JP4826176B2 - Reinforcing fiber preform and RTM molding method - Google Patents

Reinforcing fiber preform and RTM molding method Download PDF

Info

Publication number
JP4826176B2
JP4826176B2 JP2005251033A JP2005251033A JP4826176B2 JP 4826176 B2 JP4826176 B2 JP 4826176B2 JP 2005251033 A JP2005251033 A JP 2005251033A JP 2005251033 A JP2005251033 A JP 2005251033A JP 4826176 B2 JP4826176 B2 JP 4826176B2
Authority
JP
Japan
Prior art keywords
mold
resin
reinforcing fiber
fiber preform
design layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005251033A
Other languages
Japanese (ja)
Other versions
JP2007062150A (en
JP2007062150A5 (en
Inventor
秀博 竹本
雄一郎 飯田
俊英 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005251033A priority Critical patent/JP4826176B2/en
Publication of JP2007062150A publication Critical patent/JP2007062150A/en
Publication of JP2007062150A5 publication Critical patent/JP2007062150A5/ja
Application granted granted Critical
Publication of JP4826176B2 publication Critical patent/JP4826176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強化繊維が中空中子に配設された強化繊維プラスチックス(以降FRPと記す)成形体用の強化繊維プリフォームおよび該強化繊維プリフォームを用いた中空構造FRPのRTM成形方法に関する。   The present invention relates to a reinforced fiber preform for a reinforced fiber plastics (hereinafter referred to as FRP) molded body in which reinforced fibers are disposed in a hollow core, and an RTM molding method of a hollow structure FRP using the reinforced fiber preform. .

繊維強化プラスチックス(FRPと略す)は優れた力学特性や軽量化等の要求特性を満たすことから、金属材料に代わる構造体として各種の用途に用いられている。   Since fiber reinforced plastics (abbreviated as FRP) satisfy the required properties such as excellent mechanical properties and weight reduction, they are used in various applications as structures that replace metal materials.

FRPの成形方法としてレジン・トランスファー・モールディング成形法(以降RTM成形法と記す)、ハンドレイアップ成形法、オートクレーブ成形法などが挙げられるが、なかでもRTM成形法は、上下型からなる形成される成形型内のキャビティに強化繊維基材を配置し、型閉め後(場合によっては、キャビティを減圧した後に)該キャビティに液状樹脂を加圧注入して強化繊維基材内に含浸させた後に加熱硬化させる成形法であるため、成形精度が高く、且つ比較的安定した生産が可能なため、生産性に優れた成形法と言える。   Examples of FRP molding methods include resin transfer molding method (hereinafter referred to as RTM molding method), hand lay-up molding method, autoclave molding method, etc. Among them, the RTM molding method is formed of upper and lower molds. Place the reinforcing fiber base in the cavity in the mold, close the mold (in some cases, after reducing the pressure of the cavity), pressurize the liquid resin into the cavity and impregnate the reinforcing fiber base and heat Since it is a molding method to be cured, it can be said to be a molding method with high productivity because it has high molding accuracy and enables relatively stable production.

また、更に軽量化を図るためには、例えば、液体貯蔵タンクや中空風車翼などの様に、同一の剛性条件でも成形品構造の断面係数を大きくして薄肉化が図れる中空構造体にすることが考えられる。そして、その中空構造体の成形方法としては、例えば、熱可塑性樹脂からなる中空断面の内層体(中子)を配置し、その内層体の周囲に強化繊維を載置した状態で樹脂含浸成形する方法(例えば、特許文献1参照)や、強化繊維の間に弾性袋を配置して金型にセットし、該弾性袋に樹脂注入圧以上の流体を圧入して強化繊維を金型成形面に押圧した状態で樹脂含浸成形する方法(例えば、特許文献2参照)が知られている。   In order to further reduce the weight, for example, a hollow structure that can be thinned by increasing the section modulus of the molded product structure even under the same rigidity condition, such as a liquid storage tank or a hollow wind turbine blade. Can be considered. As a method for forming the hollow structure, for example, an inner layer body (core) having a hollow cross section made of a thermoplastic resin is disposed, and resin impregnation molding is performed with reinforcing fibers placed around the inner layer body. A method (for example, refer to Patent Document 1), an elastic bag is placed between reinforcing fibers and set in a mold, and a fluid higher than a resin injection pressure is press-fitted into the elastic bag to place the reinforcing fibers on the molding surface. A method of resin impregnation molding in a pressed state (for example, see Patent Document 2) is known.

また、FRP、特に炭素繊維強化プラスチック(CFRPと略す)においては、商品の狙いとして表面意匠性が求められる場合がある。例えば、強化繊維織物のプリフォームを押さえ付けて繊維の乱れを抑制し、樹脂注入時における該強化繊維織物のプリフォームの型崩れを防ぎ、織り構造の整ったFRPを得る方法(例えば、特許文献3参照)や、FRP構造体の表面部を形成する強化繊維のドライクロス(樹脂が未充填の織物)を曲面部を有する成形型に配置するに際し、前記ドライクロス上にその織糸に沿う方向に基準線をマーキングすると共に、前記成形型に前記基準線に対応するマークを付し、該マークにドライクロスの基準線を合わせながら該ドライクロスを成形型の曲面に沿わせて賦形された強化繊維プリフォームおよびその強化繊維プリフォームを用いたRTM成形法(例えば、特許文献4参照)などが知られている。   Further, in FRP, in particular, carbon fiber reinforced plastic (abbreviated as CFRP), surface design may be required as a product target. For example, a method for obtaining a FRP having a well-woven structure by suppressing the fiber disturbance by pressing the preform of the reinforcing fiber fabric, preventing the deformation of the preform of the reinforcing fiber fabric at the time of resin injection (for example, patent document) 3), or when the reinforcing fiber dry cloth (woven fabric not filled with resin) forming the surface portion of the FRP structure is placed in a mold having a curved surface portion, the direction along the yarn on the dry cloth. A mark corresponding to the reference line is attached to the mold, and the dry cloth is shaped along the curved surface of the mold while aligning the reference line of the dry cloth with the mark. A reinforced fiber preform and an RTM molding method using the reinforced fiber preform (for example, see Patent Document 4) are known.

しかし、これらの方法では、表層(意匠層)の強化繊維に全く曲がりや隙きなどの繊維乱れや変形の無い高い表面品位を有する中空構造体を安定して得ることは困難であった。
特開昭64−34725号公報 特開平4−246510号公報 特開2004−249592号公報 特開2003−127157号公報
However, with these methods, it has been difficult to stably obtain a hollow structure having a high surface quality that is free from fiber turbulence and deformation such as bending and gaps in the reinforcing fibers of the surface layer (design layer).
Japanese Patent Laid-Open No. 64-34725 JP-A-4-246510 JP 2004249595 A JP 2003-127157 A

本発明の課題は、意匠層の強化繊維に曲がりや変形などの繊維乱れがない高い表面品位を有する中空構造FRPを得ることができる強化繊維プリフォームとそれを用いたRTM成形方法を提供することである。   An object of the present invention is to provide a reinforcing fiber preform capable of obtaining a hollow structure FRP having a high surface quality free from fiber disturbance such as bending and deformation in the reinforcing fiber of the design layer, and an RTM molding method using the same. It is.

本発明者らは、従来法による中空構造体のRTM成形方法では、高い表面品位を有する中空構造FRPが得られない原因を検討したところ、RTM成形時に作用する加圧された注入樹脂の流動圧によって表層の強化繊維の乱れや変形が生じるためであろうとの考えの下に、RTM成形時に強化繊維への張力が付与される強化繊維プリフォーム形態としたところ、従来法と比較して表面品位が格段に優れる方法を提供できることを見出した。   The inventors of the present invention have investigated the cause of failure to obtain a hollow structure FRP having a high surface quality in the RTM molding method of a hollow structure according to the conventional method. As a result, the flow pressure of a pressurized injected resin acting during RTM molding is investigated. Under the idea that surface reinforcing fibers may be disturbed or deformed by the reinforced fiber preform form in which tension is applied to the reinforcing fibers at the time of RTM molding, the surface quality is compared with the conventional method. Has found that it can provide a much better method.

すなわち、本発明に係わる強化繊維プリフォームは、中空中子に配設された強化繊維の本体層と該本体層表面を覆う意匠層を含む強化繊維プリフォームであって、その意匠層は2以上の型からなる成形型の各型に対応する2以上の領域からなり、それぞれの領域間の境界部をそれらに対応する型のパーティング部に設けるとともに、前記領域間の意匠層の継ぎ目を型のパーティング部で挟むことができるように突出させた強化繊維プリフォームである。かかる強化繊維プリフォームを適用することにより意匠層の強化繊維基材を型のパーティング部でむことによって該意匠層に張力を作用させることが出きる。

That is, the reinforcing fiber preform according to the present invention is a reinforcing fiber preform including a main body layer of reinforcing fibers disposed in a hollow core and a design layer covering the surface of the main body layer, and the number of the design layers is two or more. consists of two or more regions corresponding to each type of the mold consisting of the mold, Rutotomoni provided a mold parting portion corresponding to them boundaries between each area, the seam of the design layer between said region This is a reinforcing fiber preform that is projected so as to be sandwiched between parting portions of a mold . As possible out exerting tension to該意Takumi layer by sandwiching Mukoto a reinforcing fiber base material of the design layer in the form of parting zone by applying or mow reinforcing fibers preform.

更に、前記中空中子がブロー成形体である強化繊維プリフォームであることが好ましい。
Furthermore, it is preferable before Kinakazora core is reinforced fiber preform is blow molded article.

また、本発明に係わる中空構造FRPのRTM成形方法は、中空中子に配設された本体層と、該本体層表面を覆う2以上の型からなる成形型の各型に対応する2以上の領域からなる意匠層を含む強化繊維プリフォームを、成形型に対応する意匠層の各領域間の境界部が成形型のパーティング部で挟圧させるように載置し、中空中子を圧空で膨張させながら圧空圧と同圧又は低圧で樹脂を加圧注入して含浸、硬化させて成形することを特徴とする。好ましくは、意匠層の領域間の境界部を型で挟圧した後に中空中子に圧空を封入するRTM成形方法である。   Moreover, the RTM molding method of the hollow structure FRP according to the present invention includes two or more molds corresponding to each mold of a body layer disposed on the hollow core and two or more molds covering the surface of the body layer. Place the reinforcing fiber preform including the design layer consisting of regions so that the boundary between the regions of the design layer corresponding to the mold is clamped by the parting part of the mold, and press the hollow core with compressed air It is characterized in that it is molded by impregnating and curing a resin under pressure at the same or low pressure as that of compressed air while expanding. Preferably, it is an RTM molding method in which the compressed air is sealed in the hollow core after the boundary between the regions of the design layer is clamped with a mold.

更に、成形後、中空中子を一旦減圧して上型を開放し、その状態で低圧の圧空を中子に封入することによって中空構造FRPの成形体を脱型するRTM成形方法であることが好ましい。   Further, after molding, the hollow core is depressurized once to open the upper mold, and in that state, the low-pressure compressed air is sealed in the core to demold the hollow structure FRP molded body. preferable.

本発明に係る強化繊維プリフォームおよび該強化繊維プリフォームを用いた中空構造FRPのRTM成形方法によれば、意匠層の強化繊維に張力を付与しながらRTM成形できるため、意匠層の繊維乱れを防ぎ、高い表面意匠性を有する中空構造FRPが得られる。   According to the RTM molding method of the hollow fiber FRP using the reinforcing fiber preform and the reinforcing fiber preform according to the present invention, RTM molding can be performed while applying tension to the reinforcing fiber of the design layer. The hollow structure FRP which prevents and has a high surface design property is obtained.

以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明におけるFRPとは、強化繊維により強化されている樹脂を指し、強化繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維等の無機繊維、あるいはアラミド繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維が挙げられる。FRPのマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニエステル樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂、ポリプロピレン樹脂等の熱可塑性樹脂も使用可能である。   FRP in the present invention refers to a resin reinforced with reinforcing fibers, and examples of reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, and metal fibers, or organic fibers such as aramid fibers, polyethylene fibers, and polyamide fibers. Fiber. Examples of the FRP matrix resin include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, and phenol resins. Furthermore, polyamide resins, polyolefin resins, dicyclopentadiene resins, polyurethane resins, polypropylene, and the like. A thermoplastic resin such as a resin can also be used.

特に、本発明に係わるRTM成形方法で使用する樹脂としては、粘度が低く強化繊維への含浸が容易な熱硬化性樹脂、または熱可塑性樹脂を形成するRIM(Reaction Injection Molding)用モノマーが好適である。その中でもFRP構造体の熱収縮を低減させたり、クラックの発生を抑えることができるという点から、熱硬化性樹脂としてはエポキシ樹脂、ゴム成分などを配合した変性エポキシ樹脂やビニルエステル樹脂が、また熱可塑性樹脂としてはナイロン樹脂、ジシクロペンタジエン樹脂などが好ましい。   In particular, as the resin used in the RTM molding method according to the present invention, a thermosetting resin having a low viscosity and easily impregnating reinforcing fibers, or a monomer for RIM (Reaction Injection Molding) that forms a thermoplastic resin is suitable. is there. Among them, from the viewpoint that the thermal shrinkage of the FRP structure can be reduced and the occurrence of cracks can be suppressed, as the thermosetting resin, modified epoxy resins and vinyl ester resins containing an epoxy resin, a rubber component, etc. As the thermoplastic resin, nylon resin, dicyclopentadiene resin and the like are preferable.

本発明に係わる中空構造FRP成形時に用いる中空中子としては、ブロー成形や回転成形で成形された中空構造体や、フィルムを融着して袋状にした中空構造体、ディッピングにより風船状に形状を有したゴム製中空構造体等が挙げられる。中でも、複雑な曲面形状や、凹凸の激しい形状にも対応可能で、環境面に対してもリサイクルが容易なブロー成形体が好ましい。その材質としては、ポリプロピレンやポリエチレン、ABS、ナイロンなどの熱可塑性樹脂、天然ゴム、シリコンゴム、ネオプレンゴム等が挙げられる。   The hollow core used in the hollow structure FRP molding according to the present invention includes a hollow structure formed by blow molding or rotational molding, a hollow structure formed by fusing a film into a bag shape, and shaped like a balloon by dipping. And a rubber hollow structure having Among them, a blow molded body that can cope with a complicated curved surface shape or a shape with severe irregularities and is easy to recycle in terms of environmental aspects is preferable. Examples of the material include thermoplastic resins such as polypropylene, polyethylene, ABS, and nylon, natural rubber, silicon rubber, and neoprene rubber.

本発明で使用する成形型は、2以上の型からなるものであることが必要である。例えば上型と下型から構成されるものを用いることができる。かかる型を用いた場合、上型が金型昇降装置で上方に配置されている間に、下型へ強化繊維基材を配設する。この強化繊維基材は、賦形型によって、下型に納まり易いように製品形状に賦形された強化繊維プリフォームとして予め作製されている。この成形型の材質としては、FRP、鋳鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電鋳、銅電鋳などが挙げられる。量産には、剛性、耐熱性、耐久性の面から構造用炭素鋼が好適である。

図1は、本発明の一実施態様に係るFRP成形体の製造方法を実施するための成形システムを示している。図1において、2は、上型と下型からなる成形金型を示しており、その上型が金型昇降装置1に取り付けられている。金型昇降装置1は、油圧ポンプ10、油圧シリンダー11を備えた油圧ユニット9を有しており、上型の作動、加圧が油圧により制御されるようになっている。
The mold used in the present invention must be composed of two or more molds. For example, an upper mold and a lower mold can be used. When such a mold is used, the reinforcing fiber base material is disposed on the lower mold while the upper mold is disposed upward by the mold lifting device. This reinforcing fiber base is prepared in advance as a reinforcing fiber preform formed into a product shape so as to be easily accommodated in the lower mold by a shaping mold. Examples of the material of the mold include FRP, cast steel, structural carbon steel, aluminum alloy, zinc alloy, nickel electroforming, and copper electroforming. For mass production, structural carbon steel is suitable in terms of rigidity, heat resistance and durability.

FIG. 1 shows a molding system for carrying out a method for producing an FRP molded body according to an embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a molding die including an upper die and a lower die, and the upper die is attached to the die lifting device 1. The mold lifting / lowering apparatus 1 has a hydraulic unit 9 including a hydraulic pump 10 and a hydraulic cylinder 11, and the operation and pressurization of the upper mold are controlled by hydraulic pressure.

成形金型2は、図2に示すように例えばアンダーカット部を有する成形体の場合、下型の一部に分割型18を配設することもできる。その分割型で生じる型のパーティング部に意匠層基材を挟圧した状態でRTM成形を行い、基材の乱れを防止して意匠層全体に高品位を獲得することもできる。   As shown in FIG. 2, for example, when the molding die 2 is a molded body having an undercut portion, the split mold 18 may be disposed on a part of the lower mold. RTM molding can be performed in a state where the design layer base material is sandwiched between the parting portions of the mold generated in the split mold, and the base material can be prevented from being disturbed to obtain high quality in the entire design layer.

そして、成形金型2には、注入口8aに繋がる樹脂注入流路13、排出口8bに繋がる排出路14が接続されている。樹脂注入流路13、排出路14は各々注入バルブ22a、排出バルブ22bを介して注入口8a、排出口8bに接続する。注入バルブ22a、排出バルブ22bの開閉作動およびその作動タイミングは、制御装置22cからの指令に基づいて行われる。   The molding die 2 is connected with a resin injection channel 13 connected to the injection port 8a and a discharge channel 14 connected to the discharge port 8b. The resin injection channel 13 and the discharge channel 14 are connected to the injection port 8a and the discharge port 8b via an injection valve 22a and a discharge valve 22b, respectively. The opening / closing operation of the injection valve 22a and the discharge valve 22b and the operation timing thereof are performed based on commands from the control device 22c.

樹脂注入時の樹脂注入流路13、排出路14の途中に設置する注入バルブ22aや排出バルブ22bは、バイスグリップ等により、直接作業者により流路を挟むことで全域開閉や口径を変化させることができる。例えば図2に示すように、上型16と下型17からなる成形金型の上型16側へと接続された樹脂注入流路13、排出路14の途中に、バイスグリップ21を設けることができる。   The injection valve 22a and the discharge valve 22b installed in the middle of the resin injection flow path 13 and the discharge path 14 at the time of resin injection can be opened / closed and the diameter of the entire area can be changed by directly sandwiching the flow path by an operator with a vise grip or the like. Can do. For example, as shown in FIG. 2, a vise grip 21 may be provided in the middle of the resin injection flow path 13 and the discharge path 14 connected to the upper mold 16 side of the molding die including the upper mold 16 and the lower mold 17. it can.

樹脂注入流路13には樹脂注入装置3が接続されている。樹脂注入装置3は、主剤タンク5、硬化剤タンク6にそれぞれ主剤、硬化剤を収容し、それぞれのタンクは加温できる機構を備えているとともに、真空ポンプ24により真空脱泡できるようになっている。樹脂注入時にはそれぞれのタンクから加圧装置23により樹脂を樹脂注入流路13に向かって押し流す。逆止弁12を介して設けられた加圧装置23にはシリンジポンプを用いており、シリンジを同時に押し出すことで定量性も確保することが、2液混合により硬化する樹脂には好ましい。主剤、硬化剤は混合ユニット4で混合され、樹脂注入流路13に至る。排出路14には、真空ポンプ7aあるいは加圧ポンプ7bへの樹脂の流入を防ぐために、樹脂トラップ15が介装されている。   A resin injection device 3 is connected to the resin injection flow path 13. The resin injection device 3 stores the main agent and the curing agent in the main agent tank 5 and the curing agent tank 6, respectively, and each tank has a mechanism capable of heating and can be degassed by the vacuum pump 24. Yes. At the time of resin injection, the resin is pushed from each tank toward the resin injection flow path 13 by the pressurizing device 23. A syringe pump is used for the pressurizing device 23 provided via the check valve 12, and it is preferable for a resin that is cured by two-liquid mixing to ensure quantitativeness by simultaneously extruding the syringe. The main agent and the curing agent are mixed by the mixing unit 4 and reach the resin injection channel 13. A resin trap 15 is interposed in the discharge path 14 in order to prevent the resin from flowing into the vacuum pump 7a or the pressure pump 7b.

樹脂注入流路13の材料は十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。チューブには口径5〜30mmのものを用い、樹脂の注入圧力に耐えるために1.0MPa以上の耐圧性、樹脂硬化時の温度に耐えるために100℃以上の耐熱性が必要となり、厚みが2mm程度の“テフロン(登録商標)”などのフッ素樹脂製チューブが好適である。ただし、“テフロン(登録商標)”以外にも、比較的安価なポリエチレン、ナイロン等のプラスチック製のチューブやスチール、アルミ等の金属管であってもよい。   The material of the resin injection flow path 13 needs to ensure sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance). A tube with a diameter of 5 to 30 mm is used. A pressure resistance of 1.0 MPa or more is required to withstand the injection pressure of the resin, and a heat resistance of 100 ° C. or more is required to withstand the temperature during resin curing, and the thickness is 2 mm. A tube made of fluororesin such as “Teflon (registered trademark)” is suitable. However, other than “Teflon (registered trademark)”, a relatively inexpensive plastic tube such as polyethylene or nylon, or a metal tube such as steel or aluminum may be used.

排出路14の材料は、樹脂注入流路13と同様に十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。排出路14としてはスチール、アルミ等の金属管、あるいはポリエチレン、ナイロン、 “テフロン(登録商標)”等のプラスチック製のチューブが挙げられるが、直径5〜10mm、厚み1〜2mmの “テフロン(登録商標)”製チューブが作業性の面からより好適である。   As for the material of the discharge passage 14, it is necessary to take into consideration the securing of a sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance) in the same manner as the resin injection passage 13. The discharge path 14 may be a metal tube such as steel or aluminum, or a plastic tube such as polyethylene, nylon, or “Teflon (registered trademark)”, but “Teflon (registered) having a diameter of 5 to 10 mm and a thickness of 1 to 2 mm. (Trademark) "tube is more preferable from the viewpoint of workability.

樹脂の加圧は、前述の如きシリンジポンプなどによる加圧方法によれば定量性も得られる。樹脂の注入圧Piは0.1〜1.0MPaの範囲で用いるのが好ましい。ここで樹脂の注入圧Piとは、加圧装置23により加圧される最大圧力を指し、図1の注入樹脂の圧力計31で表示させる圧力を表す。最終的に樹脂が型内の基材に完全に含浸され排出路14まで到達したら排出路14を閉じ、その後暫くしてから樹脂注入流路13も閉じて樹脂注入を終了する。成形金型2は、例えば温調機25、26によって加温されており、これにより樹脂を硬化させる。なお、型内樹脂圧Pmとは、型内樹脂の圧力計32の圧力を表す。従って、注入圧Piとの関係は Pm≦Piとなり、樹脂が成形金型内を流動しているときは Pm<Piとなる。樹脂が完全に型内に充填され、排出バルブ22bが閉鎖されて樹脂流動が停止した状態で、且つ樹脂注入ポンプより樹脂圧が掛かっているときに始めてPm=Piとなる。   The pressurization of the resin can also provide quantitativeness according to the pressurization method using a syringe pump or the like as described above. The resin injection pressure Pi is preferably in the range of 0.1 to 1.0 MPa. Here, the injection pressure Pi of the resin refers to the maximum pressure pressurized by the pressurizing device 23, and represents the pressure displayed by the pressure gauge 31 of the injected resin in FIG. When the resin in the mold is finally completely impregnated with the resin and reaches the discharge path 14, the discharge path 14 is closed, and after a while, the resin injection path 13 is also closed and the resin injection is finished. The molding die 2 is heated by, for example, temperature controllers 25 and 26, thereby curing the resin. The in-mold resin pressure Pm represents the pressure of the in-mold resin pressure gauge 32. Therefore, the relationship with the injection pressure Pi is Pm ≦ Pi, and Pm <Pi when the resin is flowing in the molding die. Only when the resin is completely filled in the mold, the discharge valve 22b is closed and the resin flow is stopped, and when the resin pressure is applied from the resin injection pump, Pm = Pi.

本発明の一実施形態として、中空翼構造体に係わる成形方法に関し、以下に説明する。
先ず、該中空翼構造体のRTM成形に用いる成形金型2を図4、図5に示す。上型54、下型55からなる成形金型2は、樹脂を注入する注入口58aと型内を真空吸引する吸引排出口58bが設けられ、中空構造体の内部に気体等の圧力をかける圧空口52が設けられた構造である。Aは注入樹脂、Bは、型内からの空気や余剰樹脂の吸引、Cは中空中子への供給圧縮空気(圧空)をそれぞれ示している。
As one embodiment of the present invention, a molding method relating to a hollow wing structure will be described below.
First, FIG. 4 and FIG. 5 show a molding die 2 used for RTM molding of the hollow wing structure. The molding die 2 composed of an upper die 54 and a lower die 55 is provided with an injection port 58a for injecting resin and a suction / discharge port 58b for vacuum suction of the inside of the die, and a compressed air that applies pressure such as gas to the inside of the hollow structure. In this structure, a mouth 52 is provided. A is the injected resin, B is the suction of air and excess resin from the mold, and C is the compressed air supplied to the hollow core (pressure air).

中空翼構造体を成形する場合、以下の工程を順次実施していく。   When the hollow wing structure is formed, the following steps are sequentially performed.

(1)図3に示すような膨縮可能な中空中子34に強化繊維基材35を配置した強化繊維プリフォーム33を予め形成する。この際、強化繊維基材に完全に樹脂が含浸するように中空中子より強化繊維基材を若干短くしても良い。   (1) A reinforcing fiber preform 33 in which a reinforcing fiber base 35 is arranged on a hollow core 34 that can be expanded and contracted as shown in FIG. 3 is formed in advance. At this time, the reinforcing fiber base may be slightly shorter than the hollow core so that the reinforcing fiber base is completely impregnated with the resin.

(2)次に、図4に示すように、上記強化繊維プリフォームを下型のキャビティ(強化繊維プリフォームとほぼ同一形状)に配置する。   (2) Next, as shown in FIG. 4, the reinforcing fiber preform is placed in the lower mold cavity (substantially the same shape as the reinforcing fiber preform).

(3)上型54を図示しないプレス機等で下降させ、図5のように下型に押圧して成形金型内を密閉させる。その状態で、樹脂注入用チューブを注入口58aに、吸引排出用チューブを吸引排出口58bに繋ぐ。また、圧空封入用チューブを中空中子34に設けた圧空口52に繋ぐ。   (3) The upper die 54 is lowered by a press machine or the like (not shown) and pressed against the lower die as shown in FIG. 5 to seal the inside of the molding die. In this state, the resin injection tube is connected to the injection port 58a, and the suction / discharge tube is connected to the suction / discharge port 58b. Further, the compressed air sealing tube is connected to a compressed air port 52 provided in the hollow core 34.

(4)その後、中空中子34内に上記圧空口52より所定の圧力をなす圧空を封入し、中空中子34を膨張させる。   (4) After that, pressurized air that forms a predetermined pressure is sealed in the hollow core 34 from the pressure port 52, and the hollow core 34 is expanded.

(5)膨張した中空中子34によって、該中空中子の外周に配置された強化繊維基材35が成形金型のキャビティ面に押圧させる。   (5) The expanded hollow core 34 presses the reinforcing fiber base 35 disposed on the outer periphery of the hollow core against the cavity surface of the molding die.

(6)次に、注入口58aを閉鎖した状態で吸引排出口58bより真空吸引して、成形金型内を減圧し続ける。   (6) Next, vacuum suction is performed from the suction / discharge port 58b with the injection port 58a closed, and the inside of the molding die is continuously decompressed.

(7)その状態で、注入口58aを開放し、図1に示す樹脂注入装置3より加圧された樹脂を注入する。   (7) In that state, the injection port 58a is opened, and a pressurized resin is injected from the resin injection device 3 shown in FIG.

(8)注入口58aより注入された樹脂は一旦樹脂注入用ランナー56に貯蔵された後、吸引用ランナーに向かって流動する。その間に注入樹脂は強化繊維基材35に含浸する。   (8) The resin injected from the injection port 58a is once stored in the resin injection runner 56 and then flows toward the suction runner. In the meantime, the injection resin impregnates the reinforcing fiber base 35.

(9)その後、注入された加圧樹脂が吸引排出口58bより流出し始めたら、該吸引排出口58bを図2に示すバイスグリップ21などにより閉鎖する。   (9) After that, when the injected pressurized resin starts to flow out from the suction / discharge port 58b, the suction / discharge port 58b is closed by the vice grip 21 shown in FIG.

(10)そして、樹脂注入装置を稼働しながら上記注入口58aより樹脂圧(静圧)を掛けながら、吸引排出口58bを閉鎖したままの状態で所定の時間保持する。   (10) While operating the resin injection device, the suction / discharge port 58b is kept closed for a predetermined time while applying the resin pressure (static pressure) from the injection port 58a.

(11)成形金型は、当初[工程(2)]より所定の温度に加熱しておき、上記工程(10)で樹脂を硬化させる。   (11) The mold is initially heated to a predetermined temperature from [Step (2)], and the resin is cured in the step (10).

(12)次に、下型55から上型54を僅かであるが上昇させた後、中空中子34の内側に圧空口52から圧空圧を掛け(0.1Mpa以下の低圧でよい)、中子を膨張変形させることによって中空構造FRP成形体53を下型55から離型させる。それによって、脱型用冶工具等によるFRP成形体の傷付きを防止し、且つ脱型に要する時間を短縮することが可能となる。   (12) Next, the upper die 54 is slightly raised from the lower die 55, and then pressurized air pressure is applied to the inside of the hollow core 34 from the pressurized air port 52 (low pressure of 0.1 Mpa or less is sufficient) The hollow structure FRP molded body 53 is released from the lower mold 55 by expanding and deforming the child. Thereby, it is possible to prevent the FRP molded body from being damaged by a demolding tool or the like, and to shorten the time required for demolding.

(13)そして、上型54を完全に上昇させた後、中空構造FRP成形体53を下型55より脱型させる。   (13) Then, after raising the upper mold 54 completely, the hollow structure FRP molded body 53 is removed from the lower mold 55.

しかしながら、強化繊維基材が中空中子に配置されただけの強化繊維プリフォームを用いて中空FRP構造体を成形しようとすると、意匠層となる最外層の強化繊維基材が金型成形用キャビティ面に押圧された際に、該最外層の強化繊維基材には押圧力しか作用せず、全く張力が作用しないため繊維乱れが起きるという問題が生じる。   However, when trying to mold a hollow FRP structure using a reinforcing fiber preform in which the reinforcing fiber base is only disposed in the hollow core, the outermost reinforcing fiber base serving as the design layer is a mold molding cavity. When pressed against a surface, only the pressing force acts on the outermost reinforcing fiber substrate, and there is a problem that fiber disturbance occurs because no tension acts at all.

そこで本発明では、図6に示すように、中空中子34に配置される強化繊維基材を、力学特性(強度や剛性)を発揮する本体層基材38と、外観意匠性を発揮する意匠層基材37とに分け、該本体層基材38を覆う形で意匠層基材37を配置した強化繊維プリフォーム36を形成した。そして、該強化繊維プリフォーム36を、成形型を構成する各型(この場合、上型と下型)に対応する意匠層基材37の各領域間の境界部が成形型のパーティング部で挟圧させるように載置することによって、意匠層基材37に確実に引張力が作用するようにした。つまり、図6に示すように、意匠層基材37が配設された上型領域と下型領域の2つの領域間に対して、それらの境界部となる成形型のパーティングラインに位置する意匠層基材37の継ぎ目となるF部とR部を例えば数mm延ばすことによって、図7に示すように、上型54が下降しながら下型55との間で意匠層基材37の継ぎ目となるF部とR部を挟圧させ、その状態で中空中子34に圧空を封入して膨張させることによって意匠層基材37全体に張力Tを発生させる方法である。その張力Tの発生により、注入樹脂圧が作用しても意匠層基材37の繊維乱れは全く生じることなく、中空翼構造体の表面意匠性を安定的、且つ飛躍的に向上させることができた。   Therefore, in the present invention, as shown in FIG. 6, the reinforcing fiber base disposed in the hollow core 34 includes a main body layer base 38 that exhibits mechanical properties (strength and rigidity), and a design that exhibits appearance design. The reinforcing fiber preform 36 in which the design layer base material 37 is arranged so as to cover the main body layer base material 38 is formed separately from the layer base material 37. And the boundary part between each area | region of the design layer base material 37 corresponding to each type | mold (in this case, upper mold | type and lower mold | type) which comprises this shaping | molding die for this reinforcing fiber preform 36 is a parting part of a shaping | molding die. By placing them so as to be pinched, a tensile force is surely applied to the design layer substrate 37. That is, as shown in FIG. 6, between the two areas of the upper mold area and the lower mold area where the design layer base material 37 is disposed, it is located in the parting line of the mold that becomes the boundary between them. As shown in FIG. 7, by extending the F portion and the R portion, which are joints of the design layer base material 37, for example, several mm, the joint of the design layer base material 37 between the lower die 55 and the upper die 54 is lowered as shown in FIG. 7. In this state, a tension T is generated in the entire design layer base material 37 by sandwiching the F portion and the R portion, and enclosing the compressed air in the hollow core 34 and expanding it. Due to the generation of the tension T, the surface design of the hollow wing structure can be improved stably and drastically without causing any fiber disturbance of the design layer base material 37 even when the injection resin pressure acts. It was.

本発明において、成形金型のパーティング部で挟圧される意匠層基材の長さは、ランナー部を超えてしまうと、ランナーからの樹脂注入が不良になったり、また型締めが悪くなり、ランナーの外周に位置するシール部(記載していない)が機能不全になって樹脂漏れや不要バリの増加をもたらす。そのため、キャビティの端より約1mm以上で、且つランナー部位より内側であることが好ましい。   In the present invention, if the length of the design layer base material clamped by the parting part of the molding die exceeds the runner part, the resin injection from the runner becomes defective or the mold clamping becomes worse. The seal part (not shown) located on the outer periphery of the runner becomes dysfunctional, resulting in an increase in resin leakage and unnecessary burrs. Therefore, it is preferably about 1 mm or more from the end of the cavity and inside the runner site.

又、キャビティと注入用や吸引用の各ランナー間は、挟圧される意匠用強化繊維基材の数量によって適当な隙間(樹脂圧で基材が動かない押圧が発生するレベル)を設けておく必要がある。   In addition, an appropriate gap (a level at which the base material does not move due to the resin pressure) is provided between the cavity and each runner for injection and suction depending on the number of design reinforcing fiber bases to be sandwiched. There is a need.

以下に、本発明の実施例に基づいて、より具体的に説明する。実施例では以下の強化繊維基材、樹脂、膨縮可能な中空中子を使用した。   Below, based on the Example of this invention, it demonstrates more concretely. In the examples, the following reinforcing fiber substrate, resin, and hollow core that can be expanded and contracted were used.

(1)基材a:東レ(株)製炭素繊維織物CO6644(織り組織:T300平織り,織物目付:約300g/m、機幅1000mm)
(2)基材b:東レ(株)製炭素繊維織物CO6343(織り組織:T300平織り,織物目付:約200g/m、機幅1000mm)
(3)樹脂a: “エピコート(登録商標)”828/TR−C35H=100/10、但し、“エピコート(登録商標)”828: ジャパン エポキシ レジン(株)製エポキシ樹脂、TR−C35H:東レ(株)製、イミダゾール誘導体
(4)中空中子:長さ1200mm、幅250mmの中空翼断面形状のポリエチレン製ブロー成形体(平均厚み:約2mm)
<実施例1>
図3に示すように中空中子34の周囲に、強化繊維基材35を内側から、図6に示す本体層基材38として基材aを3回を捲回し、その上に意匠層基材37として基材bを1プライ配設した強化繊維プリフォーム36を作製した。但し、意匠層基材37となる基材bは、図6のように端部を片側に設けたC型形状に配置した。
(1) Substrate a: Carbon fiber woven fabric CO6644 manufactured by Toray Industries, Inc. (woven structure: T300 plain weave, woven fabric weight: about 300 g / m 2 , machine width 1000 mm)
(2) Base material b: Carbon fiber woven fabric CO6343 manufactured by Toray Industries, Inc. (woven structure: T300 plain weave, woven fabric weight: about 200 g / m 2 , machine width 1000 mm)
(3) Resin a: “Epicoat (registered trademark)” 828 / TR-C35H = 100/10, however, “Epicoat (registered trademark)” 828: Epoxy resin manufactured by Japan Epoxy Resin Co., Ltd., TR-C35H: Toray ( Co., Ltd., imidazole derivatives (4) Hollow core: polyethylene blow molded article (average thickness: about 2 mm) having a cross-section of a hollow blade having a length of 1200 mm and a width of 250 mm
<Example 1>
As shown in FIG. 3, the reinforcing fiber base material 35 is wound around the hollow core 34 from the inside, and the base material a is wound three times as the main body layer base material 38 shown in FIG. As 37, a reinforcing fiber preform 36 in which one ply of the base material b was disposed was produced. However, the base material b used as the design layer base material 37 was arranged in a C shape with an end provided on one side as shown in FIG.

また、成形工程では図7に示すように、意匠層基材37の基材bが型のパーティング部で確実に挟まれるように、被挟圧部であるF部、R部を約8mm突出させた強化繊維プリフォーム36を得た。   Further, in the molding process, as shown in FIG. 7, the F portion and the R portion that are pressed portions protrude about 8 mm so that the base material b of the design layer base material 37 is securely sandwiched by the parting portion of the mold. A reinforced fiber preform 36 was obtained.

<実施例2>
上記強化繊維プリフォーム36を図1に示す成形金型2(上型54,下型55で構成)内にセットした。詳しくは、図4の下型55に該強化繊維プリフォーム36をセットして上型54を下降して型締めした後、図5に示す樹脂注入口58a、吸引排出口58b及び圧空口52にチューブを接続(図は省略)した。
<Example 2>
The reinforcing fiber preform 36 was set in the molding die 2 (consisting of an upper die 54 and a lower die 55) shown in FIG. Specifically, after the reinforcing fiber preform 36 is set on the lower mold 55 of FIG. 4 and the upper mold 54 is lowered and clamped, the resin injection port 58a, the suction / discharge port 58b and the compressed air port 52 shown in FIG. Tubes were connected (not shown).

次に、中空中子34に0.6MPaに加圧された圧空を封入して保持した。成形金型2は上下型(54、55)共に温水加熱機である温調機26に接続されており、型温が95℃に保持されるようにセットした。また、この成形金型2は樹脂トラップ15を介して真空ポンプ7aに連通しており、上記型締めの後、排出バルブ22bの開放により型内を真空吸引させた。   Next, compressed air pressurized to 0.6 MPa was sealed in the hollow core 34 and held. The mold 2 was connected to the temperature controller 26, which is a hot water heater, for both the upper and lower molds (54, 55), and was set so that the mold temperature was maintained at 95 ° C. The molding die 2 communicated with the vacuum pump 7a through the resin trap 15. After the mold was clamped, the inside of the mold was vacuumed by opening the discharge valve 22b.

次に、排出バルブ22bを閉鎖した後、主剤、硬化剤を個別に真空脱泡した後混合された樹脂aを、注入口58aに連通する注入バルブ22aを開放して樹脂注入装置3から型内に樹脂圧Pi=0.5MPaで注入した。注入開始後、約3分で樹脂aの余剰分が少量該排出バルブ22b側に流出してきた。それから、20秒間排出バルブ22bを閉鎖し、次いで20秒間排出バルブ22bを開放した。そして、この排出バルブ22bの閉鎖と開放を3回繰り返し、最後に排出バルブ22bを閉じ、2分後次いで注入バルブ22aも閉鎖した。その後、そのままの状態を20分間保持し、樹脂aを硬化させた。   Next, after closing the discharge valve 22b, the main agent and the curing agent are individually vacuum degassed and the mixed resin a is opened from the resin injection device 3 by opening the injection valve 22a communicating with the injection port 58a. The resin pressure Pi was injected at 0.5 MPa. In about 3 minutes after the start of injection, a small amount of the resin a flowed out to the discharge valve 22b side. Then, the discharge valve 22b was closed for 20 seconds, and then the discharge valve 22b was opened for 20 seconds. Then, the closing and opening of the discharge valve 22b was repeated three times. Finally, the discharge valve 22b was closed, and after 2 minutes, the injection valve 22a was also closed. Thereafter, the state as it was was kept for 20 minutes to cure the resin a.

硬化後、中空構造FRP成形体中の中空中子34の圧力を大気開放した。そして、成形金型2の上型54を上昇させ、約15mm浮かせた状態で停止した。次に中空中子34に圧力=0.02MPaの圧空を封入したところ、中空構造FRP成形体が成形金型2より離型した。   After curing, the pressure of the hollow core 34 in the hollow structure FRP molded body was released to the atmosphere. Then, the upper mold 54 of the molding die 2 was raised and stopped in a state where it was floated by about 15 mm. Next, when compressed air having a pressure = 0.02 MPa was sealed in the hollow core 34, the hollow structure FRP compact was released from the molding die 2.

この後、上型54を完全に上昇させ、中空中子34と共に中空構造FRP成形体を成形金型2より取り出した。   Thereafter, the upper die 54 was completely raised, and the hollow structure FRP molded body together with the hollow core 34 was taken out from the molding die 2.

そして、中空中子34内を真空吸引して減圧保持することよって収縮変形させ、中空構造FRP成形体から中空中子34を抜き取ることができた。   Then, the hollow core 34 was contracted and deformed by vacuum suction and held under reduced pressure, and the hollow core 34 could be extracted from the hollow structure FRP molded body.

該成形体の表面を確認したところ意匠層の繊維乱れは皆無であり、非常に高い表面品位を有していた。   When the surface of the molded product was confirmed, there was no fiber disturbance in the design layer, and the surface quality was very high.

<実施例3>
図8に示す様に、強化繊維プリフォーム39として、中空中子34の周囲に本体層として基材aを5回巻き付け、該本体層の上に上下に2分割された意匠層基材40a、意匠層基材40bとしての基材aを配設した構成とした。そして、該意匠層基材40a、意匠層基材40b用の基材aは何れも型のパーティング部で挟むことができるようにF部、R部を約10mm突出させた。
<Example 3>
As shown in FIG. 8, as the reinforcing fiber preform 39, the base material a is wound around the hollow core 34 as a main body layer five times, and the design layer base material 40a divided into two parts vertically on the main body layer, It was set as the structure which arrange | positioned the base material a as the design layer base material 40b. The design layer base material 40a and the base material a for the design layer base material 40b were protruded by about 10 mm from the F part and the R part so that both can be sandwiched between the parting parts of the mold.

前記強化繊維プリフォーム36の適用を除き、実施例1と同様にRTM成形して、中空構造FRP成形体を得た。該成形体の表面を確認したところ実施例1と同様に意匠層の繊維乱れは皆無であり、極めて高品位であった。   Except for the application of the reinforcing fiber preform 36, RTM molding was performed in the same manner as in Example 1 to obtain a hollow structure FRP molded body. When the surface of the molded product was confirmed, the design layer had no fiber disturbance as in Example 1, and the quality was extremely high.

<比較例1>
図9に示す様に、強化繊維プリフォーム42として、中空中子34の周囲に内側から本体層として基材bを3回巻き付け、その上に意匠層基材43として基材aをC型形状に配置された構成とした。但し、意匠層基材43の基材aは型のパーティング部で挟む突出部分を片側の基材端部(F部)のみとした。
<Comparative Example 1>
As shown in FIG. 9, as the reinforcing fiber preform 42, the base material b is wound around the hollow core 34 as a main body layer three times from the inside, and the base material a is formed as a design layer base material 43 on the C shape. It was set as the structure arrange | positioned. However, as for the base material a of the design layer base material 43, the protruding portion sandwiched between the parting portions of the mold was only the base material end portion (F portion) on one side.

実施例2と同様に、前記強化繊維プリフォーム36を除き、実施例1と同様にRTM成形して、中空構造FRP成形体を得た。該成形体の意匠層基材の片側は型のパーティング部で挟圧されていないため、意匠層基材43の基材aに生じる張力が不充分であるため、該成形体の表面を確認したところ意匠層の繊維乱れが部分的に発生していた。   As in Example 2, except for the reinforcing fiber preform 36, RTM molding was performed in the same manner as in Example 1 to obtain a hollow structure FRP molded body. Since one side of the design layer base material of the molded body is not clamped by the parting portion of the mold, the tension generated on the base material a of the design layer base material 43 is insufficient, so the surface of the molded body is confirmed. As a result, fiber disturbance of the design layer was partially generated.

<比較例2>
同様に強化繊維プリフォーム45の断面が、図10となるように中空中子34の周囲に、内側から本体層基材47、意匠層基材46aと意匠層基材46bの順で配設した。そして、意匠層基材46a、意匠層基材46bの基材aは型のパーティング部で全く挟むことができないように、突出部を設けなかった。
<Comparative example 2>
Similarly, the reinforcing fiber preform 45 is arranged in the order of the main body layer base material 47, the design layer base material 46a, and the design layer base material 46b from the inside around the hollow core 34 as shown in FIG. . And the base material a of the design layer base material 46a and the design layer base material 46b was not provided with a protruding portion so that it could not be sandwiched at all by the parting part of the mold.

前記強化繊維プリフォーム36を用いたことを除き、実施例1と同様にRTM成形して、上記と同様の成形体を得た。該成形体は、意匠層基材46a、46bが型のパーティング部で全く挟圧されていないため、該意匠層の基材aは中空中子34の膨張による型面への押圧だけで全く張力が発生していないため、表面を確認したところ意匠層の繊維乱れは全体に渡って見られた。   Except for using the reinforcing fiber preform 36, RTM molding was performed in the same manner as in Example 1 to obtain a molded body similar to the above. In the molded body, the design layer base materials 46a and 46b are not clamped at all by the parting portion of the mold, so that the base material a of the design layer is completely pressed only by pressing on the mold surface due to the expansion of the hollow core 34. Since no tension was generated, when the surface was checked, fiber disturbance of the design layer was seen throughout.

本発明は、中空構造を有するあらゆるFRP成形体、特に意匠面に繊維乱れがない高い表面品位が要求される中空構造のFRP製造に好適である。用途としては、液体貯蔵タンク、風車翼、自動車用部材(スポイラー、バンパー、補強部材など)、航空機部材(二次構造材、内装材、補強部材)、中空構造建築用パネル材、その他一般産業用中空部材などに適用できる。   The present invention is suitable for all FRP molded products having a hollow structure, particularly for the production of FRP having a hollow structure that requires high surface quality with no fiber disturbance on the design surface. Applications include liquid storage tanks, wind turbine blades, automotive components (spoilers, bumpers, reinforcement members, etc.), aircraft components (secondary structure materials, interior materials, reinforcement members), hollow construction panel materials, and other general industrial applications. It can be applied to a hollow member.

本発明の一実施態様に係るRTM成形システムの系統図である。It is a systematic diagram of the RTM shaping | molding system which concerns on one embodiment of this invention. 本発明の一実施態様に係る成形金型の概略斜視図である。It is a schematic perspective view of the molding die concerning one embodiment of the present invention. 本発明の一例を示す強化繊維プリフォームの斜視図である。It is a perspective view of the reinforced fiber preform which shows an example of this invention. 図3に示す強化繊維プリフォームの成形金型への配置図である。FIG. 4 is an arrangement view of the reinforcing fiber preform shown in FIG. 3 on a molding die. 図4における強化繊維プリフォーム配置後の型締め状態図である。FIG. 5 is a diagram showing a state of clamping after the reinforcing fiber preform is arranged in FIG. 4. 本発明の一例を示す強化繊維プリフォームの断面図である。It is sectional drawing of the reinforced fiber preform which shows an example of this invention. 図6で示す強化繊維プリフォームの金型へ配置した状態の断面図である。It is sectional drawing of the state arrange | positioned to the metal mold | die of the reinforced fiber preform shown in FIG. 本発明の一例を示す強化繊維プリフォームの断面図である。It is sectional drawing of the reinforced fiber preform which shows an example of this invention. 本発明との比較例を示す強化繊維プリフォームの断面図である。It is sectional drawing of the reinforced fiber preform which shows the comparative example with this invention. 図9とは異なる本発明との比較例を示す強化繊維プリフォームの断面図である。It is sectional drawing of the reinforced fiber preform which shows the comparative example with this invention different from FIG.

符号の説明Explanation of symbols


1 金型昇降装置
2 成形金型
3 樹脂注入装置
4 混合ユニット
5 主剤タンク
6 硬化剤タンク
7a 真空ポンプ
7b 加圧ポンプ
8a 注入口
8b 排出口
9 油圧ユニット
10 油圧ポンプ
11 油圧シリンダー
12 逆止弁
13 樹脂注入流路
14 排出路
15 樹脂トラップ
16 上型
17 下型
18 分割型
21 バイスグリップ
22a 注入バルブ
22b 排出バルブ
22c 制御装置
23 加圧装置
24 真空ポンプ
25、26 温調機
31 注入樹脂の圧力計
32 型内樹脂の圧力計
33、36、39、42、45 強化繊維プリフォーム
34 中空中子
35 強化繊維基材
37、40a、40b、43,46a、46b 意匠層基材
38、41、44,47 本体層基材
52 圧空口
54 上型
55 下型
56 樹脂注入用ランナー
57 吸引排出用ランナー
58a注入口
58b吸引排出口

DESCRIPTION OF SYMBOLS 1 Mold raising / lowering device 2 Molding die 3 Resin injection device 4 Mixing unit 5 Main agent tank 6 Hardener tank 7a Vacuum pump 7b Pressure pump 8a Inlet 8b Outlet 9 Hydraulic unit 10 Hydraulic pump 11 Hydraulic cylinder 12 Check valve 13 Resin injection flow path 14 Discharge path 15 Resin trap 16 Upper mold 17 Lower mold 18 Split mold 21 Vise grip 22a Injection valve 22b Discharge valve 22c Control device 23 Pressurization device 24 Vacuum pump 25, 26 Temperature controller 31 Pressure gauge for injection resin 32 Pressure gauge of resin in mold 33, 36, 39, 42, 45 Reinforcing fiber preform 34 Hollow core 35 Reinforcing fiber substrate 37, 40a, 40b, 43, 46a, 46b Design layer substrate 38, 41, 44, 47 Body layer base material 52 Air pressure port 54 Upper die 55 Lower die 56 Resin injection runner 57 Suction discharge Runner 58a inlet 58b suction outlet port

Claims (5)

中空中子に配設された強化繊維の本体層と該本体層表面を覆う意匠層を含む強化繊維プリフォームであって、該意匠層は2以上の型からなる成形型の各型に対応する2以上の領域からなり、該領域間の境界部を対応する型のパーティング部に設けるとともに、前記領域間の意匠層の継ぎ目を型のパーティング部で挟むことができるように突出させたことを特徴とする強化繊維プリフォーム。 A reinforcing fiber preform including a main body layer of reinforcing fibers disposed in a hollow core and a design layer covering the surface of the main body layer, wherein the design layer corresponds to each mold of a two or more molds consists of two or more regions and is projected to be able to sandwich the boundary portion between the region Rutotomoni provided the parting portion of the corresponding type, the seam of the design layer between said region at the mold parting portion Reinforced fiber preform characterized by that. 前記中空中子がブロー成形体であることを特徴とする請求項1に記載の強化繊維プリフォーム。 The reinforcing fiber preform according to claim 1, wherein the hollow core is a blow molded article. 中空中子に配設された強化繊維の本体層と、該本体層表面を覆う2以上の型からなる成形型の各型に対応する2以上の領域からなる意匠層を含む強化繊維プリフォームを、意匠層の各領域間の境界部が成形型のパーティング部で挟圧させるように成形型に載置し、前記中空中子を圧空で膨張させながら圧空圧と同圧又は低圧で樹脂を加圧注入して含浸、硬化させて成形することを特徴とする中空構造FRPのRTM成形方法。   A reinforcing fiber preform including a reinforcing fiber main body layer disposed in a hollow core and a design layer including two or more regions corresponding to each mold of the two or more molds covering the surface of the main body layer. The resin layer is placed on the mold so that the boundary between the regions of the design layer is clamped by the parting part of the mold, and the resin is applied at the same or low pressure as the compressed air while the hollow core is expanded with compressed air. A method for RTM molding of a hollow structure FRP, wherein the molding is performed by pressure injection, impregnation and curing. 意匠層の領域間の境界部を型で挟圧した後に中空中子に圧空を封入することを特徴とする請求項に記載の中空構造FRPのRTM成形方法。 4. The method for forming an RTM of a hollow structure FRP according to claim 3 , wherein the air pressure is sealed in the hollow core after the boundary between the regions of the design layer is clamped with a mold. 成形後、中空中子を一旦減圧し、上型を開放した状態で低圧の圧空を中子に封入して脱型することを特徴とする請求項またはのいずれかに記載の中空構造FRPのRTM成
形方法。
After molding, once reduced pressure a hollow core, hollow structure according to any one of the low pressure compressed air in the open state of the upper die according to claim 3 or 4, characterized in that demolding enclosed in the core FRP RTM molding method.
JP2005251033A 2005-08-31 2005-08-31 Reinforcing fiber preform and RTM molding method Expired - Fee Related JP4826176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251033A JP4826176B2 (en) 2005-08-31 2005-08-31 Reinforcing fiber preform and RTM molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251033A JP4826176B2 (en) 2005-08-31 2005-08-31 Reinforcing fiber preform and RTM molding method

Publications (3)

Publication Number Publication Date
JP2007062150A JP2007062150A (en) 2007-03-15
JP2007062150A5 JP2007062150A5 (en) 2008-10-16
JP4826176B2 true JP4826176B2 (en) 2011-11-30

Family

ID=37924924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251033A Expired - Fee Related JP4826176B2 (en) 2005-08-31 2005-08-31 Reinforcing fiber preform and RTM molding method

Country Status (1)

Country Link
JP (1) JP4826176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687708A (en) * 2011-07-21 2014-03-26 三菱重工业株式会社 Method and device for producing at least two products including fiber-reinforced resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060029A1 (en) * 2007-12-13 2009-06-18 Airbus Deutschland Gmbh Method and device for producing tubular structural components
WO2014163297A1 (en) * 2013-04-03 2014-10-09 주식회사 지우테크 Panel member for commercial vehicle container
FR3059934B1 (en) * 2016-12-14 2018-11-30 Safran Aircraft Engines A NEEDLE IMPREGNATION MOLD FOR PRODUCING A WORKPIECE FROM A WOVEN PREFORM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272935A (en) * 1988-09-08 1990-03-13 Toyota Motor Corp Molding method of hollow body made of fibre reinforced plastic
JPH03208625A (en) * 1990-01-12 1991-09-11 Mitsubishi Electric Corp Production of hollow structure made of fiber reinforced composite material
JPH04103319A (en) * 1990-08-24 1992-04-06 Mitsubishi Motors Corp Hollow resin injection molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687708A (en) * 2011-07-21 2014-03-26 三菱重工业株式会社 Method and device for producing at least two products including fiber-reinforced resin

Also Published As

Publication number Publication date
JP2007062150A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
EP3006180B1 (en) Method and device for manufacturing fiber-reinforced plastic
EP2070678B1 (en) Process for the production of preforms and fiber-reinforced plastics with the mold
US20050258575A1 (en) Non-isothermal method for fabricating hollow composite parts
US20130089742A1 (en) Reinforced internal composite structures
CN102083616A (en) Hollow composite structure and method of amking same
EP2236262B1 (en) Method of molding fiber-reinforced-resin hollow part
JP4826176B2 (en) Reinforcing fiber preform and RTM molding method
JP2008073876A (en) Manufacturing method of hollow frp
JP2005193587A (en) Resin transfer molding method
JPH07223271A (en) Bent pipe and method and apparatus for producing the same
CN110914046B (en) Multi-stage resin delivery
WO1998051481A1 (en) Arrangement, method and hollow body in connection with forming of plastic components
KR101219397B1 (en) Method for manufacturing composite hollow structure
CN105805533A (en) Member, method and device for manufacturing the same
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
TWI744119B (en) Method for manufacturing fiber reinforced resin molded article, and manufacturing device thereof
JP4706244B2 (en) FRP hollow structure molding method
EP1378433A1 (en) Hollow bicycle crank
EP2558280B1 (en) Method and apparatus for moulding parts made from composite materials
JP5854430B2 (en) FRP manufacturing apparatus and FRP manufacturing method
JP4487239B2 (en) Method for manufacturing FRP structure
JP2007090810A (en) Method for manufacturing hollow frp
JP2006159420A (en) Manufacturing method of frp molded product
JP4382869B2 (en) Molding method of hollow fiber reinforced plastic parts with flange
JP2024010424A (en) High-pressure tank, and apparatus of manufacturing high-pressure tank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4826176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees