JP2006159420A - Manufacturing method of frp molded product - Google Patents

Manufacturing method of frp molded product Download PDF

Info

Publication number
JP2006159420A
JP2006159420A JP2004349586A JP2004349586A JP2006159420A JP 2006159420 A JP2006159420 A JP 2006159420A JP 2004349586 A JP2004349586 A JP 2004349586A JP 2004349586 A JP2004349586 A JP 2004349586A JP 2006159420 A JP2006159420 A JP 2006159420A
Authority
JP
Japan
Prior art keywords
resin
mold
hollow structure
frp molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004349586A
Other languages
Japanese (ja)
Inventor
Hidehiro Takemoto
秀博 竹本
Shunei Sekido
俊英 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004349586A priority Critical patent/JP2006159420A/en
Publication of JP2006159420A publication Critical patent/JP2006159420A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an FRP molded product which sharply conserves the labor of demolding work performed manually heretofore and enables inexpensive good demolding. <P>SOLUTION: In the manufacturing method of the FRP molded product having a hollow structure, pressure is applied to the inside of the hollow structure of the FRP molded product after a resin is cured in a mold to demold the FRP molded product from the mold. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、中空構造を有するFRP成形体(強化繊維プラスチックス成形体)の製造方法に関し、とくに、成形における脱型の方法に関する。   The present invention relates to a method for producing an FRP molded body (reinforced fiber plastics molded body) having a hollow structure, and more particularly to a demolding method in molding.

強化繊維複合材料としてのFRP成形体は、優れた力学特性、軽量性等の要求特性を満たすことができることから、主に各種産業、中でも航空、宇宙用途、スポーツ用途等に広く用いられている。FRP成形体の代表的な製造方法としては、例えばオートクレーブ成形法が挙げられる。この成形法は、強化繊維にマトリックス樹脂を予め含浸させたプリプレグと呼ばれるシート状の材料を、成形型に積み重ねてオートクレーブにて加熱・加圧して成形品を得る方法である。   The FRP molded body as the reinforcing fiber composite material can satisfy the required properties such as excellent mechanical properties and light weight, and is therefore widely used mainly in various industries, especially in aviation, space use, sports use and the like. As a typical method for producing an FRP molded product, for example, an autoclave molding method may be mentioned. This molding method is a method in which a sheet-like material called a prepreg in which a reinforcing fiber is impregnated with a matrix resin in advance is stacked on a molding die and heated and pressed in an autoclave to obtain a molded product.

あるいは、ハンドレイアップ成形法と呼ばれる、成形型にドライな基材を配置しながら直接樹脂を塗布して含浸させ硬化させる方法もある。   Alternatively, there is a method called a hand lay-up molding method in which a resin is directly applied and impregnated and cured while a dry base material is placed on a mold.

これらの方法は、容易に所定の形状を得ることができ、且つ、高い機械特性を得ることができる反面、生産性が低いことから、航空、宇宙用途といった、軽量性や力学特性を必要とする比較的生産数量の少ない用途で主に用いられる方法である。   These methods can easily obtain a predetermined shape and can obtain high mechanical properties, but have low productivity and require lightness and mechanical properties such as aviation and space applications. This method is mainly used in applications where the production quantity is relatively small.

上記の成形方法は、比較的少量の生産に適していることから、成形に関わるサイクルタイムを差ほど気にする必要はなく、脱型に関しても、成形型と成形品の間にクサビ状のヘラや冶工具を挿入するなどして行うことが多い。また、こうして得られた成形品は、脱型時に、冶工具を挿入した時の傷等が成形品表面につきやすく、それを仕上げて修正するのに少なからず時間を要するという問題点もある。   Since the molding method described above is suitable for production of a relatively small amount, it is not necessary to worry about the cycle time involved in molding as much as the difference, and in terms of demolding, a wedge-shaped spatula between the mold and the molded product is also required. Or by inserting a tool. In addition, the molded product thus obtained has a problem that, when demolding, the surface of the molded product is easily damaged when a tool is inserted, and it takes time to finish and correct the molded product.

一方、複合材料の生産性に優れる成形法としては、例えばレジン・トランスファー・モールディング成形法(以下、RTM法と記す。)等の注入成形が挙げられる(例えば特許文献1)。かかるRTM法では、マトリックス樹脂が予備含浸されていない(ドライな)強化繊維基材を複雑な成形型の中に配置して、液状(低粘度)のマトリックス樹脂を注入することにより強化繊維中にマトリックス樹脂を含浸させて成形する。この方法は、比較的生産数量が多い場合に適用されるので、前述のような人手に頼るようなことでは、成形サイクルタイムが遅くなり、生産性に問題が出てくる。そこで、脱型用のエジェクター機構を型に設けたりするなど、脱型に要する時間を短くして生産性を向上させる方式が知られている。   On the other hand, examples of the molding method with excellent productivity of the composite material include injection molding such as a resin transfer molding method (hereinafter referred to as RTM method) (for example, Patent Document 1). In such an RTM method, a (dry) reinforcing fiber base that is not pre-impregnated with a matrix resin is placed in a complicated mold, and a liquid (low viscosity) matrix resin is injected into the reinforcing fiber. Impregnated with matrix resin and molded. Since this method is applied when the production quantity is relatively large, relying on the above-described manpower slows down the molding cycle time and causes a problem in productivity. Therefore, a method for improving productivity by shortening the time required for demolding, such as providing an ejector mechanism for demolding, is known.

しかしながら、この方式は、例えば熱可塑性樹脂による成形では、樹脂の粘度が比較的高いことからエジェクター機構の中に樹脂の混入がなく有効であるが、強化繊維プラスチックスのRTM成形法では、強化繊維に樹脂を含浸させることが必要であり、極めて低粘度の樹脂を用いることが必要となるので、結果として、樹脂注入時の圧力でエジェクター機構から樹脂が漏れたりすることがあり、期待される機能が発揮されないばかりか、エジェクター機構を設ける為の設備費用が高くなるという問題がある。
特開平7−60765号公報
However, this method is effective, for example, in molding with a thermoplastic resin, since the viscosity of the resin is relatively high, so that the resin is not mixed into the ejector mechanism. However, in the RTM molding method of reinforcing fiber plastics, reinforcing fiber As a result, the resin may leak from the ejector mechanism due to the pressure during resin injection, and the expected function Not only is not demonstrated, but there is a problem that the equipment cost for installing the ejector mechanism becomes high.
Japanese Patent Application Laid-Open No. 7-60765

本発明者らは、これらの問題を解決すべく、従来問題であった脱型方法について検討をした結果、機構追加に付随するコストを低減し、かつ、極低粘度樹脂の環境下でも十分に機能を果たすことが可能な脱型方法を見出した。すなわち、本発明の課題は、従来人手により成されていた脱型作業を大幅に省力化し、安価で良好な脱型が可能なFRP成形体の製造方法を提供することにある。   In order to solve these problems, the present inventors have studied the conventional demolding method. As a result, the cost associated with the addition of the mechanism is reduced, and it is sufficient even in the environment of an extremely low viscosity resin. We found a demolding method that can perform the function. That is, an object of the present invention is to provide a method for manufacturing an FRP molded body that can greatly reduce the labor of demolding work that has been performed manually and can perform demolding at low cost.

上記課題を解決するために、本発明に係るFRP成形体の製造方法は、中空構造を有するFRP成形体の製造方法であって、成形型中で樹脂を硬化させた後、FRP成形体の中空構造の内側に圧力を加えることにより、FRP成形体を成形型より脱型することを特徴とする方法からなる。すなわち、本発明では、成形体の内側に内圧を付与することで成形体形状を一時的に変形させて成形型と異なる外形状とし、この変形を利用してFRP成形体を脱型する。   In order to solve the above problems, a method for manufacturing an FRP molded body according to the present invention is a method for manufacturing an FRP molded body having a hollow structure, and after the resin is cured in a mold, the FRP molded body is hollow. It consists of a method characterized in that the FRP molded body is removed from the mold by applying pressure to the inside of the structure. That is, in the present invention, by applying an internal pressure to the inside of the molded body, the shape of the molded body is temporarily deformed to have an outer shape different from that of the mold, and the FRP molded body is demolded using this deformation.

このFRP成形体の製造方法においては、成形すべきFRP成形体の内側に膨縮可能な中空構造体を予め配置し、樹脂硬化後、中空構造体の内側に圧力を加えることによりFRP成形体を成形型より脱型することができる。この場合、上記中空構造体として、ブロー成形により成形された中空構造体、あるいは、回転成形により成形された中空構造体を用いることができる。   In this method of manufacturing an FRP molded body, a hollow structure body that can be expanded and contracted is placed in advance inside the FRP molded body to be molded, and after the resin is cured, the FRP molded body is applied by applying pressure to the inside of the hollow structure body. It can be removed from the mold. In this case, a hollow structure formed by blow molding or a hollow structure formed by rotational molding can be used as the hollow structure.

本発明に係るFRP成形体の製造方法によれば、従来人手により成されていた脱型作業を大幅に省力化でき、かつ、安価に、傷等を発生させない良好な脱型を行うことが可能になる。   According to the method for manufacturing an FRP molded body according to the present invention, it is possible to greatly reduce the labor of mold removal work that has been performed manually, and to perform good mold removal at low cost without causing scratches and the like. become.

以下に、本発明の望ましい実施の形態を、図面を参照しながら具体的に説明する。
本発明において、FRPとは、強化繊維により強化されている樹脂を指し、強化繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維等の無機繊維、あるいはアラミド繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維からなる強化繊維が挙げられる。FRPのマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられ、さらには、ポリアミド樹脂、ポリオレフィン樹脂、ジシクロペンタジエン樹脂、ポリウレタン樹脂、ポリプロピレン樹脂等の熱可塑性樹脂も使用可能である。
Preferred embodiments of the present invention will be specifically described below with reference to the drawings.
In the present invention, FRP refers to a resin reinforced with reinforcing fibers. Examples of reinforcing fibers include inorganic fibers such as carbon fibers, glass fibers, and metal fibers, or aramid fibers, polyethylene fibers, and polyamide fibers. Reinforcing fibers made of organic fibers can be mentioned. Examples of the FRP matrix resin include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, and phenol resins. Furthermore, polyamide resins, polyolefin resins, dicyclopentadiene resins, polyurethane resins, Thermoplastic resins such as polypropylene resin can also be used.

本発明におけるRTM成形法で使用する樹脂としては、粘度が低く強化繊維への含浸が容易な熱硬化製樹脂または熱可塑性樹脂を形成するRIM(Reaction Injection Molding)用モノマーが好適であり、その中でもFRP成形体の熱収縮を低減させ、クラックの発生を抑えるという点から、エポキシ樹脂または熱可塑性樹脂やゴム成分などを配合した変性エポキシ樹脂、ナイロン樹脂、ジシクロペンタジエン樹脂がより適している。   As the resin used in the RTM molding method in the present invention, a thermosetting resin or a monomer for RIM (Reaction Injection Molding) that forms a thermoplastic resin, which has a low viscosity and can be easily impregnated into a reinforcing fiber, is preferable. From the viewpoint of reducing the thermal shrinkage of the FRP molded body and suppressing the occurrence of cracks, modified epoxy resins, nylon resins, and dicyclopentadiene resins blended with epoxy resins, thermoplastic resins, rubber components, or the like are more suitable.

本発明で使用する強化繊維基材は、例えば樹脂の含浸されていない強化繊維からなる基材を指し、その強化繊維の織物やチョップドファイバー、マット、ニット材料、さらにこれらとインサート部品との組み合わせ等が挙げられ、その用途により使い分けられる。前記インサート部品とは、例えばスチールやアルミニウムなどの金属板や、金属柱、金属ボルト、ナット、ヒンジなどの接合用の金属、アルミハニカムコア、あるいはポリウレタン、ポリスチレン、ポリイミド、塩化ビニル、フェノール、アクリルなどの高分子材料からなるフォーム材やゴム質材、木質材等が挙げられ、主として、釘が効くことや、ネジが立てられる等の接合を目的としたインサート部品、中空構造で軽量化を目的としたインサート部品、振動の減衰を目的としたインサート部品などが多く用いられる。   The reinforcing fiber substrate used in the present invention refers to a substrate made of reinforcing fibers not impregnated with resin, for example, the reinforcing fiber fabric, chopped fibers, mats, knit materials, and combinations of these with insert parts, etc. Can be used properly depending on the application. Examples of the insert parts include metal plates such as steel and aluminum, metals for joining such as metal columns, metal bolts, nuts, and hinges, aluminum honeycomb cores, polyurethane, polystyrene, polyimide, vinyl chloride, phenol, acrylic, and the like. Foam materials, rubber materials, wood materials, etc. composed of the above polymer materials are mainly used, and insert parts intended for joining such as nails and screws can be raised, with a hollow structure for the purpose of weight reduction Insert parts that are used for the purpose of damping vibration are often used.

本発明で使用する成形すべきFRP成形体の内側に用いる膨縮可能な中空構造体としては、特に規定されないが、ブロー成形や回転成形で成形された中空構造体やフィルムを融着して袋状にした中空構造体,ディッピングにより風船状の形状を有した中空構造体等が挙げられ、その材質としては、ポリプロピレンやポリエチレン,ナイロン,天然ゴム等が挙げられる。   The inflatable / decompressible hollow structure used on the inside of the FRP molded body to be molded used in the present invention is not particularly defined, but the bag is formed by fusing a hollow structure or a film molded by blow molding or rotational molding. And hollow structures having a balloon-like shape by dipping and the like, and examples of the material include polypropylene, polyethylene, nylon, and natural rubber.

脱型時に中空構造体に付与する圧力のかけ方は特に規定しないが、液体加圧や気体加圧,固体加圧が挙げられる。液体加圧の媒体としては、水,油等が、気体加圧の場合は、空気や窒素等が、挙げられ、固体加圧の場合は、シリコンゴム等を加熱膨張させることで得られる圧力等が挙げられる。   The method of applying the pressure applied to the hollow structure during demolding is not particularly defined, and examples include liquid pressurization, gas pressurization, and solid pressurization. Examples of the liquid pressurizing medium include water and oil. In the case of gas pressurization, air and nitrogen are listed. In the case of solid pressurization, pressure obtained by heating and expanding silicon rubber and the like. Is mentioned.

なお、中空構造体にかける圧力範囲としては、構造体の形状,材質にもよるが、圧力の下限として5kPa以上が、成形体の形状を変形させる観点から必要であり、上限として、1MPa以下が、成形体への変形ダメージを防止する観点から好ましい。より好ましくは、下限としては10kPa以上、また上限としては100kPa以下である。   The pressure range applied to the hollow structure depends on the shape and material of the structure, but the lower limit of the pressure is 5 kPa or more from the viewpoint of deforming the shape of the molded body, and the upper limit is 1 MPa or less. From the viewpoint of preventing deformation damage to the molded body. More preferably, the lower limit is 10 kPa or more, and the upper limit is 100 kPa or less.

本発明で使用する成形型は、例えば上型と下型とからなる成形金型からなり、例えば上型が金型昇降装置に取り付けられる。下型には強化繊維基材を設置する。この強化繊維基材は、事前に成形型に納まりやすいように強化繊維基材を製品形状に賦形することを目的とした賦形型により作成する。成形型の材質としてはFRP、鋳鋼、構造用炭素鋼、アルミニウム合金、亜鉛合金、ニッケル電鋳、銅電鋳などが挙げられる。量産には、剛性、耐熱性、作業性の面から構造用炭素鋼が好適である。   The molding die used in the present invention is a molding die composed of, for example, an upper die and a lower die, and the upper die is attached to a die lifting device, for example. Reinforcing fiber base material is installed in the lower mold. This reinforcing fiber base is prepared by a shaping mold for the purpose of shaping the reinforcing fiber base into a product shape so that it can be easily accommodated in the mold in advance. Examples of the material of the mold include FRP, cast steel, structural carbon steel, aluminum alloy, zinc alloy, nickel electroforming, and copper electroforming. For mass production, structural carbon steel is suitable in terms of rigidity, heat resistance, and workability.

図1は、本発明の一実施態様に係るFRP成形体の製造方法を実施するための成形システムを示している。図1において、2は、上型と下型とを有する成形型としての成形金型を示しており、その上型が金型昇降装置1に取り付けられている。金型昇降装置1は、油圧ポンプ10、油圧シリンダー11を備えた油圧ユニット9を有しており、上型の作動、加圧が油圧により制御されるようになっている。   FIG. 1 shows a molding system for carrying out a method for producing an FRP molded body according to an embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a molding die as a molding die having an upper die and a lower die, and the upper die is attached to the die lifting device 1. The mold lifting / lowering apparatus 1 has a hydraulic unit 9 including a hydraulic pump 10 and a hydraulic cylinder 11, and the operation and pressurization of the upper mold are controlled by hydraulic pressure.

成形型2には、注入口8aに繋がる樹脂注入流路13、排出口8bに繋がる排出路14が接続されている。樹脂注入流路13、排出路14は各々注入バルブ22a、排出バルブ22bを介して注入口8a、排出口8bに接続する。注入バルブ22a、排出バルブ22bの開閉作動およびその作動タイミングは、制御装置22cからの指令に基づいて行われる。樹脂注入流路13には樹脂注入装置3が接続されている。樹脂注入装置3は、主剤タンク5、硬化剤タンク6にそれぞれ主剤、硬化剤を収容し、それぞれのタンクは加温できる機構を備えているとともに、真空ポンプ24により真空脱泡できるようになっている。樹脂注入時にはそれぞれのタンクから加圧装置23により樹脂を樹脂注入流路13に向かって押し流す。逆止弁12を介して設けられた加圧装置23にはシリンジポンプを用いており、シリンジを同時に押し出すことで定量性も確保することが、2液混合により硬化する樹脂には好ましい。主剤、硬化剤は混合ユニット4で混合され、樹脂注入流路13に至る。排出路14には、真空ポンプ7aあるいは加圧ポンプ7bへの樹脂の流入を防ぐために、樹脂トラップ15が介装されている。   The molding die 2 is connected to a resin injection channel 13 connected to the injection port 8a and a discharge channel 14 connected to the discharge port 8b. The resin injection channel 13 and the discharge channel 14 are connected to the injection port 8a and the discharge port 8b via an injection valve 22a and a discharge valve 22b, respectively. The opening / closing operation of the injection valve 22a and the discharge valve 22b and the operation timing thereof are performed based on commands from the control device 22c. A resin injection device 3 is connected to the resin injection flow path 13. The resin injection device 3 stores the main agent and the curing agent in the main agent tank 5 and the curing agent tank 6, respectively, and each tank has a mechanism capable of heating and can be degassed by the vacuum pump 24. Yes. At the time of resin injection, the resin is pushed from each tank toward the resin injection flow path 13 by the pressurizing device 23. A syringe pump is used for the pressurizing device 23 provided via the check valve 12, and it is preferable for a resin that is cured by two-liquid mixing to ensure quantitativeness by simultaneously extruding the syringe. The main agent and the curing agent are mixed by the mixing unit 4 and reach the resin injection channel 13. A resin trap 15 is interposed in the discharge path 14 in order to prevent the resin from flowing into the vacuum pump 7a or the pressure pump 7b.

なお、注入口8aの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、注入口8aはできるだけ少ないことが好ましい。これは樹脂注入装置3からの注入用流路13を注入口8aに接続する箇所が増えて注入作業が繁雑になることを防ぐためである。   The number and positions of the injection ports 8a vary depending on the shape and size of the mold and the number of molded products that are simultaneously molded in the mold, but it is preferable that the number of injection ports 8a be as small as possible. This is to prevent the injection work from becoming complicated due to an increase in the number of locations where the injection flow path 13 from the resin injection device 3 is connected to the injection port 8a.

樹脂注入流路13の材料は十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。チューブには口径5〜30mmのものを用い、樹脂の注入圧力に耐えるために1.0MPa以上の耐圧性、樹脂硬化時の温度に耐えるために100℃以上の耐熱性が必要となり、厚みが2mm程度の”テフロン”(登録商標)などのフッ素樹脂製チューブが好適である。ただし、”テフロン”(登録商標)以外にも、比較的安価なポリエチレン、ナイロン等のプラスチック製のチューブやスチール、アルミ等の金属管であってもよい。   The material of the resin injection flow path 13 needs to ensure sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance). A tube with a diameter of 5 to 30 mm is used. A pressure resistance of 1.0 MPa or more is required to withstand the injection pressure of the resin, and a heat resistance of 100 ° C. or more is required to withstand the temperature during resin curing, and the thickness is 2 mm. A tube made of fluororesin such as “Teflon” (registered trademark) is suitable. However, other than “Teflon” (registered trademark), a relatively inexpensive plastic tube such as polyethylene or nylon, or a metal tube such as steel or aluminum may be used.

また、排出口8bの数や位置は成形型の形状や寸法、1型内で同時に成形する成形品の数量などによって異なるが、排出口もできるだけ少ないことが好ましい。また、排出口8bは、型内に残留する気体が抜けやすいように注入口8aよりも気体が浮動し易い方向である高い位置に設置されることが好ましい。   Further, the number and positions of the discharge ports 8b vary depending on the shape and size of the molding die, the number of molded products that are simultaneously molded in the mold, and the like, but it is preferable that the number of discharge ports be as small as possible. Moreover, it is preferable that the discharge port 8b is installed at a high position in a direction in which the gas is more likely to float than the injection port 8a so that the gas remaining in the mold can easily escape.

排出路14の材料は、樹脂注入流路13と同様に十分な流量の確保と樹脂との適合性(温度や耐溶剤性、耐圧)を考慮する必要がある。排出路14としてはスチール、アルミ等の金属管、あるいはポリエチレン、ナイロン、”テフロン”(登録商標)等のプラスチック製のチューブが挙げられるが、直径5〜10mm、厚み1〜2mmの”テフロン”(登録商標)製チューブが作業性の面からより好適である。   As for the material of the discharge passage 14, it is necessary to take into consideration the securing of a sufficient flow rate and compatibility with the resin (temperature, solvent resistance, pressure resistance) in the same manner as the resin injection passage 13. The discharge path 14 may be a metal tube such as steel or aluminum, or a plastic tube such as polyethylene, nylon, or “Teflon” (registered trademark), but “Teflon” having a diameter of 5 to 10 mm and a thickness of 1 to 2 mm ( (Registered trademark) tube is more preferable from the viewpoint of workability.

樹脂注入時の樹脂注入流路13、排出路14の途中に設置する注入バルブ22aや排出バルブ22bは、バイスグリップ等により、直接作業者により流路を挟むことで全域開閉や口径を変化させることができる。例えば図2に示すように、上型16と下型17からなる成形型の上型16側へと接続された樹脂注入流路13、排出路14の途中に、バイスグリップ21を設けることができる。   The injection valve 22a and the discharge valve 22b installed in the middle of the resin injection flow path 13 and the discharge path 14 at the time of resin injection can be opened / closed and the diameter of the entire area can be changed by directly sandwiching the flow path by an operator with a vise grip or the like. Can do. For example, as shown in FIG. 2, a vise grip 21 can be provided in the middle of the resin injection flow path 13 and the discharge path 14 connected to the upper mold 16 side of the molding die composed of the upper mold 16 and the lower mold 17. .

樹脂の加圧は、前述の如きシリンジポンプなどによる加圧方法によれば定量性も得られる。樹脂の注入圧Piは0.1〜1.0MPaの範囲で用いるのが好ましい。ここで樹脂の注入圧Piとは、加圧装置23により加圧される最大圧力を指し、図1の注入圧力計31で表示させる圧力を表す。最終的に樹脂が型内の基材に完全に含浸され排出路14まで到達したら排出路14を閉じ、その後暫くしてから注入用流路13も閉じて樹脂注入を終了する。成形型2は、例えば温調機25、26によって加温されており、これにより樹脂を硬化させる。なお、型内樹脂圧Pmとは、型内圧力計32の圧力を表す。   The pressurization of the resin can also provide quantitativeness according to the pressurization method using a syringe pump or the like as described above. The resin injection pressure Pi is preferably in the range of 0.1 to 1.0 MPa. Here, the injection pressure Pi of the resin refers to the maximum pressure pressurized by the pressurizing device 23, and represents the pressure displayed by the injection pressure gauge 31 of FIG. When the resin is finally completely impregnated into the base material in the mold and reaches the discharge path 14, the discharge path 14 is closed, and after a while, the injection flow path 13 is also closed and the resin injection is finished. The mold 2 is heated by, for example, temperature controllers 25 and 26, thereby curing the resin. The in-mold resin pressure Pm represents the pressure of the in-mold pressure gauge 32.

図5を用いて従来方法と本発明方法を説明するに、従来の方法では、硬化後に下型55から上型54を図示しないプレス機等で上昇させた後、FRP成形体53と下型55の境界に図示しないクサビ状の冶工具を何度か挿入することを繰り返すことで製品の脱型を行っていた。しかしながら、この方法では脱型に必要な時間が要したり、FRP成形体53を冶工具により傷つけたりすることで後工程での工数が増えたり、あるいは下型55を傷つけたりすることがあり、問題となっていた。   The conventional method and the method of the present invention will be described with reference to FIG. 5. In the conventional method, after curing, the upper die 54 is lifted from the lower die 55 with a press or the like (not shown), and then the FRP molded body 53 and the lower die 55 are used. The product was demolded by repeatedly inserting a wedge-shaped jig tool (not shown) at the boundary. However, in this method, time required for demolding may be required, the FRP molded body 53 may be damaged by a tool, and the man-hours in the subsequent process may be increased, or the lower mold 55 may be damaged. It was a problem.

そこで、本発明では、注入口58aからランナー56を介しての樹脂注入、ランナー57、吸引口58bを介して型内からの真空吸引によるRTM成形、樹脂硬化の完了後、下型55から上型54を図示しないプレス機等で一旦僅かであるが上昇させた後、膨縮可能な中空構造体51(中空ブロー構造体)からなる中子の内側に圧力口52から空気圧等の圧力を加えてFRP成形体53を膨張変形させることで下型55から離型させ、上型54を完全に上昇させた後で、FRP成形体53を脱型をさせる。こうすることで、冶工具等によるFRP成形体の傷付きを防止し、かつ、脱型に要する時間を短時間に抑えることが可能となる。   Therefore, in the present invention, the resin injection from the injection port 58a through the runner 56, the RTM molding by vacuum suction from the mold through the runner 57 and the suction port 58b, and the completion of the resin curing, the lower mold 55 to the upper mold are completed. After slightly raising 54 by a press machine or the like (not shown), pressure such as air pressure is applied from the pressure port 52 to the inside of the core made of the hollow structure 51 (hollow blow structure) that can be expanded and contracted. The FRP molded body 53 is released from the lower mold 55 by expanding and deforming, and after the upper mold 54 is completely raised, the FRP molded body 53 is demolded. By doing so, it is possible to prevent the FRP molded body from being damaged by a tool or the like, and to reduce the time required for demolding in a short time.

以下に、実施例に基づいてより具体的な説明する。実施例では以下の基材(強化繊維基材)、樹脂、膨縮可能な中空構造体(中子)を使用した。   Below, based on an Example, it demonstrates more concretely. In the examples, the following base materials (reinforcing fiber base materials), resins, and hollow structures (cores) that can be expanded and contracted were used.

基材a:東レ(株)製、炭素繊維織物CO6343B(織り組織:平織り,織物目付:198g/m2 ,強化繊維:T300B−3K,弾性率:230GPa,強度:3530MPa,繊度198tex,フィラメント数:3,000本)
基材b:日東紡社製、ガラス繊維サーフェースマットMF30P100BS6(布帛の形態:不織布,ガラス繊維の種類=Eガラス,織物目付30g/m2
樹脂a:”エピコート”828/TR−C35H=100:10.9
”エピコート”828:油化シェルエポキシ社製、エポキシ樹脂
TR−C35H:東レ(株)製、イミダゾール誘導体
中子a:中空翼断面構造のポリプロピレン製中子(みのる化成社製)
成形方法:ブロー成形、平均厚み:約1.7mm
中子b:ナイロンフィルム製中子:東レ(株)製
平均厚み:約50μm
Substrate a: manufactured by Toray Industries, Inc., carbon fiber woven fabric CO6343B (woven structure: plain weave, woven fabric weight: 198 g / m 2 , reinforcing fiber: T300B-3K, elastic modulus: 230 GPa, strength: 3530 MPa, fineness 198 tex, number of filaments: 3,000)
Base material b: manufactured by Nittobo Co., Ltd., glass fiber surface mat MF30P100BS6 (form of fabric: non-woven fabric, type of glass fiber = E glass, fabric basis weight 30 g / m 2 )
Resin a: “Epicoat” 828 / TR-C35H = 100: 10.9
"Epicoat" 828: Epoxy resin made by Yuka Shell Epoxy
TR-C35H: manufactured by Toray Industries, Inc., imidazole derivative core a: hollow core structure made of polypropylene (manufactured by Minoru Kasei Co., Ltd.)
Molding method: blow molding, average thickness: about 1.7 mm
Core b: Nylon film core: manufactured by Toray Industries, Inc. Average thickness: about 50 μm

実施例1
図3に示すように中子aからなる中空構造体34の周囲に、基材35を下記構成で巻き付けて成形前駆体33を得た。
基材35=基材a(0/90)4層+基材b1層+基材a(0/90)1層
Example 1
As shown in FIG. 3, a base material 35 was wound around the hollow structure 34 composed of the core a with the following configuration to obtain a molding precursor 33.
Base material 35 = Base material a (0/90) 4 layers + Base material b 1 layer + Base material a (0/90) 1 layer

この成形前駆体33を図1に示す上下割りの成形型2内にセットした。次に中空構造体34の中に空気圧で0.5MPaに加圧し保持した。成形型2は、温調機26に接続されており、95℃で保持されるようにセットした。また、この成形型2は樹脂トラップ15を途中に有する真空ポンプ7aから真空をバルブ22bで接続することで、型内を真空に保持した。   The molding precursor 33 was set in the upper and lower split molds 2 shown in FIG. Next, the hollow structure 34 was pressurized and held at 0.5 MPa with air pressure. The mold 2 was connected to the temperature controller 26 and set to be maintained at 95 ° C. The mold 2 was kept in a vacuum state by connecting a vacuum from a vacuum pump 7a having a resin trap 15 in the middle with a valve 22b.

次に、樹脂注入機3から真空脱泡された樹脂aを混合しながらバルブ22aを通じて型内に注入した。注入開始後、約1分で樹脂がバルブ22b側に流出してきた。この時、20秒間バルブ22bを閉止し、次いで20秒間バルブ22bを開放し、この閉止と開放を4回繰り返し、最後にバルブ22bを閉じ、次いでバルブ22aを閉じた。   Next, the resin a that was vacuum degassed from the resin injector 3 was injected into the mold through the valve 22a. Resin flowed out to the valve 22b side in about 1 minute after the start of injection. At this time, the valve 22b was closed for 20 seconds, and then the valve 22b was opened for 20 seconds. This closing and opening was repeated four times. Finally, the valve 22b was closed, and then the valve 22a was closed.

その後、そのままの状態を20分間保持し、樹脂aを硬化させた。硬化後、中空構造体34の中の圧力を大気開放した。そして、成形型2の上型を上昇させ、15mm浮かせた状態で停止した。次に中空構造体34に空気圧として0.02MPaにて空気を注入したところ、成形体が脱型された。脱型にかかった時間は、僅かに3秒であった。   Thereafter, the state as it was was kept for 20 minutes to cure the resin a. After curing, the pressure in the hollow structure 34 was released to the atmosphere. And the upper mold | type of the shaping | molding die 2 was raised, and it stopped in the state which floated 15 mm. Next, when air was injected into the hollow structure 34 at an air pressure of 0.02 MPa, the molded body was demolded. The time required for demolding was only 3 seconds.

この後、上型を完全に上昇させ、中空構造体34と共に成形体を得た。成形体の表面を確認したところ、脱型によって発生した傷は皆無であった。   Thereafter, the upper mold was completely raised, and a molded body was obtained together with the hollow structure 34. When the surface of the molded product was confirmed, there were no scratches caused by demolding.

実施例2
図4に示すように中子bからなる中空構造体44の周囲に、基材45を下記構成で巻き付けて成形前駆体43を得た。
基材45=基材a(0/90)5層
Example 2
As shown in FIG. 4, a base 45 was wound around the hollow structure 44 made of the core b with the following configuration to obtain a molding precursor 43.
Base material 45 = Base material a (0/90) 5 layers

この成形前駆体43を用いたことを除き、実施例1と同様にして、樹脂を注入し硬化させた。   A resin was injected and cured in the same manner as in Example 1 except that this molding precursor 43 was used.

硬化後、中空構造体44の中の圧力を大気開放した。そして、成形型2の上型を上昇させ、約5mm浮かせた状態で停止した。次に中空構造体44に空気圧として0.03MPaにて空気を注入したところ、成形体が脱型された。脱型に掛かった時間は、僅か4秒であった。   After curing, the pressure in the hollow structure 44 was released to the atmosphere. Then, the upper mold of the mold 2 was raised and stopped in a state where it was floated by about 5 mm. Next, when air was injected into the hollow structure 44 at an air pressure of 0.03 MPa, the molded body was demolded. The time required for demolding was only 4 seconds.

この後、上型を完全に上昇させ、中空構造体44と共に成形体を得た。成形体の表面を確認したところ、脱型によって発生した傷は皆無であった。   Thereafter, the upper mold was completely raised, and a molded body was obtained together with the hollow structure 44. When the surface of the molded product was confirmed, there were no scratches caused by demolding.

比較例1
図3に示すように中子aからなる中空構造体34の周囲に、基材35を下記構成で巻き付けて成形前駆体33を得た。
基材35=基材a(0/90)4層+基材b1層+基材a(0/90)1層
Comparative Example 1
As shown in FIG. 3, a base material 35 was wound around the hollow structure 34 composed of the core a with the following configuration to obtain a molding precursor 33.
Base material 35 = Base material a (0/90) 4 layers + Base material b 1 layer + Base material a (0/90) 1 layer

この成形前駆体33を用いて、実施例1と同様に、樹脂を注入し硬化させた。硬化後、中空構造体34の中の圧力を大気開放した。そして、成形型2の上型を完全に上昇させたところ、成形体は成形型2の下型に固着していた。この成形型2の下型と成形体との境目に薄い軽金属製のヘラを挿入しながら、脱型を行ったところ、要した時間は46秒であった。   Using this molding precursor 33, a resin was injected and cured in the same manner as in Example 1. After curing, the pressure in the hollow structure 34 was released to the atmosphere. When the upper mold of the mold 2 was completely raised, the molded body was fixed to the lower mold of the mold 2. The mold was removed while inserting a thin light metal spatula between the lower mold of the mold 2 and the molded body, and the time required was 46 seconds.

次に、成形体の表面状態を確認したところ、ヘラを挿入した部分に補修を要する傷跡が6カ所に見られた。   Next, when the surface state of the molded body was confirmed, scars that require repair were found in six places where the spatula was inserted.

比較例2
図4に示すように中子bからなる中空構造体44の周囲に、基材45を下記構成で巻き付けて成形前駆体43を得た。
基材45=基材a(0/90)5層
Comparative Example 2
As shown in FIG. 4, a base 45 was wound around the hollow structure 44 made of the core b with the following configuration to obtain a molding precursor 43.
Base material 45 = Base material a (0/90) 5 layers

この成形前駆体43を用いて、実施例2と同様に、樹脂を注入し硬化させた。硬化後、中空構造体44の中の圧力を大気開放した。そして、成形型2の上型を完全に上昇させたところ、成形体は成形型2の下型に固着していた。中空構造体44をつかんで脱型を試みたが、中空構造体44は成形体の端部のところで脱型はできなかった。次にこの成形型2の下型と成形体との境目に薄いプラスチックス製のヘラを挿入しながら、脱型を行ったところ、要した時間は50秒であった。   Using this molding precursor 43, a resin was injected and cured in the same manner as in Example 2. After curing, the pressure in the hollow structure 44 was released to the atmosphere. When the upper mold of the mold 2 was completely raised, the molded body was fixed to the lower mold of the mold 2. Although removal of the hollow structure 44 was attempted, the hollow structure 44 could not be removed at the end of the molded body. Next, when the mold was removed while inserting a thin plastic spatula at the boundary between the lower mold of the mold 2 and the molded body, the time required was 50 seconds.

次に、成形体の表面状態を確認したところ、ヘラを挿入した部分に補修を要する傷跡が2カ所に見られた。   Next, when the surface state of the molded body was confirmed, scars that required repair were found in two places where the spatula was inserted.

このように、本発明を適用することで、FRP成形体を傷つけることなく、極めて短時間で脱型することができることが確認できた。   Thus, it has been confirmed that by applying the present invention, it is possible to remove the mold in an extremely short time without damaging the FRP molded body.

なお、図6に、上記のような本発明方法を用いることができるRTM成形の装置構成の外観例を示す。上型64、下型65からなる成形型に対し、樹脂を注入する注入口68aと型内を真空吸引する吸引口68bを設け、中空構造体の内部に気体等の圧力をかける圧力口62を設けた構造である。Aは注入樹脂、Bは、型内からの吸引、Cは供給圧力空気をそれぞれ示している。   In addition, in FIG. 6, the example of an external appearance of the apparatus structure of RTM shaping | molding which can use the above methods of this invention is shown. An injection port 68a for injecting resin and a suction port 68b for vacuum-suctioning the inside of the mold are provided for a molding die composed of an upper die 64 and a lower die 65, and a pressure port 62 for applying a pressure such as gas to the inside of the hollow structure is provided. This is the structure provided. A is the injected resin, B is the suction from inside the mold, and C is the supply pressure air.

本発明に係る方法は、中空構造を有するあらゆるFRP成形体の製造に適用できる。   The method according to the present invention can be applied to the production of any FRP molded body having a hollow structure.

本発明の一実施態様に係るRTM成形システムの機器系統図である。It is an equipment distribution diagram of an RTM molding system concerning one embodiment of the present invention. 図1のシステムで採用可能な成形型部分の概略斜視図である。It is a schematic perspective view of the mold part employable with the system of FIG. 本発明方法の一例を示す成形前駆体の概略斜視図である。It is a schematic perspective view of the molding precursor which shows an example of this invention method. 本発明方法の一例を示す成形前駆体の概略斜視図である。It is a schematic perspective view of the molding precursor which shows an example of this invention method. 本発明方法の一例を示す上型上昇時の概略斜視図である。It is a schematic perspective view at the time of upper mold raising which shows an example of the method of the present invention. 本発明方法を用いることができるRTM成形の装置構成の外観例を示す概略斜視図である。It is a schematic perspective view which shows the example of an external appearance of the apparatus structure of RTM shaping | molding which can use the method of this invention.

符号の説明Explanation of symbols

1 金型昇降装置
2 成形型
3 樹脂注入装置
4 混合ユニット
5 主剤タンク
6 硬化剤タンク
7a 真空ポンプ
7b 加圧ポンプ
8a 注入口
8b 排出口
9 油圧ユニット
10 油圧ポンプ
11 油圧シリンダー
12 逆止弁
13 樹脂注入流路
14 排出路
15 樹脂トラップ
16 上型
17 下型
21 バイスグリップ
22a 注入バルブ
22b 排出バルブ
22c 制御装置
23 加圧装置
24 真空ポンプ
25、26 温調機
31 注入圧力計
32 型内圧力計
33 成形前駆体
34 中空構造体(中子)
35 強化繊維基材
43 成形前駆体
44 中空構造体(中子)
45 強化繊維基材
51 中空ブロー構造体(中子)
52 圧力口
53 強化繊維基材
54 上型
55 下型
56 ランナー
57 ランナー
58a注入口
58b吸引口
62 圧力口
64 上型
65 下型
68a注入口
68b吸引口
DESCRIPTION OF SYMBOLS 1 Mold raising / lowering device 2 Mold 3 Resin injection device 4 Mixing unit 5 Main agent tank 6 Hardener tank 7a Vacuum pump 7b Pressure pump 8a Inlet 8b Outlet 9 Hydraulic unit 10 Hydraulic pump 11 Hydraulic cylinder 12 Check valve 13 Resin Injection passage 14 Discharge passage 15 Resin trap 16 Upper die 17 Lower die 21 Vise grip 22a Injection valve 22b Discharge valve 22c Control device 23 Pressurization device 24 Vacuum pump 25, 26 Temperature controller 31 Injection pressure gauge 32 In-type pressure gauge 33 Molding precursor 34 Hollow structure (core)
35 Reinforcing fiber substrate 43 Molding precursor 44 Hollow structure (core)
45 Reinforced fiber substrate 51 Hollow blow structure (core)
52 Pressure port 53 Reinforcing fiber base material 54 Upper die 55 Lower die 56 Runner 57 Runner 58a inlet 58b suction port 62 Pressure port 64 Upper die 65 Lower die 68a inlet 68b suction port

Claims (4)

中空構造を有するFRP成形体の製造方法であって、成形型中で樹脂を硬化させた後、FRP成形体の中空構造の内側に圧力を加えることにより、FRP成形体を成形型より脱型することを特徴とするFRP成形体の製造方法。   A method for producing an FRP molded body having a hollow structure, wherein after the resin is cured in a mold, pressure is applied to the inside of the hollow structure of the FRP molded body to demold the FRP molded body from the mold. The manufacturing method of the FRP molded object characterized by the above-mentioned. 成形すべきFRP成形体の内側に膨縮可能な中空構造体を予め配置し、樹脂硬化後、中空構造体の内側に圧力を加えることによりFRP成形体を成形型より脱型する、請求項1のFRP成形体の製造方法。   The hollow structure body which can be expanded and contracted is previously arranged inside the FRP molded body to be molded, and after the resin is cured, the FRP molded body is removed from the molding die by applying pressure to the inside of the hollow structure body. The manufacturing method of FRP molded object. 前記中空構造体として、ブロー成形により成形された中空構造体を用いる、請求項2のFRP成形体の製造方法。   The manufacturing method of the FRP molded object of Claim 2 using the hollow structure shape | molded by blow molding as the said hollow structure. 前記中空構造体として、回転成形により成形された中空構造体を用いる、請求項2のFRP成形体の製造方法。   The manufacturing method of the FRP molded object of Claim 2 using the hollow structure formed by rotation molding as the said hollow structure.
JP2004349586A 2004-12-02 2004-12-02 Manufacturing method of frp molded product Pending JP2006159420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349586A JP2006159420A (en) 2004-12-02 2004-12-02 Manufacturing method of frp molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349586A JP2006159420A (en) 2004-12-02 2004-12-02 Manufacturing method of frp molded product

Publications (1)

Publication Number Publication Date
JP2006159420A true JP2006159420A (en) 2006-06-22

Family

ID=36661960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349586A Pending JP2006159420A (en) 2004-12-02 2004-12-02 Manufacturing method of frp molded product

Country Status (1)

Country Link
JP (1) JP2006159420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007266A (en) * 2015-06-25 2017-01-12 学校法人日本大学 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method
KR20200016047A (en) * 2018-08-06 2020-02-14 주식회사 성우하이텍 Complex materials forming method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232384A (en) * 1994-02-24 1995-09-05 Nippo Sangyo Kk Composite-layered hollow frp molded product and molding thereof
JPH07232333A (en) * 1994-02-24 1995-09-05 Takashimaya Nippatsu Kogyo Kk Manufacture of seat pad for vehicle, having air hole, and mold to be used therefore
JPH09193252A (en) * 1996-01-22 1997-07-29 Sekisui Chem Co Ltd Mold for molding fiber reinforced plastic product
JP2003062841A (en) * 2001-08-24 2003-03-05 Inoac Corp Foaming mold and method for producing foamed molding
JP2003276032A (en) * 2002-03-25 2003-09-30 Sainekkusu:Kk Resin molding apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232384A (en) * 1994-02-24 1995-09-05 Nippo Sangyo Kk Composite-layered hollow frp molded product and molding thereof
JPH07232333A (en) * 1994-02-24 1995-09-05 Takashimaya Nippatsu Kogyo Kk Manufacture of seat pad for vehicle, having air hole, and mold to be used therefore
JPH09193252A (en) * 1996-01-22 1997-07-29 Sekisui Chem Co Ltd Mold for molding fiber reinforced plastic product
JP2003062841A (en) * 2001-08-24 2003-03-05 Inoac Corp Foaming mold and method for producing foamed molding
JP2003276032A (en) * 2002-03-25 2003-09-30 Sainekkusu:Kk Resin molding apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007266A (en) * 2015-06-25 2017-01-12 学校法人日本大学 Pultrusion manufacturing equipment of fiber-reinforced polyamide composite material, and pultrusion manufacturing method
KR20200016047A (en) * 2018-08-06 2020-02-14 주식회사 성우하이텍 Complex materials forming method and device
KR102407607B1 (en) 2018-08-06 2022-06-10 주식회사 성우하이텍 Complex materials forming device

Similar Documents

Publication Publication Date Title
US5087193A (en) Apparatus for forming a composite article
KR101151966B1 (en) Rtm molding method and device
JP6140679B2 (en) Resin injection molding process using vacuum with reusable resin distribution line
US8491988B2 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
US7785518B2 (en) Method and apparatus for molding composite articles
WO2011043253A1 (en) Process and apparatus for producing fiber-reinforced plastic
JP2009202440A (en) Demolding method and manufacturing process of fiber-reinforced plastic
JP2005193587A (en) Resin transfer molding method
EP1829661B1 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
JP2008073876A (en) Manufacturing method of hollow frp
JP2006205546A (en) Demolding apparatus for rtm molding
JP5018210B2 (en) Manufacturing method of fiber reinforced resin
JP2007007910A (en) Rtm (resin transfer molding) method and resin injection device therefor
KR101219397B1 (en) Method for manufacturing composite hollow structure
JP4826176B2 (en) Reinforcing fiber preform and RTM molding method
JP4706244B2 (en) FRP hollow structure molding method
JP4487239B2 (en) Method for manufacturing FRP structure
JP4730637B2 (en) RTM molding method
TW201434613A (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP2006095727A (en) Rtm molding machine and rtm molding method
JP2006159420A (en) Manufacturing method of frp molded product
JP2014051014A (en) Method for producing fiber-reinforced composite material and intermediate base material for fiber-reinforced composite material
WO2011128453A2 (en) Method and apparatus for moulding parts made from composite materials
JP5854430B2 (en) FRP manufacturing apparatus and FRP manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005