す。たとえば、カラー・ホイール600では、色の階調に0cm/秒ないし160cm/秒の速度値が割り当てられ、紺青色には値20cm/秒が割り当てられ、黄色には値140cm/秒が割り当てられる。カラー・ホイール600上の速度標識が例示的なものであり、実際に割り当てられる速度値が、カラー・ドップラー・パルス繰返し周波数(PRF)およびカラー・ドップラー・パルス送信周波数に依存することに留意されたい。
【0034】
前述の本発明の実施形態では、軸方向速度成分ν1およびν2が同じ速度ベクトル
【数14】
Figure 0004297555
に対して求められるものと仮定されている。この仮定では、
【数15】
Figure 0004297555
が第1のドップラー・ベクトルν1から第2のドップラー・ベクトルν2へ大きく変化することのないように、ν1およびν2を生成するために使用されるドップラー・ベクトル対が互いに非常に近い時間に発生する必要がある。したがって、本発明のこの実施形態では、カラー・ドップラー・ベクトルを互いに3ミリ秒〜5ミリ秒またはそれよりも短い時間内に順序付け、サンプル・ボリュームを時間的に一致させる必要がある。
【0035】
本発明の代替実施形態では、1つまたは複数の心周期にわたって脈動指数(PI)を算出し、これを使用して、各二重カラー・ドップラー・サンプル・ボリュームでの動脈血流と静脈血流を区別することができる。このような方法は、本出願の譲受人に譲渡された米国特許出願第08/561887号に記載されている。図8は、いくつかの心周期にわたって算出された脈動指数に関する例示的な動脈血流波形および静脈血流波形を示す。この代替実施形態では、各サンプル・ボリュームでの経時的なフロー・サンプルのシーケンスが得られ、いくつかの異なる静脈ピーク700および動脈ピーク702が生成される。
【0036】
図9は、本発明の代替実施形態による、いくつかの心周期にわたって算出された脈動指数に関して生成された静脈ピークおよび動脈ピークの例を示す。グラフ750で、ピーク同士の間の一次谷752は、静脈流と動脈流の間の分割線とみなされる。この分割線よりも下方の脈動指数を有するすべてのサンプル・ボリュームに、静脈カラー・スケール内の色(たとえば、青−緑)が割り当てられ、それに対して分割線よりも上方の脈動指数を有するすべてのサンプル・ボリュームに動脈カラー・スケール内の色(たとえば、赤−オレンジ−黄色)が割り当てられる。
【0037】
図7は、本発明の代替実施形態による、速度ベクトルの流速が色の階調で表わされるカラー・スケールの図形表現を示す。カラー・ホイール650では、静脈カラー・スケール652と動脈カラー・スケール654の両方に関する色の階調の範囲に値、たとえば0cm/秒ないし100cm/秒が割り当てられる。静脈カラー・スケールは、青(値25cm/秒)ないし緑(値75cm/秒)を含み、動脈カラー・スケールは赤(値25cm/秒)ないし黄色(値75cm/秒)を含む。この場合も、カラー・ホイール650上の速度標識が例示的なものであり、実際に割り当てられるカラー値が、カラー・ドップラー・パルス繰返し周波数(PRF)およびカラー・ドップラー・パルス送信周波数に依存することに留意されたい。
【0038】
流速だけでなく、流れの方向も円形カラー・スケール上にマップすることができ、このカラー・スケールでは、スケールの周りの各色または色相が流れの特定の方向に割り当てられる。図10は、本発明の一実施形態による、ベクトルの流れ方向または運動方向が色の階調で表わされる円形カラー・スケール800を示す。当該のカラー・ドップラー速度画像(CDVI)領域内の流れの速度を流れ方向に従ってカラー・マップすると、カラー・ドップラー方向画像(CDDI)が得られる。
【0039】
カラー・ドップラー速度/方向撮像装置
本発明の一実施形態では、カラー・ドップラー速度/方向撮像システムは、当該の目標領域内の流体流または組織運動の絶対平均速度および方向を算出し表示するために、方向制御可能な線形アレイ・トランスデューサと共に従来型のカラー・ドップラー超音波システムの要素を含む。
【0040】
図11は、本発明の一実施形態による、カラー・ドップラー超音波システムで使用される線形アレイ・トランスデューサ・ビームフォーマ回路のブロック図表現である。システム900で、線形アレイ・トランスデューサ904は、送受信(Tx/Rx)スイッチ906および前置増幅器回路908を通してビームフォーマ回路902に結合される。線形アレイ・トランスデューサ904は、当該のカラー・ドップラー領域の長さを横切る方向に、角度インタリーブされ方向制御されるカラー・ドップラー・ベクトルのシーケンスを生成する。本発明の一実施形態では、速度ベクトルのx成分およびy成分を生成するために使用される各ドップラー・ベクトル対が、前述のように、互いに近い時間に発生するように、シーケンスを含むビームが5ミリ秒よりも短い間隔で生成される。本発明の一実施形態では、図1に示した超音波システム100内の送受信回路102にビームフォーマ回路902が含まれる。
【0041】
ビームフォーマ回路902では、シーケンス・ビーム対が当該のカラー・ドップラー領域内の中間深度で交差するように、カラー・ドップラー超音波ビームが、ビーム方向制御角度θ2とビーム方向制御角度−θ2との間で交互に切り換えられるように順序付けされる。これにより、概して、すべての一致するカラー・ドップラー・サンプル・ボリュームが互いにできるだけ近い時間に発生する。ROI深度制御回路926によって当該領域(ROI)深度情報が生成される。ROI深度制御回路926および方向制御焦点マップ914からのデータはライン/方向制御シーケンサ916に入力される。ライン/方向制御シーケンサ916は、カラー・ドップラー超音波ビームの、適切な範囲の深度および方向制御角度が得られるように方向制御焦点マップ914から焦点マップを選択する。次いで、ライン/方向制御シーケンサ916は、対にすべき角度インタリーブされ方向制御されるカラー・ドップラー・ベクトルを選択する。ライン/方向制御シーケンサ916は、当該の領域の開始位置と終了位置を決める対にされない追加のベクトルも選択する。
【0042】
対にされたベクトルと対にされないベクトルは、送信ビームフォーマ回路912および送信パルサ回路910を通して送られる。次いで、結果として得られた超音波シーケンスはスイッチ906を通してトランスデューサ904へ送られ、当該の領域の組織に導入される。シーケンサ916によって生成された対にされたベクトルと対にされないベクトルは、図3に示した当該のCDVI領域310を形成する。
【0043】
当該の領域から返された超音波ビームは、トランスデューサ904によって取り込まれ、スイッチ906を通るように経路指定され、前置増幅器回路908によって増幅され、アナログ・デジタル(A/D)変換器回路918でアナログ信号からデジタル信号に変換される。次いで、受け取ったデジタル信号は受信ビームフォーマ回路920へ送られる。受け取ったシーケンスは加算回路924で加算され、このようなシーケンスの加算値が深度利得回路922内のROI深度制御回路926からの出力と組み合わされる。深度利得回路922からの出力は復調器928に入力され、復調器928が同位相(I)信号および直角(Q)信号を生成し、これらの信号がカラー信号プロセッサに入力される。
【0044】
図12は、本発明の一実施形態によるカラー・ドップラー速度/方向撮像システム内のカラー信号プロセッサ回路のブロック図である。カラー信号プロセッサ1000は、図11の復調器928から同位相(I)信号および直角(Q)信号を受け取る。同位相信号および直角信号は、超音波トランスデューサから受け取った超音波信号データを含む。I/Q信号はカラー利得回路1002に入力される。利得回路1002からの出力は高域フィルタ1004に入力される。高域フィルタ1004からの出力信号はクラッタ・フィルタ1006を通して運動識別回路1008に入力される。
【0045】
運動識別回路1008は、いくつかの異なる種類の組織でそれぞれ異なるように示されるそれぞれの異なる運動パラメータを抽出する別々のユニットを含む。運動識別回路1008は、振幅推定回路1010、周波数シフト推定回路1012、分散推定回路1014を含む。振幅推定回路1010は、リフレクタの数に基づいて組織運動の振幅のみを抽出し、それに対して周波数シフト推定回路1012は組織運動の周波数シフト成分のみを抽出する。分散推定回路1014は、走査された当該の領域に存在するいくつかの異なる種類の組織を区別するうえで有用な情報を与える組織運動の速度の広がりを測定する。
【0046】
分散推定回路1014からの出力はスイッチを通して組合せ回路1016に入力される。組合せ回路1016は、この入力を周波数シフト推定回路1012からの出力と組み合わせ、プログラム可能な公式から与えられる演算に応じてこれらの信号を処理する。本発明の一実施形態では、組合せ回路1016に使用されるプログラム可能な公式は、ピーク周波数シフトを推定する加算演算である。
【0047】
組合せ回路1016からの出力は運動フィルタ1018に入力される。運動フィルタ1018は、フラッシュ運動アーチファクトを除去し、システムの信号対雑音比を向上させる働きをする。運動フィルタ1018からの出力は速度推定回路1020および方向推定回路1022に入力される。
【0048】
本発明の一実施形態では、カラー・ドップラー信号プロセッサ1000は従来型のカラー・ドップラー・アルゴリズムを使用し、周波数シフト推定回路1012を使用して、送られた超音波ビームと受け取った超音波ビームとの間の平均周波数シフトを推定する。次いで、分散推定回路1014からの周波数ドメイン分散推定値が平均周波数シフト推定値に加算され、ピーク周波数シフトの推定値が与えられる。加算結果はメモリ・バッファ1024に記憶される。
【0049】
本発明の一実施形態では、カラー・ドップラー超音波ビームは、ビーム方向制御角度θ2とビーム方向制御角度−θ2との間で交互に切り換わるように順序付けされる。したがって、角度θ2の第1の超音波ビームについて推定平均周波数シフトの結果が算出され記憶され、次いで、角度−θ2で逆方向に向けられた超音波ビームについて推定平均周波数シフトの結果が算出される。互いに逆方向に向けられたカラー・ドップラー・ベクトル上の一致するカラー・ドップラー・サンプル・ボリュームから得たデータを処理する際、数式9〜12で2つの周波数シフトが使用される。
【数16】
Figure 0004297555
【数17】
Figure 0004297555
【数18】
Figure 0004297555
【数19】
Figure 0004297555
【0050】
上式を解くと、二重サンプル・ボリューム内の流れまたは運動の絶対速度および方向の推定値が与えられる。図10で、絶対速度νは速度推定回路1020で算出され、流れの方向φは方向推定回路1022で算出される。
【0051】
本発明の一実施形態では、図1のカラー走査変換器108などのカラー走査変換器で速度データおよび方向データが走査変換される。次いで、走査変換済みデータは双線形補間され、2次元マトリックスが得られる。次いで、結果として得られた流れ画素値は、図6に示したようなCDVI用のカラー・スケール、または図10に示したようなCDDI用のカラー・スケールにマップされる。次いで、図1のビデオ・ディスプレイ130などの表示装置上に表示される画像が、マップされた画素値を使用して形成される。この実施形態では、図1に示したカラー・フロー・プロセッサ104内にカラー信号プロセッサ1000が含まれる。
【0052】
目標領域が血管、または流体を含む同様な構造である場合、脈動推定回路を使用して脈動指数を求めることができる。図13は、本発明の代替実施形態によるカラー・ドップラー速度/方向撮像システム内のカラー信号プロセッサ回路のブロック図である。図13のカラー信号プロセッサ1050は脈動推定回路1030を含み、脈動推定回路1030は1つまたは複数の心周期にわたる速度データを使用して脈動指数を算出する。次いで、脈動指数は、流れが動脈流であるか、それとも静脈流であるかを判定するために動脈−静脈(A−V)弁別器1028によって使用される。一般に、動脈流は脈動が比較的多いことを特徴とし、静脈流は脈動が比較的少ないことを特徴とする。次いで、速度推定値が動脈速度VAまたは静脈速度VVに分類される。次いで、速度推定値は、方向推定回路1022から得た方向データφと共に、カラー走査変換器108に入力され、ビデオ・ディスプレイ130上に表示される2次元画素データが生成される。
【0053】
本発明の一実施形態では、当該のカラー・ドップラー領域内の流れ画素からの定量読取り値が、流れまたは運動の推定平均速度、ピーク速度、角方向を表示する。次いで、図1に示したように、トラックボールや他の同様なカーソル制御装置126などのオペレータ制御式ポインティング装置によって所望のカラー画素を選択することができる。特定の画素を選択することによって、この画素に関する運動の推定平均速度、ピーク速度、方向を得ることができる。
【0054】
図11および図10のブロック図のあるプロセスおよび回路の厳密な配置および順序がビームフォーマおよびカラー信号プロセッサのいくつかの可能な設計に応じて異なり、本発明が図の厳密な構造および実施形態に限らないことに留意されたい。
【0055】
図14は、本発明の方法によってカラー・ドップラー速度/方向撮像を実行するステップを示すフローチャートである。図14のフローチャートは、角度θおよび−θで方向制御される交互に切り換わるカラー・ドップラー・ビームの処理シーケンスを示す。各軸方向周波数シフト推定値が得られた後、前の一致するサンプル・ボリュームがある場合は、νおよびφが算出される。説明の都合上、図14に示した方法のステップについて図11および図12を参照して論じるが、図14の方法の要素はこれらの特定の実施形態に限らない。
【0056】
ステップ1102で、各ベクトル対ごとのライン位置が算出される。各ベクトル対ごとのライン位置は、ビーム対のシーケンスが当該の領域内の中間の深さで交差するように算出される。ステップ1104で、線形アレイ・トランスデューサによって第1のカラー・ドップラー画像ベクトルが角度θ2で送られる。ステップ1106で、線形アレイ・トランスデューサが角度θ2のカラー・ドップラー画像ベクトルを受け取る。次いでステップ1108で、受け取ったカラー・ドップラー画像ベクトルが復調器(たとえば、図11の復調器928)で復調される。
【0057】
ステップ1110で、復調されたカラー・ドップラー画像ベクトルから生成された同位相信号および直角信号から、当該の領域のサンプル・ボリューム内の軸方向速度成分が推定される。ステップ1112で、図10の高域フィルタ1004を使用することなどにより、推定された軸方向速度成分から雑音が除去される。次いでステップ1114で、結果として得られる推定軸方向速度成分がメモリ・バッファに記憶される。ステップ1116で、軸方向周波数シフト推定値に対応する前の一致するサンプル・ボリュームがあるかどうかが判定される。ステップ1116で、一致する(あるいは重なり合った)サンプルがあると判定された場合、ステップ1118で、重なり合った2つのサンプルから速度ベクトルが算出される。速度ベクトルの算出は、νで定義される速度の大きさを求めるステップと、角度φで定義される速度ベクトルの方向を求めるステップを含む。
【0058】
ステップ1120で、線形アレイ・トランスデューサによって第2のカラー・ドップラー画像ベクトルが角度−θ2で送られる。ステップ1116で、前のサンプル・ボリューム同士が重なり合わないと判定された場合、プロセスが直接、ステップ1114からステップ1120に進み、ドップラー画像ベクトルが角度−θ2で送られることに留意されたい。ステップ1122で、線形アレイ・トランスデューサが角度−θ2のカラー・ドップラー画像ベクトルを受け取る。次いで、受け取ったカラー・ドップラー画像ベクトルは図11の復調器928で復調される。
【0059】
ステップ1126で、サンプル・ボリューム内の軸方向速度成分が推定される。次いでステップ1128で、推定された軸方向速度成分から雑音成分が除去され、ステップ1130で、この結果がメモリ・バッファに記憶される。ステップ1132で、軸方向周波数シフト推定値に対応する前の一致するサンプル・ボリュームがあるかどうかが判定される。ステップ1132で、重なり合ったサンプルがあると判定された場合、ステップ1134で、重なり合った2つのサンプルから速度ベクトルが算出される。第1のベクトルの場合と同様に、第2の速度ベクトルの算出は、νで定義される速度の大きさを求めるステップと、角度φで定義される速度ベクトルの方向を求めるステップを含む。
【0060】
速度ベクトルが算出された後、次にステップ1136で、プロセスがカラー・フレームの終了位置まで進んだかどうかが判定される。ステップ1132で、サンプル・ボリューム同士が重なり合わないと判定された場合、プロセスは直接、ステップ1136から進み、カラー・フレームの終了位置があるかどうかが判定される。ステップ1136で、カラー・フレームが完了していないと判定された場合、プロセスはステップ1102から繰り返され、次のカラー・ドップラー画像ベクトルが第1の角度θ2で送られる。
【0061】
しかし、ステップ1136で、プロセスがカラー・フレームの終了位置に到達したと判定された場合、ステップ1138で、すべてのサンプルに関する速度データおよび方向データが走査変換される。次にステップ1140で、走査変換済みデータが速度情報であるか、それとも方向情報であるかが判定される。ステップ1140で、走査変換済み情報が速度データであると判定された場合、ステップ1144で、カラー・ドップラー速度画像(CDVI)が表示される。しかし、ステップ1140で、走査変換済み情報が方向データであると判定された場合、ステップ1142で、カラー・ドップラー方向画像(CDDI)が表示される。次いでステップ1146で、この特定のカラー・フレームに関するプロセスが終了する。
【0062】
上記では、超音波カラー・ドップラー撮像を使用して流れまたは組織運動の絶対速度および方向を表示するシステムについて説明した。本発明について特定の例示的な実施形態を参照して説明したが、特許請求の範囲に記載された本発明の広い趣旨および範囲から逸脱せずにこれらの実施形態に様々な修正および変更を加えられることは明白であろう。したがって、本明細書および図面は制限的なものではなく例示的なものとみなすべきである。
【図面の簡単な説明】
【図1】 本発明の実施形態を組み込んだ超音波撮像システムのブロック図である。
【図2】 導管または同様な組織構造内の点を通る流体流を検出する二重カラー・ドップラー・サンプル・ボリュームを示す図である。
【図3】 本発明の一実施形態による、角度インタリーブされ方向制御されるカラー・ドップラー・ベクトルの交差ベクトル対を使用した当該の領域の生成を示す図である。
【図4】 交差ベクトル対によって生成された当該の領域内の画素の速度ベクトルの計算を示す図である。
【図5】 図4の速度ベクトルの大きさおよび方向の計算を示す図である。
【図6】 本発明の一実施形態による、ベクトルの絶対速度が色の階調で表わされる円形カラー・スケールを示す図である。
【図7】 本発明の代替実施形態による、ベクトルの絶対速度が色の階調で表わされる円形カラー・スケールを示す図である。
【図8】 いくつかの心周期にわたって算出された脈拍指数(pulsality index)に関する例示的な動脈血流波形および静脈血流波形を示す図である。
【図9】 本発明の代替実施形態による、いくつかの心周期にわたって算出された脈拍指数に関して生成された例示的な静脈ピークおよび動脈ピークを示す図である。
【図10】 本発明の一実施形態による、速度ベクトルの方向が色の階調で表わされる円形カラー・スケールを示す図である。
【図11】 本発明の一実施形態による、カラー・ドップラー超音波システムで使用される線形アレイ・トランスデューサ・ビームフォーマ回路のブロック図表現である。
【図12】 本発明の一実施形態による、カラー・ドップラー速度/方向撮像システム内のカラー信号処理回路のブロック図である。
【図13】 本発明の代替実施形態による、カラー・ドップラー速度/方向撮像システム内のカラー信号処理回路のブロック図である。
【図14】 本発明の方法によってカラー・ドップラー速度/方向撮像を行うステップを示すフローチャートである。
【符号の説明】
100 撮像システム
101 プローブ
102 送受信回路
103 RFプロセッサ
104 カラー・フロー・プロセッサ
105 走査変換器
106 ドップラー・プロセッサ
108 カラー走査変換器
109 制御ユニット
110、112、113、116、117、118、119 信号パス
120 バス
127 ビデオ・プロセッサ
130 ビデオ・ディスプレイ・モニタ

Claims (11)

  1. 第1の角度の第1組の超音波ビームおよび第2の角度の第2組の超音波ビームを第1の領域内へ送り、前記第1の角度および前記第2の角度の反射超音波ビームを前記第1の領域から受け取るように動作することのできるトランスデューサと、前記トランスデューサに結合され、連続する超音波ビームが5ミリ秒以下の時間内に前記第1の角度と前記第2の角度との間で交互に切り換わるように、前記第1組の超音波ビームのうちの複数のビームと前記第2組の超音波ビームのうちの複数のビームを順序付けるように動作することのできるビームフォーマと、前記ビームフォーマに結合され、前記第1組の超音波ビームのうちの超音波ビームを使用して前記第1の領域内の目標の第1の周波数シフトを推定し、前記第2組の超音波ビームのうちの超音波ビームを使用して前記目標の第2の周波数シフトを推定するように動作することのできる信号プロセッサとを備え、前記第1の角度と前記第2の角度が、前記線形アレイ・トランスデューサの表面によって決められる平面からの垂線に対して等しくかつ互いに逆向きの角度であることを特徴とする超音波撮像装置。
  2. 前記信号プロセッサがさらに、前記推定された第1の周波数シフトおよび前記推定された第2の周波数シフトを使用して前記目標の運動の絶対速度および方向を算出するように動作することを特徴とする請求項1に記載の超音波撮像装置。
  3. さらに、ドップラー・プロセッサを備え、前記信号プロセッサが、1つまたは複数のドップラー・アルゴリズムを使用して前記第1の周波数シフトおよび第2の周波数シフトを推定することを特徴とする請求項2に記載の超音波撮像装置。
  4. 第1のベクトルが前記第1の角度の超音波ビームによって決められ、第2のベクトルが前記第2の角度の超音波ビームによって決められ、前記第1のベクトルと前記第2のベクトルが前記目標で交差し、前記第1の角度および前記第2の角度が、前記第1および第2のベクトルならびに直行軸に対して定められ、さらに、前記第1のベクトルと前記第2のベクトルと前記直交軸との間の三角関係を使用して前記絶対運動速度および前記運動方向が算出されることを特徴とする請求項に記載の超音波撮像装置。
  5. さらに、前記信号プロセッサに結合され、前記絶対速度および方向を対応する2次元速度データおよび2次元方向データに変換するように動作する走査変換器と、前記走査変換器に結合され、前記速度データおよび前記方向データを対応する速度画素データおよび方向画素データとして処理するように動作するビデオ・プロセッサと、前記ビデオ・プロセッサに結合され、前記速度画素データおよび前記方向画素データを表示するように動作するビデオ表示装置とを備えることを特徴とする請求項に記載の超音波撮像装置。
  6. 前記走査変換器がカラー走査変換器回路を備え、前記速度データが第1のカラー・スケール上にマップされ、それぞれの異なる速度の大きさにそれぞれの異なるカラー値が割り当てられ、前記方向データが第2のカラー・スケール上にマップされ、それぞれの異なる方向にそれぞれの異なるカラー値が割り当てられることを特徴とする請求項に記載の超音波撮像装置。
  7. さらに、運動識別回路を備え、前記運動識別回路が、前記目標に関する超音波ドップラー画像データから振幅情報を抽出するように構成された振幅推定回路と、前記超音波ドップラー画像データから周波数シフト情報を抽出するように構成された速度推定回路と、前記超音波ドップラー画像データから周波数シフト分布情報を抽出するように構成された分散推定回路とを備えることを特徴とする請求項に記載の超音波撮像装置。
  8. さらに、前記運動識別回路に結合された組合せ回路を備え、前記組合せ回路が、前記速度推定回路および前記分散推定回路からの出力値を入力データとして受け入れ、前記超音波撮像装置にプログラムされた公式に従って前記入力データを組み合わせるように動作することを特徴とする請求項に記載の超音波撮像装置。
  9. さらに、前記運動識別回路に結合され、前記第1の領域内の流体の流れについての脈動指数を算出するように動作する脈動推定回路と、前記脈動推定回路に結合され、前記領域内の動脈血流と静脈血流を区別するように動作する識別回路とを備えることを特徴とする請求項に記載の超音波撮像装置。
  10. 前記脈動推定回路が、前記超音波撮像装置によって検査されている患者の、1つまたは複数の心周期にわたる前記血流に関する速度データを使用して、前記脈動指数を算出することを特徴とする請求項に記載の超音波撮像装置。
  11. さらに、前記第1の領域内の前記目標の速度および方向に対応するグレースケール・データまたはカラー画素データを含む表示データを生成するビデオ処理手段を備えることを特徴とする請求項2に記載の装置。
JP13118999A 1998-05-12 1999-05-12 超音波カラー・ドップラー速度/方向撮像 Expired - Fee Related JP4297555B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/076669 1998-05-12
US09/076,669 US5910119A (en) 1998-05-12 1998-05-12 Ultrasonic color doppler velocity and direction imaging

Publications (3)

Publication Number Publication Date
JP2000201931A JP2000201931A (ja) 2000-07-25
JP2000201931A5 JP2000201931A5 (ja) 2008-07-17
JP4297555B2 true JP4297555B2 (ja) 2009-07-15

Family

ID=22133491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13118999A Expired - Fee Related JP4297555B2 (ja) 1998-05-12 1999-05-12 超音波カラー・ドップラー速度/方向撮像

Country Status (3)

Country Link
US (1) US5910119A (ja)
EP (1) EP0957374B1 (ja)
JP (1) JP4297555B2 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547731B1 (en) * 1998-05-05 2003-04-15 Cornell Research Foundation, Inc. Method for assessing blood flow and apparatus thereof
JP3355140B2 (ja) * 1998-11-18 2002-12-09 ジーイー横河メディカルシステム株式会社 超音波撮像装置
US6193665B1 (en) * 1998-12-31 2001-02-27 General Electric Company Doppler angle unfolding in ultrasound color flow and Doppler
IL128904A0 (en) * 1999-03-09 2000-02-17 Inta Medics Ltd Ultrasound pulsatility imaging
US7399279B2 (en) * 1999-05-28 2008-07-15 Physiosonics, Inc Transmitter patterns for multi beam reception
US6190321B1 (en) * 1999-08-06 2001-02-20 Acuson Corporation Medical diagnostic ultrasound imaging methods for estimating motion between composite ultrasonic images and recovering color doppler values from composite images
JP2001061840A (ja) * 1999-08-24 2001-03-13 Matsushita Electric Ind Co Ltd 超音波診断装置
US6142944A (en) * 1999-08-30 2000-11-07 National Science Council Of Republic Of China Doppler motion detection with automatic angle correction
US6287258B1 (en) * 1999-10-06 2001-09-11 Acuson Corporation Method and apparatus for medical ultrasound flash suppression
US6350241B1 (en) * 1999-12-27 2002-02-26 Ge Medical Systems Global Technology Company, Llc Method and apparatus for multiple angle compound flow imaging
US6464637B1 (en) 2000-06-23 2002-10-15 Koninklijke Philips Electronics N.V. Automatic flow angle correction by ultrasonic vector
US7245746B2 (en) * 2001-06-12 2007-07-17 Ge Medical Systems Global Technology Company, Llc Ultrasound color characteristic mapping
US6863655B2 (en) * 2001-06-12 2005-03-08 Ge Medical Systems Global Technology Company, Llc Ultrasound display of tissue, tracking and tagging
US6592522B2 (en) 2001-06-12 2003-07-15 Ge Medical Systems Global Technology Company, Llc Ultrasound display of displacement
US6579240B2 (en) 2001-06-12 2003-06-17 Ge Medical Systems Global Technology Company, Llc Ultrasound display of selected movement parameter values
JP3844667B2 (ja) * 2001-07-23 2006-11-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
US7806827B2 (en) * 2003-03-11 2010-10-05 General Electric Company Ultrasound breast screening device
US7601122B2 (en) * 2003-04-22 2009-10-13 Wisconsin Alumni Research Foundation Ultrasonic elastography with angular compounding
AU2003904100A0 (en) * 2003-08-05 2003-08-21 The University Of Queensland Apparatus and method for early detection of cardiovascular disease using vascular imaging
US6979295B2 (en) * 2003-11-19 2005-12-27 Ge Medical Systems Global Technology Company, Llc Automatic color gain adjustments
DE602006006293D1 (de) * 2005-01-20 2009-05-28 Koninkl Philips Electronics Nv Verfahren und vorrichtung zur bestimmung des bewegungsvektors von geweben in einem biologischen medium
US20070093702A1 (en) * 2005-10-26 2007-04-26 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of parameters relating to blood
JP4812460B2 (ja) * 2006-02-22 2011-11-09 株式会社ユネクス 動脈血管判定方法および装置
US8047991B2 (en) * 2006-08-16 2011-11-01 Siemens Medical Solutions Usa, Inc. Automatic identification of orientation in medical diagnostic ultrasound
US9125586B2 (en) * 2008-01-25 2015-09-08 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Continuous acquisition and processing of ultrasound color data
CN102123668B (zh) * 2008-06-26 2015-11-25 维拉声学公司 使用未聚焦发送波束的高帧率定量多普勒流成像
US8971600B2 (en) * 2009-04-10 2015-03-03 Hitachi Medical Corporation Ultrasonic diagnosis apparatus and method for constructing distribution image of blood flow dynamic state
WO2011058471A1 (en) * 2009-11-13 2011-05-19 Koninklijke Philips Electronics N.V. System and method for identifying a doppler signal from a target blood vessel
US9204858B2 (en) * 2010-02-05 2015-12-08 Ultrasonix Medical Corporation Ultrasound pulse-wave doppler measurement of blood flow velocity and/or turbulence
US9028413B2 (en) * 2010-03-08 2015-05-12 Siemens Medical Solutions Usa, Inc. Prediction-based flow estimation for ultrasound diagnostic imaging
EP2654572B1 (en) * 2010-12-22 2017-09-13 Koninklijke Philips N.V. Automated doppler velocimetry using a low-cost transducer
WO2013054149A1 (en) 2011-10-11 2013-04-18 B-K Medical Aps Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging
KR101390187B1 (ko) * 2011-12-28 2014-04-29 삼성메디슨 주식회사 파티클 플로우 영상을 제공하는 초음파 시스템 및 방법
KR101406807B1 (ko) 2011-12-28 2014-06-12 삼성메디슨 주식회사 사용자 인터페이스를 제공하는 초음파 시스템 및 방법
KR20130102913A (ko) * 2012-03-08 2013-09-23 삼성메디슨 주식회사 조직의 이동 속도 및 방향 획득 방법 및 장치
US8764663B2 (en) * 2012-03-14 2014-07-01 Jeffrey Smok Method and apparatus for locating and distinguishing blood vessel
US8911373B2 (en) 2012-04-03 2014-12-16 B-K Medical Aps Vector flow ultrasound imaging
KR101516992B1 (ko) 2012-05-03 2015-05-04 삼성메디슨 주식회사 초음파 이미지 표시 장치 및 방법
US9099573B2 (en) 2013-10-31 2015-08-04 Samsung Electronics Co., Ltd. Nano-structure semiconductor light emitting device
JP5837641B2 (ja) * 2014-04-08 2015-12-24 日立アロカメディカル株式会社 超音波診断装置
US10548571B1 (en) 2014-11-21 2020-02-04 Ultrasee Corp Fast 2D blood flow velocity imaging
CN110811686B (zh) * 2015-06-05 2022-08-12 深圳迈瑞生物医疗电子股份有限公司 超声流体成像方法及超声流体成像***
US10575825B2 (en) 2015-07-27 2020-03-03 Siemens Medical Solutions Usa, Inc. Doppler imaging
CN108882916B (zh) 2016-09-30 2022-06-10 深圳迈瑞生物医疗电子股份有限公司 超声血流的参数显示方法及其超声成像***
CN109891267A (zh) 2016-10-28 2019-06-14 Ppg工业俄亥俄公司 用于增加近红外检测距离的涂层
US20190216430A1 (en) * 2018-01-15 2019-07-18 General Electric Company System and method for ultrasound flow imaging
US11561329B2 (en) 2019-01-07 2023-01-24 Ppg Industries Ohio, Inc. Near infrared control coating, articles formed therefrom, and methods of making the same
CA3135000A1 (en) 2019-05-01 2020-11-05 Bard Access Systems, Inc. Puncturing devices, puncturing systems including the puncturing devices, and methods thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1499981A (en) * 1974-01-03 1978-02-01 Nat Res Dev Doppler flowmeter
US4972838A (en) * 1988-07-13 1990-11-27 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
JP3521918B2 (ja) * 1992-01-28 2004-04-26 株式会社日立メディコ 超音波ドプラ血流計測装置
US5409010A (en) * 1992-05-19 1995-04-25 Board Of Regents Of The University Of Washington Vector doppler medical devices for blood velocity studies
US5441052A (en) * 1992-12-28 1995-08-15 Kabushiki Kaisha Toshiba Color doppler-type ultrasonic diagnostic apparatus
US5375600A (en) * 1993-08-09 1994-12-27 Hewlett-Packard Company Ultrasonic frequency-domain system and method for sensing fluid flow
US5615680A (en) * 1994-07-22 1997-04-01 Kabushiki Kaisha Toshiba Method of imaging in ultrasound diagnosis and diagnostic ultrasound system

Also Published As

Publication number Publication date
JP2000201931A (ja) 2000-07-25
EP0957374A3 (en) 2003-02-05
EP0957374B1 (en) 2005-08-24
EP0957374A2 (en) 1999-11-17
US5910119A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
JP4297555B2 (ja) 超音波カラー・ドップラー速度/方向撮像
JP5715594B2 (ja) フローパラメータイメージングのための方法及び装置
JP4831281B2 (ja) 超音波撮像における自動血管追尾のための方法及び装置
US7223242B2 (en) Ultrasound imaging system
JP5858783B2 (ja) 非集束送信ビームを用いる高フレームレートの量的ドップラーフローイメージング
US5429137A (en) Acoustic scan conversion method and apparatus for velocity flow
JP4722283B2 (ja) 連続データ獲得を用いた超音波フロー・イメージングにおける運動の可視化のための方法および装置
US6099471A (en) Method and apparatus for real-time calculation and display of strain in ultrasound imaging
US6814703B2 (en) Apparatus and method for ultrasonic diagnostic imaging using a contrast medium
JP4627366B2 (ja) パケット・データ獲得を用いた超音波フロー撮像における運動の可視化のための方法および装置
US6176830B1 (en) Method and system for pre-determining spectral doppler user parameters
EP0952462A2 (en) Method and apparatus for improving visualization of biopsy needle in ultrasound imaging
US6193665B1 (en) Doppler angle unfolding in ultrasound color flow and Doppler
EP1040323A1 (en) Cross-sectional color doppler volume flow measurement
JP2007518512A (ja) 心筋灌流を表示するための画像分割
EP1021129B1 (en) Ultrasound imaging for displaying strain
US6423004B1 (en) Real-time ultrasound spatial compounding using multiple angles of view
US6322510B1 (en) Ultrasonic imaging method and apparatus
US20070073152A1 (en) Systems and methods for acquiring images simultaneously
US6059729A (en) Method and apparatus for edge enhancement in ultrasound imaging
JP2000197636A (ja) 複数のアルゴリズムを使用する超音波カラ―・フロ―画像
US20190216430A1 (en) System and method for ultrasound flow imaging
US6500125B1 (en) Ultrasound b/color priority threshold calculation
US7371219B2 (en) Ultrasound diagnosis apparatus operable in doppler mode
JP2021049129A (ja) 超音波診断装置、及び画像処理装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees