WO2011043253A1 - Process and apparatus for producing fiber-reinforced plastic - Google Patents

Process and apparatus for producing fiber-reinforced plastic Download PDF

Info

Publication number
WO2011043253A1
WO2011043253A1 PCT/JP2010/067203 JP2010067203W WO2011043253A1 WO 2011043253 A1 WO2011043253 A1 WO 2011043253A1 JP 2010067203 W JP2010067203 W JP 2010067203W WO 2011043253 A1 WO2011043253 A1 WO 2011043253A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
cavity
reinforcing fiber
reinforced plastic
fiber base
Prior art date
Application number
PCT/JP2010/067203
Other languages
French (fr)
Japanese (ja)
Inventor
関戸俊英
篠田知行
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2010548954A priority Critical patent/JPWO2011043253A1/en
Publication of WO2011043253A1 publication Critical patent/WO2011043253A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a fiber reinforced plastic (hereinafter sometimes abbreviated as FRP (abbreviated as “Fiber Reinforced Plastic”)), in particular, an ultra-large size of several meters to several tens of meters and a thickness of several millimeters.
  • FRP fiber Reinforced Plastic
  • a thick FRP molded product with a thickness of several tens of millimeters can be molded with a simple device, and the fiber volume content of the molded product (hereinafter sometimes abbreviated as Vf) can be controlled relatively easily and easily.
  • Vf fiber volume content of the molded product
  • the present invention relates to a method and an apparatus for manufacturing a fiber reinforced plastic suitable for manufacturing an ultra-large structure that requires high quality such as a wind turbine part.
  • a reinforcing fiber base for example, a laminate of reinforcing fiber fabrics
  • the die is pressed by pressing the die. Tighten and inject the pressurized matrix resin into the reinforcing fiber base material and impregnate it while adjusting the height of the internal dimensions of the cavity so that the thickness of the reinforcing fiber base material is equal to the predetermined thickness of the molded product
  • RTM ResinReTransfer Molding
  • pressure RTM pressure
  • a bag material for example, a bag film
  • the matrix resin is injected into the interior to impregnate the reinforcing fiber base
  • An RTM molding method using a bag material in which an impregnated resin is cured is known.
  • a method of applying pressure by fluid pressure from the outside of the bag material after resin impregnation is also known (for example, Patent Document 2).
  • Vf is controlled by sucking and removing excess resin in the reinforcing fiber base from a suction line arranged inside the bag material (in some cases, using an injection line).
  • a suction line arranged inside the bag material
  • the reinforcing fiber base is already pressurized at the time of resin injection and impregnation, so that the reinforcing fiber density of the reinforcing fiber base is increased, and the resin is used as the reinforcing fiber. Since it becomes difficult to flow in the base material and the impregnation property of the resin is deteriorated, in order to achieve a predetermined resin impregnation state, the thickness of the reinforcing fiber base material and thus the molded product is limited.
  • the thickness of the reinforcing fiber base is basically equal to or close to that of the molded product (after being preformed), placed on the lower mold, covered with the bag material, and sealed with the bag material.
  • This is a method of reducing the pressure by suction and injecting and impregnating the resin using the reduced pressure state, so when trying to mold a molded product having a relatively high Vf or a molded product having a relatively large thickness,
  • the reinforcing fiber base having a relatively high reinforcing fiber density and a relatively large thickness must be impregnated in advance, and it may be difficult to impregnate a predetermined resin in the entire thickness direction.
  • Vf the degree of the increase in Vf at the stage of the reinforcing fiber base, and thus the molded product.
  • the upper limit value of Vf in this method depends on the thickness, it is at most about 50 to 52% in order to achieve a predetermined stable and uniform resin impregnation. If the Vf cannot be increased (for example, 55% or more), there is a limit in increasing the strength and elastic modulus of the molded product due to the use of the reinforcing fiber, which may not be recognized as a desired product. Arise.
  • the object of the present invention is to obtain a high-quality molded product that can sufficiently exhibit the high strength and high elasticity characteristics of the reinforcing fiber by controlling to a high Vf, particularly when manufacturing a very large and thick molded product.
  • the resin can be easily impregnated in a desired state without using expensive pressure equipment such as an autoclave or a highly rigid upper and lower mold, and in a short time.
  • An object of the present invention is to provide a method and an apparatus for producing a fiber reinforced plastic which can be impregnated with a resin and have excellent molding workability.
  • a method for producing a fiber reinforced plastic according to the present invention includes a reinforcing fiber base disposed in a cavity formed by an upper mold and a lower mold, and the matrix resin is reinforced after sealing the cavity.
  • the height of the inner dimension of the cavity is larger than the thickness of the predetermined molded product.
  • the matrix resin is injected into the reinforcing fiber base material and impregnated, and then, at least one of the upper mold and the lower mold is pressed toward the other, and the resin is excessively injected and impregnated into the reinforcing fiber base material.
  • the height of the inner dimension of the cavity is set so that the thickness of the reinforcing fiber base disposed in the cavity becomes the thickness of the predetermined molded product. Controls on so that, in that state, consisting of wherein the curing the matrix resin.
  • the upper mold and the lower mold have a shape capable of forming a substantially uniform cavity, and are not like a bag film.
  • the fiber reinforced plastic manufacturing method includes a reinforcing fiber substrate disposed in a cavity formed by at least an upper mold and a lower mold, and the cavity is sealed.
  • a method for producing a fiber reinforced plastic in which a matrix resin is injected and impregnated into a reinforced fiber base material, and then the resin is cured, the reinforced fiber is formed so that a gap is not substantially formed between the upper mold and the lower mold.
  • the matrix resin is injected into the cavity from the impregnation of the reinforcing fiber base material, and after the impregnation of the reinforcing fiber base material is completed, excessive injection and impregnation of the reinforcing fiber base material are performed.
  • Reinforced fiber base material disposed within the cavity by sucking and removing the resin and pressurizing at least one of the upper mold and the lower mold toward the other.
  • the method is characterized in that the thickness is controlled to be the thickness of a predetermined molded product, and the matrix resin is cured in that state.
  • Resin may be cured by heating when the matrix resin is a thermosetting resin.
  • the reinforcing fiber base material can be formed into a preform having a shape along the molded product in advance before being placed in the cavity, the preform can also be used.
  • many reinforcing fiber layers for example, many reinforcing fiber fabric layers, many unidirectional reinforcing fiber sheet layers, many reinforcing fiber fabric layers and unidirectional reinforcement. In many cases, it is difficult to obtain a preform form because the reinforcing fiber base material is often formed by laminating fiber sheet layer combinations).
  • the reinforcing fiber base material is disposed in the cavity.
  • a reinforcing fiber base having a thickness corresponding to Vf that is relatively lower than Vf after molding is placed in a cavity in a state where the height of the inner dimension is increased, Since the matrix resin is injected and impregnated into the reinforcing fiber base material, the reinforcing fiber base material having a relatively large thickness and an extremely large reinforcing fiber base material has a low Vf and a relatively low resin flow resistance. It is possible to sufficiently impregnate the resin. However, at this stage, the thickness of the reinforcing fiber base is larger than the thickness of the target molded product, and Vf is also lower than Vf of the target molded product.
  • the excess resin is sucked and removed, and at the same time, at least one of the upper mold and the lower mold is pressurized toward the other, so that the cavity has a predetermined height.
  • the thickness of the reinforcing fiber base material impregnated with the resin is controlled to the thickness of the predetermined molded product. Therefore, at this stage, while the state where the reinforcing fiber base is sufficiently impregnated with the resin is maintained, the excess resin is removed along with the reduction of the reinforcing fiber base thickness, and the dimensions of the target molded product, In particular, the target thickness of the molded product is controlled, and the target high Vf state is achieved.
  • the molded product to be manufactured is also in a stable and uniform high Vf state, and is of a desired high quality having high strength and high elastic modulus even if it is very large and thick.
  • a fiber-reinforced plastic molded product will be obtained.
  • the upper mold and the lower mold have shapes that can form a substantially uniform cavity, and the height of the inner dimension of the cavity is, for example, the height of a spacer described later. By controlling the above, even when the mold is pressurized, a substantially uniform height can be maintained. Further, in the method according to the present invention, since no bag material is used for molding, the molding cycle can be shortened and workability for molding is greatly improved.
  • the pressurizing die does not require great strength and rigidity, and an inexpensive and simple low-rigidity die can be used as the pressurizing die. As a result, it is possible to simplify manufacturing equipment and reduce costs.
  • the inside of the cavity is vacuumed and decompressed, and the matrix resin is removed from the place communicating with the cavity. It is possible to inject and impregnate the reinforcing fiber substrate using a differential pressure between the atmospheric pressure and the cavity internal pressure.
  • the reinforcing fiber base placed on the mold is covered with a bag material (for example, bag film), the inside is depressurized by vacuum suction, and the matrix resin is injected into the reinforcing fiber base using the reduced pressure state.
  • the bag is made of a low-rigidity material such as a film
  • the degree of thickness reduction varies depending on the location, and the thickness of the molded product varies depending on the location.
  • the height of the inner dimension of the cavity is kept larger than the thickness of a predetermined molded product.
  • the reinforcing fiber base material using the bag material as described above The matrix resin is injected into the reinforcing fiber base in a state where no pressing force is applied to the side, that is, the reinforcing fiber base is not excessively compacted and is maintained in a state corresponding to low Vf.
  • the matrix resin is sufficiently satisfactorily impregnated throughout, and the inside of the cavity is sucked and depressurized, and the matrix resin is reinforced by using the differential pressure between the atmospheric pressure and the cavity internal pressure.
  • the method of injecting and impregnating it is possible to achieve good resin impregnation with a uniform Vf over the entire target without an unimpregnated portion even for a thick substrate or an ultra-large substrate.
  • the thickness can be reduced uniformly throughout the entire bag, so that there is no problem that the thickness varies depending on the location even in a wide molded product.
  • the matrix resin can be injected into the reinforced fiber substrate through a plurality of resin injection paths. That is, the matrix resin can be injected into the reinforcing fiber base almost simultaneously through a plurality of resin injection paths arranged in the surface direction of the reinforcing fiber base.
  • the member for providing the plurality of resin injection paths is not particularly limited, and can be provided, for example, in an upper mold or a resin injection plate described later.
  • the matrix resin is injected into the reinforcing fiber substrate almost simultaneously through the plurality of resin injection paths while diffusing the matrix resin in a direction along the surface of the reinforcing fiber substrate.
  • the resin can be injected in a shorter time, and the reinforcing fiber base material can be more uniformly impregnated with the resin.
  • a resin injection plate is formed so that a gap is not substantially formed between one of the upper mold and the lower mold and the reinforcing fiber base. And / or a resin diffusion medium is interposed, the resin injection plate and / or the resin diffusion medium are communicated with the plurality of resin injection paths, and the matrix resin is injected into the reinforcing fiber base through the plurality of resin injection paths. It is desirable to do so.
  • the resin injection plate may be used as an upper mold, but may be configured separately from the mold to be pressurized, as shown in an embodiment described later. By making it separate, it is possible to further simplify the pressed mold itself.
  • the resin injection plate has a plurality of resin diffusion paths communicating with at least one resin injection path and an opening in the resin diffusion path. It is also possible to form a resin injection port and impregnate the reinforcing fiber base material from the resin injection port via a plurality of resin diffusion paths.
  • the resin diffusion medium has a network structure, and the matrix resin can be diffused in a direction along the surface of the reinforcing fiber substrate through the network structure.
  • the plurality of resin injection paths can be used not only for injecting resin, but also for sucking and removing excessively injected and impregnated resin into the preform. That is, it can be used for injection, suction, and removal by switching the same passage. Excessly injected and impregnated resin is also sucked and removed from the vacuum suction port, but the resin injection path and injection port are arranged over a wide area or the entire surface of the preform, so it is more efficient than the vacuum suction port. The excessively injected and impregnated resin can be sucked and removed.
  • a pressure reducing means by vacuum suction is provided in advance in the resin injection line, and the pressure reducing means is not used during the impregnation of the matrix resin into the reinforcing fiber base.
  • the resin injection line is closed, and a method of sucking and removing the resin excessively impregnated into the reinforcing fiber base using a decompression means can be adopted.
  • the height of the internal dimension of the cavity is kept larger than the thickness of the predetermined molded product, and the height of the internal dimension of the cavity is controlled to be small after resin injection and impregnation.
  • spacers are arranged around the cavity, particularly between the upper mold and the lower mold.
  • a spacer is placed between the upper mold and the lower mold to determine the height of the internal dimension of the cavity to a predetermined initial height.
  • the spacer is separated from the sealing mechanism outside the cavity between the upper mold and the lower mold.
  • the height of the cavity internal dimension is disposed within the cavity.
  • the thickness of the reinforcing fiber base can be controlled to be a predetermined thickness of the molded product. By interposing such a spacer, the thickness of the reinforcing fiber substrate is more reliably maintained at a predetermined large value that can be easily impregnated with the resin at the time of resin injection and impregnation. It can control to become the thickness of a molded article.
  • Such a height adjustment of the spacer is made up of a relatively rigid member separate from the sealing means interposed between the upper die and the lower die around the cavity.
  • the height can be adjusted by a dedicated height adjustment mechanism, and the spacer is composed of, for example, a rubber-like elastic body interposed between the upper mold and the lower mold, and the rubber-like elastic body Use the thickness change due to elastic deformation, or use a hollow elastic body, inject fluid into the hollow elastic body, change the volume and pressure of the fluid, and adjust the height of the spacer You can also These height adjustment methods for both spacers can be used in combination.
  • a commercially available bolt can be used for the height adjustment method.
  • a tap female screw
  • a bolt is inserted while being screwed therein, and the height of the bolt protruding from the surface of the lower die is used as the height of the spacer.
  • the height adjustment method using a bolt is preferable because fine adjustment can be easily performed by the amount of rotation of the bolt.
  • the height adjustment method using bolts may be either inside or outside the sealing mechanism of the upper and lower molds, but if there is no particular restriction, it can be provided outside the sealing mechanism. This is preferable because the matrix resin does not flow into the bolt and the tap portion.
  • the spacer When the spacer is made of a rubber-like elastic body, the amount of deformation of the spacer can be adjusted by adjusting the degree of decompression in the cavity, and the height of the spacer can be adjusted through adjustment of the amount of deformation of the spacer. .
  • the height of the spacer can be adjusted by adjusting the pressure applied to the spacer by the differential pressure between the atmospheric pressure applied outside the cavity and the reduced pressure inside the cavity by adjusting the degree of pressure reduction inside the cavity. . Therefore, in this case, the pressure applied toward at least one of the upper mold and the lower mold can be adjusted by the degree of decompression in the cavity.
  • the spacer when the spacer is made of a rubber-like elastic body, the spacer can also serve as a sealing means interposed between the upper mold and the lower mold.
  • cylinder means is used to inject the resin into the reinforcing fiber base and pressurize toward the other of at least one of the upper mold and the lower mold after impregnation. It can also be performed by applying pressure toward the mold. In this method, the applied pressure can be easily controlled by adjusting the pressure of the pressurized fluid to the cylinder means. As described above, since this pressurization is performed together with the suction and removal of the excess resin, a large pressure is not required, and therefore, for example, a relatively low pressure (for example, 0.1 MPa or less) is used without using a large hydraulic cylinder or the like. An air cylinder or the like that uses compressed air can be used.
  • the bladder bag can be made of various materials, and may be a simple rubber bag, a fabric-coated bag, or a hybrid state of a rubber bag and a fabric-like bag.
  • a flat plate as the bladder bag, and to pressurize at least one of the upper die and the lower die substantially in a planar shape with substantially no gap.
  • a predetermined molded product is obtained by a mechanism having a sealing function between the upper mold and the lower mold provided outside the cavity and a height adjusting function of the cavity.
  • the matrix resin is injected and impregnated into the reinforcing fiber base material, and then at least one of the upper mold and the lower mold is moved toward the other to be predetermined. It is also possible to adjust the thickness of the molded article and to suck and remove the resin that has been excessively injected and impregnated into the reinforcing fiber base, and to cure the matrix resin in that state.
  • the positional relationship between the upper mold and the lower mold after controlling the height of the inner dimension of the cavity.
  • the positional relationship between the upper mold and the lower mold is fixed, the cavity is also fixed to a predetermined size, and the resin is cured in this state, so that a molded product having a target dimension is surely formed.
  • a clamp means having a simple structure can be used. That is, the upper die and the lower die may be sandwiched from above and below by the clamping means, and the positional relationship between the upper die and the lower die may be fixed against the separation force of the upper and lower die due to the cavity internal pressure.
  • the apparatus for producing fiber-reinforced plastic according to the present invention is an apparatus used in the above method.
  • the height of the inner dimension of the cavity is kept larger than the thickness of a predetermined molded product during the resin injection impregnation, and after the resin injection impregnation, pressurization of the mold and suction of excess resin, Since the height of the inner dimension of the cavity is reduced to a predetermined thickness by the removal, it is necessary that the height of the inner dimension of the cavity can be adjusted in at least two stages.
  • the height of the cavity internal dimension is controlled by adjusting the height of a relatively rigid spacer different from the sealing means around the cavity, and the sealing means arranged around the cavity.
  • elastic deformation which can also serve as the spacer. Both of these methods can be used in combination.
  • the present invention provides the following fiber-reinforced plastic manufacturing apparatus. That is, the apparatus for producing a fiber reinforced plastic according to the present invention is an apparatus used in the above-described method, and the height of the inner dimension of the cavity is between the upper mold and the lower mold and around the cavity. It has a height adjusting means capable of adjusting the distance between the corresponding upper mold and lower mold in at least two stages of the distance at the time of the resin injection and impregnation and the distance at the time of the resin curing. Become.
  • the height adjusting means is composed of means having a spacer capable of adjusting the distance between the upper mold and the lower mold by adjusting the vertical position of the upper mold and the lower mold.
  • the height adjusting means can be configured to include a sealing means that can seal the cavity and adjust the distance between the upper mold and the lower mold by its own elastic deformation.
  • both types of height adjusting means can be provided.
  • a string-like rubber capable of adjusting its own thickness can be used as the sealing means.
  • this string-like rubber for example, an O-ring can be used.
  • a height adjustment mechanism using bolts can be adopted, and commercially available bolts can also be used.
  • a tap female screw
  • the height adjustment mechanism using a bolt is preferable because it can be easily finely adjusted by the amount of rotation of the bolt.
  • the height adjustment mechanism using bolts may be either inside or outside the sealing mechanism of the upper mold and the lower mold, but if there is no particular restriction, it can be provided outside the sealing mechanism. This is preferable because the matrix resin does not flow into the bolt and the tap portion.
  • the fiber reinforced plastic manufacturing apparatus a configuration in which the ratio of the bending rigidity between the upper mold and the lower mold is 10 times or more can be adopted. That is, one of the upper die and the lower die requires a high rigidity that does not impair the target shape in order to mainly determine the shape of the final cavity for molding, but the other die is pressurized.
  • the mold only needs to be configured so that the height of the inner dimension of the cavity can be adjusted in at least two stages as described above, and can be much lower in rigidity than a highly rigid mold. Therefore, it becomes possible to give a rigidity difference of 10 times or more between both molds, and by constructing one mold with low rigidity, the mold can be manufactured easily and inexpensively, That type of pressurizing operation and pressurizing apparatus can be simple.
  • one of the upper mold and the lower mold is a plate-like low-rigidity mold having a surface portion that conforms to the surface shape of the molded product on the reinforcing fiber substrate side. Even if it is a simple plate-like low-rigidity type, it is possible to maintain the desired internal cavity height as described above at the time of resin injection impregnation. As long as the height can be reduced to the target height, the target molding in the present invention becomes possible.
  • a C-shaped or H-shaped mold material may be assembled in the shape of a shoji as a plate-shaped mold, and the plate-shaped mold may be reinforced from the back surface.
  • This is a feature of the present invention.
  • the low rigidity type (simple type) with a low rigidity and a simple structure.
  • the low-rigidity mold itself is slightly bent (even if it is slightly bent, this bending is completely applied to the other member like a bag film. This is basically different from the deformation to the shape following the above).) Since the shape of the resin injection plate located on the reinforcing fiber substrate side only needs to be kept in a predetermined shape, this also makes the structure simpler. It becomes possible to constitute a low-rigidity type.
  • the mold on the pressurized side can be maintained at a desired height of the cavity internal dimension when the resin is injected and impregnated. There is no need to generate an unnecessary pressure at that time.
  • the pressurization of the mold is performed together with suction and resin removal from the cavity for removing excess resin, so that a large pressure is not required.
  • Such a low-rigidity type can be made of metal, but as the low-rigidity type, for example, a type made of fiber-reinforced plastic can also be used. In some cases, non-reinforced resin, wood, ceramic, or a hybrid structure thereof may be used.
  • the linear expansion coefficient of the mold and the fiber reinforced plastic to be molded can be made substantially the same. This is preferable because the dimensional accuracy of the plastic can be improved. It is more preferable especially when the size of the fiber reinforced plastic to be molded is large.
  • the reinforcing fiber used for the reinforcing fiber base in the fiber-reinforced plastic manufacturing method and apparatus according to the present invention is not particularly limited, and includes carbon fibers, other reinforcing fibers such as glass fibers and aramid fibers, and these reinforcing fibers.
  • the combination configuration can be used.
  • the carbon fibers themselves exhibit high rigidity. Therefore, when the density of the reinforcing fibers is high or the thickness of the reinforcing fiber base is large, there is a possibility that the resin impregnation may not be achieved. In this case, the present invention is preferable.
  • the inner dimensions of the cavity formed by the upper mold and the lower mold for example, by controlling the height of the spacer, even when the mold is pressurized.
  • the resin is injected and impregnated in a state where the thickness of the reinforcing fiber base is adjusted to a thickness corresponding to low Vf that can be completely impregnated with the resin, by maintaining the height of the predetermined uniform height, while adjusting the height of the inner dimension of the cavity to a height corresponding to the thickness of the predetermined fiber reinforced plastic by pressurizing the mold and controlling the height of the spacer, the excess resin in the reinforcing fiber base is sucked and removed, Since the resin is cured in a state corresponding to high Vf, it becomes possible to form a large molded product with high Vf in a short time with a simpler pressurization equipment and mold than conventional ones.
  • the resin can be injected and impregnated more efficiently, and the simplification of the mold can be further promoted.
  • surplus resin in the reinforcing fiber base can be obtained through the resin injection plate. Can be efficiently sucked and removed, so that the whole apparatus can be further simplified.
  • a resin injection plate resin injection and impregnation are completed in a short time, In addition, the desired high Vf state can be reached, and the molding workability and productivity can be greatly improved.
  • FIG. 1 shows a state at the time of resin injection in a manufacturing apparatus used in a method for manufacturing a fiber reinforced plastic according to an embodiment of the present invention.
  • the fiber reinforced plastic manufacturing apparatus 1 has an upper mold 2 and a lower mold 3, and a cavity 4 is formed by the upper mold 2 and the lower mold 3. More precisely, in this embodiment, the resin injection plate 5 is disposed immediately below the upper mold 2, and the cavity 4 is formed by the resin injection plate 5 and the lower mold 3.
  • a reinforcing fiber base 6 made of a laminate of reinforcing fiber fabrics is disposed in the cavity 4.
  • an O-ring 7 is provided around the cavity 4 as a sealing means extending over the entire circumference, and the cavity 4 is sealed via the O-ring 7.
  • a spacer 8 is interposed outside the O-ring 7 and between the upper mold 2 and the lower mold 3, and the spacer 8 is connected to a spacer height adjusting mechanism 9. The spacer 8 adjusts its own height position by the spacer height adjusting mechanism 9 so that the height of the inner dimension of the cavity 4 formed by the resin injection plate 5 and the lower mold 3 as described above (in FIG. 1).
  • the height H) can be adjusted, and through the height adjustment, the thickness of the reinforcing fiber base 6 disposed in the cavity 4 is set to the thickness at the time of resin injection impregnation and the resin. It can be controlled to a thickness corresponding to the thickness of a predetermined molded product that is reduced after the impregnation by injection.
  • the matrix resin 11 accommodated in the resin pot 10 enters the cavity 4 via the resin injection port 12 formed in the upper mold 2 and the resin injection line 25 connected to the resin injection port 12.
  • the reinforcing fiber base 6 is injected and impregnated, but when the resin is injected and impregnated, the height H of the inner dimension of the cavity 4 is maintained larger than the thickness of the predetermined molded article by the spacer 8. Is done. Therefore, the matrix resin 11 is injected into the reinforcing fiber base 6 in a state where the thickness of the reinforcing fiber base 6 is larger than the thickness of the predetermined molded product (that is, a state of Vf lower than Vf of the predetermined molded product). And impregnated.
  • the vacuum pump 13 sucks the inside of the cavity 4 through the vacuum suction port 15 formed in the lower mold 3 through the resin trap 14 and sucks the matrix resin 11 using the decompressed state. Is injected and impregnated into the reinforcing fiber base 6.
  • the matrix resin 11 can be injected under pressure, and the injection using the reduced pressure state and the pressure injection can be used in combination.
  • the matrix resin 11 injected through the resin injection port 12 is diffused in the resin diffusion path 16 formed in the resin injection plate 5 in a direction along the surface of the reinforcing fiber base 6, and the resin.
  • the resin injection plate 5 preferably has a resin diffusion path 16 through which the matrix resin injected from the resin injection port 12 is led to the resin injection path 17.
  • the material of the resin injection plate 5 is preferably metal, fiber reinforced plastic, or thermoplastic resin.
  • the resin diffusion path 16 should be appropriately designed according to the size and shape of the fiber reinforced plastic to be molded, but it is preferable that both the width and the depth are several mm to several tens mm.
  • the thickness of 3 mm to 20 mm is preferable because the amount of resin remaining in the diffusion path can be reduced while maintaining the resin diffusibility.
  • the material of the resin injection plate 5 is the same as the material used for molding because the linear expansion coefficient can be made the same.
  • the plurality of resin injection paths 17 are preferably distributed substantially over the entire surface of the reinforcing fiber base 6.
  • FIG. 1 shows a state in which the impregnation of the matrix resin 11 has progressed to some extent in the thickness direction of the reinforcing fiber base 6.
  • the matrix resin 11 is impregnated throughout the reinforcing fiber base 6 in the thickness direction of the reinforcing fiber base 6, and after the impregnation is completed, the resin flows out from the vacuum suction port 15.
  • the thickness of the reinforcing fiber base 6 is larger than the target thickness of the molded article having a high Vf. In this state, although the matrix resin 11 is not yet cured, Vf in this state is lower than Vf of the target molded product having a high Vf.
  • the density of the reinforcing fiber is lower than the target reinforcing fiber density of the molded product having a high Vf, and the resin easily flows in the reinforcing fiber base 6, the relatively thick reinforcing fiber base 6 is used.
  • the matrix resin 11 is sufficiently satisfactorily impregnated without applying a high injection pressure. That is, first, although in the low Vf state, the reinforcing fiber base 6 is easily and sufficiently satisfactorily impregnated with the matrix resin 11.
  • the matrix fiber 11 is sufficiently satisfactorily impregnated into the reinforcing fiber base 6 in such a low Vf state, it is added to the resin vacuum suction line 18 used as described above, as shown in FIG.
  • the resin injection line side is also switched to a vacuum suction line 21 having a vacuum pump 19 and a resin trap 20 (which can also be used as the vacuum pump 13 and the resin trap 14) by operating the valve 22 and strengthened. Resin that is excessively injected and impregnated into the fiber base 6 is sucked and removed.
  • the upper mold 2 and the resin injection plate 5 are pushed down by utilizing the pressure difference between the internal pressure of the cavity 4 reduced by vacuum suction and the atmospheric pressure applied to the outer surface of the upper mold 2, and the upper mold 2.
  • the pressurization of the reinforcing fiber base 6 can be performed using only the differential pressure between the atmospheric pressure and the internal pressure of the cavity 4 reduced in pressure as described above, but separately or in addition to this, As indicated by a two-dot chain line in FIG.
  • the upper die 2 is pressurized toward the lower die 3 by, for example, cylinder means 23 (for example, an air cylinder), and the height of the inner dimension of the cavity 4 is increased in the cavity 4. It is also possible to control so that the thickness of the reinforcing fiber base 6 disposed on the sheet becomes the thickness of a predetermined molded product. In this way, the thickness of the reinforcing fiber base 6 is set to the thickness of the predetermined molded product, and the excess resin is removed by suction, whereby the Vf of the resin-impregnated reinforcing fiber base 6 is increased, and the target high Vf It is said.
  • cylinder means 23 for example, an air cylinder
  • the matrix resin 11 impregnated in the reinforcing fiber base 6 is cured.
  • a thermosetting resin for example, epoxy resin
  • the matrix resin 11 is cured by heating.
  • a known means such as a heater or a heat medium may be used as the heating means.
  • the matrix resin 9 impregnated in the reinforcing fiber base 6 maintained at the predetermined thickness of the molded product is cured, whereby a target high Vf fiber reinforced plastic molded product 24 is obtained.
  • the mold may be opened and the molded product 24 taken out.
  • the resin injection plate 5 is used in this embodiment, the upper mold 2 can be a simple mold. Further, not only the pressurization for the thickness control but also the suction removal of the excess resin, and hence the suction to the cavity 4 side, are used together. Therefore, a high pressurizing force is not required for the upper mold 2.
  • the upper die 2 is 10 times or more than the lower die 3
  • a mold having low rigidity in particular, in the above embodiment, the shape of the cavity 4 may be determined via the resin injection plate 5 positioned immediately below the upper mold 2, so that the upper mold 2 may be a simple plate-like low-rigidity type.
  • a plate-shaped mold having a surface portion having a shape along the surface shape of the molded product on the 6 side is sufficient. As a result, it is possible to perform desired molding while suppressing facility costs.
  • FIG. 3 and FIG. 4 show a state when resin is injected in a manufacturing apparatus used in a method for manufacturing a fiber reinforced plastic according to another embodiment of the present invention.
  • the O-ring 7 as the sealing means and the spacer 8 for maintaining and controlling the height of the inner dimension of the cavity 4 are configured as different members, but the fiber-reinforced plastic manufacturing apparatus 31 shown in FIG.
  • the spacer 32 is composed of a rubber-like elastic body interposed between the upper mold 2 and the lower mold 3, and the height of the spacer 32 is obtained by utilizing a thickness change due to elastic deformation of the rubber-like elastic body.
  • the spacer 32 also serves as a sealing means interposed between the upper mold 2 and the lower mold 3.
  • a resin diffusion medium 42 is interposed between the resin injection plate 5 and the reinforcing fiber base 6, and the resin diffusion medium 42 is interposed.
  • the resin diffusion medium 42 is preferably a medium in which the flow resistance of the resin is a low resistance of 1/10 or less compared to the flow resistance in the case of flowing through the reinforcing fiber base 6, and specifically, polyethylene or polypropylene resin.
  • a mesh woven fabric having a mesh opening of # 400 or less is preferable.
  • FIG. 5 shows how the apparatus 41 shown in FIG. 4 sucks and removes the excess resin after the matrix resin is injected and impregnated in the same manner as shown in FIG. Since other configurations are the same as those shown in FIGS. 1 and 2, the same reference numerals as those shown in FIGS.
  • the amount of compressive elastic deformation of the spacer 32 itself made of a rubber-like elastic body is adjusted by, for example, adjusting the degree of decompression in the cavity 4, and the amount of deformation of the spacer 32 is adjusted.
  • the height of the spacer 32 is adjusted.
  • the applied pressure toward the lower mold 3 of the upper mold 2 is adjusted by the degree of decompression in the cavity 4.
  • the thickness is controlled to the thickness H ′ at the time of suction and removal of the surplus resin after the resin injection impregnation so as to be the thickness of the product.
  • the spacer 32 also has a function of the sealing means, and the thickness adjustment of the predetermined reinforcing fiber base 6 is performed through the height adjustment of the spacer 32 itself.
  • the entire structure of the molding apparatus is further simplified. Other actions and effects are in accordance with the embodiment shown in FIGS.
  • FIG. 6 shows a fiber reinforced plastic manufacturing apparatus 51 according to another embodiment using a bladder bag for pressurization of the above mold.
  • a plurality of pradder bags 52 are arranged on the side opposite to the cavity 4 of the lower mold 3, and pressurized fluid (for example, compressed air) is introduced into the pradder bags 52 so that the pradder bags 52 are disposed.
  • pressurized fluid for example, compressed air
  • type 2 is illustrated by expanding the lower mold
  • an upper die fixing jig 53 is used to fix the position of the upper die 2.
  • the excess resin is sucked and removed through the vacuum suction line 21. Since other configurations are the same as those shown in FIGS. 1 and 2, the same reference numerals as those shown in FIGS.
  • the position of the upper mold and the lower mold is fixed in a predetermined relationship when the resin is cured. It is preferable to keep.
  • clamping means can be used to fix the positional relationship between the upper mold and the lower mold.
  • the clamp means can be composed of a clamp 61 that sandwiches the upper mold 2 and the lower mold 3 from above and below. The positional relationship between the upper mold 2 and the lower mold 3 may be fixed against the mold separation force.
  • Carbon fiber fabric A unidirectional reinforcing fiber fabric using carbon fibers as reinforcing fibers.
  • the basis weight of the carbon fiber is 600 g / m 2 .
  • Glass fiber fabric A triaxial fabric using glass fibers as reinforcing fibers.
  • the orientation angle of the reinforcing fiber is ⁇ 45/0 °, and the basis weight of the glass fiber is 900 g / m 2 .
  • Matrix resin A two-component curable epoxy resin. 80 ° C x 15 hours curing type.
  • Example 1 This will be described with reference to FIG. 50 carbon fiber fabrics having a width of 350 mm and a length of 20 m were laminated on a metal lower mold. Peel ply (a resin-permeable layer disposed between the carbon fiber fabric and the resin diffusion medium in order to easily peel the resin diffusion medium from the molded product after molding), the resin diffusion medium, and the carbon fiber fabric laminate. It arrange
  • the resin injection plate has a shape that covers the entire surface of the laminate of carbon fiber fabric made of polypropylene, and resin diffusion paths 16 and holes 17 for resin injection are provided in a grid at intervals of 150 mm.
  • the upper mold made of FRP was placed on the resin injection plate.
  • the upper mold has a shape covering the carbon fiber woven laminate, peel ply, resin diffusion medium, and resin injection plate, and can be sealed with the lower mold through a rubber O-ring arranged in the lower mold. .
  • the spacer arranged outside the O-ring, the inside of the cavity sealed by the upper mold and the lower mold was decompressed using a vacuum pump from the vacuum suction port.
  • the spacer has a height adjusting mechanism using jack bolts.
  • a female screw (tap) is provided in a lower die, and a bolt is screwed therein, and a bolt height protruding from the lower die can be adjusted by a screwing amount of the bolt.
  • This spacer is adjusted so that the height H of the inner dimension of the cavity is 37 mm when the upper die is pressed toward the lower die.
  • H 37 mm
  • the matrix resin in the resin pot was injected from the resin injection port, and the carbon fiber woven fabric was impregnated through the resin injection plate and the resin diffusion medium. Completion of impregnation of the matrix resin into the laminate of the carbon fiber fabric was judged by confirming that the matrix resin was discharged from the vacuum suction port.
  • the injection of the matrix resin is stopped, the resin injection port is connected to the vacuum suction port, and in addition to the original vacuum suction port, the carbon fiber fabric is also fed from the resin injection port.
  • the matrix resin excessively injected into the laminate was sucked and removed.
  • the spacer height adjusting mechanism was rotated to lower the height of the spacer so that the height H ′ of the inner dimension of the cavity was 30 mm.
  • the O-ring collapses, and the upper mold finally has a high inner dimension of the cavity.
  • the fiber fabric was lowered until it reached a predetermined thickness of 30 mm.
  • the carbon fiber reinforced plastic was demolded. As a result of cutting the carbon fiber reinforced plastic and observing the cross section, no defects such as resin non-impregnated portions and voids were found. Further, the thickness of the carbon fiber reinforced plastic was measured at a total of 20 points every 1 m in the longitudinal direction, and as a result, it was confirmed that it was within the range of 30.0 ⁇ 1.0 mm. Further, the volume content Vf of the reinforcing fiber was measured in accordance with ASTM D 3171-99. As a result, it was confirmed that a high Vf could be achieved.
  • Example 2 This will be described with reference to FIG. 50 glass fiber fabrics having dimensions of 1500 mm width and 30 m length were laminated on a metal lower mold. The peel ply and the resin diffusion medium were arranged on the entire surface of the glass fiber fabric laminate, and a resin injection plate was further arranged thereon.
  • the resin injection plate has a shape that covers the entire surface of the laminate of carbon fiber woven fabric made of polypropylene, and holes for resin injection are provided in a grid pattern at intervals of 150 mm.
  • the upper mold made of FRP was placed on the resin injection plate.
  • the upper mold is a shape that covers the laminated body of glass fiber fabric, peel ply, resin diffusion medium, and resin injection plate, and can be sealed with the lower mold through a rubber spacer arranged in the lower mold. .
  • the inside of the cavity sealed by the upper mold and the lower mold was decompressed using a vacuum pump from the vacuum suction port.
  • the spacer can be sufficiently deformed by pressurization, has a sealing function between the upper mold and the lower mold, and also has a function of adjusting the inner dimension height of the cavity between the upper mold and the lower mold.
  • the thickness of the spacer is such that the height H of the inner dimension of the cavity is 40 mm when the inside of the cavity sealed by the upper mold and the lower mold is depressurized by vacuum suction and the upper mold is pressurized toward the lower mold. Adjusted. For this reason, the height of the inner dimension of the cavity was kept constant.
  • a bladder bag was placed under the lower mold, and the upper mold was fixed with the upper mold fixing jig.
  • a hose having a diameter of about 150 mm that does not leak compressed air was used, and the hose was expanded by putting compressed air into the hose.
  • the pressure of the bladder bag was adjusted so that the height H of the inner dimension of the cavity was 40 mm.
  • the matrix resin was pressurized to a pressure of 0.3 MPa, injected from a resin injection port, and impregnated into a laminated body of glass fiber fabrics through a resin injection plate and a resin diffusion medium. During injection of the matrix resin, the bladder bag pressure was increased and adjusted so that the height H of the inner dimension of the cavity was 40 mm. Completion of the impregnation of the matrix resin into the glass fiber fabric laminate was judged by confirming that the matrix resin was discharged from the vacuum suction port. The time required for impregnation with the matrix resin was about half that of Example 1.
  • the injection of the matrix resin is stopped, the resin injection port is connected to the vacuum suction port, and in addition to the original vacuum suction port, the glass fiber fabric is also fed from the resin injection port.
  • the matrix resin excessively injected into the laminate was sucked.
  • the pressure of the bladder bag was adjusted so that the height H ′ of the inner dimension of the cavity was 32 mm.
  • the excess resin impregnated into the carbon fiber fabric laminate is sucked and removed from the resin injection port and vacuum suction port, the spacer collapses, and the upper mold finally has a high internal dimension of the cavity.
  • the woven fabric was lowered until reaching a predetermined thickness of 32 mm.
  • the glass fiber reinforced plastic was removed. As a result of cutting the glass fiber reinforced plastic and observing the cross section, no defects such as resin non-impregnated portions and voids were found. Further, the volume content Vf of the reinforcing fiber was measured in accordance with ASTM D 3171-99. As a result, it was confirmed that a high Vf could be achieved. Further, the thickness of the glass fiber reinforced plastic was measured at a total of 30 points every 1 m in the longitudinal direction, and as a result, it was confirmed that it was within the range of 32.0 ⁇ 1.0 mm.
  • Comparative Example 1 This will be described with reference to FIG. 50 reinforced carbon fiber fabrics having a width of 350 mm and a length of 20 m were laminated on a metal lower mold 101 to form a reinforcing fiber substrate 102.
  • the peel ply and the resin diffusion medium 103 were arranged on the entire surface of the carbon fiber woven laminate.
  • the whole was covered with the bag film 104, and the end of the bag film 104 was sealed with the lower mold 101 using the sealing material 105.
  • the total amount of the sealing material 105 used was about 45 m.
  • the inside sealed with the bag film 104 was depressurized by vacuum suction through a resin trap 107 and a vacuum suction port 108 by a vacuum pump 106, and atmospheric pressure was applied to the carbon fiber fabric laminate through the bag film 104.
  • the thickness of the carbon fiber fabric laminate was about 30 mm.
  • the matrix resin 109 was injected from the resin injection port 110 using atmospheric pressure, and the carbon fiber woven fabric laminate was impregnated through the resin diffusion medium 103. The injection was continued until the matrix resin gelled, but no discharge of the matrix resin was confirmed from the vacuum suction port.
  • the injection of the matrix resin is stopped, hot water is allowed to flow through a heat medium flow path (not shown) provided in the lower mold, the matrix resin is heated to 80 ° C. to cure, and the carbon fiber reinforced plastic is Molded.
  • the carbon fiber reinforced plastic was demolded.
  • the carbon fiber reinforced plastic was cut and the cross section was observed.
  • about 21 m 2 of bag film that cannot be reused after molding and about 45 m of sealing material were generated.
  • the method and apparatus for producing fiber reinforced plastic according to the present invention can be applied to the production of virtually any fiber reinforced plastic molded product, particularly for large structures that require high quality such as aircraft and windmill parts. Suitable for manufacturing.

Abstract

Disclosed are a process and an apparatus for producing a fiber-reinforced plastic by disposing a reinforcing fiber base in the cavity formed by an upper mold and a lower mold, closing the cavity, thereafter injecting and infiltrating a matrix resin into the reinforcing fiber base, and curing the resin, the process and apparatus being characterized in that the resin is injected and infiltrated into the reinforcing fiber base while keeping the height of the cavity larger than the thickness of a given molded article. The process and the apparatus are further characterized in that after the infiltration, the resin which has been excessively injected and infiltrated into the reinforcing fiber base is sucked and removed and, simultaneously therewith, at least one of the upper and lower molds is pressed against the other to thereby regulate the height of the cavity so that the thickness of the reinforcing fiber base becomes equal to the thickness of the given molded article, and that the resin is cured while keeping the state of the cavity. Thus, a large-sized and thick-walled molded article which has a high Vf and can sufficiently show high-strength and high-elasticity characteristics attributable to the reinforcing fibers can be produced at low cost.

Description

繊維強化プラスチックの製造方法および装置Method and apparatus for manufacturing fiber reinforced plastic
 本発明は、繊維強化プラスチック(以下、FRP(Fiber Reinforced Plasticの略)と略称することもある。)の製造方法および装置に関し、とくに、数mから数十m規模の超大型で厚みが数mmから数十mmの厚肉のFRP成形品を簡易な装置で成形できるとともに、成形品の繊維体積含有率(以下、Vfと略称することもある。)を比較的高くしかも容易に制御でき、航空機や風車の部品など高品質が求められる超大型の構造体の製造に適した繊維強化プラスチックの製造方法および装置に関する。 The present invention relates to a method and an apparatus for manufacturing a fiber reinforced plastic (hereinafter sometimes abbreviated as FRP (abbreviated as “Fiber Reinforced Plastic”)), in particular, an ultra-large size of several meters to several tens of meters and a thickness of several millimeters. A thick FRP molded product with a thickness of several tens of millimeters can be molded with a simple device, and the fiber volume content of the molded product (hereinafter sometimes abbreviated as Vf) can be controlled relatively easily and easily. The present invention relates to a method and an apparatus for manufacturing a fiber reinforced plastic suitable for manufacturing an ultra-large structure that requires high quality such as a wind turbine part.
 大型で厚肉のFRPを製造する方法としては、上型と下型から形成されるキャビティ内に強化繊維基材(例えば、強化繊維織物の積層体)を配置し、型を加圧することによって型締めして、強化繊維基材の厚みが成形品の所定厚みと同等になるようにキャビティの内寸法の高さを調整した状態で、加圧したマトリックス樹脂を強化繊維基材に注入して含浸させ、含浸した樹脂を硬化させることにより、所定厚みのFRP成形品を成形する方法が知られている。この方法は、通常、RTM(Resin Transfer Molding)あるいは加圧RTMと呼ばれている。とくに大型のFRP構造体を成形する場合には、広い面積にわたってマトリックス樹脂が良好に強化繊維基材に注入、含浸されるように、樹脂を複数箇所からほぼ同時に注入するようにした多点注入法も提案されている(例えば、特許文献1)。 As a method for producing a large and thick FRP, a reinforcing fiber base (for example, a laminate of reinforcing fiber fabrics) is placed in a cavity formed from an upper die and a lower die, and the die is pressed by pressing the die. Tighten and inject the pressurized matrix resin into the reinforcing fiber base material and impregnate it while adjusting the height of the internal dimensions of the cavity so that the thickness of the reinforcing fiber base material is equal to the predetermined thickness of the molded product A method of forming an FRP molded product having a predetermined thickness by curing the impregnated resin is known. This method is usually called RTM (ResinReTransfer Molding) or pressure RTM. Especially when molding a large FRP structure, a multi-point injection method in which the resin is injected almost simultaneously from a plurality of locations so that the matrix resin is well injected and impregnated into the reinforcing fiber base over a wide area. Has also been proposed (for example, Patent Document 1).
 一方、上記のように上型と下型を用いるRTM法に対し、超大型のFRP構造体をより容易に成形するために、上型の代わりにバッグ材(例えば、バッグフィルム)で、下型上に設置された強化繊維基材を覆うとともに覆われた内部を密閉し、該内部を吸引して減圧するとともにその減圧状態を利用して内部にマトリックス樹脂を注入して強化繊維基材に含浸させ、含浸した樹脂を硬化させるようにした、バッグ材を用いるRTM成形方法が知られている。この成形方法では、樹脂含浸後にバッグ材外部から流体圧によって加圧する方法も知られている(例えば、特許文献2)。また、樹脂含浸後、バッグ材内部に配置した吸引ラインから(場合によっては、注入ラインも利用して)強化繊維基材内の余剰樹脂を吸引除去することによりVfを制御するようにした方法も知られている(例えば、特許文献3)。 On the other hand, with respect to the RTM method using the upper mold and the lower mold as described above, a bag material (for example, a bag film) is used instead of the upper mold to form an ultra-large FRP structure more easily. Covering the reinforcing fiber base installed on the top and sealing the covered interior, sucking the inside and reducing the pressure, and using the reduced pressure state, the matrix resin is injected into the interior to impregnate the reinforcing fiber base An RTM molding method using a bag material in which an impregnated resin is cured is known. In this molding method, a method of applying pressure by fluid pressure from the outside of the bag material after resin impregnation is also known (for example, Patent Document 2). In addition, after the resin impregnation, Vf is controlled by sucking and removing excess resin in the reinforcing fiber base from a suction line arranged inside the bag material (in some cases, using an injection line). Known (for example, Patent Document 3).
特開2005-246902号公報JP 2005-246902 A 特開2002-307463号公報JP 2002-307463 A 特許第4104413号公報Japanese Patent No. 4104413
 上記上型と下型を用いるRTM法においては、樹脂の注入、含浸時に、強化繊維基材が既に加圧されているため強化繊維基材の強化繊維密度が高くなり、その分樹脂が強化繊維基材内を流動しにくくなって樹脂の含浸性が悪くなるので、所定の樹脂含浸状態を達成するためには、強化繊維基材、ひいては成形品の厚みが制限されることになる。また、厚みの大きい成形品を得るためには、更に高圧で樹脂を注入、含浸する必要が生じるので、更に成形型の加圧力が高くなり、加圧装置の大型化、成形型の厚肉化により設備費が過大になるという問題が生じる。また、高圧に加圧された樹脂により、注入時に強化繊維の配向角度が乱れるなどの問題もあった。 In the RTM method using the upper mold and the lower mold, the reinforcing fiber base is already pressurized at the time of resin injection and impregnation, so that the reinforcing fiber density of the reinforcing fiber base is increased, and the resin is used as the reinforcing fiber. Since it becomes difficult to flow in the base material and the impregnation property of the resin is deteriorated, in order to achieve a predetermined resin impregnation state, the thickness of the reinforcing fiber base material and thus the molded product is limited. Also, in order to obtain a molded product with a large thickness, it is necessary to inject and impregnate the resin at a higher pressure, which further increases the pressurizing force of the mold, increases the size of the pressure device, and increases the thickness of the mold. This causes a problem that the equipment cost becomes excessive. In addition, there is a problem that the orientation angle of the reinforcing fibers is disturbed at the time of injection due to the resin pressurized to a high pressure.
 一方、上型の代わりにバッグ材で密閉する方法では、上型を準備する必要はないものの、成形ごとにバッグ材で密閉するため時間と手間がかかるという問題、および、バッグ材および密閉用のシール材が廃棄物として比較的多量に排出されてしまうという問題がある。また、バッグ材で密閉することにより、強化繊維基材に大気圧をかけて強化繊維基材の厚みが薄く、密度が高くなった状態(Vfが高い状態)で、マトリックス樹脂を大気圧のみにより強化繊維基材に含浸するため、含浸できる厚みに限界があった(特許文献2)。また、基本的に強化繊維基材の厚みは成形品と同等かそれに近い厚みとした後に(プリフォーム化した後に)下型上に配置し、それをバッグ材で覆ってバッグ材で密閉された内部を吸引により減圧し、その減圧状態を利用して樹脂を注入、含浸させる方法であるため、比較的Vfの高い成形品や、比較的厚みの大きい成形品を成形しようとする場合には、予め比較的強化繊維密度を高くかつ厚みを比較的大きくした強化繊維基材に樹脂を含浸させなければならず、とくに厚み方向全体にわたっての所定の樹脂含浸が困難になることがある。したがって、強化繊維基材、ひいては成形品の段階での高Vf化には限界が生じている。この方法におけるVfの上限値は、厚みにもよるが、所定の安定した均一な樹脂含浸を達成するためには、高々、50~52%程度である。高Vf化(例えば、55%以上)できなければ、強化繊維を使用したことによる成形品の高強度化、高弾性率化にも限界が生じることになり、所望の製品と認められない場合が生じる。 On the other hand, in the method of sealing with the bag material instead of the upper mold, although it is not necessary to prepare the upper mold, it takes time and labor to seal with the bag material for each molding, and the bag material and the sealing There is a problem that a relatively large amount of the sealing material is discharged as waste. Further, by sealing with a bag material, atmospheric pressure is applied to the reinforcing fiber base so that the thickness of the reinforcing fiber base is thin and the density is high (Vf is high). Since the reinforcing fiber base material is impregnated, there is a limit to the thickness that can be impregnated (Patent Document 2). In addition, the thickness of the reinforcing fiber base is basically equal to or close to that of the molded product (after being preformed), placed on the lower mold, covered with the bag material, and sealed with the bag material. This is a method of reducing the pressure by suction and injecting and impregnating the resin using the reduced pressure state, so when trying to mold a molded product having a relatively high Vf or a molded product having a relatively large thickness, The reinforcing fiber base having a relatively high reinforcing fiber density and a relatively large thickness must be impregnated in advance, and it may be difficult to impregnate a predetermined resin in the entire thickness direction. Therefore, there is a limit to the increase in Vf at the stage of the reinforcing fiber base, and thus the molded product. Although the upper limit value of Vf in this method depends on the thickness, it is at most about 50 to 52% in order to achieve a predetermined stable and uniform resin impregnation. If the Vf cannot be increased (for example, 55% or more), there is a limit in increasing the strength and elastic modulus of the molded product due to the use of the reinforcing fiber, which may not be recognized as a desired product. Arise.
 また、特許文献3のように、樹脂含浸後、バッグ材内部からの吸引ラインから強化繊維基材内の余剰樹脂を吸引除去することにより、Vfを制御するようにした方法においては、高Vf化できるものの、バッグフィルムやシール材などの副資材の廃棄物が発生する。特に大型の構造体を成形する際には、多量の廃棄物が発生してコストアップとなったり環境上の問題となったりすることがあった。 In addition, as in Patent Document 3, in the method in which Vf is controlled by sucking and removing excess resin in the reinforcing fiber base material from the suction line from inside the bag material after resin impregnation, the Vf is increased. Although it is possible, waste of secondary materials such as bag films and sealing materials is generated. In particular, when a large-sized structure is formed, a large amount of waste is generated, which may increase costs and cause environmental problems.
 そこで本発明の課題は、とくに超大型・厚肉の成形品を製造するに際し、高Vfに制御して、強化繊維による高強度かつ高弾性の特性を十分に発揮できる高品位な成形品を得ることができるとともに、高Vfにも関わらず、オートクレーブなどの高価な圧力設備や高剛性な成形上下型を使用することなく、容易に樹脂を所望の状態に含浸させることができ、かつ短時間で樹脂を含浸でき成形作業性に優れた、繊維強化プラスチックの製造方法および装置を提供することにある。 Therefore, the object of the present invention is to obtain a high-quality molded product that can sufficiently exhibit the high strength and high elasticity characteristics of the reinforcing fiber by controlling to a high Vf, particularly when manufacturing a very large and thick molded product. In addition to high Vf, the resin can be easily impregnated in a desired state without using expensive pressure equipment such as an autoclave or a highly rigid upper and lower mold, and in a short time. An object of the present invention is to provide a method and an apparatus for producing a fiber reinforced plastic which can be impregnated with a resin and have excellent molding workability.
 上記課題を解決するために、本発明に係る繊維強化プラスチックの製造方法は、上型と下型によって形成されるキャビティ内に強化繊維基材を配置し、キャビティを密閉した後、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に該樹脂を硬化させる繊維強化プラスチックの製造方法において、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さを大きくした状態にて、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に、上型および下型の少なくとも一方を他方に向けて加圧するとともに、強化繊維基材に余剰に注入、含浸された樹脂を吸引、除去することにより、前記キャビティの内寸法の高さを、該キャビティ内に配置されている強化繊維基材の厚みが所定の成形品の厚みになるように制御し、その状態にて、マトリックス樹脂を硬化させることを特徴とする方法からなる。ここで、上型と下型は実質的に一様形状のキャビティを形成できる形状を有しており、バッグフィルムのようなものではない。 In order to solve the above-mentioned problems, a method for producing a fiber reinforced plastic according to the present invention includes a reinforcing fiber base disposed in a cavity formed by an upper mold and a lower mold, and the matrix resin is reinforced after sealing the cavity. In the fiber reinforced plastic manufacturing method in which the fiber base material is injected and impregnated, and then the resin is cured, at the time of resin injection and impregnation, the height of the inner dimension of the cavity is larger than the thickness of the predetermined molded product Then, the matrix resin is injected into the reinforcing fiber base material and impregnated, and then, at least one of the upper mold and the lower mold is pressed toward the other, and the resin is excessively injected and impregnated into the reinforcing fiber base material. By sucking and removing the above, the height of the inner dimension of the cavity is set so that the thickness of the reinforcing fiber base disposed in the cavity becomes the thickness of the predetermined molded product. Controls on so that, in that state, consisting of wherein the curing the matrix resin. Here, the upper mold and the lower mold have a shape capable of forming a substantially uniform cavity, and are not like a bag film.
 また、より具体的な形態を例示すれば、本発明に係る繊維強化プラスチックの製造方法は、少なくとも上型と下型によって形成されるキャビティ内に強化繊維基材を配置し、キャビティを密閉した後、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に該樹脂を硬化させる繊維強化プラスチックの製造方法において、上型および下型との間に実質的に隙間が形成されないように強化繊維基材をキャビティ内に配置するとともに、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さを大きくした状態にて、上型または下型に接続された樹脂注入ラインからマトリックス樹脂をキャビティ内に注入して強化繊維基材に含浸させ、強化繊維基材への含浸が完了した後に、強化繊維基材に余剰に注入、含浸された樹脂を吸引、除去するとともに、上型および下型の少なくとも一方を他方に向けて加圧することにより、前記キャビティの内寸法の高さを、該キャビティ内に配置されている強化繊維基材の厚みが所定の成形品の厚みになるように制御し、その状態にて、マトリックス樹脂を硬化させることを特徴とする方法からなる。 As a more specific example, the fiber reinforced plastic manufacturing method according to the present invention includes a reinforcing fiber substrate disposed in a cavity formed by at least an upper mold and a lower mold, and the cavity is sealed. In a method for producing a fiber reinforced plastic, in which a matrix resin is injected and impregnated into a reinforced fiber base material, and then the resin is cured, the reinforced fiber is formed so that a gap is not substantially formed between the upper mold and the lower mold. A resin injection line connected to the upper or lower mold with the base placed in the cavity and the height of the internal dimension of the cavity larger than the thickness of the specified molded product at the time of resin injection and impregnation. The matrix resin is injected into the cavity from the impregnation of the reinforcing fiber base material, and after the impregnation of the reinforcing fiber base material is completed, excessive injection and impregnation of the reinforcing fiber base material are performed. Reinforced fiber base material disposed within the cavity by sucking and removing the resin and pressurizing at least one of the upper mold and the lower mold toward the other. The method is characterized in that the thickness is controlled to be the thickness of a predetermined molded product, and the matrix resin is cured in that state.
 このような本発明に係る方法においては、とくに、キャビティ内を真空吸引した状態にて、マトリックス樹脂を注入することが好ましい。 In such a method according to the present invention, it is particularly preferable to inject the matrix resin in a state where the inside of the cavity is vacuum-sucked.
 本発明の特徴として、余剰樹脂を吸引、除去しながら型の加圧を行うことにより樹脂含浸強化繊維基材厚みの減縮化、高Vf化のための制御を行うので、型の加圧のためには大きな加圧力が必要ではなくなる。 As a feature of the present invention, since the mold is pressurized while sucking and removing excess resin, control for reducing the thickness of the resin-impregnated reinforcing fiber base and increasing the Vf is performed. Does not require a large pressure.
 樹脂の硬化は、マトリックス樹脂が熱硬化性樹脂である場合には、加熱硬化させればよい。また、強化繊維基材は、キャビティ内に配置する前に予め成形品に沿った形状のプリフォームに賦形できる場合には、そのプリフォームを使用することもできる。ただし、大型や厚肉の成形品の場合には、多数の強化繊維層(例えば、多数の強化繊維織物層、多数の一方向性強化繊維シート層、多数の強化繊維織物層と一方向性強化繊維シート層の組み合わせ体)の積層により強化繊維基材を形成する場合が多いので、プリフォームの形態にすることが困難な場合が多い。したがって、例えば、予め成形品の形状に裁断された多数の強化繊維層を一方の型上に積層していくか、多数の強化繊維層が積層された積層体を一方の型上に配置するかにより、強化繊維基材をキャビティ内に配置することになる。 Resin may be cured by heating when the matrix resin is a thermosetting resin. In addition, when the reinforcing fiber base material can be formed into a preform having a shape along the molded product in advance before being placed in the cavity, the preform can also be used. However, in the case of a large or thick molded product, many reinforcing fiber layers (for example, many reinforcing fiber fabric layers, many unidirectional reinforcing fiber sheet layers, many reinforcing fiber fabric layers and unidirectional reinforcement). In many cases, it is difficult to obtain a preform form because the reinforcing fiber base material is often formed by laminating fiber sheet layer combinations). Therefore, for example, whether a large number of reinforcing fiber layers cut in the shape of a molded product in advance are laminated on one mold, or a laminate in which a large number of reinforcing fiber layers are laminated is arranged on one mold. Thus, the reinforcing fiber base material is disposed in the cavity.
 このような本発明に係る方法においては、先ず、成形後のVfより比較的低Vfに相当する厚みの強化繊維基材が、内寸法の高さを大きくした状態のキャビティ内に配置され、その強化繊維基材に対してマトリックス樹脂が注入、含浸されるので、比較的厚みの大きい、しかも超大型の強化繊維基材であっても、低Vfで樹脂流動抵抗の比較的小さな強化繊維基材に十分に樹脂を含浸させることが可能になる。しかしこの段階では、強化繊維基材の厚みは目標とする成形品の厚みよりも大きく、かつ、Vfも目標とする成形品のVfよりも低い。この樹脂の注入、含浸後に、余剰樹脂が吸引、除去されると同時に、上型および下型の少なくとも一方が他方に向けて加圧されることにより、キャビティの内寸法の高さが所定の成形品の厚みになるように制御され、それに伴って樹脂が含浸されている強化繊維基材の厚みも所定の成形品の厚みに制御される。したがって、この段階では、強化繊維基材に十分に樹脂が含浸された状態が保たれたまま、強化繊維基材厚みの減縮化に伴い余剰樹脂が除去されて、目標とする成形品の寸法、特に目標とする成形品の厚みに制御されることになり、目標とする高Vfの状態が達成されることになる。この状態にてマトリックス樹脂が硬化されるので、製造される成形品も、安定した均一な高Vf状態となり、超大型かつ厚肉であっても高強度、高弾性率を有する所望の高品質の繊維強化プラスチック成形品が得られることになる。この本発明に係る方法においては、上型と下型は実質的に一様形状のキャビティを形成できる形状を有しており、そのキャビティの内寸法の高さは、例えば後述のスペーサの高さを制御することにより、型を加圧した場合においても、実質的に一様の高さを保持することができる。また本発明に係る方法においては、成形にバッグ材を用いないので、成形サイクルの短縮が可能になるとともに、成形のための作業性が大幅に向上する。さらに、余剰樹脂を吸引、除去しながら型の加圧を行うことにより樹脂含浸強化繊維基材厚みの減縮化、高Vf化のための制御を行うので、型の加圧のためには大きな加圧力が必要なくなる。例えば、キャビティ内にかかる内圧にて、高々、0.3~0.5MPaの圧力に抑えることが可能になる。そのため、加圧する型には大きな強度、剛性を必要とせず、加圧する型としては、安価でかつ簡易な低剛性の型の使用が可能になる。その結果、製造設備の簡素化、コストダウンも可能になる。 In such a method according to the present invention, first, a reinforcing fiber base having a thickness corresponding to Vf that is relatively lower than Vf after molding is placed in a cavity in a state where the height of the inner dimension is increased, Since the matrix resin is injected and impregnated into the reinforcing fiber base material, the reinforcing fiber base material having a relatively large thickness and an extremely large reinforcing fiber base material has a low Vf and a relatively low resin flow resistance. It is possible to sufficiently impregnate the resin. However, at this stage, the thickness of the reinforcing fiber base is larger than the thickness of the target molded product, and Vf is also lower than Vf of the target molded product. After the injection and impregnation of the resin, the excess resin is sucked and removed, and at the same time, at least one of the upper mold and the lower mold is pressurized toward the other, so that the cavity has a predetermined height. The thickness of the reinforcing fiber base material impregnated with the resin is controlled to the thickness of the predetermined molded product. Therefore, at this stage, while the state where the reinforcing fiber base is sufficiently impregnated with the resin is maintained, the excess resin is removed along with the reduction of the reinforcing fiber base thickness, and the dimensions of the target molded product, In particular, the target thickness of the molded product is controlled, and the target high Vf state is achieved. Since the matrix resin is cured in this state, the molded product to be manufactured is also in a stable and uniform high Vf state, and is of a desired high quality having high strength and high elastic modulus even if it is very large and thick. A fiber-reinforced plastic molded product will be obtained. In the method according to the present invention, the upper mold and the lower mold have shapes that can form a substantially uniform cavity, and the height of the inner dimension of the cavity is, for example, the height of a spacer described later. By controlling the above, even when the mold is pressurized, a substantially uniform height can be maintained. Further, in the method according to the present invention, since no bag material is used for molding, the molding cycle can be shortened and workability for molding is greatly improved. Furthermore, since the mold is pressed while suctioning and removing excess resin, control for reducing the thickness of the resin-impregnated reinforcing fiber base and increasing the Vf is performed. No pressure is needed. For example, the internal pressure applied in the cavity can be suppressed to a pressure of 0.3 to 0.5 MPa at most. Therefore, the pressurizing die does not require great strength and rigidity, and an inexpensive and simple low-rigidity die can be used as the pressurizing die. As a result, it is possible to simplify manufacturing equipment and reduce costs.
 上記本発明に係る繊維強化プラスチックの製造方法においては、キャビティ内に強化繊維基材を配置した後、キャビティ内を真空吸引して減圧し、該キャビティに連通している場所から、マトリックス樹脂を、大気圧とキャビティ内圧との差圧を利用して強化繊維基材に注入、含浸するようにすることができる。従来からも、型上に配置した強化繊維基材をバッグ材(例えば、バッグフィルム)で覆い、その内部を真空吸引により減圧し、その減圧状態を利用して強化繊維基材にマトリックス樹脂を注入、含浸するようにした方法が知られているが、このような従来方法では、バッグ材内部を真空吸引した際に、バッグ材外部にかかる大気圧とバッグ材内部の減圧された圧力との差圧によりバッグ材が強化繊維基材側に押圧され、その押圧力によって強化繊維基材がコンパクションされてその厚みが減縮され、その分高Vfに相当する状態にならざるを得なかった。このような状態になると、マトリックス樹脂の十分な含浸が困難になり、とくに厚みの大きい基材や大型の基材に対しては、全体にわたって均等に、まんべんなく樹脂含浸させることができず、未含浸部が生じることとなっていた。また、フィルムなどの低剛性材料でバッグするので、広幅成形品の場合、場所によって厚みの減縮度合がばらつき、成形品の厚みが場所によって異なるという問題もあった。しかし本発明では、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さが大きくされた状態に保たれ、換言すれば、上記のようなバッグ材による強化繊維基材側への押圧力がかからない状態にて、つまり、強化繊維基材が過剰にコンパクションされておらず、低Vfに相当する状態に保たれた条件にて、マトリックス樹脂が強化繊維基材に注入されて含浸されるので、マトリックス樹脂が全体にわたって十分に良好に含浸されるようになり、キャビティ内を吸引、減圧し、大気圧とキャビティ内圧との差圧を利用してマトリックス樹脂を強化繊維基材に注入、含浸する方法により、厚みの大きい基材や超大型の基材に対しても、未含浸部のない目標とする全体にわたって均等なVfで良好な樹脂含浸が可能になる。また、従来のバッグ材に比べてはるかに高剛性の型材を用いるので、厚みの減縮も全体に渡って均一に行えるため、広幅の成形品でも厚みが場所によって異なるという問題も生じない。 In the method for producing a fiber reinforced plastic according to the present invention, after the reinforcing fiber substrate is disposed in the cavity, the inside of the cavity is vacuumed and decompressed, and the matrix resin is removed from the place communicating with the cavity. It is possible to inject and impregnate the reinforcing fiber substrate using a differential pressure between the atmospheric pressure and the cavity internal pressure. Conventionally, the reinforcing fiber base placed on the mold is covered with a bag material (for example, bag film), the inside is depressurized by vacuum suction, and the matrix resin is injected into the reinforcing fiber base using the reduced pressure state. However, in such a conventional method, when vacuuming the inside of the bag material, the difference between the atmospheric pressure applied to the outside of the bag material and the reduced pressure inside the bag material is known. The bag material was pressed to the reinforcing fiber base side by the pressure, and the reinforcing fiber base was compacted by the pressing force to reduce its thickness, and the state corresponding to the height Vf had to be reduced accordingly. In such a state, it becomes difficult to sufficiently impregnate the matrix resin. Especially for a thick substrate or a large substrate, the resin cannot be uniformly impregnated evenly over the entire substrate, and it is not impregnated. Part was to occur. Further, since the bag is made of a low-rigidity material such as a film, in the case of a wide molded product, the degree of thickness reduction varies depending on the location, and the thickness of the molded product varies depending on the location. However, in the present invention, at the time of resin injection and impregnation, the height of the inner dimension of the cavity is kept larger than the thickness of a predetermined molded product. In other words, the reinforcing fiber base material using the bag material as described above The matrix resin is injected into the reinforcing fiber base in a state where no pressing force is applied to the side, that is, the reinforcing fiber base is not excessively compacted and is maintained in a state corresponding to low Vf. As a result, the matrix resin is sufficiently satisfactorily impregnated throughout, and the inside of the cavity is sucked and depressurized, and the matrix resin is reinforced by using the differential pressure between the atmospheric pressure and the cavity internal pressure. By the method of injecting and impregnating, it is possible to achieve good resin impregnation with a uniform Vf over the entire target without an unimpregnated portion even for a thick substrate or an ultra-large substrate. Further, since a mold material having a much higher rigidity than that of a conventional bag material is used, the thickness can be reduced uniformly throughout the entire bag, so that there is no problem that the thickness varies depending on the location even in a wide molded product.
 また、この繊維強化プラスチックの製造方法においては、マトリックス樹脂の強化繊維基材への注入は、複数の樹脂注入経路を介して行うことができる。つまり、強化繊維基材の面方向に複数配置された樹脂注入経路を介してほぼ同時にマトリックス樹脂を強化繊維基材に注入することができる。とくに超大型の構造体を成形する場合には、このようにすることにより、万遍なく短時間のうちに効率よく樹脂を注入できるようになり、それに伴って強化繊維基材への均一な樹脂含浸が可能になる。なお、上記複数の樹脂注入経路を設ける部材は、とくに限定されず、例えば、上型や後述の樹脂注入プレートなどに設けることができる。 Further, in this fiber reinforced plastic manufacturing method, the matrix resin can be injected into the reinforced fiber substrate through a plurality of resin injection paths. That is, the matrix resin can be injected into the reinforcing fiber base almost simultaneously through a plurality of resin injection paths arranged in the surface direction of the reinforcing fiber base. In particular, when molding ultra-large structures, it is possible to inject the resin uniformly and efficiently in a short time, and a uniform resin to the reinforced fiber base material accordingly. Impregnation becomes possible. The member for providing the plurality of resin injection paths is not particularly limited, and can be provided, for example, in an upper mold or a resin injection plate described later.
 そしてこの場合、マトリックス樹脂を強化繊維基材の面に沿う方向に拡散させつつ上記複数の樹脂注入経路を介してほぼ同時にマトリックス樹脂を強化繊維基材に注入するようにすることが好ましい。これにより、より短時間での樹脂注入が可能になり、強化繊維基材へのより均一な樹脂含浸が可能になる。 In this case, it is preferable that the matrix resin is injected into the reinforcing fiber substrate almost simultaneously through the plurality of resin injection paths while diffusing the matrix resin in a direction along the surface of the reinforcing fiber substrate. Thereby, the resin can be injected in a shorter time, and the reinforcing fiber base material can be more uniformly impregnated with the resin.
 また、上記のような好ましい態様を具体的に実現するためには、例えば、上記上型および下型の一方と強化繊維基材との間に、実質的に隙間が形成されないように樹脂注入プレートおよび/または樹脂拡散媒体を介在させ、該樹脂注入プレートおよび/または樹脂拡散媒体に上記複数の樹脂注入経路を連通し、該複数の樹脂注入経路を介してマトリックス樹脂を強化繊維基材に注入するようにすることが望ましい。このうち樹脂注入プレートは、上型として用いることでもよいが、後述の実施形態に示すように、加圧される型とは別体に構成すればよい。別体に構成しておくことにより、加圧される型自体の一層の簡素化も可能になる。 Further, in order to specifically realize the preferred embodiment as described above, for example, a resin injection plate is formed so that a gap is not substantially formed between one of the upper mold and the lower mold and the reinforcing fiber base. And / or a resin diffusion medium is interposed, the resin injection plate and / or the resin diffusion medium are communicated with the plurality of resin injection paths, and the matrix resin is injected into the reinforcing fiber base through the plurality of resin injection paths. It is desirable to do so. Of these, the resin injection plate may be used as an upper mold, but may be configured separately from the mold to be pressurized, as shown in an embodiment described later. By making it separate, it is possible to further simplify the pressed mold itself.
 上記のように樹脂注入プレートや樹脂拡散媒体を介在させる場合には、例えば、上記樹脂注入プレートは、少なくとも一つの樹脂注入経路に対して連通する複数の樹脂拡散路と、樹脂拡散路に開口した樹脂注入口を形成し、マトリックス樹脂を複数の樹脂拡散路を経由して樹脂注入口から強化繊維基材に含浸するようにすることもできる。また、上記樹脂拡散媒体は網目構造を有し、該網目構造を介してマトリックス樹脂を強化繊維基材の面に沿う方向に拡散させるようにすることもできる。 When the resin injection plate and the resin diffusion medium are interposed as described above, for example, the resin injection plate has a plurality of resin diffusion paths communicating with at least one resin injection path and an opening in the resin diffusion path. It is also possible to form a resin injection port and impregnate the reinforcing fiber base material from the resin injection port via a plurality of resin diffusion paths. In addition, the resin diffusion medium has a network structure, and the matrix resin can be diffused in a direction along the surface of the reinforcing fiber substrate through the network structure.
 また、上記複数の樹脂注入経路は、樹脂の注入に加え、上記プリフォームに余剰に注入、含浸された樹脂の吸引、除去にも使用することが可能である。つまり、同じ通路の切り換えにより、注入用と吸引、除去用とに使用することが可能である。余剰に注入、含浸された樹脂は、真空吸引口からも吸引、除去されるが、樹脂注入経路や注入口はプリフォームの広範囲もしくは全面にわたり配置されているため、真空吸引口よりも効率的に余剰に注入、含浸された樹脂を吸引、除去することができる。このように複数の樹脂注入経路を余剰樹脂の吸引、除去にも使用することにより、樹脂通路の構造の簡素化は勿論のこと、複数の箇所を通して余剰樹脂を除去することになるので、均一で効率のよい余剰樹脂の除去が可能になり、余剰樹脂除去に伴う高Vf化が均一に進められる。 Further, the plurality of resin injection paths can be used not only for injecting resin, but also for sucking and removing excessively injected and impregnated resin into the preform. That is, it can be used for injection, suction, and removal by switching the same passage. Excessly injected and impregnated resin is also sucked and removed from the vacuum suction port, but the resin injection path and injection port are arranged over a wide area or the entire surface of the preform, so it is more efficient than the vacuum suction port. The excessively injected and impregnated resin can be sucked and removed. By using a plurality of resin injection paths for suction and removal of surplus resin in this way, not only simplification of the structure of the resin passage, but also surplus resin is removed through a plurality of locations. Efficient removal of surplus resin becomes possible, and the increase in Vf accompanying surplus resin removal is promoted uniformly.
 また、本発明においては、例えば、予め前記樹脂注入ラインに真空吸引による減圧手段を設けておき、減圧手段はマトリックス樹脂を強化繊維基材に含浸中には使わず、マトリックス樹脂の強化繊維基材への含浸が完了した後、樹脂注入ラインを閉じ、減圧手段を使って、強化繊維基材に余剰に含浸された樹脂を吸引、除去する方法を採用することもできる。 Further, in the present invention, for example, a pressure reducing means by vacuum suction is provided in advance in the resin injection line, and the pressure reducing means is not used during the impregnation of the matrix resin into the reinforcing fiber base. After the impregnation of the resin, the resin injection line is closed, and a method of sucking and removing the resin excessively impregnated into the reinforcing fiber base using a decompression means can be adopted.
 また、樹脂注入、含浸時には、上記キャビティの内寸法の高さが所定の成形品の厚みよりも大きくした状態に保たれ、樹脂注入、含浸後にキャビティの内寸法の高さが小さくなるように制御されるが、この制御のために、とくに、上型と下型との間で、キャビティの周辺に、スペーサを配置する形態を採用することができる。すなわち、上型と下型との間にキャビティ内寸法の高さを所定の初期高さに決めるスペーサを配置し、とくに、上型と下型との間のキャビティの外側に密閉機構とは別のキャビティ内寸法の高さを決めるスペーサを配置し、該スペーサの高さを調整することにより(高さを小さくすることにより)、キャビティ内寸法の高さを、該キャビティ内に配置されている強化繊維基材の厚みが所定の成形品の厚みになるように制御することができる。このようなスペーサの介在により、より確実に、強化繊維基材の厚みを、樹脂注入、含浸時には樹脂が容易に含浸できる所定の大きい値に保ち、樹脂注入、含浸後には、小さくして所定の成形品の厚みになるように制御することができる。 In addition, during resin injection and impregnation, the height of the internal dimension of the cavity is kept larger than the thickness of the predetermined molded product, and the height of the internal dimension of the cavity is controlled to be small after resin injection and impregnation. However, for this control, it is possible to employ a configuration in which spacers are arranged around the cavity, particularly between the upper mold and the lower mold. In other words, a spacer is placed between the upper mold and the lower mold to determine the height of the internal dimension of the cavity to a predetermined initial height. In particular, the spacer is separated from the sealing mechanism outside the cavity between the upper mold and the lower mold. By placing a spacer that determines the height of the cavity internal dimension, and adjusting the height of the spacer (by reducing the height), the height of the cavity internal dimension is disposed within the cavity. The thickness of the reinforcing fiber base can be controlled to be a predetermined thickness of the molded product. By interposing such a spacer, the thickness of the reinforcing fiber substrate is more reliably maintained at a predetermined large value that can be easily impregnated with the resin at the time of resin injection and impregnation. It can control to become the thickness of a molded article.
 このようなスペーサの高さ調整は、スペーサを上型と下型との間で、キャビティの周辺に介装されるシール手段とは別の比較的剛性の高い部材から構成し、そのスペーサの高さを専用の高さ調整機構で調整するようにすることもできるし、スペーサとして、例えば上型と下型との間に介装されるゴム状弾性体から構成し、そのゴム状弾性体の弾性変形による厚み変化を利用したり、また、中空弾性体を用い、該中空弾性体の中に流体を注入し、その流体の容量や圧力を変化させて、スペーサの高さを調整するようにすることもできる。これら両スペーサの高さ調整手法は、併用することも可能である。 Such a height adjustment of the spacer is made up of a relatively rigid member separate from the sealing means interposed between the upper die and the lower die around the cavity. The height can be adjusted by a dedicated height adjustment mechanism, and the spacer is composed of, for example, a rubber-like elastic body interposed between the upper mold and the lower mold, and the rubber-like elastic body Use the thickness change due to elastic deformation, or use a hollow elastic body, inject fluid into the hollow elastic body, change the volume and pressure of the fluid, and adjust the height of the spacer You can also These height adjustment methods for both spacers can be used in combination.
 高さ調整手法は、市販のボルトを利用することもできる。この場合、下型にタップ(雌ネジ)を設け、そこにボルトをねじ込みながら挿入し、下型の表面から突出したボルトの高さをスペーサの高さとして利用する。ボルトによる高さ調整手法は、ボルトの回転量により、容易に微調整が可能であるため好ましい。またボルトによる高さ調整手法は、上型と下型とのシール機構よりも内側であっても外側であってもどちらでも良いが、特に制約がない場合は、シール機構の外側に設けることにより、マトリックス樹脂がボルトおよびタップ部分に流れ込まないため、好ましい。 A commercially available bolt can be used for the height adjustment method. In this case, a tap (female screw) is provided on the lower die, and a bolt is inserted while being screwed therein, and the height of the bolt protruding from the surface of the lower die is used as the height of the spacer. The height adjustment method using a bolt is preferable because fine adjustment can be easily performed by the amount of rotation of the bolt. The height adjustment method using bolts may be either inside or outside the sealing mechanism of the upper and lower molds, but if there is no particular restriction, it can be provided outside the sealing mechanism. This is preferable because the matrix resin does not flow into the bolt and the tap portion.
 スペーサをゴム状弾性体から構成する場合には、キャビティ内の減圧度の調整によりスペーサの変形量を調整し、該スペーサの変形量の調整を介して該スペーサの高さを調整することができる。この場合、キャビティ内の減圧度の調整により、キャビティ外にかかる大気圧と減圧されたキャビティ内圧との差圧によるスペーサへの押圧力を調整することにより、スペーサの高さを調整することができる。したがってこの場合、上記上型および下型の少なくとも一方の他方に向けての加圧力を、キャビティ内の減圧度により調整することが可能である。さらに、スペーサをゴム状弾性体から構成する場合には、そのスペーサは上型と下型との間に介装されるシール手段を兼ねることもできる。 When the spacer is made of a rubber-like elastic body, the amount of deformation of the spacer can be adjusted by adjusting the degree of decompression in the cavity, and the height of the spacer can be adjusted through adjustment of the amount of deformation of the spacer. . In this case, the height of the spacer can be adjusted by adjusting the pressure applied to the spacer by the differential pressure between the atmospheric pressure applied outside the cavity and the reduced pressure inside the cavity by adjusting the degree of pressure reduction inside the cavity. . Therefore, in this case, the pressure applied toward at least one of the upper mold and the lower mold can be adjusted by the degree of decompression in the cavity. Further, when the spacer is made of a rubber-like elastic body, the spacer can also serve as a sealing means interposed between the upper mold and the lower mold.
 また、上記強化繊維基材への樹脂注入、含浸後の上型および下型の少なくとも一方の他方に向けての加圧は、例えば、シリンダ手段を用い、該シリンダ手段で少なくとも一方の型を他方の型に向けて加圧することにより行うこともできる。この方法では、シリンダ手段への加圧流体の圧力調節により、容易に加圧力を制御できる。前述の如く、この加圧は余剰樹脂の吸引除去とともに行われるので、大きな加圧力を必要とせず、したがって大がかりな油圧シリンダ等を用いることなく、例えば比較的低圧(例えば、0.1MPa以下)の圧縮空気を利用するエアーシリンダ等の使用が可能である。シリンダ手段の数は、加圧される一つの型に対して一つだけ設けることも可能であるが、大型の型に対して、より均一に、傾き等が生じない状態で型に加圧力を付与するためには、適宜複数のシリンダ手段を適切な位置に配置することが好ましい。 In addition, for example, cylinder means is used to inject the resin into the reinforcing fiber base and pressurize toward the other of at least one of the upper mold and the lower mold after impregnation. It can also be performed by applying pressure toward the mold. In this method, the applied pressure can be easily controlled by adjusting the pressure of the pressurized fluid to the cylinder means. As described above, since this pressurization is performed together with the suction and removal of the excess resin, a large pressure is not required, and therefore, for example, a relatively low pressure (for example, 0.1 MPa or less) is used without using a large hydraulic cylinder or the like. An air cylinder or the like that uses compressed air can be used. Although it is possible to provide only one cylinder means for one mold to be pressurized, it is possible to apply pressure to the mold more uniformly and without tilting or the like with respect to a large mold. In order to apply, it is preferable to appropriately arrange a plurality of cylinder means at appropriate positions.
 また、上記上型および下型の少なくとも一方の他方に向けての加圧を、反キャビティ側に配置されたブラダーバッグの膨張により行うことも可能である。すなわち、加圧される型の反キャビティ側に、膨張、収縮可能なブラダーバッグを一つあるいは複数配置しておき、加圧時にはブラダーバッグを膨張させることにより型をキャビティ側に向けて加圧できるようにする。ブラダーバッグは加圧流体が内部に流入されることにより全体にわたって均一に膨張可能なものであるから、とくにこのブラダーバッグを複数適切に配置しておくことにより、大型の型であっても、所定の姿勢を維持しつつ均一に加圧することが可能になり、大型の構造体の成形にとって好ましい形態が実現される。また、このブラダーバッグを用いる方法と、前述のシリンダ手段を用いる方法とは、併用することも可能である。また、このブラダーバッグは、様々な材質が適用可能で、単純なゴム袋や布地に樹脂をコーティングした袋や、ゴム袋と布地状の袋のハイブリッド状態でもよい。 It is also possible to pressurize toward the other of at least one of the upper mold and the lower mold by expanding a bladder bag arranged on the side opposite to the cavity. That is, one or a plurality of bladder bags that can be expanded and contracted are arranged on the side opposite to the cavity of the mold to be pressurized, and the mold can be pressurized toward the cavity side by inflating the bladder bag at the time of pressurization. Like that. Since the bladder bag can be inflated uniformly when the pressurized fluid is introduced into the inside, it is possible to obtain a predetermined size even for a large type by arranging a plurality of bladder bags appropriately. Thus, it is possible to apply pressure uniformly while maintaining this posture, and a preferable form for forming a large-sized structure is realized. Further, the method using the bladder bag and the method using the cylinder means described above can be used in combination. The bladder bag can be made of various materials, and may be a simple rubber bag, a fabric-coated bag, or a hybrid state of a rubber bag and a fabric-like bag.
 また、ブラダーバッグとして、平板形状のものを用い、実質的に上型および下型の少なくとも一方を面状で実質的に隙間なく加圧するようにすることも可能である。 It is also possible to use a flat plate as the bladder bag, and to pressurize at least one of the upper die and the lower die substantially in a planar shape with substantially no gap.
 また、本発明においては、例えば、キャビティの外側に設けた上型と下型との間の密閉機能とキャビティの高さ調整機能を兼ね備えた機構により、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さを大きくした状態にて、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に上型および下型の少なくとも一方を他方に向けて移動して所定の成形品の厚みに調整するとともに、強化繊維基材に余剰に注入、含浸された樹脂を吸引、除去し、その状態にて、マトリックス樹脂を硬化させるようにすることも可能である。 Further, in the present invention, for example, when a resin is injected or impregnated, a predetermined molded product is obtained by a mechanism having a sealing function between the upper mold and the lower mold provided outside the cavity and a height adjusting function of the cavity. In a state in which the height of the inner dimension of the cavity is larger than the thickness, the matrix resin is injected and impregnated into the reinforcing fiber base material, and then at least one of the upper mold and the lower mold is moved toward the other to be predetermined. It is also possible to adjust the thickness of the molded article and to suck and remove the resin that has been excessively injected and impregnated into the reinforcing fiber base, and to cure the matrix resin in that state.
 さらに、本発明に係る方法においては、上記キャビティの内寸法の高さの制御後、上記上型と下型の位置関係を固定することが好ましい。上型と下型の位置関係を固定すると、キャビティも所定のサイズに固定されるから、この状態で樹脂が硬化されることにより、確実に目標とする寸法の成形品に成形される。上型と下型の位置関係の固定には、例えば簡単な構造のクランプ手段を使用できる。すなわち、クランプ手段により上型と下型を上下から挟み、キャビティ内圧による上下型の離反力に対抗して、上型と下型の位置関係を固定すればよい。 Furthermore, in the method according to the present invention, it is preferable to fix the positional relationship between the upper mold and the lower mold after controlling the height of the inner dimension of the cavity. When the positional relationship between the upper mold and the lower mold is fixed, the cavity is also fixed to a predetermined size, and the resin is cured in this state, so that a molded product having a target dimension is surely formed. For fixing the positional relationship between the upper die and the lower die, for example, a clamp means having a simple structure can be used. That is, the upper die and the lower die may be sandwiched from above and below by the clamping means, and the positional relationship between the upper die and the lower die may be fixed against the separation force of the upper and lower die due to the cavity internal pressure.
 本発明の特徴である余剰樹脂を吸引、除去しながら型の加圧を行うことにより、型の加圧のためには大きな加圧力が必要なくなるため、クランプ手段のような極めて簡易な手段にて上型と下型の位置関係を固定することができるのである。 By pressurizing the mold while sucking and removing excess resin, which is a feature of the present invention, a large pressure is not necessary for pressurizing the mold. The positional relationship between the upper mold and the lower mold can be fixed.
 本発明に係る繊維強化プラスチックの製造装置は、上記のような方法に用いる装置である。本発明に係る方法では、樹脂の注入含浸時には、キャビティの内寸法の高さが所定の成形品の厚みよりも大きく保たれ、樹脂の注入含浸後には、型の加圧と余剰樹脂の吸引、除去によりキャビティの内寸法の高さが所定の成形品の厚みまで縮められるので、このようにキャビティの内寸法の高さを少なくとも二段階に調整できることが必要である。そして、このキャビティ内寸法の高さの制御については、前述の如く、キャビティ周囲のシール手段とは別の比較的剛性の高いスペーサの高さ調整により行う方法と、キャビティ周囲に配置されるシール手段(上記スペーサを兼ねることも可能)の弾性変形を利用して行う方法とがある。これら両方法は併用も可能である。 The apparatus for producing fiber-reinforced plastic according to the present invention is an apparatus used in the above method. In the method according to the present invention, the height of the inner dimension of the cavity is kept larger than the thickness of a predetermined molded product during the resin injection impregnation, and after the resin injection impregnation, pressurization of the mold and suction of excess resin, Since the height of the inner dimension of the cavity is reduced to a predetermined thickness by the removal, it is necessary that the height of the inner dimension of the cavity can be adjusted in at least two stages. As described above, the height of the cavity internal dimension is controlled by adjusting the height of a relatively rigid spacer different from the sealing means around the cavity, and the sealing means arranged around the cavity. There is a method of using elastic deformation (which can also serve as the spacer). Both of these methods can be used in combination.
 これらの方法に関する技術思想に対応して、本発明は、次のような繊維強化プラスチックの製造装置を提供する。すなわち、本発明に係る繊維強化プラスチックの製造装置は、上記のような方法に用いる装置であって、上型と下型との間でかつキャビティの周囲に、上記キャビティの内寸法の高さに対応する上型と下型間の距離を、上記樹脂注入、含浸時における距離と、上記樹脂硬化時における距離との少なくとも二段階に調整可能な高さ調整手段を有することを特徴とするものからなる。 Corresponding to the technical ideas related to these methods, the present invention provides the following fiber-reinforced plastic manufacturing apparatus. That is, the apparatus for producing a fiber reinforced plastic according to the present invention is an apparatus used in the above-described method, and the height of the inner dimension of the cavity is between the upper mold and the lower mold and around the cavity. It has a height adjusting means capable of adjusting the distance between the corresponding upper mold and lower mold in at least two stages of the distance at the time of the resin injection and impregnation and the distance at the time of the resin curing. Become.
 このような本発明に係る繊維強化プラスチックの製造装置においては、上記高さ調整手段が、上型と下型間の距離を自身の上下位置の調整により調整可能なスペーサを備えた手段からなる構成とすることができ、上記高さ調整手段が、キャビティを密閉可能で、自身の弾性変形により上型と下型間の距離を調整可能なシール手段を備えた手段からなる構成とすることもでき、両種の高さ調整手段が併設された構成とすることもできる。シール手段には、例えば、自身の厚みの調整が可能な紐状ゴムを使用できる。この紐状ゴムとしては、例えば、Oリングを用いることができる。 In such a fiber reinforced plastic manufacturing apparatus according to the present invention, the height adjusting means is composed of means having a spacer capable of adjusting the distance between the upper mold and the lower mold by adjusting the vertical position of the upper mold and the lower mold. The height adjusting means can be configured to include a sealing means that can seal the cavity and adjust the distance between the upper mold and the lower mold by its own elastic deformation. In addition, both types of height adjusting means can be provided. For example, a string-like rubber capable of adjusting its own thickness can be used as the sealing means. As this string-like rubber, for example, an O-ring can be used.
 高さ調整手段の高さ調整としては、前述したのと同様に、ボルトによる高さ調整機構を採用でき、市販のボルトを利用することもできる。この場合、前述したように、下型にタップ(雌ネジ)を設け、そこにボルトをねじ込みながら挿入し、下型の表面から突出したボルトの高さをスペーサの高さとして利用する。ボルトによる高さ調整機構は、ボルトの回転量により、容易に微調整が可能であるため好ましい。またボルトによる高さ調整機構は、上型と下型とのシール機構よりも内側であっても外側であってもどちらでも良いが、特に制約がない場合は、シール機構の外側に設けることにより、マトリックス樹脂がボルトおよびタップ部分に流れ込まないため、好ましい。 As for the height adjustment of the height adjusting means, as described above, a height adjustment mechanism using bolts can be adopted, and commercially available bolts can also be used. In this case, as described above, a tap (female screw) is provided on the lower die, and a bolt is inserted into the lower die while being screwed, and the height of the bolt protruding from the surface of the lower die is used as the height of the spacer. The height adjustment mechanism using a bolt is preferable because it can be easily finely adjusted by the amount of rotation of the bolt. Also, the height adjustment mechanism using bolts may be either inside or outside the sealing mechanism of the upper mold and the lower mold, but if there is no particular restriction, it can be provided outside the sealing mechanism. This is preferable because the matrix resin does not flow into the bolt and the tap portion.
 また、本発明に係る繊維強化プラスチックの製造装置においては、上記上型と下型の曲げ剛性の比が10倍以上である構成を採用できる。すなわち、上型と下型の一方は、成形のための最終的なキャビティの形状を主として決めるために、目標とする形状を損なわないだけの高い剛性を必要とするが、他方の加圧される方の型は、上記のようにキャビティの内寸法の高さを少なくとも二段階に調整可能に構成されていればよく、高剛性の型に比べはるかに低い剛性でよくなる。したがって、両型間に、10倍以上の剛性差を持たせることが可能になり、一方の型を低剛性に構成することにより、その型の製造を容易にかつ安価に行うことができるとともに、その型の加圧操作、加圧装置も簡単なもので済む。 Further, in the fiber reinforced plastic manufacturing apparatus according to the present invention, a configuration in which the ratio of the bending rigidity between the upper mold and the lower mold is 10 times or more can be adopted. That is, one of the upper die and the lower die requires a high rigidity that does not impair the target shape in order to mainly determine the shape of the final cavity for molding, but the other die is pressurized. The mold only needs to be configured so that the height of the inner dimension of the cavity can be adjusted in at least two stages as described above, and can be much lower in rigidity than a highly rigid mold. Therefore, it becomes possible to give a rigidity difference of 10 times or more between both molds, and by constructing one mold with low rigidity, the mold can be manufactured easily and inexpensively, That type of pressurizing operation and pressurizing apparatus can be simple.
 例えば、上記上型と下型の一方が、強化繊維基材側に成形品の表面形状に沿う形状の面部分を有する板状の低剛性型からなる構成を採用できる。単なる板状の低剛性型であっても、樹脂の注入含浸時の前述のような所望のキャビティの内寸法の高さに維持でき、樹脂の注入含浸後に、そのキャビティの内寸法の高さを目標とする高さに縮小できさえすれば、本発明で目標とする成形が可能になる。仮に、低剛性型の剛性が低過ぎた場合は、例えば板状の型にC型やH型の型材を障子の桟状に組んで、該板状型を裏面より補強すると良い。これは本発明の特徴である余剰樹脂を吸引、除去しながら型の加圧を行うことにより、型の加圧のためには大きな加圧力が必要なくなるため、低剛性型を使用することが可能となる。とくに前述のような樹脂注入プレートを用い、該樹脂注入プレートが強化繊維基材側の面の形状の形成機能を持つ場合には、該樹脂注入プレート上に位置する型は単に該樹脂注入プレートを所定の加圧力をもって加圧でき、該樹脂注入プレートの位置を所定の位置に決める機能を持てばよいので、低剛性で簡単な構造の低剛性型(簡易型)から構成することが可能になる。またこのキャビティの内寸法の高さを目標とする高さに縮小するとき、低剛性型自体は多少撓んでも(多少撓んだとしても、この撓みは、バッグフィルムのように相手部材に完全に倣う形状への変形とは基本的に異なる。)、強化繊維基材側に位置する樹脂注入プレートの形状さえ所定の形状に保たれればよいから、この点からも、一層簡単な構造の低剛性型に構成することが可能になる。さらに、この加圧される側の型は、樹脂の注入含浸時には、所望のキャビティの内寸法の高さに維持できればよく、そのときに不要な加圧力を発生させる必要は全くなく、キャビティの内寸法の高さを目標とする高さに縮小するときには、その型の加圧は、余剰樹脂除去のためのキャビティ内からの吸引、樹脂除去とともに行われるので、大きな加圧力を必要としないことからも、簡単な構造の低剛性型に構成することが可能である。 For example, it is possible to employ a configuration in which one of the upper mold and the lower mold is a plate-like low-rigidity mold having a surface portion that conforms to the surface shape of the molded product on the reinforcing fiber substrate side. Even if it is a simple plate-like low-rigidity type, it is possible to maintain the desired internal cavity height as described above at the time of resin injection impregnation. As long as the height can be reduced to the target height, the target molding in the present invention becomes possible. If the rigidity of the low-rigidity mold is too low, for example, a C-shaped or H-shaped mold material may be assembled in the shape of a shoji as a plate-shaped mold, and the plate-shaped mold may be reinforced from the back surface. This is a feature of the present invention. By pressurizing the mold while sucking and removing excess resin, it is not necessary to apply large pressure to pressurize the mold, so it is possible to use a low-rigidity mold. It becomes. In particular, when the resin injection plate as described above is used and the resin injection plate has the function of forming the shape of the surface on the side of the reinforcing fiber base, the mold located on the resin injection plate is simply the resin injection plate. Since it is only necessary to have a function of determining the position of the resin injection plate to a predetermined position by applying a predetermined pressure, it is possible to configure the low rigidity type (simple type) with a low rigidity and a simple structure. . In addition, when the height of the inner dimension of the cavity is reduced to the target height, even if the low-rigidity mold itself is slightly bent (even if it is slightly bent, this bending is completely applied to the other member like a bag film. This is basically different from the deformation to the shape following the above).) Since the shape of the resin injection plate located on the reinforcing fiber substrate side only needs to be kept in a predetermined shape, this also makes the structure simpler. It becomes possible to constitute a low-rigidity type. Furthermore, it is sufficient that the mold on the pressurized side can be maintained at a desired height of the cavity internal dimension when the resin is injected and impregnated. There is no need to generate an unnecessary pressure at that time. When reducing the height of the dimensions to the target height, the pressurization of the mold is performed together with suction and resin removal from the cavity for removing excess resin, so that a large pressure is not required. However, it is possible to construct a low-rigidity type with a simple structure.
 このような低剛性型は、金属製とすることも可能であるが、低剛性型として、例えば、繊維強化プラスチックから形成されている型を用いることもできる。また、場合によっては非強化の樹脂製や木製、セラミック製、それらのハイブリッド構造でもよい。 Such a low-rigidity type can be made of metal, but as the low-rigidity type, for example, a type made of fiber-reinforced plastic can also be used. In some cases, non-reinforced resin, wood, ceramic, or a hybrid structure thereof may be used.
 また、上型および/または下型の材料を、成形する繊維強化プラスチックと同じ材料とすることにより、型と成形する繊維強化プラスチックの線膨張係数を実質的に同じにすることができ、繊維強化プラスチックの寸法精度を向上できるため好ましい。特に成形する繊維強化プラスチックの寸法が大きい場合はより好ましい。 Further, by making the material of the upper mold and / or the lower mold the same material as the fiber reinforced plastic to be molded, the linear expansion coefficient of the mold and the fiber reinforced plastic to be molded can be made substantially the same. This is preferable because the dimensional accuracy of the plastic can be improved. It is more preferable especially when the size of the fiber reinforced plastic to be molded is large.
 本発明に係る繊維強化プラスチックの製造方法および装置における強化繊維基材に用いる強化繊維は、とくに限定されず、炭素繊維をはじめ、ガラス繊維やアラミド繊維などの他の強化繊維、さらにはこれら強化繊維の組み合わせ構成の使用が可能である。とくに炭素繊維を使用する場合には、炭素繊維自身が高い剛性を示すため、強化繊維の密度が高い場合や強化繊維基材の厚みが大きい場合には、樹脂の注入含浸が行き届かなくなるおそれが生じるので、このような場合に本発明は好適である。 The reinforcing fiber used for the reinforcing fiber base in the fiber-reinforced plastic manufacturing method and apparatus according to the present invention is not particularly limited, and includes carbon fibers, other reinforcing fibers such as glass fibers and aramid fibers, and these reinforcing fibers. The combination configuration can be used. In particular, when carbon fibers are used, the carbon fibers themselves exhibit high rigidity. Therefore, when the density of the reinforcing fibers is high or the thickness of the reinforcing fiber base is large, there is a possibility that the resin impregnation may not be achieved. In this case, the present invention is preferable.
 このように、本発明に係る繊維強化プラスチックの製造方法および装置によれば、型を加圧した状態においても、例えばスペーサの高さ制御によって、上型および下型で形成されるキャビティの内寸法の高さを所定の一様の高さに保持することにより、樹脂が完全に含浸可能な低Vfに相当する厚みに強化繊維基材の厚みを調整した状態において樹脂を注入、含浸した後、型の加圧およびスペーサの高さ制御によりキャビティの内寸法の高さを所定の繊維強化プラスチックの厚みに相当する高さに調整すると同時に、強化繊維基材内の余剰樹脂を吸引、除去し、高Vfに相当する状態にして樹脂を硬化させるようにしたので、従来よりも簡易な加圧設備、型で大型の成形品を高Vfにて短時間のうちに成形することが可能になる。とくに樹脂注入プレートを使用することにより、樹脂の注入、含浸をより効率的に行うことができるとともに、型の簡素化をより促進でき、しかも樹脂注入プレートを介して強化繊維基材内の余剰樹脂を効率的に吸引、除去することが可能であるので、装置全体の一層の簡素化が可能になる。その結果、大型品の成形に際しても、設備費を抑えて容易に高Vfに制御した成形品を得ることができるとともに、とくに樹脂注入プレートを用いることにより、短時間で樹脂注入、含浸を終え、かつ所望の高Vf状態まで到達することができ、成形作業性、生産性を大幅に向上することができる。 Thus, according to the fiber-reinforced plastic manufacturing method and apparatus of the present invention, the inner dimensions of the cavity formed by the upper mold and the lower mold, for example, by controlling the height of the spacer, even when the mold is pressurized. After the resin is injected and impregnated in a state where the thickness of the reinforcing fiber base is adjusted to a thickness corresponding to low Vf that can be completely impregnated with the resin, by maintaining the height of the predetermined uniform height, While adjusting the height of the inner dimension of the cavity to a height corresponding to the thickness of the predetermined fiber reinforced plastic by pressurizing the mold and controlling the height of the spacer, the excess resin in the reinforcing fiber base is sucked and removed, Since the resin is cured in a state corresponding to high Vf, it becomes possible to form a large molded product with high Vf in a short time with a simpler pressurization equipment and mold than conventional ones. In particular, by using a resin injection plate, the resin can be injected and impregnated more efficiently, and the simplification of the mold can be further promoted. In addition, surplus resin in the reinforcing fiber base can be obtained through the resin injection plate. Can be efficiently sucked and removed, so that the whole apparatus can be further simplified. As a result, even when molding a large product, it is possible to obtain a molded product that is easily controlled to a high Vf while suppressing equipment costs, and in particular, by using a resin injection plate, resin injection and impregnation are completed in a short time, In addition, the desired high Vf state can be reached, and the molding workability and productivity can be greatly improved.
本発明の一実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置における樹脂注入時の様子を示す概略構成図である。It is a schematic block diagram which shows the mode at the time of resin injection | pouring in the manufacturing apparatus used for the manufacturing method of the fiber reinforced plastic which concerns on one embodiment of this invention. 図1の製造装置における樹脂注入、含浸後の、型の加圧および余剰樹脂の吸引、除去による強化繊維基材の厚み調整完了時の様子を示す概略構成図である。It is a schematic block diagram which shows the mode at the time of completion of thickness adjustment of the reinforced fiber base material by the pressurization of a type | mold, the suction | inhalation of a surplus resin, and a removal after resin injection | pouring in the manufacturing apparatus of FIG. 本発明の別の実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置における樹脂注入時の様子を示す概略構成図である。It is a schematic block diagram which shows the mode at the time of resin injection | pouring in the manufacturing apparatus used for the manufacturing method of the fiber reinforced plastic which concerns on another embodiment of this invention. 本発明のさらに別の実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置における樹脂注入時の様子を示す概略構成図である。It is a schematic block diagram which shows the mode at the time of resin injection | pouring in the manufacturing apparatus used for the manufacturing method of the fiber reinforced plastic which concerns on another embodiment of this invention. 図4の製造装置における樹脂注入、含浸後の、余剰樹脂の吸引、除去による強化繊維基材の厚み調整完了時の様子を示す概略構成図である。It is a schematic block diagram which shows the mode at the time of completion of the thickness adjustment of the reinforced fiber base material by the suction | inhalation and removal of the excess resin after resin injection | pouring and impregnation in the manufacturing apparatus of FIG. 型の加圧にブラダーバッグを用いる別の実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus used for the manufacturing method of the fiber reinforced plastic which concerns on another embodiment which uses a bladder bag for pressurization of a type | mold. 強化繊維基材の厚み調整完了後に上下型の位置関係を固定するためのクランプ手段を用いる別の実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus used for the manufacturing method of the fiber reinforced plastic which concerns on another embodiment using the clamp means for fixing the positional relationship of an up-and-down type | mold after completion of thickness adjustment of a reinforced fiber base material. 比較例に係る従来のバッグフィルムを用いる繊維強化プラスチックの製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus of the fiber reinforced plastic using the conventional bag film which concerns on a comparative example.
 以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。ただし、以下に示す実施態様は、あくまで本発明の望ましい実施の形態の例示であって、本発明は、これら実施態様に限定されるものではない。
 図1は、本発明の一実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置における樹脂注入時の様子を示している。繊維強化プラスチックの製造装置1は、上型2と下型3を有しており、上型2と下型3によってキャビティ4が形成される。より正確には、本実施態様では、上型2の直下に、樹脂注入プレート5が配置され、この樹脂注入プレート5と下型3によってキャビティ4が形成されている。キャビティ4内には、本実施態様では、強化繊維織物の積層体からなる強化繊維基材6が配置される。上型2と下型3の間には、キャビティ4の周囲に全周にわたって延びるシール手段としてのOリング7が設けられ、該Oリング7を介して、キャビティ4が密閉される。本実施態様では、Oリング7の外側で、上型2と下型3の間の位置に、スペーサ8が介装されており、該スペーサ8はスペーサ高さ調整機構9に連結されている。このスペーサ8は、スペーサ高さ調整機構9により自身の高さ位置を調整することにより、上記の如く樹脂注入プレート5と下型3によって形成されるキャビティ4の内寸法の高さ(図1では高さH)を調整することができるようになっており、その高さ調整を介して、キャビティ4内に配置されている強化繊維基材6の厚みを、樹脂注入含浸時の厚みと、樹脂注入含浸後に縮小される所定の成形品の厚みに対応する厚みとに制御することができるようになっている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are merely examples of desirable embodiments of the present invention, and the present invention is not limited to these embodiments.
FIG. 1 shows a state at the time of resin injection in a manufacturing apparatus used in a method for manufacturing a fiber reinforced plastic according to an embodiment of the present invention. The fiber reinforced plastic manufacturing apparatus 1 has an upper mold 2 and a lower mold 3, and a cavity 4 is formed by the upper mold 2 and the lower mold 3. More precisely, in this embodiment, the resin injection plate 5 is disposed immediately below the upper mold 2, and the cavity 4 is formed by the resin injection plate 5 and the lower mold 3. In this embodiment, a reinforcing fiber base 6 made of a laminate of reinforcing fiber fabrics is disposed in the cavity 4. Between the upper mold 2 and the lower mold 3, an O-ring 7 is provided around the cavity 4 as a sealing means extending over the entire circumference, and the cavity 4 is sealed via the O-ring 7. In this embodiment, a spacer 8 is interposed outside the O-ring 7 and between the upper mold 2 and the lower mold 3, and the spacer 8 is connected to a spacer height adjusting mechanism 9. The spacer 8 adjusts its own height position by the spacer height adjusting mechanism 9 so that the height of the inner dimension of the cavity 4 formed by the resin injection plate 5 and the lower mold 3 as described above (in FIG. 1). The height H) can be adjusted, and through the height adjustment, the thickness of the reinforcing fiber base 6 disposed in the cavity 4 is set to the thickness at the time of resin injection impregnation and the resin. It can be controlled to a thickness corresponding to the thickness of a predetermined molded product that is reduced after the impregnation by injection.
 この状態で、樹脂ポット10内に収容されているマトリックス樹脂11が、上型2に形成された樹脂注入口12、該樹脂注入口12へ接続された樹脂注入ライン25を介して、キャビティ4内の強化繊維基材6に向けて注入され、含浸されるが、この樹脂注入、含浸時には、スペーサ8により、キャビティ4の内寸法の高さHが所定の成形品の厚みよりも大きい状態に維持される。したがって、強化繊維基材6の厚みが所定の成形品の厚みよりも大きい状態(つまり、所定の成形品のVfよりも低Vfの状態)にて、マトリックス樹脂11が強化繊維基材6に注入されて含浸される。また、本実施態様では、真空ポンプ13により、樹脂トラップ14を介して下型3に形成された真空吸引口15を通してキャビティ4内を吸引により減圧状態にし、その減圧状態を利用してマトリックス樹脂11が強化繊維基材6に注入、含浸されるようになっている。ただし、この減圧状態を利用した注入、含浸の代わりに、マトリックス樹脂11を加圧注入することも可能であり、減圧状態を利用した注入と加圧注入とを併用することも可能である。樹脂注入口12を通して注入されてきたマトリックス樹脂11は、本実施態様では、樹脂注入プレート5内に形成された樹脂拡散路16内を強化繊維基材6の面に沿う方向に拡散されつつ、樹脂注入プレート5の互いに異なる位置に複数形成された樹脂注入経路17(本実施態様では、樹脂注入プレート5に形成された樹脂注入用の孔を含む経路)を介して、強化繊維基材6に注入、含浸される。樹脂注入プレート5は、樹脂注入口12から注入されたマトリックス樹脂が樹脂注入経路17まで導かれる樹脂拡散路16を有していることが好ましい。樹脂注入プレート5の材質は、金属、繊維強化プラスチック、熱可塑性樹脂であることが好ましい。また、樹脂拡散路16は、成形する繊維強化プラスチックの寸法、形状により適切に設計されるべきであるが、幅、深さ共に数mm~数十mmであることが好ましい。特に、3mm~20mmとすることにより、樹脂の拡散性を保持しながら、拡散路に残る樹脂量を少なくできるため好ましい。成形品の寸法が、大型で数m~数十mである場合、樹脂注入プレート5の材質を成形に用いる材質と同じとすることにより、線膨張係数を同じとすることができるため、好ましい。複数の樹脂注入経路17は、実質的に強化繊維基材6の全面にわたって分布されていることが好ましい。図1は、強化繊維基材6の厚み方向に、ある程度マトリックス樹脂11の含浸が進んだ状態を示している。 In this state, the matrix resin 11 accommodated in the resin pot 10 enters the cavity 4 via the resin injection port 12 formed in the upper mold 2 and the resin injection line 25 connected to the resin injection port 12. The reinforcing fiber base 6 is injected and impregnated, but when the resin is injected and impregnated, the height H of the inner dimension of the cavity 4 is maintained larger than the thickness of the predetermined molded article by the spacer 8. Is done. Therefore, the matrix resin 11 is injected into the reinforcing fiber base 6 in a state where the thickness of the reinforcing fiber base 6 is larger than the thickness of the predetermined molded product (that is, a state of Vf lower than Vf of the predetermined molded product). And impregnated. Further, in this embodiment, the vacuum pump 13 sucks the inside of the cavity 4 through the vacuum suction port 15 formed in the lower mold 3 through the resin trap 14 and sucks the matrix resin 11 using the decompressed state. Is injected and impregnated into the reinforcing fiber base 6. However, instead of the injection and impregnation using the reduced pressure state, the matrix resin 11 can be injected under pressure, and the injection using the reduced pressure state and the pressure injection can be used in combination. In the present embodiment, the matrix resin 11 injected through the resin injection port 12 is diffused in the resin diffusion path 16 formed in the resin injection plate 5 in a direction along the surface of the reinforcing fiber base 6, and the resin. Injection into the reinforcing fiber base 6 through a plurality of resin injection paths 17 formed in different positions on the injection plate 5 (in this embodiment, a path including holes for resin injection formed in the resin injection plate 5). Impregnated. The resin injection plate 5 preferably has a resin diffusion path 16 through which the matrix resin injected from the resin injection port 12 is led to the resin injection path 17. The material of the resin injection plate 5 is preferably metal, fiber reinforced plastic, or thermoplastic resin. The resin diffusion path 16 should be appropriately designed according to the size and shape of the fiber reinforced plastic to be molded, but it is preferable that both the width and the depth are several mm to several tens mm. Particularly, the thickness of 3 mm to 20 mm is preferable because the amount of resin remaining in the diffusion path can be reduced while maintaining the resin diffusibility. When the size of the molded product is large and several meters to several tens of meters, it is preferable that the material of the resin injection plate 5 is the same as the material used for molding because the linear expansion coefficient can be made the same. The plurality of resin injection paths 17 are preferably distributed substantially over the entire surface of the reinforcing fiber base 6. FIG. 1 shows a state in which the impregnation of the matrix resin 11 has progressed to some extent in the thickness direction of the reinforcing fiber base 6.
 やがて、マトリックス樹脂11が強化繊維基材6の厚み方向に強化繊維基材6の全体にわたって含浸され、含浸完了後には、真空吸引口15から樹脂が流出する。このマトリックス樹脂11の注入、含浸時には、目標とする高Vfの成形品の厚みよりも強化繊維基材6の厚みの方が大きいので、この状態では、マトリックス樹脂11は未だ硬化されていないものの、この状態でのVfは、目標とする高Vfの成形品のVfよりも低い。したがって、強化繊維の密度が目標とする高Vfの成形品の強化繊維密度よりも低く、強化繊維基材6内で樹脂が流動しやすくなっているので、比較的厚い強化繊維基材6であっても、マトリックス樹脂11は高い注入圧を加えないでも十分に良好に含浸される。すなわち、先ず、低Vf状態ではあるが、強化繊維基材6に容易にかつ十分に良好にマトリックス樹脂11が含浸された状態が形成される。 Eventually, the matrix resin 11 is impregnated throughout the reinforcing fiber base 6 in the thickness direction of the reinforcing fiber base 6, and after the impregnation is completed, the resin flows out from the vacuum suction port 15. At the time of injection and impregnation of the matrix resin 11, the thickness of the reinforcing fiber base 6 is larger than the target thickness of the molded article having a high Vf. In this state, although the matrix resin 11 is not yet cured, Vf in this state is lower than Vf of the target molded product having a high Vf. Therefore, since the density of the reinforcing fiber is lower than the target reinforcing fiber density of the molded product having a high Vf, and the resin easily flows in the reinforcing fiber base 6, the relatively thick reinforcing fiber base 6 is used. However, the matrix resin 11 is sufficiently satisfactorily impregnated without applying a high injection pressure. That is, first, although in the low Vf state, the reinforcing fiber base 6 is easily and sufficiently satisfactorily impregnated with the matrix resin 11.
 このように低Vf状態にて強化繊維基材6に十分に良好にマトリックス樹脂11が含浸された後、図2に示すように、上記のように使用している樹脂の真空吸引ライン18に加え、上記樹脂注入ライン側も真空ポンプ19と樹脂トラップ20(真空ポンプ13と樹脂トラップ14と兼用することも可能である。)を備えた真空吸引ライン21にバルブ22の操作により切り換えられて、強化繊維基材6に余剰に注入、含浸された樹脂が吸引、除去される。このとき同時に、真空吸引により減圧されたキャビティ4の内圧と上型2の外面にかかっている大気圧との差圧を利用して、上型2および樹脂注入プレート5が押し下げられ、上型2および樹脂注入プレート5が、より正確には樹脂注入プレート5が、強化繊維基材6を加圧し、キャビティ4の内寸法の高さが、該キャビティ4内に配置されている強化繊維基材6の厚みが所定の成形品の厚み(図2に示す、高さH’)になるように制御される。同時に、このキャビティ4の内寸法の高さは、スペーサ8の高さ調整により、この所定の高さとなるように制御される。図2に示した例では、上型2が、下型3に当接するまで下降される。強化繊維基材6の加圧は、上記のように大気圧と減圧されたキャビティ4の内圧との差圧のみを利用して行うこともできるが、これとは別に、あるいはこれに加えて、図2に二点鎖線で示すように、例えばシリンダ手段23(例えば、エアシリンダ)により、上型2を下型3に向けて加圧し、キャビティ4の内寸法の高さが、該キャビティ4内に配置されている強化繊維基材6の厚みが所定の成形品の厚みになるように制御することも可能である。このように、強化繊維基材6の厚みが所定の成形品の厚みとされ、余剰樹脂が吸引除去されることにより、樹脂含浸強化繊維基材6のVfは、高められ、目標とする高Vfとされる。 After the matrix fiber 11 is sufficiently satisfactorily impregnated into the reinforcing fiber base 6 in such a low Vf state, it is added to the resin vacuum suction line 18 used as described above, as shown in FIG. The resin injection line side is also switched to a vacuum suction line 21 having a vacuum pump 19 and a resin trap 20 (which can also be used as the vacuum pump 13 and the resin trap 14) by operating the valve 22 and strengthened. Resin that is excessively injected and impregnated into the fiber base 6 is sucked and removed. At the same time, the upper mold 2 and the resin injection plate 5 are pushed down by utilizing the pressure difference between the internal pressure of the cavity 4 reduced by vacuum suction and the atmospheric pressure applied to the outer surface of the upper mold 2, and the upper mold 2. The resin injection plate 5, more precisely, the resin injection plate 5 presses the reinforcing fiber base 6, and the height of the inner dimension of the cavity 4 is arranged in the cavity 4. Is controlled to be the thickness of a predetermined molded product (height H ′ shown in FIG. 2). At the same time, the height of the inner dimension of the cavity 4 is controlled to be the predetermined height by adjusting the height of the spacer 8. In the example shown in FIG. 2, the upper mold 2 is lowered until it comes into contact with the lower mold 3. The pressurization of the reinforcing fiber base 6 can be performed using only the differential pressure between the atmospheric pressure and the internal pressure of the cavity 4 reduced in pressure as described above, but separately or in addition to this, As indicated by a two-dot chain line in FIG. 2, the upper die 2 is pressurized toward the lower die 3 by, for example, cylinder means 23 (for example, an air cylinder), and the height of the inner dimension of the cavity 4 is increased in the cavity 4. It is also possible to control so that the thickness of the reinforcing fiber base 6 disposed on the sheet becomes the thickness of a predetermined molded product. In this way, the thickness of the reinforcing fiber base 6 is set to the thickness of the predetermined molded product, and the excess resin is removed by suction, whereby the Vf of the resin-impregnated reinforcing fiber base 6 is increased, and the target high Vf It is said.
 このように樹脂含浸強化繊維基材6の厚みが調整された後、その状態に維持され、真空吸引ライン18、21が閉じられ、強化繊維基材6に含浸されているマトリックス樹脂11が硬化される。マトリックス樹脂11には熱硬化性樹脂(例えば、エポキシ樹脂)が用いられることが多いので、マトリックス樹脂11の硬化は加熱によって行われる。加熱手段には、ヒータや熱媒等の周知の手段を用いればよい。このように所定の成形品の厚みに維持されている強化繊維基材6に含浸されたマトリックス樹脂9が硬化されることにより、目標とする高Vfの繊維強化プラスチック成形品24が得られる。樹脂の硬化完了後に、型を開いて成形品24を取り出せばよい。 After the thickness of the resin-impregnated reinforcing fiber base 6 is adjusted as described above, the state is maintained, the vacuum suction lines 18 and 21 are closed, and the matrix resin 11 impregnated in the reinforcing fiber base 6 is cured. The Since a thermosetting resin (for example, epoxy resin) is often used for the matrix resin 11, the matrix resin 11 is cured by heating. A known means such as a heater or a heat medium may be used as the heating means. In this way, the matrix resin 9 impregnated in the reinforcing fiber base 6 maintained at the predetermined thickness of the molded product is cured, whereby a target high Vf fiber reinforced plastic molded product 24 is obtained. After the resin has been cured, the mold may be opened and the molded product 24 taken out.
 このようにして、大がかりな高圧負荷装置を使用することなく簡易な成形装置にて、優れた成形作業性をもって短時間のうちに、高Vfの成形品を製造することができ、比較的厚みが厚く、大型の構造体であっても、容易に効率よく製造することが可能になる。とくに本実施態様では樹脂注入プレート5を用いるので、上型2は簡素な構造の型で済む。また、厚み制御のために加圧だけでなく、余剰樹脂の吸引除去、したがってキャビティ4側に対する吸引も併用するので、上型2に高い加圧力は不要であり、この面からも、上型2としては比較的剛性の低い簡単な構造の低剛性型(例えば、FRP型等の板状の低剛性型)を使用することが可能になり、上型2としては下型3よりも10倍以上剛性の低い型を使用することが可能になる。また、とくに上記実施態様では上型2直下に位置する樹脂注入プレート5を介してキャビティ4の形状を決めればよいので、上型2としては単なる板状の低剛性型でよく、強化繊維基材6側に成形品の表面形状に沿う形状の面部分を有する板状の型で十分である。これらの結果、設備費を抑えつつ、所望の成形を行うことが可能になる。 In this way, a high Vf molded product can be produced in a short time with excellent molding workability with a simple molding device without using a large high-pressure load device, and the thickness is relatively high. Even a thick and large structure can be manufactured easily and efficiently. In particular, since the resin injection plate 5 is used in this embodiment, the upper mold 2 can be a simple mold. Further, not only the pressurization for the thickness control but also the suction removal of the excess resin, and hence the suction to the cavity 4 side, are used together. Therefore, a high pressurizing force is not required for the upper mold 2. It is possible to use a low-rigidity type with a relatively low rigidity and a simple structure (for example, a plate-like low-rigidity type such as FRP type), and the upper die 2 is 10 times or more than the lower die 3 It becomes possible to use a mold having low rigidity. In particular, in the above embodiment, the shape of the cavity 4 may be determined via the resin injection plate 5 positioned immediately below the upper mold 2, so that the upper mold 2 may be a simple plate-like low-rigidity type. A plate-shaped mold having a surface portion having a shape along the surface shape of the molded product on the 6 side is sufficient. As a result, it is possible to perform desired molding while suppressing facility costs.
 図3、図4は、本発明の別の実施態様に係る繊維強化プラスチックの製造方法に用いる製造装置における樹脂注入時の様子を示している。上記実施態様では、シール手段としてのOリング7とキャビティ4の内寸法の高さを維持、制御するためのスペーサ8を互いに異なる部材に構成したが、図3に示す繊維強化プラスチックの製造装置31では、スペーサ32を、上型2と下型3との間に介装されるゴム状弾性体から構成し、そのゴム状弾性体の弾性変形による厚み変化を利用して、スペーサ32の高さを調整するようにしており、このスペーサ32は上型2と下型3間に介装されるシール手段を兼ねている。図4に示す繊維強化プラスチックの製造装置41では、図3に示した態様に比べ、樹脂注入プレート5と強化繊維基材6の間に樹脂拡散媒体42を介装し、樹脂拡散媒体42を介してマトリックス樹脂11がより均一に拡散された状態で強化繊維基材6に注入、含浸できるようになっている。樹脂拡散媒体42は、樹脂の流動抵抗が強化繊維基材6内を流れる場合の流動抵抗に比べ1/10以下の低い抵抗である媒体であることが好ましく、具体的には、ポリエチレンやポリプロピレン樹脂製のメッシュ織物で、目開きが#400以下のものが好ましい。図5は、図4に示した装置41において、図2に示したのと同様に、マトリックス樹脂の注入含浸後に余剰樹脂の吸引、除去を行う様子を示している。その他の構成は、図1、図2に示した態様に準じるので、図1、図2に付したのと同じ符号を付すことにより説明を省略する。 FIG. 3 and FIG. 4 show a state when resin is injected in a manufacturing apparatus used in a method for manufacturing a fiber reinforced plastic according to another embodiment of the present invention. In the above embodiment, the O-ring 7 as the sealing means and the spacer 8 for maintaining and controlling the height of the inner dimension of the cavity 4 are configured as different members, but the fiber-reinforced plastic manufacturing apparatus 31 shown in FIG. Then, the spacer 32 is composed of a rubber-like elastic body interposed between the upper mold 2 and the lower mold 3, and the height of the spacer 32 is obtained by utilizing a thickness change due to elastic deformation of the rubber-like elastic body. The spacer 32 also serves as a sealing means interposed between the upper mold 2 and the lower mold 3. In the fiber-reinforced plastic manufacturing apparatus 41 shown in FIG. 4, compared with the embodiment shown in FIG. 3, a resin diffusion medium 42 is interposed between the resin injection plate 5 and the reinforcing fiber base 6, and the resin diffusion medium 42 is interposed. Thus, the matrix resin 11 can be injected and impregnated into the reinforcing fiber base 6 in a state where the matrix resin 11 is more uniformly diffused. The resin diffusion medium 42 is preferably a medium in which the flow resistance of the resin is a low resistance of 1/10 or less compared to the flow resistance in the case of flowing through the reinforcing fiber base 6, and specifically, polyethylene or polypropylene resin. A mesh woven fabric having a mesh opening of # 400 or less is preferable. FIG. 5 shows how the apparatus 41 shown in FIG. 4 sucks and removes the excess resin after the matrix resin is injected and impregnated in the same manner as shown in FIG. Since other configurations are the same as those shown in FIGS. 1 and 2, the same reference numerals as those shown in FIGS.
 このような実施態様においては、ゴム状弾性体から構成されたスペーサ32自身の圧縮弾性変形量が、例えば、キャビティ4内の減圧度の調整により調整され、該スペーサ32の変形量の調整を介して該スペーサ32の高さが調整される。このとき、本実施態様では、上型2の下型3に向けての加圧力は、キャビティ4内の減圧度により調整される。このようなスペーサ32自身の高さ調整を介して、樹脂注入含浸時のキャビティ4の内寸法の高さHが、該キャビティ4内に配置されている強化繊維基材6の厚みが所定の成形品の厚みになるように、樹脂注入含浸後の余剰樹脂の吸引、除去時の厚みH’へと制御される。別個にシール手段を設けることなく、スペーサ32にシール手段の機能も持たせ、該スペーサ32自身の高さ調整を介して、所定の強化繊維基材6の厚み調整を行うようにしているので、成形装置全体の構造が一層簡素化される。その他の作用、効果は、図1、図2に示した実施態様に準じる。 In such an embodiment, the amount of compressive elastic deformation of the spacer 32 itself made of a rubber-like elastic body is adjusted by, for example, adjusting the degree of decompression in the cavity 4, and the amount of deformation of the spacer 32 is adjusted. Thus, the height of the spacer 32 is adjusted. At this time, in this embodiment, the applied pressure toward the lower mold 3 of the upper mold 2 is adjusted by the degree of decompression in the cavity 4. Through such height adjustment of the spacer 32 itself, the height H of the inner dimension of the cavity 4 at the time of resin injection impregnation, and the thickness of the reinforcing fiber base 6 disposed in the cavity 4 are predetermined molding. The thickness is controlled to the thickness H ′ at the time of suction and removal of the surplus resin after the resin injection impregnation so as to be the thickness of the product. Without providing the sealing means separately, the spacer 32 also has a function of the sealing means, and the thickness adjustment of the predetermined reinforcing fiber base 6 is performed through the height adjustment of the spacer 32 itself. The entire structure of the molding apparatus is further simplified. Other actions and effects are in accordance with the embodiment shown in FIGS.
 以上の実施態様では、一方の型の他方に向けての加圧を、減圧されたキャビティ4の内圧と上型2外の大気圧との差圧を利用して行う方法、それとは別に、あるいはそれとともに、図2に示したようなシリンダ手段23を用いて加圧する方法について説明したが、この加圧を、反キャビティ側に配置したプラダーバッグ等の他の手段を用いて行うことも可能である。 In the above embodiment, the method of performing pressurization toward the other of one mold using the pressure difference between the reduced internal pressure of the cavity 4 and the atmospheric pressure outside the upper mold 2, or alternatively, At the same time, the method of pressurizing using the cylinder means 23 as shown in FIG. 2 has been described, but this pressurization can also be performed using other means such as a bladder bag arranged on the side opposite to the cavity. is there.
 図6は、上記型の加圧にブラダーバッグを用いる別の実施態様に係る繊維強化プラスチックの製造装置51を示している。図6に示す実施態様では、下型3の反キャビティ4側に複数のプラダーバッグ52を配置し、それらプラダーバッグ52の内部に加圧流体(例えば、圧縮空気)を導入してプラダーバッグ52を膨張させることにより、下型3を上型2側に向けて、より正確には上型2の直下に位置する樹脂注入プレート5に向けて加圧する形態を例示している。このとき、上型2の位置を固定しておくために、上型固定治具53が用いられている。もちろん、この下型3の加圧とともに、真空吸引ライン21を介して余剰樹脂の吸引、除去も行われる。その他の構成は、図1、図2に示した態様に準じるので、図1、図2に付したのと同じ符号を付すことにより説明を省略する。 FIG. 6 shows a fiber reinforced plastic manufacturing apparatus 51 according to another embodiment using a bladder bag for pressurization of the above mold. In the embodiment shown in FIG. 6, a plurality of pradder bags 52 are arranged on the side opposite to the cavity 4 of the lower mold 3, and pressurized fluid (for example, compressed air) is introduced into the pradder bags 52 so that the pradder bags 52 are disposed. The form which pressurizes toward the resin injection | pouring plate 5 located directly under the upper mold | type 2 is illustrated by expanding the lower mold | type 3 toward the upper mold | type 2 side. At this time, an upper die fixing jig 53 is used to fix the position of the upper die 2. Of course, along with the pressurization of the lower mold 3, the excess resin is sucked and removed through the vacuum suction line 21. Since other configurations are the same as those shown in FIGS. 1 and 2, the same reference numerals as those shown in FIGS.
 このような実施態様においては、プラダーバッグ52の個数や配置を適切に設定することにより、大型の構造体の成形にあっても、均一に短時間で所定の加圧力を付与することが可能になり、成形品の望ましい成形状態を達成することが可能である。また、プラダーバッグ52内に導入する加圧流体に圧縮空気を使用すれば、迅速なプラダーバッグ52の膨縮動作が可能であるので、成形サイクルの時間をより短縮することも可能になる。その他の作用、効果は、図1、図2に示した実施態様に準じる。なお、プラダーバッグ52以外にも、加圧力および加圧される型の位置制御が可能であれば、他の加圧手段の使用も可能である。また、前述したように、プラダーバッグとして平板形状のものを使用し、実質的に上型2および下型3の少なくとも一方を面状で実質的に隙間なく加圧するようにすることも可能である。 In such an embodiment, by appropriately setting the number and arrangement of the bladder bags 52, it is possible to uniformly apply a predetermined pressure in a short time even when molding a large structure. Thus, it is possible to achieve a desired molding state of the molded product. In addition, if compressed air is used as the pressurized fluid introduced into the bladder bag 52, the rapid expansion / contraction operation of the bladder bag 52 is possible, so that the molding cycle time can be further shortened. Other actions and effects are in accordance with the embodiment shown in FIGS. In addition to the bladder bag 52, other pressurizing means can be used as long as the position control of the pressurizing and pressurizing mold is possible. Further, as described above, it is also possible to use a plate-like one as a bladder bag and to press at least one of the upper die 2 and the lower die 3 substantially in a plane and substantially without a gap. .
 さらに、本発明に係る方法においては、キャビティの内寸法の高さを成形品の厚みと同等の高さに制御後、樹脂硬化時には、上型と下型の位置を所定の関係を固定しておくことが好ましい。上型と下型の位置関係を固定し、キャビティも所定のサイズに固定しておくことにより、より確実に目標とする寸法の成形品が得られる。このとき、上型と下型の位置関係の固定には、例えばクランプ手段を使用できる。クランプ手段は、例えば図4の実施態様に対して適用した図7に示すように、上型2と下型3を上下から挟み込むクランプ61から構成でき、このクランプ61により、キャビティ4の内圧による上下型の離反力に対抗して、上型2と下型3の位置関係を固定できるようにすればよい。 Furthermore, in the method according to the present invention, after controlling the height of the inner dimension of the cavity to a height equivalent to the thickness of the molded product, the position of the upper mold and the lower mold is fixed in a predetermined relationship when the resin is cured. It is preferable to keep. By fixing the positional relationship between the upper die and the lower die and fixing the cavity to a predetermined size, a molded product having a target dimension can be obtained more reliably. At this time, for example, clamping means can be used to fix the positional relationship between the upper mold and the lower mold. For example, as shown in FIG. 7 applied to the embodiment of FIG. 4, the clamp means can be composed of a clamp 61 that sandwiches the upper mold 2 and the lower mold 3 from above and below. The positional relationship between the upper mold 2 and the lower mold 3 may be fixed against the mold separation force.
 以下に、本発明に係る繊維強化プラスチックの製造方法および装置のより具体的な実施例について説明する。以下の実施例における強化繊維基材の形成には、次のような炭素繊維織物とガラス繊維織物を使用し、マトリックス樹脂には、次のような樹脂を使用した。
・炭素繊維織物:強化繊維に炭素繊維を用いた一方向強化繊維織物。炭素繊維の目付は
        600g/m2である。
・ガラス繊維織物:強化繊維にガラス繊維を用いた3軸織物。強化繊維の配向角度は
        ±45/0°であり、ガラス繊維の目付は900g/m2である。
・マトリックス樹脂:2液硬化型のエポキシ樹脂。80℃×15時間硬化型。
Below, the more concrete Example of the manufacturing method and apparatus of the fiber reinforced plastic concerning this invention is described. The following carbon fiber woven fabric and glass fiber woven fabric were used for forming the reinforcing fiber base in the following examples, and the following resins were used for the matrix resin.
Carbon fiber fabric: A unidirectional reinforcing fiber fabric using carbon fibers as reinforcing fibers. The basis weight of the carbon fiber is 600 g / m 2 .
Glass fiber fabric: A triaxial fabric using glass fibers as reinforcing fibers. The orientation angle of the reinforcing fiber is ± 45/0 °, and the basis weight of the glass fiber is 900 g / m 2 .
Matrix resin: A two-component curable epoxy resin. 80 ° C x 15 hours curing type.
実施例1:
 図1を用いて説明する。寸法が幅350mm、長さ20mの炭素繊維織物を金属製の下型の上に50枚積層した。ピールプライ(成形後に、成形品から樹脂拡散媒体を容易に剥離させるために、炭素繊維織物と樹脂拡散媒体の間に配置する樹脂透過可能な層)、樹脂拡散媒体を、炭素繊維織物の積層体の表層の全面に配置し、さらにその上に樹脂注入プレートを配置した。樹脂注入プレートはポリプロピレン製の炭素繊維織物の積層体の全面を覆う形状であり、樹脂拡散路16、樹脂注入用の孔17を150mm間隔で格子状に設けた。
Example 1:
This will be described with reference to FIG. 50 carbon fiber fabrics having a width of 350 mm and a length of 20 m were laminated on a metal lower mold. Peel ply (a resin-permeable layer disposed between the carbon fiber fabric and the resin diffusion medium in order to easily peel the resin diffusion medium from the molded product after molding), the resin diffusion medium, and the carbon fiber fabric laminate. It arrange | positioned on the whole surface layer and also arrange | positioned the resin injection | pouring plate on it. The resin injection plate has a shape that covers the entire surface of the laminate of carbon fiber fabric made of polypropylene, and resin diffusion paths 16 and holes 17 for resin injection are provided in a grid at intervals of 150 mm.
 次にFRP製の上型を樹脂注入プレートの上に配置した。上型は炭素繊維織物の積層体、ピールプライ、樹脂拡散媒体、樹脂注入プレートを覆う形状であり、下型に配置されているゴム製Oリングを介して、下型との間で密閉可能とした。さらにOリングの外側にスペーサを配置した状態にて、真空吸引口から真空ポンプを用いて、上型と下型で密閉されたキャビティ内を減圧した。スペーサはジャッキボルトによる高さ調整機構を有している。ジャッキボルト機構は、下型に雌ねじ(タップ)が設けてあり、そこにボルトをねじ込み、ボルトのねじ込み量により、下型から突出するボルト高さを調節することができるようになっている。このスペーサは上型が下型に向けて加圧された際にキャビティの内寸法の高さHが37mmとなるように調整されている。キャビティ内を減圧することにより、大気圧により上型は下型に向けて加圧され、Oリングが若干潰れたが、スペーサによりキャビティの内寸法の高さは所定値(H=37mm)にて一定に保たれた。 Next, the upper mold made of FRP was placed on the resin injection plate. The upper mold has a shape covering the carbon fiber woven laminate, peel ply, resin diffusion medium, and resin injection plate, and can be sealed with the lower mold through a rubber O-ring arranged in the lower mold. . Further, with the spacer arranged outside the O-ring, the inside of the cavity sealed by the upper mold and the lower mold was decompressed using a vacuum pump from the vacuum suction port. The spacer has a height adjusting mechanism using jack bolts. In the jack bolt mechanism, a female screw (tap) is provided in a lower die, and a bolt is screwed therein, and a bolt height protruding from the lower die can be adjusted by a screwing amount of the bolt. This spacer is adjusted so that the height H of the inner dimension of the cavity is 37 mm when the upper die is pressed toward the lower die. By reducing the pressure inside the cavity, the upper die was pressed toward the lower die by atmospheric pressure, and the O-ring was slightly crushed. However, the height of the inner dimension of the cavity was set to a predetermined value (H = 37 mm) by the spacer. Kept constant.
 大気圧を利用して、樹脂ポット内のマトリックス樹脂を樹脂注入口から注入して、樹脂注入プレート、樹脂拡散媒体を介して炭素繊維織物の積層体に含浸させた。炭素繊維織物の積層体へのマトリックス樹脂の含浸完了は、真空吸引口からマトリックス樹脂が排出されることを確認することによって判断した。 Using the atmospheric pressure, the matrix resin in the resin pot was injected from the resin injection port, and the carbon fiber woven fabric was impregnated through the resin injection plate and the resin diffusion medium. Completion of impregnation of the matrix resin into the laminate of the carbon fiber fabric was judged by confirming that the matrix resin was discharged from the vacuum suction port.
 マトリックス樹脂の含浸完了後、図2に示すように、マトリックス樹脂の注入を止め、樹脂注入口を真空吸引口につなぎ、元からの真空吸引口に加えて、樹脂注入口からも、炭素繊維織物の積層体に余剰に注入されたマトリックス樹脂を吸引、除去した。そのとき同時に、スペーサ高さ調整機構のボルトを回転して、キャビティの内寸法の高さH’が30mmとなるように、スペーサの高さを下げた。樹脂注入口及び真空吸引口から炭素繊維織物の積層体に余剰に含浸している樹脂を吸引、除去するに従って、Oリングがつぶれ、上型はキャビティの内寸法の高さが最終的には炭素繊維織物の積層体の所定の厚みである30mmに到達するまで降下した。 After completion of the impregnation of the matrix resin, as shown in FIG. 2, the injection of the matrix resin is stopped, the resin injection port is connected to the vacuum suction port, and in addition to the original vacuum suction port, the carbon fiber fabric is also fed from the resin injection port. The matrix resin excessively injected into the laminate was sucked and removed. At the same time, the spacer height adjusting mechanism was rotated to lower the height of the spacer so that the height H ′ of the inner dimension of the cavity was 30 mm. As the excessively impregnated resin in the carbon fiber fabric laminate is sucked and removed from the resin injection port and vacuum suction port, the O-ring collapses, and the upper mold finally has a high inner dimension of the cavity. The fiber fabric was lowered until it reached a predetermined thickness of 30 mm.
 この後、下型に設けてある熱媒流路(図示略)に熱水を流し、マトリックス樹脂を80℃に加熱して硬化させ、炭素繊維強化プラスチックを成形した。 Thereafter, hot water was allowed to flow through a heat medium flow path (not shown) provided in the lower mold, and the matrix resin was heated to 80 ° C. to be cured to form a carbon fiber reinforced plastic.
 マトリックス樹脂の硬化完了後、炭素繊維強化プラスチックを脱型した。炭素繊維強化プラスチックを切断して断面を観察した結果、樹脂未含浸部やボイドなどの欠陥は見られなかった。また、炭素繊維強化プラスチックの厚みを、長手方向に1mごとに計20点測定した結果、30.0±1.0mmの範囲内であることを確認した。また、強化繊維の体積含有率VfをASTM D 3171-99に準拠して測定した結果、55%であり、高Vf化が達成できていることが確認された。 After completion of the matrix resin curing, the carbon fiber reinforced plastic was demolded. As a result of cutting the carbon fiber reinforced plastic and observing the cross section, no defects such as resin non-impregnated portions and voids were found. Further, the thickness of the carbon fiber reinforced plastic was measured at a total of 20 points every 1 m in the longitudinal direction, and as a result, it was confirmed that it was within the range of 30.0 ± 1.0 mm. Further, the volume content Vf of the reinforcing fiber was measured in accordance with ASTM D 3171-99. As a result, it was confirmed that a high Vf could be achieved.
実施例2:
 図4を用いて説明する。寸法が幅1500mm、長さ30mのガラス繊維織物を金属製の下型の上に50枚積層した。ピールプライ、樹脂拡散媒体を、ガラス繊維織物の積層体の表層の全面に配置し、さらにその上に樹脂注入プレートを配置した。樹脂注入プレートはポリプロピレン製の炭素繊維織物の積層体の全面を覆う形状であり、樹脂注入用の孔を150mm間隔で格子状に設けた。
Example 2:
This will be described with reference to FIG. 50 glass fiber fabrics having dimensions of 1500 mm width and 30 m length were laminated on a metal lower mold. The peel ply and the resin diffusion medium were arranged on the entire surface of the glass fiber fabric laminate, and a resin injection plate was further arranged thereon. The resin injection plate has a shape that covers the entire surface of the laminate of carbon fiber woven fabric made of polypropylene, and holes for resin injection are provided in a grid pattern at intervals of 150 mm.
 次にFRP製の上型を樹脂注入プレートの上に配置した。上型はガラス繊維織物の積層体、ピールプライ、樹脂拡散媒体、樹脂注入プレートを覆う形状であり、下型に配置されているゴム製のスペーサを介して、下型との間で密閉可能とした。ゴム製のスペーサを配置した状態にて、真空吸引口から真空ポンプを用いて、上型と下型で密閉されたキャビティ内を減圧した。スペーサは加圧により十分変形可能であり、上型と下型との間のシール機能を有すると共に上型と下型との間のキャビティの内寸法高さを調整する機能を有している。 Next, the upper mold made of FRP was placed on the resin injection plate. The upper mold is a shape that covers the laminated body of glass fiber fabric, peel ply, resin diffusion medium, and resin injection plate, and can be sealed with the lower mold through a rubber spacer arranged in the lower mold. . With the rubber spacers arranged, the inside of the cavity sealed by the upper mold and the lower mold was decompressed using a vacuum pump from the vacuum suction port. The spacer can be sufficiently deformed by pressurization, has a sealing function between the upper mold and the lower mold, and also has a function of adjusting the inner dimension height of the cavity between the upper mold and the lower mold.
 スペーサの厚みは、上型と下型で密閉されたキャビティ内を真空吸引により減圧し、上型を下型に向けて加圧した状態において、キャビティの内寸法の高さHが40mmとなるように調整した。このため、キャビティの内寸法の高さは一定に保たれた。 The thickness of the spacer is such that the height H of the inner dimension of the cavity is 40 mm when the inside of the cavity sealed by the upper mold and the lower mold is depressurized by vacuum suction and the upper mold is pressurized toward the lower mold. Adjusted. For this reason, the height of the inner dimension of the cavity was kept constant.
 その後、図6に示すように、下型の下にブラダーバッグを配置し、上型固定治具で上型を固定した。ブラダーバッグは直径が約150mmの圧縮空気が漏れないホースを利用し、ホース内に圧縮空気を入れることによりホースを膨張させた。ブラダーバッグはキャビティの内寸法の高さHが40mmとなるように圧力を調整した。マトリックス樹脂を圧力0.3MPaに加圧して、樹脂注入口から注入し、樹脂注入プレート、樹脂拡散媒体を介してガラス繊維織物の積層体に含浸させた。マトリックス樹脂の注入中において、キャビティの内寸法の高さHが40mmとなるように、ブラダーバッグの圧力を上げて、調整した。ガラス繊維織物の積層体へのマトリックス樹脂の含浸完了は、真空吸引口からマトリックス樹脂が排出されることを確認することによって判断した。マトリックス樹脂の含浸に要した時間は、実施例1に比べて、約半分の時間であった。 Then, as shown in FIG. 6, a bladder bag was placed under the lower mold, and the upper mold was fixed with the upper mold fixing jig. For the bladder bag, a hose having a diameter of about 150 mm that does not leak compressed air was used, and the hose was expanded by putting compressed air into the hose. The pressure of the bladder bag was adjusted so that the height H of the inner dimension of the cavity was 40 mm. The matrix resin was pressurized to a pressure of 0.3 MPa, injected from a resin injection port, and impregnated into a laminated body of glass fiber fabrics through a resin injection plate and a resin diffusion medium. During injection of the matrix resin, the bladder bag pressure was increased and adjusted so that the height H of the inner dimension of the cavity was 40 mm. Completion of the impregnation of the matrix resin into the glass fiber fabric laminate was judged by confirming that the matrix resin was discharged from the vacuum suction port. The time required for impregnation with the matrix resin was about half that of Example 1.
 マトリックス樹脂の含浸完了後、図6に示すように、マトリックス樹脂の注入を止め、樹脂注入口を真空吸引口につなぎ、元からの真空吸引口に加えて、樹脂注入口からも、ガラス繊維織物の積層体に余剰に注入されたマトリックス樹脂を吸引した。そのときにブラダーバッグの圧力を、キャビティの内寸法の高さH’が32mmとなるように、調整した。樹脂注入口及び真空吸引口から炭素繊維織物の積層体に余剰に含浸している樹脂を吸引、除去するに従って、スペーサがつぶれ、上型はキャビティの内寸法の高さが最終的にはガラス繊維織物の積層体の所定の厚みである32mmに到達するまで降下した。 After completion of the impregnation of the matrix resin, as shown in FIG. 6, the injection of the matrix resin is stopped, the resin injection port is connected to the vacuum suction port, and in addition to the original vacuum suction port, the glass fiber fabric is also fed from the resin injection port. The matrix resin excessively injected into the laminate was sucked. At that time, the pressure of the bladder bag was adjusted so that the height H ′ of the inner dimension of the cavity was 32 mm. As the excess resin impregnated into the carbon fiber fabric laminate is sucked and removed from the resin injection port and vacuum suction port, the spacer collapses, and the upper mold finally has a high internal dimension of the cavity. The woven fabric was lowered until reaching a predetermined thickness of 32 mm.
 この後、下型に設けてある熱媒流路(図示略)に熱水を流し、マトリックス樹脂を80℃に加熱して硬化させ、ガラス繊維強化プラスチックを成形した。 Thereafter, hot water was allowed to flow through a heat medium flow path (not shown) provided in the lower mold, and the matrix resin was heated to 80 ° C. to be cured, thereby molding a glass fiber reinforced plastic.
 マトリックス樹脂の硬化完了後、ガラス繊維強化プラスチックを脱型した。ガラス繊維強化プラスチックを切断して断面を観察した結果、樹脂未含浸部やボイドなどの欠陥は見られなかった。また、強化繊維の体積含有率VfをASTM D 3171-99に準拠して測定した結果、55%であり、高Vf化が達成できていることが確認された。また、ガラス繊維強化プラスチックの厚みを、長手方向に1mごとに計30点測定した結果、32.0±1.0mmの範囲内であることを確認した。 After completion of curing of the matrix resin, the glass fiber reinforced plastic was removed. As a result of cutting the glass fiber reinforced plastic and observing the cross section, no defects such as resin non-impregnated portions and voids were found. Further, the volume content Vf of the reinforcing fiber was measured in accordance with ASTM D 3171-99. As a result, it was confirmed that a high Vf could be achieved. Further, the thickness of the glass fiber reinforced plastic was measured at a total of 30 points every 1 m in the longitudinal direction, and as a result, it was confirmed that it was within the range of 32.0 ± 1.0 mm.
比較例1:
 図8を用いて説明する。寸法が幅350mm、長さ20mの炭素繊維織物を金属製の下型101の上に50枚積層して強化繊維基材102を形成した。ピールプライ、樹脂拡散媒体103を、炭素繊維織物の積層体の表層の全面に配置した。バッグフィルム104にて全体を覆い、バッグフィルム104の端部を、シール材105を用いて、下型101と密閉した。用いたシール材105の総量は、約45mであった。
Comparative Example 1:
This will be described with reference to FIG. 50 reinforced carbon fiber fabrics having a width of 350 mm and a length of 20 m were laminated on a metal lower mold 101 to form a reinforcing fiber substrate 102. The peel ply and the resin diffusion medium 103 were arranged on the entire surface of the carbon fiber woven laminate. The whole was covered with the bag film 104, and the end of the bag film 104 was sealed with the lower mold 101 using the sealing material 105. The total amount of the sealing material 105 used was about 45 m.
 バッグフィルム104で密閉した内部を、真空ポンプ106による樹脂トラップ107、真空吸引口108を介した真空吸引により減圧し、バッグフィルム104を介して、炭素繊維織物の積層体に大気圧をかけた。炭素繊維織物の積層体の厚みは約30mmであった。 The inside sealed with the bag film 104 was depressurized by vacuum suction through a resin trap 107 and a vacuum suction port 108 by a vacuum pump 106, and atmospheric pressure was applied to the carbon fiber fabric laminate through the bag film 104. The thickness of the carbon fiber fabric laminate was about 30 mm.
 大気圧を利用して、マトリックス樹脂109を樹脂注入口110から注入し、樹脂拡散媒体103を介して炭素繊維織物の積層体に含浸させた。マトリックス樹脂がゲル化するまで注入を続けたが、真空吸引口108からマトリックス樹脂の排出は確認されなかった。 The matrix resin 109 was injected from the resin injection port 110 using atmospheric pressure, and the carbon fiber woven fabric laminate was impregnated through the resin diffusion medium 103. The injection was continued until the matrix resin gelled, but no discharge of the matrix resin was confirmed from the vacuum suction port.
 マトリックス樹脂の注入完了後、マトリックスの注入を止め、下型に設けてある熱媒流路(図示略)に熱水を流し、マトリックス樹脂を80℃に加熱して硬化させ、炭素繊維強化プラスチックを成形した。 After the injection of the matrix resin is completed, the injection of the matrix is stopped, hot water is allowed to flow through a heat medium flow path (not shown) provided in the lower mold, the matrix resin is heated to 80 ° C. to cure, and the carbon fiber reinforced plastic is Molded.
 マトリックス樹脂の硬化完了後、炭素繊維強化プラスチックを脱型した。炭素繊維強化プラスチックを切断して断面を観察した結果、全体に樹脂未含浸部が見られた。また、成形後には再利用不可能なバッグフィルムが約21m2とシール材が約45m発生した。 After completing the curing of the matrix resin, the carbon fiber reinforced plastic was demolded. The carbon fiber reinforced plastic was cut and the cross section was observed. In addition, about 21 m 2 of bag film that cannot be reused after molding and about 45 m of sealing material were generated.
 本発明に係る繊維強化プラスチックの製造方法および装置は、実質的にあらゆる繊維強化プラスチック製成形品の製造に適用可能であり、とくに、航空機や風車の部品など高品質が求められる大型の構造体の製造に好適である。 The method and apparatus for producing fiber reinforced plastic according to the present invention can be applied to the production of virtually any fiber reinforced plastic molded product, particularly for large structures that require high quality such as aircraft and windmill parts. Suitable for manufacturing.
1、31、41、51 繊維強化プラスチックの製造装置
2 上型
3 下型
4 キャビティ
5 樹脂注入プレート
6 強化繊維基材
7 シール手段としてのOリング
8、32 スペーサ
9 スペーサ高さ調整機構
10 樹脂ポット
11 マトリックス樹脂
12 樹脂注入口
13、19 真空ポンプ
14、20 樹脂トラップ
15 真空吸引口
16 樹脂拡散路
17 樹脂注入経路(樹脂注入用の孔)
18、21 真空吸引ライン
22 バルブ
23 シリンダ手段
24 繊維強化プラスチック成形品
25 樹脂注入ライン
42 樹脂拡散媒体
52 ブラダーバッグ
53 上型固定治具
61 クランプ
DESCRIPTION OF SYMBOLS 1, 31, 41, 51 Fiber reinforced plastic manufacturing apparatus 2 Upper mold 3 Lower mold 4 Cavity 5 Resin injection plate 6 Reinforced fiber base 7 O- rings 8 and 32 as sealing means Spacer 9 Spacer height adjustment mechanism 10 Resin pot 11 Matrix resin 12 Resin injection port 13, 19 Vacuum pump 14, 20 Resin trap 15 Vacuum suction port 16 Resin diffusion path 17 Resin injection path (hole for resin injection)
18, 21 Vacuum suction line 22 Valve 23 Cylinder means 24 Fiber reinforced plastic molding 25 Resin injection line 42 Resin diffusion medium 52 Bladder bag 53 Upper mold fixing jig 61 Clamp

Claims (26)

  1.  上型と下型によって形成されるキャビティ内に強化繊維基材を配置し、キャビティを密閉した後、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に該樹脂を硬化させる繊維強化プラスチックの製造方法において、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さを大きくした状態にて、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に、上型および下型の少なくとも一方を他方に向けて加圧するとともに、強化繊維基材に余剰に注入、含浸された樹脂を吸引、除去することにより、前記キャビティの内寸法の高さを、該キャビティ内に配置されている強化繊維基材の厚みが所定の成形品の厚みになるように制御し、その状態にて、マトリックス樹脂を硬化させることを特徴とする繊維強化プラスチックの製造方法。 A fiber reinforced plastic in which a reinforcing fiber base is placed in a cavity formed by an upper mold and a lower mold, the cavity is sealed, a matrix resin is injected and impregnated into the reinforcing fiber base, and then the resin is cured. In the production method of the above, at the time of resin injection and impregnation, in a state where the height of the inner dimension of the cavity is larger than the thickness of a predetermined molded product, the matrix resin is injected into the reinforcing fiber base material and impregnated. While pressurizing at least one of the upper mold and the lower mold toward the other and excessively injecting and impregnating the impregnated resin into the reinforcing fiber substrate, the height of the inner dimension of the cavity is reduced. It is characterized in that the thickness of the reinforcing fiber base disposed inside is controlled to be the thickness of a predetermined molded product, and in that state, the matrix resin is cured. Method of manufacturing that fiber-reinforced plastic.
  2.  少なくとも上型と下型によって形成されるキャビティ内に強化繊維基材を配置し、キャビティを密閉した後、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に該樹脂を硬化させる繊維強化プラスチックの製造方法において、上型および下型との間に実質的に隙間が形成されないように強化繊維基材をキャビティ内に配置するとともに、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さを大きくした状態にて、上型または下型に接続された樹脂注入ラインからマトリックス樹脂をキャビティ内に注入して強化繊維基材に含浸させ、強化繊維基材への含浸が完了した後に、強化繊維基材に余剰に注入、含浸された樹脂を吸引、除去するとともに、上型および下型の少なくとも一方を他方に向けて加圧することにより、前記キャビティの内寸法の高さを、該キャビティ内に配置されている強化繊維基材の厚みが所定の成形品の厚みになるように制御し、その状態にて、マトリックス樹脂を硬化させることを特徴とする繊維強化プラスチックの製造方法。 A fiber reinforced material in which a reinforcing fiber base material is disposed in a cavity formed by at least an upper die and a lower die, the cavity is sealed, a matrix resin is injected and impregnated into the reinforcing fiber base material, and then the resin is cured. In the plastic manufacturing method, the reinforcing fiber base is disposed in the cavity so that substantially no gap is formed between the upper mold and the lower mold, and at the time of resin injection and impregnation, the thickness of the predetermined molded product is exceeded. With the inner dimension of the cavity increased, a matrix resin is injected into the cavity from a resin injection line connected to the upper mold or the lower mold to impregnate the reinforcing fiber base. After the impregnation is completed, the resin is excessively injected into the reinforcing fiber base, and the impregnated resin is sucked and removed, and at least one of the upper mold and the lower mold is applied toward the other. In this state, the height of the inner dimension of the cavity is controlled so that the thickness of the reinforcing fiber base disposed in the cavity becomes the thickness of the predetermined molded product. A method for producing a fiber-reinforced plastic, characterized by curing.
  3.  キャビティ内を真空吸引した状態にて、マトリックス樹脂を注入することを特徴とする請求項1または2に記載の繊維強化プラスチックの製造方法。 3. The method for producing a fiber-reinforced plastic according to claim 1, wherein the matrix resin is injected in a state where the cavity is vacuum-sucked.
  4.  キャビティ内に強化繊維基材を配置した後、前記キャビティ内を真空吸引して減圧し、前記キャビティに連通している場所から、マトリクッス樹脂を、大気圧とキャビティ内圧との差圧を利用して強化繊維基材に注入、含浸する、請求項1~3のいずれかに記載の繊維強化プラスチックの製造方法。 After arranging the reinforcing fiber base in the cavity, the inside of the cavity is vacuumed and depressurized, and the matrix resin is taken from the place communicating with the cavity using the differential pressure between the atmospheric pressure and the cavity internal pressure. The method for producing a fiber-reinforced plastic according to any one of claims 1 to 3, wherein the fiber-reinforced plastic substrate is injected and impregnated.
  5.  強化繊維基材の面方向に複数配置された樹脂注入経路を介してほぼ同時にマトリックス樹脂を強化繊維基材に注入する、請求項1~4のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 1 to 4, wherein the matrix resin is injected into the reinforcing fiber base substantially simultaneously through a plurality of resin injection paths arranged in the surface direction of the reinforcing fiber base.
  6.  マトリックス樹脂を強化繊維基材の面に沿う方向に拡散させつつ前記複数の樹脂注入経路を介してほぼ同時にマトリックス樹脂を強化繊維基材に注入する、請求項5に記載の繊維強化プラスチックの製造方法。 6. The method for producing a fiber reinforced plastic according to claim 5, wherein the matrix resin is injected into the reinforcing fiber base substantially simultaneously through the plurality of resin injection paths while diffusing the matrix resin in a direction along the surface of the reinforcing fiber base. .
  7.  前記上型および/または下型の一方と強化繊維基材との間に、実質的に隙間が形成されないように樹脂注入プレートおよび/または樹脂拡散媒体を介在させ、該樹脂注入プレートおよび/または樹脂拡散媒体に前記複数の樹脂注入経路を連通し、該複数の樹脂注入経路を介してマトリックス樹脂を強化繊維基材に注入する、請求項5または6に記載の繊維強化プラスチックの製造方法。 A resin injection plate and / or a resin diffusion medium are interposed between one of the upper mold and / or the lower mold and the reinforcing fiber base so that a gap is not substantially formed, and the resin injection plate and / or resin The method for producing a fiber reinforced plastic according to claim 5 or 6, wherein the plurality of resin injection paths are communicated with a diffusion medium, and the matrix resin is injected into the reinforced fiber base material through the plurality of resin injection paths.
  8.  前記樹脂注入プレートは、少なくとも一つの樹脂注入経路に対して連通する複数の樹脂拡散路と、樹脂拡散路に開口した樹脂注入口を形成し、マトリックス樹脂を複数の樹脂拡散路を経由して樹脂注入口から強化繊維基材に含浸する、請求項7に記載の繊維強化プラスチックの製造方法。 The resin injection plate is formed with a plurality of resin diffusion paths communicating with at least one resin injection path and a resin injection opening opened in the resin diffusion path, and the matrix resin passes through the resin diffusion paths The method for producing a fiber reinforced plastic according to claim 7, wherein the reinforcing fiber base material is impregnated from the inlet.
  9.  前記樹脂拡散媒体は網目構造を有し、該網目構造を介してマトリックス樹脂を強化繊維基材の面に沿う方向に拡散させる、請求項7に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 7, wherein the resin diffusion medium has a network structure, and the matrix resin is diffused through the network structure in a direction along the surface of the reinforcing fiber substrate.
  10.  前記複数の樹脂注入経路を、前記強化繊維基材に余剰に含浸された樹脂の吸引、除去にも使用する、請求項5~9のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 5 to 9, wherein the plurality of resin injection paths are also used for suction and removal of the resin excessively impregnated in the reinforcing fiber base.
  11.  予め前記樹脂注入ラインに真空吸引による減圧手段を設けておき、前記減圧手段はマトリックス樹脂を強化繊維基材に含浸中には使わず、マトリックス樹脂の強化繊維基材への含浸が完了した後、樹脂注入ラインを閉じ、前記減圧手段を使って、強化繊維基材に余剰に含浸された樹脂を吸引、除去する、請求項2~10のいずれかに記載の繊維強化プラスチックの製造方法。 A pressure reducing means by vacuum suction is provided in advance in the resin injection line, and the pressure reducing means is not used during the impregnation of the matrix resin into the reinforcing fiber base, and after the impregnation of the matrix resin into the reinforcing fiber base is completed, The method for producing a fiber-reinforced plastic according to any one of claims 2 to 10, wherein a resin injection line is closed, and the resin excessively impregnated in the reinforcing fiber base is sucked and removed using the decompression means.
  12.  上型と下型との間のキャビティの外側に密閉機構とは別のキャビティ内寸法の高さを決めるスペーサを配置し、該スペーサの高さを調整することにより、キャビティ内寸法の高さを、該キャビティ内に配置されている強化繊維基材の厚みが所定の成形品の厚みになるように制御する、請求項1~11のいずれかに記載の繊維強化プラスチックの製造方法。 By placing a spacer that determines the height of the cavity internal dimension, which is different from the sealing mechanism, outside the cavity between the upper mold and the lower mold, and adjusting the height of the spacer, the height of the internal cavity dimension can be reduced. The method for producing a fiber-reinforced plastic according to any one of claims 1 to 11, wherein the thickness of the reinforcing fiber base disposed in the cavity is controlled to be a predetermined thickness of the molded product.
  13.  前記スペーサがゴム弾性体からなる、請求項12に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 12, wherein the spacer is made of a rubber elastic body.
  14.  キャビティ内の減圧度の調整により前記スペーサの変形量を調整し、該スペーサの変形量の調整を介して該スペーサの高さを調整する、請求項13に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 13, wherein the amount of deformation of the spacer is adjusted by adjusting the degree of decompression in the cavity, and the height of the spacer is adjusted through adjustment of the amount of deformation of the spacer.
  15.  前記上型および下型の少なくとも一方の他方に向けての加圧を、シリンダ手段にて行う、請求項1~14のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 1 to 14, wherein pressing toward at least one of the upper mold and the lower mold is performed by a cylinder means.
  16.  前記上型および下型の少なくとも一方の他方に向けての加圧を、反キャビティ側に配置されたブラダーバッグの膨張により行う、請求項1~14のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 1 to 14, wherein the pressing toward the other of at least one of the upper mold and the lower mold is performed by expansion of a bladder bag disposed on the side opposite to the cavity. .
  17.  前記ブラダーバッグが平板形状をしており、実質的に上型および下型の少なくとも一方を面状で実質的に隙間なく加圧する、請求項16に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 16, wherein the bladder bag has a flat plate shape, and substantially presses at least one of the upper mold and the lower mold in a planar shape with substantially no gap.
  18.  キャビティの外側に設けた上型と下型との間の密閉機能とキャビティの高さ調整機能を兼ね備えた機構により、樹脂注入、含浸時には、所定の成形品の厚みよりもキャビティの内寸法の高さを大きくした状態にて、マトリックス樹脂を強化繊維基材に注入して含浸させ、しかる後に上型および下型の少なくとも一方を他方に向けて移動して所定の成形品の厚みに調整するとともに、強化繊維基材に余剰に注入、含浸された樹脂を吸引、除去し、その状態にて、マトリックス樹脂を硬化させる、請求項1~17のいずれかに記載の繊維強化プラスチックの製造方法。 When the resin is injected or impregnated, the internal dimension of the cavity is higher than the thickness of the predetermined molded product by a mechanism that combines the sealing function between the upper mold and the lower mold provided outside the cavity and the height adjustment function of the cavity. In a state where the thickness is increased, the matrix resin is injected and impregnated into the reinforcing fiber base, and then at least one of the upper mold and the lower mold is moved toward the other to adjust the thickness of the predetermined molded product. The method for producing a fiber-reinforced plastic according to any one of claims 1 to 17, wherein the resin that is excessively injected and impregnated into the reinforcing fiber base is sucked and removed, and the matrix resin is cured in that state.
  19.  前記キャビティの内寸法の高さの制御後、前記上型と下型の位置関係を固定する、請求項1~18のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 1 to 18, wherein the positional relationship between the upper mold and the lower mold is fixed after controlling the height of the inner dimension of the cavity.
  20.  前記上型と下型の位置関係をクランプ手段により固定する、請求項19に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to claim 19, wherein the positional relationship between the upper mold and the lower mold is fixed by a clamping means.
  21.  請求項1~20のいずれかに記載の方法に用いる装置であって、上型と下型との間でかつキャビティの周囲に、前記キャビティの内寸法の高さに対応する上型と下型間の距離を、前記樹脂注入、含浸時における距離と、前記樹脂硬化時における距離との少なくとも二段階に調整可能な高さ調整手段を有することを特徴とする繊維強化プラスチックの製造装置。 The apparatus used in the method according to any one of claims 1 to 20, wherein the upper mold and the lower mold correspond to the height of the inner dimension of the cavity between the upper mold and the lower mold and around the cavity. An apparatus for producing a fiber reinforced plastic, comprising height adjusting means capable of adjusting a distance between the distance at the time of resin injection and impregnation and a distance at the time of resin curing.
  22.  前記高さ調整手段が、上型と下型間の距離を自身の上下位置の調整により調整可能なスペーサを備えた手段からなる、請求項21に記載の繊維強化プラスチックの製造装置。 22. The apparatus for producing fiber-reinforced plastic according to claim 21, wherein the height adjusting means comprises means having a spacer capable of adjusting the distance between the upper mold and the lower mold by adjusting its vertical position.
  23.  前記高さ調整手段が、キャビティを密閉可能で、自身の弾性変形により上型と下型間の距離を調整可能なシール手段を備えた手段からなる、請求項21または22に記載の繊維強化プラスチックの製造装置。 23. The fiber reinforced plastic according to claim 21 or 22, wherein the height adjusting means comprises means having a sealing means capable of sealing the cavity and adjusting the distance between the upper mold and the lower mold by its own elastic deformation. Manufacturing equipment.
  24.  前記上型と下型の曲げ剛性の比が10倍以上である、請求項21~23のいずれかに記載の繊維強化プラスチックの製造装置。 The apparatus for producing fiber-reinforced plastic according to any one of claims 21 to 23, wherein a ratio of bending rigidity between the upper mold and the lower mold is 10 times or more.
  25.  前記上型と下型の一方が、強化繊維基材側に成形品の表面形状に沿う形状の面部分を有する板状の低剛性型からなる、請求項21~24のいずれかに記載の繊維強化プラスチックの製造装置。 The fiber according to any one of claims 21 to 24, wherein one of the upper mold and the lower mold is a plate-shaped low-rigidity mold having a surface portion shaped along the surface shape of the molded product on the reinforcing fiber substrate side. Reinforced plastic manufacturing equipment.
  26.  前記低剛性型が繊維強化プラスチックから形成されている、請求項25に記載の繊維強化プラスチックの製造装置。 26. The apparatus for producing fiber-reinforced plastic according to claim 25, wherein the low-rigidity mold is formed from fiber-reinforced plastic.
PCT/JP2010/067203 2009-10-09 2010-10-01 Process and apparatus for producing fiber-reinforced plastic WO2011043253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010548954A JPWO2011043253A1 (en) 2009-10-09 2010-10-01 Method and apparatus for manufacturing fiber reinforced plastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-235512 2009-10-09
JP2009235512 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011043253A1 true WO2011043253A1 (en) 2011-04-14

Family

ID=43856711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067203 WO2011043253A1 (en) 2009-10-09 2010-10-01 Process and apparatus for producing fiber-reinforced plastic

Country Status (2)

Country Link
JP (1) JPWO2011043253A1 (en)
WO (1) WO2011043253A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245782A (en) * 2011-05-30 2012-12-13 Boeing Co:The Method and apparatus for reworking structure using resin infusion of fiber preform
JP2013203005A (en) * 2012-03-29 2013-10-07 Toray Ind Inc Device and method of manufacturing frp
JP2014188999A (en) * 2013-03-28 2014-10-06 Mitsubishi Aircraft Corp Molding device for fiber-reinforced plastic member, and method for molding the same
JP2014223805A (en) * 2013-05-16 2014-12-04 ザ・ボーイング・カンパニーTheBoeing Company Composite structure and method
WO2014192601A1 (en) 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
JP2014534918A (en) * 2011-11-08 2014-12-25 スネクマ Pressure holding device and associated method for manufacturing composite parts by resin injection
DE102015217408A1 (en) 2014-09-18 2016-03-24 Honda Motor Co., Ltd. Method and apparatus for producing a molded article of fiber reinforced plastic
KR101741792B1 (en) 2017-01-19 2017-05-30 주식회사 에스컴텍 infusion table apparatus for manufacturing composite product
KR101980324B1 (en) * 2017-11-13 2019-05-20 공주대학교 산학협력단 Fiber reinforced plastic and manufacturing method therof
WO2021019604A1 (en) * 2019-07-26 2021-02-04 三菱重工業株式会社 Composite material forming device and composite material forming method
CN115214068A (en) * 2021-04-25 2022-10-21 广州汽车集团股份有限公司 Machining die and machining method for forming hole
CN117532912A (en) * 2023-11-27 2024-02-09 江苏赛欧环保设备有限公司 Vacuum filling process for processing air duct

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141871A (en) * 1976-05-21 1977-11-26 Asahi Glass Co Ltd Method of formation of resin by injection
JPS5936848B2 (en) * 1979-03-16 1984-09-06 日東紡績株式会社 Molding method for fiber-reinforced plastic molded products
JPH039815A (en) * 1989-06-06 1991-01-17 Nissan Motor Co Ltd Resin molding die
JPH04294113A (en) * 1990-12-19 1992-10-19 United Technol Corp <Utc> Method and device for transfer-molding resin
JPH06246771A (en) * 1993-02-24 1994-09-06 Fukui Giyomou Kk Production of fiber reinforced resin molded object
JPH1015948A (en) * 1996-06-28 1998-01-20 Ikex Kogyo:Kk Mold apparatus
JPH11348059A (en) * 1998-06-03 1999-12-21 Society Of Japanese Aerospace Co Inc Molding method of composite material, and molding tool thereof
JP2005212383A (en) * 2004-01-30 2005-08-11 Toho Tenax Co Ltd Resin transfer forming method and manufacturing method for sandwich laminate
JP2005271551A (en) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd Resin transfer molding method and molding apparatus for it
JP2007001179A (en) * 2005-06-24 2007-01-11 Toyota Industries Corp Method for molding molded article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141871A (en) * 1976-05-21 1977-11-26 Asahi Glass Co Ltd Method of formation of resin by injection
JPS5936848B2 (en) * 1979-03-16 1984-09-06 日東紡績株式会社 Molding method for fiber-reinforced plastic molded products
JPH039815A (en) * 1989-06-06 1991-01-17 Nissan Motor Co Ltd Resin molding die
JPH04294113A (en) * 1990-12-19 1992-10-19 United Technol Corp <Utc> Method and device for transfer-molding resin
JPH06246771A (en) * 1993-02-24 1994-09-06 Fukui Giyomou Kk Production of fiber reinforced resin molded object
JPH1015948A (en) * 1996-06-28 1998-01-20 Ikex Kogyo:Kk Mold apparatus
JPH11348059A (en) * 1998-06-03 1999-12-21 Society Of Japanese Aerospace Co Inc Molding method of composite material, and molding tool thereof
JP2005212383A (en) * 2004-01-30 2005-08-11 Toho Tenax Co Ltd Resin transfer forming method and manufacturing method for sandwich laminate
JP2005271551A (en) * 2004-03-26 2005-10-06 Nissan Motor Co Ltd Resin transfer molding method and molding apparatus for it
JP2007001179A (en) * 2005-06-24 2007-01-11 Toyota Industries Corp Method for molding molded article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012245782A (en) * 2011-05-30 2012-12-13 Boeing Co:The Method and apparatus for reworking structure using resin infusion of fiber preform
JP2014534918A (en) * 2011-11-08 2014-12-25 スネクマ Pressure holding device and associated method for manufacturing composite parts by resin injection
JP2013203005A (en) * 2012-03-29 2013-10-07 Toray Ind Inc Device and method of manufacturing frp
JP2014188999A (en) * 2013-03-28 2014-10-06 Mitsubishi Aircraft Corp Molding device for fiber-reinforced plastic member, and method for molding the same
JP2014223805A (en) * 2013-05-16 2014-12-04 ザ・ボーイング・カンパニーTheBoeing Company Composite structure and method
WO2014192601A1 (en) 2013-05-31 2014-12-04 東レ株式会社 Method and device for manufacturing fiber-reinforced plastic
DE102015217408A1 (en) 2014-09-18 2016-03-24 Honda Motor Co., Ltd. Method and apparatus for producing a molded article of fiber reinforced plastic
KR101741792B1 (en) 2017-01-19 2017-05-30 주식회사 에스컴텍 infusion table apparatus for manufacturing composite product
KR101980324B1 (en) * 2017-11-13 2019-05-20 공주대학교 산학협력단 Fiber reinforced plastic and manufacturing method therof
WO2021019604A1 (en) * 2019-07-26 2021-02-04 三菱重工業株式会社 Composite material forming device and composite material forming method
CN115214068A (en) * 2021-04-25 2022-10-21 广州汽车集团股份有限公司 Machining die and machining method for forming hole
CN115214068B (en) * 2021-04-25 2024-01-23 广州汽车集团股份有限公司 Machining die and machining method for forming holes
CN117532912A (en) * 2023-11-27 2024-02-09 江苏赛欧环保设备有限公司 Vacuum filling process for processing air duct
CN117532912B (en) * 2023-11-27 2024-04-26 江苏赛欧环保设备有限公司 Vacuum filling process for processing air duct

Also Published As

Publication number Publication date
JPWO2011043253A1 (en) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
JP6557972B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic
JP4808720B2 (en) Apparatus, system and method for manufacturing composite parts
JP4484818B2 (en) Resin transfer molding method
US6406659B1 (en) Composite molding method and apparatus
JP5670381B2 (en) Controlled atmospheric pressure resin injection process
JP5044220B2 (en) Carbon foam composite tool and method for using the carbon foam composite tool
US8741208B2 (en) Manufacturing a composite component
US20080182054A1 (en) Multi-function vacuum bag for composite part manufacture
WO2004033176A1 (en) Method of rtm molding
JPH04270610A (en) Crossover formation device for consolidating composite material
JP2009542483A (en) Manufacturing method of composite parts
US20060246796A1 (en) Composite curing
CA2795861A1 (en) Method and device for producing a composite moulded part from fibre-reinforced plastic
JP4471672B2 (en) Resin transfer molding method and sandwich laminate manufacturing method
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
US20150014898A1 (en) Device and method for producing a moulded part from a composite material
JP2003025347A (en) Vacuum rtm molding method
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
JP2012066397A (en) Method for manufacturing fiber-reinforced plastic
JP5854430B2 (en) FRP manufacturing apparatus and FRP manufacturing method
TWI724236B (en) Manufacturing method of fiber reinforced plastic molded body
JP4104413B2 (en) RTM molding method
CN110494274B (en) Tool for producing composite components
KR20150062195A (en) Pressurized Molding Machine For CFRP Product and Pressurized Molding Method Of CFRP Product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010548954

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821924

Country of ref document: EP

Kind code of ref document: A1