JP4292971B2 - FRP manufacturing method and manufacturing apparatus - Google Patents

FRP manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4292971B2
JP4292971B2 JP2003411708A JP2003411708A JP4292971B2 JP 4292971 B2 JP4292971 B2 JP 4292971B2 JP 2003411708 A JP2003411708 A JP 2003411708A JP 2003411708 A JP2003411708 A JP 2003411708A JP 4292971 B2 JP4292971 B2 JP 4292971B2
Authority
JP
Japan
Prior art keywords
resin
mold
frp
injection
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003411708A
Other languages
Japanese (ja)
Other versions
JP2005169787A (en
JP2005169787A5 (en
Inventor
慎太郎 田中
茂郎 岩澤
俊英 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003411708A priority Critical patent/JP4292971B2/en
Publication of JP2005169787A publication Critical patent/JP2005169787A/en
Publication of JP2005169787A5 publication Critical patent/JP2005169787A5/ja
Application granted granted Critical
Publication of JP4292971B2 publication Critical patent/JP4292971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、FRP(Fiber Reinfoced Plastics:繊維強化樹脂)の製造方法および製造装置に関し、特に気泡の無い品質に優れたFRP成形品、複雑な形状を有するFRP成形品の製造に好適なFRPの製造方法と製造装置に関する。   The present invention relates to a manufacturing method and manufacturing apparatus for FRP (Fiber Reinfoced Plastics), and in particular, manufacturing FRP suitable for manufacturing FRP molded products having excellent quality without bubbles and FRP molded products having complex shapes. The present invention relates to a method and a manufacturing apparatus.

FRP、特にCFRP(炭素繊維強化樹脂)は軽量、かつ高い機械的性質を有する複合材料として様々な分野で利用されている。FRP成形方法の一つとして、型に繊維基材を載置し、型閉めの後、型内を減圧して液状樹脂を注入し、加熱硬化させるいわゆるRTM成形法が知られている。   FRP, especially CFRP (carbon fiber reinforced resin) is used in various fields as a composite material having a light weight and high mechanical properties. As one of the FRP molding methods, a so-called RTM molding method is known in which a fiber base material is placed on a mold, and after the mold is closed, the inside of the mold is decompressed, a liquid resin is injected, and heat curing is performed.

RTM成形法において、複雑な形状、繊維基材の密度差、繊維基材と型との隙間のばらつき、すなわち流動抵抗のばらつきにより樹脂流動を一定にすることは難しく、樹脂が含浸しない部分が残る問題があった。この課題に対して、注入口と排出口を複数設けたり、場所を吟味して配置するのが一般的であり、たとえば成形型の全面を透明なフィルムで覆えば型内に注入された樹脂の流動状況や強化繊維への含浸状態が確認できるので注入口と排出口を適宜入れ替えたりして、含浸しない部分に積極的に樹脂を充填させる方法が提案されている(例えば、特許文献1参照)。   In the RTM molding method, it is difficult to make the resin flow constant due to a complicated shape, a difference in density of the fiber base material, a variation in the gap between the fiber base material and the mold, that is, a variation in flow resistance, and a portion not impregnated with the resin remains. There was a problem. In order to solve this problem, it is common to provide a plurality of injection ports and discharge ports, or to examine and arrange the locations. For example, if the entire surface of the mold is covered with a transparent film, the resin injected into the mold Since the flow state and the impregnated state of the reinforcing fiber can be confirmed, a method of positively filling the non-impregnated portion with a resin by replacing the inlet and the outlet as appropriate has been proposed (for example, see Patent Document 1). .

また、複数の注入口、排出口を有する場合において、型内に多数の樹脂を関知するセンサを配置し樹脂の流動先端を検知し、これを制御装置に入力する方法が提案されている(例えば、特許文献2参照)。この方法は、記憶装置内に予め設定されたシミュレーション結果と比較し、最適な流動先端形状となるように複数の注入口のいずれかを開閉させる工程を備え、また、最適な注入圧力、温度で注入を行うように注入機を制御している。 In addition, in the case of having a plurality of inlets and outlets, a method has been proposed in which a sensor for detecting a large number of resins is arranged in a mold to detect the flow front of the resin and input this to a control device (for example, , See Patent Document 2 ). This method includes a step of opening and closing one of a plurality of inlets so as to obtain an optimum flow tip shape as compared with a simulation result preset in a storage device, and at an optimum injection pressure and temperature. The injector is controlled to perform the injection.

しかしながら、これらの対策を実施しても、基材の隙間などの小さな気泡や、樹脂注入中に減圧することにより発生する樹脂中の溶存気体の蒸発による気泡や、また型の角部に滞留する微少な気泡を排出するには至らなかった。
特開2003−39455号公報 特開2003−39451号公報
However, even if these measures are implemented, small bubbles such as gaps in the base material, bubbles due to evaporation of dissolved gas in the resin generated by depressurization during resin injection, and retention in the corners of the mold It was not possible to discharge minute bubbles.
JP 2003-39455 A JP 2003-39451 A

そこで本発明の課題は、従来のFRP成形方法で問題となる、基材の隙間などの小さな気泡や、樹脂注入中に減圧することにより発生する樹脂中の溶存気体の蒸発による気泡や、また型の角部に滞留する微少な気泡を排出することを可能とするFRPの製造方法および製造装置を提供することにある。   Therefore, the problem of the present invention is that small bubbles such as gaps in the substrate, which are problems in the conventional FRP molding method, bubbles due to evaporation of dissolved gas in the resin generated by decompression during resin injection, and molds An object of the present invention is to provide an FRP manufacturing method and a manufacturing apparatus capable of discharging minute bubbles staying at the corners of the FRP.

上記課題を達成するために本発明は、以下の構成を採用する。すなわち、
(1)成形型内に予め強化繊維基材を配設した状態で型内を真空吸引し、注入口から樹脂を加圧注入した後に加熱硬化して成形するFRPの製造方法において、前記注入口から加圧された樹脂を注入しながら排出口より型内の気体と余剰樹脂を間欠的に排出することを特徴とするFRPの製造方法。
To achieve the above object, the present invention adopts the following configuration. That is,
(1) In the FRP manufacturing method in which the inside of the mold is vacuum-sucked in a state where the reinforcing fiber base is previously disposed in the molding die, the resin is pressurized and injected from the injection port, and then heat-cured and molded. A method for producing FRP, wherein the gas in the mold and the excess resin are intermittently discharged from the discharge port while injecting the pressurized resin from the outlet.

(2)前記注入口から加圧注入された樹脂の型内での樹脂圧をPm、注入口の樹脂吐出圧をPiとしたとき、選択的にPm=Pi、Pm<Piとして成形型内に流入している樹脂流量を制御することを特徴とする前記(1)に記載のFRPの製造方法。   (2) When the resin pressure in the mold of the resin pressurized and injected from the injection port is Pm and the resin discharge pressure of the injection port is Pi, Pm = Pi and Pm <Pi are selectively set in the mold. The method for producing FRP as described in (1) above, wherein the flow rate of the flowing resin is controlled.

(3)前記成形型内に流入している樹脂流量の制御を排出口の口径の調節によって行うこと特徴とする前記(1)または(2)に記載のFRPの製造方法。   (3) The method for producing FRP according to (1) or (2), wherein the flow rate of the resin flowing into the mold is controlled by adjusting the diameter of the discharge port.

(4)前記排出口の口径の開度調節と、その調節のタイミングとを記憶し、その記憶情報を基に型内の樹脂流量を自動的に制御することを特徴とする前記(1)〜(3)のいずれかに記載のFRPのの製造方法。   (4) The opening adjustment of the diameter of the discharge port and the timing of the adjustment are stored, and the resin flow rate in the mold is automatically controlled based on the stored information. (3) The manufacturing method of FRP in any one of.

(5)成形型内に予め強化繊維基材を配設した状態で型内を真空吸引する手段と、注入口から加圧された樹脂を注入して加熱された成形型内に樹脂を充填する手段とを有するFRPの製造装置において、前記注入口から加圧された樹脂を注入しながら排出口より型内の気体と余剰樹脂を間欠的に排出する手段を設けたことを特徴とするFRPの製造装置。   (5) A means for vacuum-sucking the inside of the mold with the reinforcing fiber base disposed in advance in the mold, and a pressurized resin is injected from the injection port, and the heated mold is filled with the resin. And a means for intermittently discharging the gas in the mold and the excess resin from the discharge port while injecting the pressurized resin from the injection port. Manufacturing equipment.

(6)前記注入口から加圧注入された樹脂の型内での樹脂圧Pmと、注入口の樹脂吐出圧Piとの関係を、選択的にPm=Pi、Pm<Piとして、型内に流入している樹脂流量を少なくとも排出口の口径の変化によって制御する手段を有することを特徴とする前記(5)に記載のFRPの製造装置。   (6) The relationship between the resin pressure Pm in the resin mold pressure-injected from the injection port and the resin discharge pressure Pi of the injection port is selectively set in the mold as Pm = Pi and Pm <Pi. The apparatus for producing FRP as described in (5) above, further comprising means for controlling the flow rate of the flowing resin by at least a change in the diameter of the discharge port.

(7)前記排出口の口径の開度調節情報とその調節のタイミングとを記憶する記憶装置と、その記憶情報をもとに自動的に排出口の口径を変化させる口径可変装置とから構成されることを特徴とする前記(5)〜(6)のいずれかに記載のFRPの製造装置。   (7) It comprises a storage device for storing opening degree adjustment information of the discharge port diameter and the timing of the adjustment, and a variable diameter device for automatically changing the discharge port diameter based on the stored information. The FRP manufacturing apparatus according to any one of (5) to (6), wherein:

(8)前記排出口の口径を変化させる口径可変装置が、バルブ開閉装置からなることを特徴とする前記(7)に記載のFRPの製造装置。   (8) The FRP manufacturing apparatus according to (7), wherein the variable diameter device that changes the diameter of the discharge port includes a valve opening / closing device.

本発明によれば、従来のFRP成形法では困難であった、基材の隙間などの小さな気泡や、樹脂注入中に減圧することにより発生する樹脂中の溶存気体の蒸発による気泡や、また型の角部に滞留する微少な気泡を排出することが可能となり、表面意匠、強化繊維基材層間に小さな気泡のない、またはきわめて少ないFRP成形品を得られるようになった。   According to the present invention, small bubbles such as gaps in the substrate, which are difficult with the conventional FRP molding method, bubbles due to evaporation of dissolved gas in the resin generated by decompression during resin injection, and mold It is possible to discharge minute bubbles staying at the corners of the FRP, and it is possible to obtain an FRP molded product having no or very small bubbles between the surface design and the reinforcing fiber substrate layer.

以下、本発明であるRTM成形に適用したFRP製造方法の最良の実施形態の一例を、図面を参照しながら説明する。   Hereinafter, an example of the best embodiment of the FRP manufacturing method applied to the RTM molding according to the present invention will be described with reference to the drawings.

本発明におけるFRPとは、補強繊維により強化されている樹脂を指し、補強繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維等の無機繊維、あるいはアラミド繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維からなる補強繊維が挙げられる。FRPのマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂等の熱可塑性樹脂も使用可能である。   FRP in the present invention refers to a resin reinforced with reinforcing fibers, and examples of reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, and metal fibers, or organic fibers such as aramid fibers, polyethylene fibers, and polyamide fibers. Reinforcing fibers made of fibers can be mentioned. Examples of the FRP matrix resin include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, and phenol resins, and polyamide resins, polyolefin resins, dicyclopentadiene resins, polyurethane resins, and the like. These thermoplastic resins can also be used.

本発明に係るRTM 成形法で使用する樹脂としては、粘度が低く補強繊維への含浸が容易な熱硬化製樹脂または熱可塑性樹脂を形成するRIM用(Resin Injection Molding)モノマーが好適であり、その中でもFRP構造体の熱収縮を低減させ、クラックの発生を抑えるという点から、エポキシ樹脂または熱可塑性樹脂やゴム成分などを配合した変性エポキシ樹脂、ナイロン樹脂、ジシクロペンタジエン樹脂がより適している。   As the resin used in the RTM molding method according to the present invention, a thermosetting resin having a low viscosity and easily impregnating a reinforcing fiber or a monomer for RIM (Resin Injection Molding) that forms a thermoplastic resin is suitable. Among them, modified epoxy resins, nylon resins, and dicyclopentadiene resins blended with an epoxy resin or a thermoplastic resin or a rubber component are more suitable from the viewpoint of reducing thermal shrinkage of the FRP structure and suppressing the occurrence of cracks.

また、本発明で使用する補強繊維基材としては、例えば樹脂の含浸されていない補強繊維を指し、その補強繊維の織物やチョップドファイバー、マット、ニット材料、さらにこれらとインサート部品との組み合わせ等が挙げられ、その用途により使い分けられる。前記インサート部品とは、例えばスチールやアルミニウムなどの金属板や、金属柱、金属ボルト、ナット、ヒンジなどの接合用の金属、アルミハニカムコア、あるいはポリウレタン、ポリスチレン、ポリイミド、塩化ビニル、フェノール、アクリルなどの高分子材料からなるフォーム材やゴム質材、木質材等が挙げられ、主として、釘が効くことや、ネジが立てられる等の接合を目的としたインサート部品、中空構造で軽量化を目的としたインサート部品、振動時の減衰を目的としたインサート部品などが多く用いられる。   The reinforcing fiber substrate used in the present invention refers to, for example, a reinforcing fiber not impregnated with resin, such as a woven fabric, chopped fiber, mat, knit material of the reinforcing fiber, and a combination of these with an insert part. It can be used properly depending on its use. Examples of the insert parts include metal plates such as steel and aluminum, metals for joining such as metal columns, metal bolts, nuts, and hinges, aluminum honeycomb cores, polyurethane, polystyrene, polyimide, vinyl chloride, phenol, acrylic, and the like. Foam materials, rubber materials, wood materials, etc. composed of the above polymer materials are mainly used, and insert parts intended for joining such as nails and screws can be raised, with a hollow structure for the purpose of weight reduction Insert parts that are used for the purpose of damping during vibration are often used.

図1は本発明に係るRTM成形法を用いた製造装置の概略図である。   FIG. 1 is a schematic view of a manufacturing apparatus using an RTM molding method according to the present invention.

図において、成形金型2は上型と下型とからなり、金型昇降装置1に取り付けられる。下型に直接補強繊維基材を、または事前に成形型に収まりやすいように補強繊維基材を製品形状に賦形したプリフォーム基材を設置し、上型を閉じる。成形型の材質としてはFRP、鋳鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電鋳、銅電鋳などがあげられる。量産には、剛性、耐熱性、作業性の面から構造用炭素鋼が好適である。   In the figure, a molding die 2 includes an upper die and a lower die, and is attached to the die lifting device 1. Place the reinforcing fiber base directly on the lower mold, or the preform base formed in advance in the shape of the reinforcing fiber base so that it easily fits in the mold, and close the upper mold. Examples of the material of the mold include FRP, cast steel, structural carbon steel, aluminum alloy, zinc alloy, nickel electroforming, and copper electroforming. For mass production, structural carbon steel is suitable in terms of rigidity, heat resistance, and workability.

成形型には任意に複数の樹脂注入口8aに繋がる樹脂注入流路13、排出口8bに繋がる排出路14(図1ではそれぞれ1箇所、図3の例では注入口8aが1箇所・排出口8bが4箇所)を設けた。樹脂注入流路13、排出路14は各々カプラを介して注入口8a、排出口8bに接続する。樹脂注入流路13には樹脂注入装置3が接続されている。樹脂注入装置3は主剤タンク5、硬化剤タンク6にそれぞれ主剤・硬化剤を収容し、それぞれのタンクは加温、真空脱泡できる機構を備えている。樹脂注入時にはそれぞれのタンクから加圧装置23により樹脂を樹脂注入流路13に向かって押し流す。加圧装置23は、シリンジポンプを用いており、シリンジを同時に押し出すことで定量性も確保することが2液混合により硬化する樹脂には好ましい。混合ユニット4で混合され、樹脂注入流路13に至る。排出路14は真空ポンプ7aあるいは加圧ポンプ7bへの樹脂の流入を防ぐために、樹脂トラップ15に接続される。   The molding die arbitrarily has a resin injection flow path 13 connected to a plurality of resin injection openings 8a, and a discharge path 14 connected to the discharge opening 8b (one place in FIG. 1 and one injection opening 8a in the example of FIG. 3). 8b is provided at four locations). The resin injection channel 13 and the discharge channel 14 are connected to the injection port 8a and the discharge port 8b through couplers, respectively. A resin injection device 3 is connected to the resin injection flow path 13. The resin injecting device 3 stores a main agent and a curing agent in a main agent tank 5 and a curing agent tank 6, respectively, and each tank has a mechanism capable of heating and vacuum degassing. At the time of resin injection, the resin is pushed from each tank toward the resin injection flow path 13 by the pressurizing device 23. The pressurizing device 23 uses a syringe pump, and it is preferable for a resin that is cured by two-component mixing to ensure quantitativeness by simultaneously extruding the syringe. It is mixed by the mixing unit 4 and reaches the resin injection channel 13. The discharge path 14 is connected to a resin trap 15 in order to prevent the resin from flowing into the vacuum pump 7a or the pressure pump 7b.

なお、注入口8aの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、注入口8aはできるだけ少ないことが好ましい。これは樹脂注入装置3からの注入用流路13を注入口8aに接続する箇所が増えて注入作業が繁雑になることを防ぐためである。図3aのような注入口8aが複数必要になる場合には、図3bのように、注入後に型内で流路を分割するなどの手段が効果的である。   The number and positions of the injection ports 8a vary depending on the shape and size of the mold and the number of molded products that are simultaneously molded in the mold, but it is preferable that the number of injection ports 8a be as small as possible. This is to prevent the injection work from becoming complicated due to an increase in the number of locations where the injection flow path 13 from the resin injection device 3 is connected to the injection port 8a. When a plurality of injection ports 8a as shown in FIG. 3a are required, means such as dividing the flow path in the mold after injection is effective as shown in FIG. 3b.

樹脂注入流路13の材料は十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。チューブには口径5〜30mmのものを用い、樹脂の注入圧力に耐えるために1.0MPa以上の耐圧性、樹脂硬化時の温度に耐えるために100℃以上の耐熱性が必要となり、厚みが2mm程度の”テフロン(登録商標)”などのフッ素樹脂製チューブが好適である。ただし、”テフロン(登録商標)”以外にも、比較的安価なポリエチレンチューブやスチール、アルミ等の金属管であってもよい。   The material of the resin injection flow path 13 needs to ensure sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance). A tube with a diameter of 5 to 30 mm is used. A pressure resistance of 1.0 MPa or more is required to withstand the injection pressure of the resin, and a heat resistance of 100 ° C. or more is required to withstand the temperature during resin curing, and the thickness is 2 mm. A tube made of fluororesin such as “Teflon (registered trademark)” is suitable. However, other than “Teflon (registered trademark)”, a relatively inexpensive metal tube such as polyethylene tube, steel, or aluminum may be used.

また、排出口8bの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、排出口もできるだけ少ないことが好ましい。図3の例では、樹脂注入口8aは1カ所としたが排出口8bは4カ所設置している。これは、樹脂注入口8aから成形体までの経路長が異なるなど、樹脂の流れが それぞれによって異なることが予想されるため、それぞれの排出路14には個別に排出バルブ22bを設けて、各々個別に制御することも可能である。   Further, the number and positions of the discharge ports 8b vary depending on the shape and size of the molding die, the number of molded products that are simultaneously molded in the mold, and the like, but it is preferable that the number of discharge ports be as small as possible. In the example of FIG. 3, the resin injection port 8a is provided at one location, but the discharge ports 8b are provided at four locations. This is because the flow of the resin is expected to vary depending on the path length from the resin injection port 8a to the molded body. For this reason, each discharge path 14 is provided with a separate discharge valve 22b. It is also possible to control it.

また、排出口8bは、型内に残留する気体が抜けやすいように注入口8aよりも気体が浮動し易い方向である高い位置に設置されることが好ましい。   Moreover, it is preferable that the discharge port 8b is installed at a high position in a direction in which the gas is more likely to float than the injection port 8a so that the gas remaining in the mold can easily escape.

排出路14の材料は、供給路13と同様に十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。排出路14としてはスチール、アルミ等の金属管、あるいはポリエチレン、”テフロン(登録商標)”等のプラスチック製のチューブが挙げられるが、直径5〜10mm、厚み1〜2mmの”テフロン(登録商標)”製チューブが作業性の面からより好適である。   As for the material of the discharge path 14, it is necessary to take into consideration the securing of a sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance), as with the supply path 13. The discharge path 14 may be a metal tube such as steel or aluminum, or a plastic tube such as polyethylene or “Teflon (registered trademark)”. The “Teflon (registered trademark)” has a diameter of 5 to 10 mm and a thickness of 1 to 2 mm. “A tube made from the viewpoint of workability is more preferable.

樹脂注入時の樹脂注入流路13、排出路14の途中に設置する注入バルブ22aや排出バルブ22bは、図4に示すようなバイスグリップ等により、直接作業者により流路を挟むことで全域開閉や口径を変化させることができる。また、バイスグリップのハンドル部分にアクチュエータを設置して自動化することや、またバイスグリップの代わりに電磁バルブやエアーオペレーションバルブを用いる等したバルブ開閉装置を適用することができる。そして、このバルブ開閉装置と事前にバルブの開度情報を入力した記憶装置22cを接続することで、より精度の高い開閉を行うことも好適である。さらに、排出バルブ22bは、単なる開閉の2値ではなく、流路の径を変化(ボールバルブの開度調節)させることも可能である。   The injection valve 22a and the discharge valve 22b installed in the middle of the resin injection channel 13 and the discharge channel 14 at the time of resin injection are opened and closed by the operator directly sandwiching the channel with a vise grip as shown in FIG. And caliber can be changed. In addition, it is possible to apply a valve opening / closing device by installing an actuator in the handle portion of the vice grip for automation, or using an electromagnetic valve or an air operation valve instead of the vise grip. It is also preferable to perform more accurate opening / closing by connecting the valve opening / closing device to the storage device 22c to which the valve opening information has been input in advance. Furthermore, the discharge valve 22b can change the diameter of the flow path (adjustment of the opening degree of the ball valve), not just binary opening and closing.

樹脂の加圧は、シリンジポンプなどによる加圧方法によれば定量性も得られる。樹脂の注入圧Piは0.1〜1.0MPaの範囲で用いるのが好ましい。ここで樹脂の注入圧Piとは、加圧装置23により加圧される最大圧力を指し、図1の注入圧力計31で表示させる圧力を表す。最終的に樹脂が型内の基材に完全に含浸され排出路14まで到達したら排出路14を閉じ、その後暫くしてから注入用流路も閉じて樹脂注入を終了する。成形型は温調機13によって加温されており、これにより樹脂を硬化させる。なお、型内樹脂圧Pmとは、型内圧力計32の圧力を表す。   The pressurization of the resin can also provide quantitativeness by a pressurizing method using a syringe pump or the like. The resin injection pressure Pi is preferably in the range of 0.1 to 1.0 MPa. Here, the injection pressure Pi of the resin refers to the maximum pressure pressurized by the pressurizing device 23, and represents the pressure displayed by the injection pressure gauge 31 of FIG. Finally, when the resin is completely impregnated into the substrate in the mold and reaches the discharge path 14, the discharge path 14 is closed, and after a while, the injection flow path is also closed and the resin injection is finished. The mold is heated by the temperature controller 13, thereby curing the resin. The in-mold resin pressure Pm represents the pressure of the in-mold pressure gauge 32.

従来の方法では、成形型内に予め強化繊維基材を配設して型を閉じ、注入バルブ22aを閉鎖した状態で開口した排出バルブ22bに通じる排出路14から真空ポンプ7aで型内を真空吸引し、型内樹脂圧Pmを好ましくは0.01MPa以下の減圧状態にし、続いて排出バルブ22bを閉鎖した状態で注入バルブ22aを開口して注入用流路13から樹脂が型内に完全に充填されるまで加圧注入して成形していた。しかし、この方法では樹脂注入中に排出バルブ22bを閉鎖したままであるため、前述のとおり、織物基材の織り目に残っていた気泡や、強化繊維基材の積層間に残る気泡、さらにまた型内に注入された樹脂に溶存している気体が加熱成形プロセス過程で蒸発することにより生じた気泡などが排出されず、そのまま成形されて小さな気泡が成形品に残ることにより、製品の大きな品質劣化を招いていた。特に、それらの気泡が表面にボイドやピットとして顕在化した場合、意匠性を重要視される製品では不良品となっていた。   In the conventional method, a reinforcing fiber base material is disposed in the mold in advance, the mold is closed, and the mold is evacuated by the vacuum pump 7a from the discharge passage 14 leading to the discharge valve 22b opened in the closed state. Suction is performed to reduce the in-mold resin pressure Pm to preferably 0.01 MPa or less, and then the injection valve 22a is opened with the discharge valve 22b closed, so that the resin completely enters the mold from the injection flow path 13. It was molded by pressure injection until it was filled. However, in this method, since the discharge valve 22b remains closed during resin injection, as described above, bubbles remaining in the texture of the fabric base, bubbles remaining between the laminations of the reinforcing fiber base, Bubbles generated by evaporating the gas dissolved in the resin injected into the resin during the thermoforming process are not discharged, and the product is molded as it is and small bubbles remain in the molded product, resulting in a large quality degradation of the product. Was invited. In particular, when these bubbles are manifested as voids or pits on the surface, the product in which design is regarded as important is a defective product.

これらの製品の品質劣化や不良品を招く問題を解決するためには、樹脂注入過程でも型内に残存および蒸発発生する気体(気泡)を型内より適宜排出する必要がある。   In order to solve the problems of quality degradation and defective products of these products, it is necessary to appropriately discharge the gas (bubbles) remaining in the mold and evaporating from the mold even during the resin injection process.

そこで、本発明に適用するRTM成形方法では、注入口から加圧された樹脂を注入しながら排出路14に設置される排出バルブ22bを開閉、あるいは口径を変化させることにより、型内の滞留気泡と余剰樹脂を間欠的に効率良く排出する。例えば、注入バルブ22aを開いて樹脂を注入しながら排出バルブ22bを完全に閉じた場合、注入圧Pi=型内樹脂圧Pmとなり、成形金型2に流入している樹脂圧が高いため強化繊維への含浸が容易となる反面、滞留している気泡も樹脂圧とほぼ同圧力の状態まで圧縮されて樹脂中に混在している。この状態で排出バルブを22bを開口すると樹脂注入圧Pi>型内樹脂圧Pmの関係となり、排出口14から型内の滞留気泡と加圧された余剰樹脂が同時に排出される。   Accordingly, in the RTM molding method applied to the present invention, the retained bubbles in the mold can be obtained by opening / closing the discharge valve 22b installed in the discharge passage 14 or changing the diameter while injecting pressurized resin from the injection port. And excess resin is discharged intermittently and efficiently. For example, when the injection valve 22a is opened and the discharge valve 22b is completely closed while injecting resin, the injection pressure Pi = in-mold resin pressure Pm, and the resin pressure flowing into the molding die 2 is high, so that the reinforcing fiber While it is easy to impregnate the resin, the remaining bubbles are compressed to a state almost the same as the resin pressure and mixed in the resin. When the discharge valve 22b is opened in this state, the relationship of resin injection pressure Pi> in-mold resin pressure Pm is established, and the staying bubbles in the mold and the excess surplus resin are discharged from the discharge port 14 at the same time.

ここで、排出バルブ22bの開閉速度を、望ましくは1秒以内で実施することで、型内圧力Pmが開閉速度に従って一気に降下し、残留しているガスが急激に膨張する。そして、圧力差に寄るとともにそのガスの体積の変化に併せて樹脂の流れが発生し、強化繊維基材の間や型の角部などに滞留していたガスがこの急激な樹脂の流れにより留まることができなくなり、排出口8bより排出される。型内圧力Pmの降下速度が速いほど、ガス体積の変化が早くなり、そのガスの周囲の樹脂に衝撃的な流れを与えることで、残存しているガスが滞留場所から離脱しやすくなる。一端離脱したガスは、排出路14へ向かう流れと一体となり排出される。次に、排出バルブ22bを閉じて注入バルブ22aから樹脂を供給する。   Here, when the opening / closing speed of the discharge valve 22b is preferably within one second, the in-mold pressure Pm drops at a time according to the opening / closing speed, and the remaining gas rapidly expands. Then, the flow of the resin is generated along with the change in the volume of the gas while approaching the pressure difference, and the gas staying between the reinforcing fiber bases and the corners of the mold is retained by the rapid flow of the resin. And cannot be discharged from the discharge port 8b. The faster the in-mold pressure Pm descends, the faster the gas volume changes. By applying a shocking flow to the resin surrounding the gas, the remaining gas can easily escape from the residence location. The gas once detached is discharged together with the flow toward the discharge path 14. Next, the discharge valve 22b is closed and the resin is supplied from the injection valve 22a.

このような、排出バルブ22bの間欠的な開閉(必ずしも全開、全閉とは限らない)を繰り返すことによって、型内に滞留する気泡(ガス)を徐々に排出しながら、最終的には完全に排出した状態で排出バルブ22bを全閉し、暫く注入樹脂圧を掛けた状態を保持した後、注入バルブ22aも全閉して型内に充満した樹脂を加熱硬化させる。   By repeating such intermittent opening / closing of the discharge valve 22b (not necessarily fully opened and fully closed), bubbles (gas) staying in the mold are gradually discharged, and finally completely. In a discharged state, the discharge valve 22b is fully closed, and after maintaining the state in which the injection resin pressure is applied for a while, the injection valve 22a is also fully closed to heat and cure the resin filled in the mold.

ここでの形態では、樹脂を加圧することとしているが、注入圧力Piを大気圧として、型内を負圧とすることでも同様の効果が得られる。   In this embodiment, the resin is pressurized, but the same effect can be obtained by setting the injection pressure Pi to atmospheric pressure and the mold to a negative pressure.

このように瞬間的に型内の圧力をPiあるいは負圧から変化させる方法は、樹脂トラップ15に接続される真空ポンプ7aと圧空ポンプ7bの瞬間的な切り替えによっても実現することができる。また、排出路14に設置する排出バルブ22bの開度を調節することで、型内樹脂圧Pmの変化速度を制御することによって、より効率の高い課題解決が可能である。   In this way, the method of instantaneously changing the pressure in the mold from Pi or negative pressure can also be realized by instantaneous switching between the vacuum pump 7a and the compressed air pump 7b connected to the resin trap 15. Further, by adjusting the opening rate of the discharge valve 22b installed in the discharge path 14 to control the changing speed of the in-mold resin pressure Pm, it is possible to solve the problem with higher efficiency.

また。この排出バルブ22bは、あらかじめ開閉の周期を、たとえばコンピュータに入力しておき、その情報をもとに動作させることで、作業工数の増加の必要もなく従来の成形の課題を解決できる。   Also. The discharge valve 22b inputs the opening / closing cycle in advance to a computer, for example, and operates based on the information, so that it is possible to solve the problems of conventional molding without an increase in the number of work steps.

さらに、コンピュータに予め樹脂注入条件や樹脂流動状況に応じた最適な排出バルブ22bの開閉条件を事前に入力しておくことで、環境(大気温度など)の変化などにも対応した最適な樹脂流動が実現できる。   Furthermore, the optimal resin flow corresponding to changes in the environment (atmospheric temperature, etc.) can be obtained by inputting in advance the optimal opening / closing conditions of the discharge valve 22b in accordance with the resin injection conditions and the resin flow conditions. Can be realized.

本発明によって従来方法では困難であった表面意匠性に係わるボイドやピットのない、または極めて少ないFRP成形品を得られるようになった。このことにより、常に安定して機械的性質を満たし、優れた表面品位を安定して得られ、従来より歩留まりよく生産できる。   According to the present invention, it has become possible to obtain an FRP molded article having no or very little voids and pits related to surface design, which has been difficult with the conventional method. As a result, the mechanical properties are always stably satisfied, excellent surface quality can be stably obtained, and production can be performed with a higher yield than before.

以上のFRP成形方法を用いて、CFRP成形品の製造方法について具体的に説明する。   Using the above FRP molding method, a method for producing a CFRP molded product will be specifically described.

本発明に係るFRP製造装置の一例として実施したRTM成形装置の全体図を図1に、金型部分について図2に示す。注入口8aを1個、排出口8bを1個持つ図2に示したような形状の金属型(上型16、下型17とも:長さ1500mm幅1000mm、高さ500mm)に、発泡コアの芯材に炭素繊維基材(CO6343B:T300−3K、組織:平織、目付:200g/m2 、東レ(株)製)を全面に10周巻き付け、下型17に載置し、金型昇降機1にて上型16を閉じ密閉する。上型16は金型昇降機1にて20Kg/cm2 で加圧されている。また、上型16、下型17とも温調機8によって100℃に一定に加温されている。 An overall view of an RTM molding apparatus implemented as an example of an FRP manufacturing apparatus according to the present invention is shown in FIG. 1, and a mold part is shown in FIG. A metal mold (both upper mold 16 and lower mold 17: length 1500 mm, width 1000 mm, height 500 mm) having a single inlet 8a and a single outlet 8b as shown in FIG. A carbon fiber base material (CO6343B: T300-3K, structure: plain weave, basis weight: 200 g / m 2 , manufactured by Toray Industries, Inc.) is wound around the entire surface for 10 laps, placed on the lower mold 17, and the mold elevator 1 The upper die 16 is closed and hermetically sealed. The upper mold 16 is pressurized by the mold elevator 1 at 20 kg / cm 2 . The upper mold 16 and the lower mold 17 are both heated to 100 ° C. by the temperature controller 8.

注入口8aには樹脂注入用流路13を接続し、排出口8bには排出路14を接続した。注入用流路13、排出路14ともに直径12mm、厚さ2mmの”テフロン(登録商標)”製チューブを使用した。排出路14には樹脂が真空ポンプ7aまで流入するのを防ぐため、途中に樹脂トラップ15を設けた。   A resin injection flow path 13 was connected to the injection port 8a, and a discharge path 14 was connected to the discharge port 8b. A tube made of “Teflon (registered trademark)” having a diameter of 12 mm and a thickness of 2 mm was used for both the injection channel 13 and the discharge channel 14. In order to prevent the resin from flowing into the discharge path 14 to the vacuum pump 7a, a resin trap 15 is provided on the way.

型内の密閉を保つため、シール材20を型の外周に配置している。上型16を閉じることで、型の内部が樹脂注入用流路13と排出路14以外に連通していないことが理想的である。しかし、実質的には完全な密閉は困難であり、たとえば、樹脂注入路13に配置される注入バルブ22aを閉じ排出バルブ22bを開した状態で真空圧力計(記載略)の圧力をモニターし、ここでは真空ポンプ7a停止後10秒間0.01MPaを保持できた状態であれば成形上問題ないとして密閉の状態を確認することとした。   In order to keep the inside of the mold sealed, the sealing material 20 is arranged on the outer periphery of the mold. Ideally, by closing the upper mold 16, the interior of the mold does not communicate with any place other than the resin injection flow path 13 and the discharge path 14. However, substantially complete sealing is difficult. For example, the pressure of a vacuum pressure gauge (not shown) is monitored with the injection valve 22a disposed in the resin injection path 13 closed and the discharge valve 22b opened. Here, it was decided to check the sealing state as long as 0.01 MPa was maintained for 10 seconds after the vacuum pump 7a was stopped, and there was no problem in molding.

排出口8bから真空ポンプ7aで排出し、型内圧力を0.01MPa以下となったことを該真空圧力計により確認した後、加圧装置23により樹脂の注入を開始する。加圧装置23は、シリンジポンプを用いており、樹脂注入時にはタンク側への樹脂の逆流を防ぐように構成されている。樹脂は主剤としてエピコート828(油化シェルエポキシ社製、エポキシ樹脂)、硬化剤は東レブレンドのTR−C35H(イミダゾール誘導体)を混合して得た液状エポキシ樹脂を使用した。樹脂注入装置3では事前に主剤5、硬化剤6を攪拌しながら40℃で加温し、所定の粘度まで降下させ、かつ真空ポンプ7で脱泡を行った。   After discharging from the discharge port 8b with the vacuum pump 7a and confirming with the vacuum pressure gauge that the pressure inside the mold is 0.01 MPa or less, the pressurizing device 23 starts injecting resin. The pressurizing device 23 uses a syringe pump, and is configured to prevent the backflow of the resin to the tank side when the resin is injected. As the main resin, Epicoat 828 (manufactured by Yuka Shell Epoxy Co., Ltd., epoxy resin) was used as the main agent, and as the curing agent, a liquid epoxy resin obtained by mixing TR-C35H (imidazole derivative) of Toray Blend was used. In the resin injection device 3, the main agent 5 and the curing agent 6 were heated in advance at 40 ° C. while being stirred, lowered to a predetermined viscosity, and defoamed by the vacuum pump 7.

樹脂注入の初期は樹脂混合ユニット4内の空気、ホース内の空気が入るため型内には流さずに図示しない分岐路から廃棄した。加圧装置23は200g/ストロークに設定した。最初の樹脂を廃棄した後、注入用流路13に設置した注入圧力計31によって注入樹脂圧(今回;0.6MPa)を確認して注入バルブ22aを開け、型内に樹脂を注入する。注入開始時は、排出路14は開の状態とした。このとき型内圧力Pm<供給圧力Piにより樹脂が型内に容易に注入される。そして、樹脂の強化繊維基材への含浸促進と、気泡を効率的に除去するための操作として排出路の開閉をおこなった。排出路14は、ここでは開閉の2値制御とした。開閉作業はバイスグリップを用い手作業とした。バイスクリップの操作の一例を排出路14の開閉操作の時間と注入圧力Pi型内圧力Pmの関係を表1に示す。他の実施例として、排出路14に連通する真空ポンプ7aと加圧ポンプ7bを切り替えることも効果的である。表2に真空ポンプと加圧ポンプの切り替えの一例を示す。   At the initial stage of resin injection, the air in the resin mixing unit 4 and the air in the hose entered and were discarded from a branch path (not shown) without flowing into the mold. The pressure device 23 was set to 200 g / stroke. After discarding the first resin, the injection pressure gauge 31 installed in the injection flow path 13 is used to confirm the injection resin pressure (current: 0.6 MPa), the injection valve 22a is opened, and the resin is injected into the mold. At the start of injection, the discharge passage 14 was opened. At this time, the resin is easily injected into the mold by the pressure in the mold Pm <the supply pressure Pi. Then, the discharge path was opened and closed as an operation for promoting the impregnation of the resin into the reinforcing fiber base and removing the bubbles efficiently. Here, the discharge path 14 is a binary control of opening and closing. The opening / closing operation was performed manually using a vise grip. Table 1 shows the relationship between the opening / closing operation time of the discharge passage 14 and the injection pressure Pi type internal pressure Pm as an example of the operation of the vise clip. As another embodiment, it is also effective to switch between the vacuum pump 7a and the pressurizing pump 7b communicating with the discharge passage 14. Table 2 shows an example of switching between the vacuum pump and the pressure pump.

さらに他の実施例として、排出バルブ22bにはボールバルブなどを用いて、ボールの回転角度をサーボモータでコントロールすることでバルブ開度を精度良く決めることができる。また、その回転の角度やタイミングをコンピュータに事前に登録することで、自動でバルブの制御を実行することが可能であり、作業者を増やすことなく容易に実現が可能であった。   As still another embodiment, a ball valve or the like is used as the discharge valve 22b, and the valve opening degree can be accurately determined by controlling the rotation angle of the ball with a servo motor. In addition, by previously registering the rotation angle and timing in the computer, it is possible to automatically control the valve, which can be easily realized without increasing the number of workers.

成形条件や型内の樹脂の流れを関知するセンサーによる情報を入力として、排出バルブ22bの開閉のタイミングを制御することもできる。他の実施例では、樹脂供給装置の樹脂温度を入力として実施した。樹脂温度が低い場合樹脂粘度が高くなるため、樹脂注入流路13を流れる樹脂の量が減少する。このため、樹脂温度が高いときは Pm<Piの時間:Pm=Piの時間が1:1とすれば 樹脂温度が高いときには1.2:0.8の割合にすることで対応できた。   It is also possible to control the opening / closing timing of the discharge valve 22b by inputting information from a sensor that knows the molding conditions and the flow of resin in the mold. In another example, the resin temperature of the resin supply device was used as an input. Since the resin viscosity increases when the resin temperature is low, the amount of resin flowing through the resin injection channel 13 decreases. Therefore, if the resin temperature is high, the time of Pm <Pi: Pm = Pi is set to 1: 1. When the resin temperature is high, the ratio is 1.2: 0.8.

樹脂が型内に充満し、なおかつ型内の気泡の流出作業が完了すると、表1に示したとおり、排出路14を閉じ樹脂注入は1分続け、念のため注入樹脂圧Piと型内樹脂圧力Pmを同一にして上記手段によっても残った樹脂中のガスを押しつぶす。1分後に注入路13を閉じ樹脂注入を終了する。この状態で40分間放置し、硬化させる。   When the resin fills the mold and the outflow operation of the bubbles in the mold is completed, as shown in Table 1, the discharge path 14 is closed and the resin injection is continued for 1 minute. The gas in the resin remaining by the above means is crushed with the same pressure Pm. After 1 minute, the injection path 13 is closed and the resin injection is finished. This is left for 40 minutes to cure.

以上を纏めたのが次の表1、2である。   The following is summarized in Tables 1 and 2 below.

Figure 0004292971
Figure 0004292971

Figure 0004292971
Figure 0004292971

本発明は、エポキシ樹脂を用いたRTM成形方法に限らず、樹脂流動によるFRP成形法すべてに適用できる。   The present invention is not limited to the RTM molding method using an epoxy resin, but can be applied to all FRP molding methods based on resin flow.

本発明にかかるRTM成形方法によるFRP製造装置の一例を示す概略全体図である。It is a general | schematic whole view which shows an example of the FRP manufacturing apparatus by the RTM shaping | molding method concerning this invention. 本発明の成形法を用いた成形型FRP製造装置の一例の断面図である。It is sectional drawing of an example of the shaping | molding die FRP manufacturing apparatus using the shaping | molding method of this invention. 本発明の成形法を用いた成形型FRP製造装置の一例の上面図である。It is a top view of an example of the shaping | molding die FRP manufacturing apparatus using the shaping | molding method of this invention. 本発明の成形法を用いた成形型FRP製造装置の一例の外観、斜視図である。It is the external appearance of an example of the shaping | molding die FRP manufacturing apparatus using the shaping | molding method of this invention, and a perspective view.

符号の説明Explanation of symbols

1:金型昇降装置
2:成形金型
3:樹脂注入装置
4:混合ユニット
5:主剤タンク
6:硬化剤タンク
7a:真空ポンプ
7b:加圧ポンプ
8a:注入口
8b:排出口8b
9:油圧ユニット
10:油圧ポンプ
11;油圧シリンダー
12;逆止弁
13:樹脂注入流路
14:排出路
15:樹脂トラップ
16:上型
17:下型
18:成形品
19:コア材
20:シール材
21:バイスグリップ
22a:注入バルブ
22b:排出バルブ
22c:記憶装置
23:加圧装置
24:真空ポンプ
25:金型温調機
31:注入圧力計Pi
32:型内圧力計Pm
1: Mold lifting device 2: Molding die 3: Resin injection device 4: Mixing unit 5: Main agent tank 6: Curing agent tank 7a: Vacuum pump 7b: Pressure pump 8a: Injection port 8b: Discharge port 8b
9: Hydraulic unit 10: Hydraulic pump 11; Hydraulic cylinder 12; Check valve 13: Resin injection flow path 14: Discharge path 15: Resin trap 16: Upper mold 17: Lower mold 18: Molded product 19: Core material 20: Seal Material 21: Vise grip 22a: Injection valve 22b: Discharge valve 22c: Storage device 23: Pressurization device 24: Vacuum pump 25: Mold temperature controller 31: Injection pressure gauge Pi
32: In-mold pressure gauge Pm

Claims (8)

成形型内に予め強化繊維基材を配設した状態で型内を真空吸引し、注入口から樹脂を加圧注入した後に加熱硬化して成形するFRPの製造方法において、前記注入口から加圧された樹脂を注入しながら排出口より型内の気体と余剰樹脂とを間欠的に排出することを特徴とするFRPの製造方法。 In the FRP manufacturing method in which the inside of the mold is vacuum-sucked in a state where the reinforcing fiber base is previously disposed in the molding die, and the resin is pressurized and injected from the injection port, followed by heat curing and molding, in the FRP manufacturing method, A method for producing FRP, characterized in that the gas in the mold and the excess resin are intermittently discharged from the discharge port while the injected resin is injected. 前記注入口から加圧注入された樹脂の型内での樹脂圧力をPm、注入口の樹脂吐出圧力をPiとしたとき、選択的にPm=Pi、Pm<Piとして、成形型内に流入している樹脂流量を制御することを特徴とする請求項1に記載のFRPの製造方法。 When the resin pressure in the mold of the resin injected under pressure from the injection port is Pm and the resin discharge pressure of the injection port is Pi, Pm = Pi and Pm <Pi selectively flow into the mold. The method for producing FRP according to claim 1, wherein the flow rate of the resin is controlled. 前記成形型内に流入している樹脂流量の制御を、排出口の口径の調節によって行うこと特徴とする請求項1または2に記載のFRPの製造方法。 The method for producing an FRP according to claim 1 or 2, wherein the flow rate of the resin flowing into the mold is controlled by adjusting the diameter of the discharge port. 前記排出口の口径の開度調節と、その調節のタイミングとを記憶し、その記憶情報を基に型内の樹脂流量を自動的に制御することを特徴とする請求項1〜3のいずれかに記載のFRPのの製造方法。 The opening degree adjustment of the diameter of the discharge port and the timing of the adjustment are stored, and the resin flow rate in the mold is automatically controlled based on the stored information. A method for producing the FRP described in 1. 成形型内に予め強化繊維基材を配設した状態で型内を真空吸引する手段と、注入口から加圧された樹脂を注入して加熱された成形型内に樹脂を充填する手段とを有するFRPの製造装置において、前記注入口から加圧された樹脂を注入しながら排出口より型内の気体と余剰樹脂とを間欠的に排出する手段を設けたことを特徴とするFRPの製造装置。 Means for vacuum-sucking the mold with the reinforcing fiber base disposed in advance in the mold, and means for injecting pressurized resin from the injection port and filling the resin into the heated mold An FRP manufacturing apparatus comprising: means for intermittently discharging gas and excess resin in a mold from a discharge port while injecting a pressurized resin from the injection port. . 前記注入口から加圧注入された樹脂の型内での樹脂圧力Pmと、注入口の樹脂吐出圧力Piとの関係を、選択的にPm=Pi、Pm<Piとして、型内に流入している樹脂流量を少なくとも排出口の口径の変化によって制御する手段を有することを特徴とする請求項5に記載のFRPの製造装置。 The relationship between the resin pressure Pm in the mold of the resin pressure-injected from the injection port and the resin discharge pressure Pi of the injection port is selectively set to Pm = Pi and Pm <Pi and flows into the mold. 6. The FRP manufacturing apparatus according to claim 5, further comprising means for controlling the resin flow rate at least by a change in the diameter of the discharge port. 前記排出口の口径の開度調節情報とその調節のタイミングとを記憶する記憶装置と、その記憶情報をもとに自動的に排出口の口径を変化させる口径可変装置とから構成されることを特徴とする請求項5または6に記載のFRPの製造装置。 It comprises a storage device that stores opening degree adjustment information of the discharge port diameter and the timing of the adjustment, and a variable diameter device that automatically changes the discharge port diameter based on the stored information. The FRP manufacturing apparatus according to claim 5 or 6, characterized in that: 前記排出口の口径を変化させる口径可変装置が、バルブ開閉装置からなることを特徴とする請求項7に記載のFRPの製造装置。 The FRP manufacturing apparatus according to claim 7, wherein the variable aperture device that changes the diameter of the discharge port includes a valve opening / closing device.
JP2003411708A 2003-12-10 2003-12-10 FRP manufacturing method and manufacturing apparatus Expired - Lifetime JP4292971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411708A JP4292971B2 (en) 2003-12-10 2003-12-10 FRP manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411708A JP4292971B2 (en) 2003-12-10 2003-12-10 FRP manufacturing method and manufacturing apparatus

Publications (3)

Publication Number Publication Date
JP2005169787A JP2005169787A (en) 2005-06-30
JP2005169787A5 JP2005169787A5 (en) 2006-11-30
JP4292971B2 true JP4292971B2 (en) 2009-07-08

Family

ID=34732372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411708A Expired - Lifetime JP4292971B2 (en) 2003-12-10 2003-12-10 FRP manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4292971B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144994A (en) * 2005-10-31 2007-06-14 Toray Ind Inc Method for molding fiber-reinforced plastic, its molding apparatus and molded body
DE102005053691A1 (en) 2005-11-10 2007-05-16 Airbus Gmbh Tool for resin transfer molding process
KR100759994B1 (en) 2006-09-29 2007-09-19 (주)서진라이트 Fiber glass reinforced plastic of production equipment
JP5424021B2 (en) * 2009-03-04 2014-02-26 Dic株式会社 Resin composition for fiber reinforced composite material, cured product thereof, resin composition for printed wiring board, fiber reinforced composite material, fiber reinforced resin molded product, and production method thereof
JP5452378B2 (en) * 2010-06-07 2014-03-26 アルプス電気株式会社 INJECTION MOLDING DEVICE AND METHOD FOR PRODUCING RESIN MOLDED BODY
JP5854430B2 (en) * 2012-03-29 2016-02-09 東レ株式会社 FRP manufacturing apparatus and FRP manufacturing method
JP2016083780A (en) * 2014-10-22 2016-05-19 日産自動車株式会社 Molding method and molding device for composite material
MX360748B (en) 2014-10-22 2018-11-15 Nissan Motor Composite-material moulding method and moulding device.
KR101587977B1 (en) * 2015-03-27 2016-01-27 한국철도기술연구원 Molding device for composite
CN113752584B (en) * 2021-08-31 2023-06-09 江苏聚双环新材料科技有限公司 Dicyclopentadiene forming equipment and associated control system thereof

Also Published As

Publication number Publication date
JP2005169787A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US7943078B2 (en) RTM molding method and device
US9643363B2 (en) Manufacture of a structural composites component
US7785518B2 (en) Method and apparatus for molding composite articles
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP2005193587A (en) Resin transfer molding method
JP2007007910A (en) Rtm (resin transfer molding) method and resin injection device therefor
TWI744119B (en) Method for manufacturing fiber reinforced resin molded article, and manufacturing device thereof
JP2006205546A (en) Demolding apparatus for rtm molding
WO2014115668A1 (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP4826176B2 (en) Reinforcing fiber preform and RTM molding method
EP2558280B1 (en) Method and apparatus for moulding parts made from composite materials
JP2006095727A (en) Rtm molding machine and rtm molding method
JP4730637B2 (en) RTM molding method
JP4487239B2 (en) Method for manufacturing FRP structure
JP7287324B2 (en) METHOD AND APPARATUS FOR MANUFACTURING FIBER REINFORCED RESIN MOLDED PRODUCTS
CN111113954B (en) Preparation method of low-density heat-proof composite material revolving body part
JP2006159457A (en) Molding method of frp hollow structure
JP2006159420A (en) Manufacturing method of frp molded product
KR20150062195A (en) Pressurized Molding Machine For CFRP Product and Pressurized Molding Method Of CFRP Product
JP2007090810A (en) Method for manufacturing hollow frp
KR20120029715A (en) Manufacturing method of a flexible composite bogie frame of a bogie for a railway vehicle using resin transfer moulding
JP2024010424A (en) High-pressure tank, and apparatus of manufacturing high-pressure tank
JP2006188050A (en) Molding precursor, process for manufacturing fiber-reinforced resin molding, and fiber-reinforced resin molding
JP2017105062A (en) Fiber-reinforced plastic production device and production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4292971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

EXPY Cancellation because of completion of term