WO2014115668A1 - Method for molding hollow molding and method for manufacturing fiber reinforced plastic - Google Patents

Method for molding hollow molding and method for manufacturing fiber reinforced plastic Download PDF

Info

Publication number
WO2014115668A1
WO2014115668A1 PCT/JP2014/050908 JP2014050908W WO2014115668A1 WO 2014115668 A1 WO2014115668 A1 WO 2014115668A1 JP 2014050908 W JP2014050908 W JP 2014050908W WO 2014115668 A1 WO2014115668 A1 WO 2014115668A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molding die
hollow molded
molding
molded article
Prior art date
Application number
PCT/JP2014/050908
Other languages
French (fr)
Japanese (ja)
Inventor
健太 馬場
守 神田
彰吾 松島
茂郎 岩澤
高瀬 裕志
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201480004321.7A priority Critical patent/CN104903076A/en
Priority to JP2014515741A priority patent/JPWO2014115668A1/en
Publication of WO2014115668A1 publication Critical patent/WO2014115668A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3649Inflatable bladders using gas or fluid and related details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • B29C43/146Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps for making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • B29K2105/0827Braided fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles

Definitions

  • the present invention relates to a method for molding a hollow molded article made of fiber reinforced plastic.
  • Fiber reinforced plastic is lightweight, highly rigid and has excellent strength characteristics, and is used in many fields.
  • hollow fiber-reinforced plastic molded products are used to achieve both light weight and high rigidity.
  • One of the molding methods used for producing the hollow molded product is an internal pressure molding method.
  • the internal pressure molding method is a method in which a material is arranged in a cylindrical shape in a molding die, pressure is applied from the inside of the arranged material, and the material is heated and molded in close contact with the molding die.
  • Patent Document 1 shows an example in which a hollow molded product having an irregular cross section is molded using a prepreg.
  • a prepreg is wound around a mandrel having a circular cross section, and then the mandrel is pulled out to create a prepreg hollow material.
  • a pressure bag is inserted into a hollow portion of the prepreg hollow material, and a pressure bag is inserted.
  • the hollow material is a mold having a shape corresponding to the deformed shape of the hollow molded product, and is placed in a mold in which a replenishment prepreg is placed in the deformed portion.
  • a hollow molded product is obtained.
  • Patent Document 2 discloses a method of molding a hollow molded product without resin pinholes by resin transfer molding (hereinafter referred to as RTM) with good design.
  • RTM resin transfer molding
  • a reinforcing material is wound around an internal pressure holding body for applying an internal pressure, set in a mold having a resin injection port and an exhaust port, and the fiber volume of the molded product between the mold and the internal pressure holding body.
  • Hollow molding is performed by injecting an amount of resin calculated from the content (Vf), and then gradually applying internal pressure. When the resin is visible at the exhaust port, the exhaust port is plugged and the internal pressure is increased to a predetermined pressure. I have the goods.
  • JP 2006-123475 A Japanese Patent No. 4052486
  • the cross-sectional shape of the hollow portion is circular, it is formed into a uniform thickness by devising how to wrap the reinforcing material.
  • the cross-sectional shape of the hollow part is irregular, when the internal pressure holding body is inflated, the internal pressure holding body comes in contact with the reinforcement wall from a location close to the reinforcing material, and reinforcement of the contacted portion Since the position of the material does not move, there is a possibility that the internal pressure holding body does not completely push the portion where the distance from the inner wall of the reinforcing material is far, and a portion having poor appearance such as a resin-rich portion or a pit may occur.
  • the present invention has been made in view of the above circumstances, and a hollow molded product made of fiber-reinforced plastic that is lightweight and highly rigid even if the cross section of the hollow molded product is irregular or has a bent portion. It is an object of the present invention to provide a method for easily molding with substantially equal wall thickness, stable quality, good surface design.
  • the method for molding a hollow molded article according to the present invention is a method for molding a hollow molded article made of fiber-reinforced plastic, and is formed by preforming a foam material and offset from the outer shape of the molded article.
  • a pressure bladder is placed on a mandrel having the shape described above to form a primary laminate, and reinforcing fibers are applied to the outer periphery of the primary laminate as a braiding base material by a braiding machine.
  • a removal step .
  • the method for manufacturing a hollow molded product described above is used in the method for manufacturing a fiber-reinforced plastic according to the present invention.
  • a lightweight and highly rigid hollow molded article made of fiber-reinforced plastic with a substantially equal thickness and surface It can be easily molded with good design.
  • the injection resin is satisfactorily impregnated into the reinforcing fiber base of the preform while suppressing the entrainment of air over the entire area of the hollow molded product made of fiber reinforced plastic to be molded.
  • a fiber-reinforced plastic hollow molded article having almost no unimpregnated portions and pits can be obtained.
  • the amount of resin used for the non-product part can be minimized in hollow RTM molding.
  • FIG. 1 shows an example of a mandrel used in the present invention.
  • FIG. 1A shows a case where the cross section is uniform in the longitudinal direction
  • FIG. 1B shows a case where the cross section changes in the longitudinal direction.
  • the mandrel is made by preforming a foam material.
  • the foam material used for the mandrel include resins such as urethane, acrylic, and styrene. From the viewpoint of easy removal of the primary laminate from the hollow molded product and low cost, it is made from styrene. It is preferable that it is a polystyrene foam.
  • FIG. 2 is a top view of the mandrel longitudinal direction.
  • FIG. 2A shows a shape where the molded product is bent in the middle
  • FIG. 2B shows a case where the cross-sectional shape of the intermediate portion is large.
  • the mandrel made of styrene foam can be dissolved by an organic solvent such as acetone, it can be easily removed in a removing step described later.
  • the foaming ratio of the foamed material is preferably 30 times or less, more preferably 10 because a sufficient rigidity as a mandrel is necessary because it is laminated with a braiding machine when the secondary laminate is formed.
  • the expansion ratio is ⁇ 30 times.
  • the mandrel has a shape that is offset from the outer shape of the molded product (product outer shape), but is preferably a shape that is offset from the product outer shape to a thickness t or more obtained by adding the thickness of the braiding base material to be laminated and the thickness of the pressure bladder. .
  • the offset amount is not more than an amount obtained by adding 3 mm to the thickness of the braiding substrate and the thickness of the pressure bladder.
  • the braiding substrate will be stiffened no matter how much pressure is applied to the pressure bladder, and the braiding substrate cannot be pressed sufficiently against the mold. This is because voids are formed between the two, and the resin impregnated in the impregnation step described later accumulates in the voids, resulting in a resin-rich portion.
  • the braiding base material is additionally reinforced in a part of the secondary laminate in a step other than the second forming step for producing the secondary laminate, there is no problem even if the offset is further offset. .
  • FIG. 3 shows an example in which the mandrel has an irregular cross section.
  • Various cross-sectional shapes such as an elliptical shape of (a), a shape close to a triangle of (b), and a slender shape of (c) are employed.
  • the irregular shape means not circular.
  • FIG. 4 shows an example of a cross section of a primary laminate in which a pressure bladder is disposed on a mandrel.
  • the pressure bladder serves to transmit the pressure applied in the bladder during molding to the reinforcing fiber
  • the material is preferably a silicone rubber or polyamide resin film that is easily deformable and has good releasability. Used.
  • the thickness is preferably 0.5 to 2 mm, and in the case of a resin film (for example, FIG. 4 (b)), the thickness is preferably 50 to 150 ⁇ m.
  • the shape can be easily expanded and conformed to the outer shape of the mandrel, and any shape can be used as long as the reinforcing fiber can be pressed against the mold by applying internal pressure. It is sufficient that the circumference is equal to or greater than the product circumference, and it is preferable that both the silicone rubber and the resin film have a substantially cylindrical shape capable of continuous molding from the viewpoint of cost.
  • the pressurization bladder is closed at the end in the longitudinal direction of the mandrel, in the case of a resin film, the end of the pressurization bladder may be heat-sealed by a commonly used heat sealer or the like. In the case of silicone rubber, the end may be closed using, for example, a binding band.
  • a reinforcing laminate is laminated on the outer periphery of the primary laminate while weaving the reinforcing fibers on the braiding substrate to form a secondary laminate.
  • a braiding base material means the cylindrical fiber base material obtained by weaving a reinforced fiber with a braiding machine.
  • the reinforcing fibers include inorganic fibers such as carbon fibers and glass fibers, and organic fibers such as Kevlar fibers, polyethylene fibers, and polyamide fibers.
  • carbon fiber is particularly preferable in terms of light weight and rigidity.
  • the braiding base material can be laminated while adjusting the weaving angle of the reinforcing fibers, and the reinforcing fibers are not cut except at the end in the longitudinal direction of the hollow molded product, making it lighter, more rigid, and stronger. Can be obtained.
  • FIG. 5 shows an example of a cross section of the secondary laminate 32 in which two layers are laminated. 40 is the first layer and 41 is the second layer. Also, when the cross section of the mandrel is changing along the longitudinal direction, when laminating the reinforcing fibers, if the cross section circumference is long, the braid angle is increased, and if the cross section circumference is small By reducing the braid angle, the weave can be controlled, whereby a braiding substrate with a small gap can be produced. Furthermore, the time required for the process can be suppressed to one third or less as compared with the case where the prepreg is manually laminated.
  • the obtained secondary laminate 32 is placed in a cavity 60 of a molding die as shown in FIG.
  • FIG. 6 shows only the lower mold 50
  • the upper mold 51 also has a shape corresponding to the lower mold 50.
  • the molding die itself may include a heater (not shown) or a heating medium pipe (not shown), or the molding die is arranged on a press machine having a heat source. Alternatively, the mold itself may be installed on the press machine.
  • the molding die is provided with a sealing mechanism (not shown) that prevents the compressed air from leaking at a location 90 where the opening end of the pressurization bladder is disposed, and the flow for evacuating the cavity 60 and discharging the resin.
  • a path 70 is provided, and a vacuum pump (not shown) is connected to the end via a discharge tube. Furthermore, a flow path 80 capable of injecting resin into the cavity is provided near the other end of the pressurization bladder, and a resin tank (not shown) capable of injecting resin into the cavity is provided beyond that. Are connected via an injection tube (not shown). Although not shown in the drawing, a sealing mechanism is provided along the outer periphery of the mold that is normally provided and prevents the resin from leaking out of the mold. In order to make the cavity 60 into a vacuum, the channel 80 may be evacuated.
  • the heat source of the press machine may be set in advance to the resin curing temperature, and the molding die is heated simultaneously with the pressing.
  • the inside of the cavity 60 of the molding die is evacuated by a vacuum pump.
  • the resin is supplied from the resin tank to the cavity 60.
  • a thermosetting resin such as an epoxy resin is used as the resin that is injected into the cavity and becomes a matrix of the fiber reinforced plastic.
  • FIG. 10 to 13 are schematic sectional views in the thickness (up and down) direction of the molding die along the longitudinal direction of the cavity.
  • Braiding substrates 40 and 41 are arranged outside the mandrel 10 around which the pressure bladder 22 is wound.
  • FIG. 10 is a schematic cross-sectional view in the thickness (up and down) direction of the molding die along the longitudinal direction of the cavity 60 in FIG. 6, and an offset is provided outside the mandrel 10 around which the pressure bladder 22 is wound.
  • the braiding substrates 40 and 41 are arranged so that the amount is substantially constant. As shown in FIG. 10, by arranging the offset amount to be substantially constant with respect to the longitudinal direction of the mandrel, the resin flow path is limited and the resin flows efficiently, so that the braiding substrates 40 and 41 are impregnated. It is possible to improve the properties, which is preferable.
  • the molding die In addition to making the offset amount constant, at least in some areas in the molding die, it is composed of the shape of the mandrel, the thickness change of the braiding base material (increase / decrease in the base material input amount), and the mold cavity.
  • the flow path cross-sectional area of the resin decreases in the offset amount from the resin injection side to the resin discharge side, a region with high resin flow resistance (high flow resistance region) is formed in the mold, It is possible to obtain a hollow molded article made of fiber reinforced plastic in which the injection resin is satisfactorily impregnated into the preform reinforcing fiber base and has almost no resin-impregnated portion and pits.
  • the thickness of the braiding base materials 40 and 41 in the thickness direction of the hollow molded product is increased from the resin injection side to the resin discharge side.
  • a resin high flow resistance region can be formed. Also, by combining the above-described patterns, it is possible to make a structure in which the offset amount is reduced from the resin injection side toward the resin discharge side.
  • the discharge tube 100 connected to the molding die is raised above the molding die. More specifically, it is more preferable that the upper die 51 is located above the highest position of the cavity. By doing so, since the air remaining in the cavity and the slight air contained in the injected resin are pushed out to the tip of the discharge tube, a hollow molded product having a good appearance can be obtained. That is, it is possible to obtain a hollow molded article having a sufficiently good appearance without performing the work of standing up the mold as in Patent Document 2.
  • the amount of resin to be supplied is preferably an amount in which a clamp is installed in the discharge tube connected to the molding die to block the discharge of the resin and the resin is filled up to the clamp position 110.
  • the use of a mandrel makes it possible to reduce the amount of resin equivalent to the mandrel volume relative to the amount of resin required to fill the mold. ing. Since the utilization rate of the resin can be improved as the clamp position, the position of the discharge tube is preferably as close to the molding die as possible.
  • the clamp 110 of the discharge tube is opened, and a predetermined amount of resin is discharged until the weight of the molded product is assumed, so that a higher fiber volume content (high Vf). It becomes possible to make a hollow molded article having What is necessary is just to determine the resin amount to discharge
  • the resin is cured by heating for a predetermined time, and the reinforcing fibers and the resin are integrated.
  • the mold is removed from the press and the mold is opened.
  • a hollow molded article is obtained by taking out a fiber-reinforced plastic hollow molded article from the molding die and removing the primary laminate from the inside. With this molding method, lightweight and high-rigidity fiber reinforced plastic hollow molded products can be easily molded with almost equal thickness, good surface design, even if the cross section is irregular or has a bent part. can do.
  • FIG. 8 shows an arrangement state of a plurality of secondary laminates used in another embodiment of the method for forming a hollow molded article according to the present invention. For clarity, FIG. 8 shows only the mandrel shape. As described above, at least two secondary laminates were produced, and as shown in FIG. 8, the two secondary laminates were placed in contact with each other over the entire longitudinal direction and placed in the molding die. By doing so, a hollow molded product having ribs inside can be obtained.
  • FIG. 9 shows an arrangement state of a plurality of secondary laminates used in another embodiment of the method for forming a hollow molded product according to the present invention.
  • the two secondary laminates are arranged in a molding die with their longitudinal parts in contact with each other. By doing so, it becomes possible to produce a hollow molded product that is bifurcated.
  • a reinforcing fiber base material such as carbon fiber is wrapped around the contacted portions of the plurality of secondary laminates of FIGS. 8 and 9 so as to wrap the plurality of secondary laminates as necessary. It is preferable to do. Just by joining the contacted parts, it is weak against the force in the direction of peeling off the two secondary laminates. By reinforcing with a reinforcing fiber base such as a woven fabric, a hollow molded article having more stable strength can be obtained.
  • the molding method according to the present invention is suitable for producing a lightweight, high-rigidity hollow molded product having an irregular cross section and having a three-dimensionally bent portion.
  • the present invention is not limited to this and can be used even if the cross section is simple.
  • the secondary laminate 32 is placed in the cavity 60 of the molding die, and the molding dies 50 and 51 are clamped by a press machine in which the hot platen is set to 80 ° C. in advance, and the inside of the molding die 60, 70, 80, 90 was evacuated.
  • the discharge tube 100 is clamped, and a liquid epoxy resin composition containing 100 parts by weight of the epoxy resin and 1 part by weight of the acid anhydride curing agent is cavityd. 60.
  • the discharge tube clamp 110 is opened, and an amount of resin equivalent to the expansion volume (increment) of the pressure bladder is discharged, and then the discharge tube 100 is clamped again.
  • the resin was cured by heating for 30 minutes in a state where the resin pressure was 0.45 MPa, and the reinforcing fibers and the resin were integrated.
  • the molding dies 50 and 51 are taken out from the press machine, the molding die 51 is opened, the fiber-reinforced plastic hollow molded product is taken out from the molding die 50, and the primary laminate 30 is taken from the inside. By removing, a hollow molded article was obtained.
  • the amount of resin used in the non-product part is minimized, the wall thickness is almost equal, the surface design is good, and the fiber reinforcement with no resin-impregnated part and almost no pits. It was recognized that a plastic hollow molded product can be obtained.

Abstract

A method for molding hollow moldings configured from fiber-reinforced plastic, the method comprising: a first forming process for forming a primary laminate by disposing a pressurization bladder on a mandrel, which is a pre-molded foam material with a shape that is offset by a fixed amount from the external form of the molding; a second forming process for laminating while weaving reinforcing fibers on the circumference of the primary laminate with a braiding machine to form a secondary laminate; a placement process for placing the secondary laminate inside a molding die; an injection process for injecting resin into the molding die; an integration process for applying pressure inside the pressurization bladder of the secondary laminate disposed inside the molding die while integrating the reinforcing fiber with the resin using heat; and a removal process for removing the primary laminate from the integrated molding.

Description

中空成形品の成形方法および繊維強化プラスチックの製造方法Method for molding hollow molded article and method for producing fiber reinforced plastic
 本発明は繊維強化プラスチックから構成される中空成形品を成形する方法に関する。 The present invention relates to a method for molding a hollow molded article made of fiber reinforced plastic.
 繊維強化プラスチックは軽量、高剛性かつ強度特性が優れており、多くの分野で使用されている。テニスラケット、ゴルフシャフト、釣竿や自転車フレームなどにおいては軽量性と高い剛性を両立させるため中空の繊維強化プラスチック成形品が用いられている。その中空成形品を製造するために用いる成形方法の一つに内圧成形法がある。 Fiber reinforced plastic is lightweight, highly rigid and has excellent strength characteristics, and is used in many fields. In tennis rackets, golf shafts, fishing rods, bicycle frames, etc., hollow fiber-reinforced plastic molded products are used to achieve both light weight and high rigidity. One of the molding methods used for producing the hollow molded product is an internal pressure molding method.
 内圧成形法は、成形金型内に材料を筒状に配置し、配置した材料の内側から圧力を付与して、材料を成形金型に密着した状態で加熱して成形する方法である。 The internal pressure molding method is a method in which a material is arranged in a cylindrical shape in a molding die, pressure is applied from the inside of the arranged material, and the material is heated and molded in close contact with the molding die.
 特許文献1に、断面が異形の中空成形品を、プリプレグを用いて成形する一例が示されている。特許文献1では、断面が円形のマンドレルにプリプレグを巻き回し、その後マンドレルを引抜いて、プリプレグの中空材を作成し、プリプレグの中空材における中空部分に圧力バックを挿入し、圧力バッグが挿入された中空材を、中空成形品の異形状に対応した形状を有する金型であって異形部に補充用のプリプレグを配置した金型内に配置し、次いで、内圧成形法により成形することによって断面異形の中空成形品を得ている。 Patent Document 1 shows an example in which a hollow molded product having an irregular cross section is molded using a prepreg. In Patent Document 1, a prepreg is wound around a mandrel having a circular cross section, and then the mandrel is pulled out to create a prepreg hollow material. A pressure bag is inserted into a hollow portion of the prepreg hollow material, and a pressure bag is inserted. The hollow material is a mold having a shape corresponding to the deformed shape of the hollow molded product, and is placed in a mold in which a replenishment prepreg is placed in the deformed portion. A hollow molded product is obtained.
 また特許文献2には、中空成形品を、レジントランスファーモールディング(以下、RTMと記載する)により表面のピンホールがなく、意匠性良く成形する方法が開示されている。そこでは内圧を付与するための内圧保持体に補強材を巻きつけて、樹脂注入口と排気口を有する金型内にセットし、金型と内圧保持体との間に、成形物の繊維体積含有率(Vf)から計算される量の樹脂を注入し、その後、徐々に内圧をかけ、排気口に樹脂が見えたら、排気口に栓をし、内圧を所定圧力に高めることによって、中空成形品を得ている。 Further, Patent Document 2 discloses a method of molding a hollow molded product without resin pinholes by resin transfer molding (hereinafter referred to as RTM) with good design. There, a reinforcing material is wound around an internal pressure holding body for applying an internal pressure, set in a mold having a resin injection port and an exhaust port, and the fiber volume of the molded product between the mold and the internal pressure holding body. Hollow molding is performed by injecting an amount of resin calculated from the content (Vf), and then gradually applying internal pressure. When the resin is visible at the exhaust port, the exhaust port is plugged and the internal pressure is increased to a predetermined pressure. I have the goods.
特開2006-123475号公報JP 2006-123475 A 特許第4052486号公報Japanese Patent No. 4052486
 しかしながら、特許文献1に開示される方法では、断面が円形のマンドレルにプリプレグを巻くため、所定の厚みに巻くのに多くの時間を費やしてしまう。またマンドレルを引抜く時にプリプレグにしわが発生する可能性があり、かつマンドレルを引抜くことを前提としているため、屈曲している中空成形品を成形することが困難である。またマンドレルの断面が円形であるため出来上がる中空成形品はほぼ円筒形状であり、異形部に補充用のプリプレグを配置するため、肉厚が顕著に不均一となる。さらにプリプレグで成形するため表面にピットが多数発生してしまい、表面意匠性が良くなく、塗装が必要な場合は下地処理などに多くの時間を費やしてしまう。 However, in the method disclosed in Patent Document 1, since a prepreg is wound around a mandrel having a circular cross section, it takes a lot of time to wind it to a predetermined thickness. Further, wrinkles may occur in the prepreg when the mandrel is pulled out, and since it is assumed that the mandrel is pulled out, it is difficult to form a bent hollow molded product. Further, since the cross section of the mandrel is circular, the resulting hollow molded product has a substantially cylindrical shape, and the replenishment prepreg is disposed in the deformed portion, so that the wall thickness becomes remarkably uneven. Further, since the prepreg is formed, a large number of pits are generated on the surface, the surface design is not good, and when coating is required, a lot of time is spent on the ground treatment.
 また、特許文献2に開示される方法では、その文献には直接記載はされていないが、中空部の断面形状が円形であれば補強材の巻きつけ方の工夫により一様な肉厚に成形できる可能性がある一方で、中空部の断面形状が異形の場合は、内圧保持体を膨らませた際に、内圧保持体が補強材内壁との距離が近い箇所から接触し、接触した箇所の補強材の位置は動かないので、内圧保持体が補強材内壁との距離が遠い箇所を押し切れず、樹脂リッチな部分やピットなど外観不良な箇所が発生してしまう可能性がある。また、多くの成形品を製造するため繰り返して成形を行った場合、内圧保持体と異形断面の接触の仕方が成形品毎に変化してしまい、成形品の品質にばらつきが生じてしまう可能性もある。さらに特許文献2の実施例ではエアー溜まりからエアーを抜いて外観を向上させるために、重量物である金型を立てるという作業を必要とする。また、内圧を所定の圧力に高める前に金型内に樹脂を注入するので、金型内において樹脂の流路に制限がなく、プリフォーム周囲で樹脂の先回りが発生しやすい状態となり、プリフォーム外周部を先に樹脂が流れて製品内にエアーがトラップされる懸念が残されている。製品内にエアーがトラップされてしまうと、樹脂未含浸部やピットが発生しやすくなり、また、成形品に表面品位が十分に良好でない部位が発生するおそれがある。 In addition, in the method disclosed in Patent Document 2, although it is not described directly in the document, if the cross-sectional shape of the hollow portion is circular, it is formed into a uniform thickness by devising how to wrap the reinforcing material. On the other hand, when the cross-sectional shape of the hollow part is irregular, when the internal pressure holding body is inflated, the internal pressure holding body comes in contact with the reinforcement wall from a location close to the reinforcing material, and reinforcement of the contacted portion Since the position of the material does not move, there is a possibility that the internal pressure holding body does not completely push the portion where the distance from the inner wall of the reinforcing material is far, and a portion having poor appearance such as a resin-rich portion or a pit may occur. In addition, when repeated molding is performed to produce many molded products, the way of contact between the internal pressure holding body and the irregular cross-section changes for each molded product, which may cause variations in the quality of the molded product. There is also. Furthermore, in the Example of patent document 2, in order to extract air from an air reservoir and to improve an external appearance, the operation | work of standing up the metal mold | die which is a heavy article is required. In addition, since the resin is injected into the mold before the internal pressure is increased to a predetermined pressure, there is no restriction on the resin flow path in the mold, and it becomes easy for the resin to flow around the preform. There remains a concern that the resin flows first in the outer peripheral portion and air is trapped in the product. If air is trapped in the product, a resin non-impregnated portion and pits are likely to be generated, and there is a possibility that a part having an insufficiently good surface quality is generated in the molded product.
 本発明は、上記の事情に鑑みてなされたものであり、中空成形品の断面が異形であったり、屈曲部を有する形状であっても、軽量・高剛性な繊維強化プラスチック製中空成形品を、ほぼ等しい肉厚、安定した品質で、表面意匠性良く、かつ容易に成形する方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and a hollow molded product made of fiber-reinforced plastic that is lightweight and highly rigid even if the cross section of the hollow molded product is irregular or has a bent portion. It is an object of the present invention to provide a method for easily molding with substantially equal wall thickness, stable quality, good surface design.
 上記課題を解決するために、本発明に係る中空成形品の成形方法では、繊維強化プラスチックから構成される中空成形品を成形する方法であって、発泡材を予備成形し、成形品外形からオフセットした形状を有するマンドレルに、加圧用ブラダーを配置して、1次積層体を形成する第1の形成工程と、前記1次積層体の外周に、強化繊維をブレーディングマシンでブレーディング基材に製織しながら積層して2次積層体を形成する第2の形成工程と、前記2次積層体を成形金型内に配置する配置工程と、成形金型内に樹脂を注入する注入工程と、成形型内に配置した2次積層体の加圧用ブラダー内に圧力を付与しながら、加熱により強化繊維と樹脂を一体化する一体化工程と、一体化した成形品から1次積層体を除去する除去工程と、を含む。 In order to solve the above-mentioned problems, the method for molding a hollow molded article according to the present invention is a method for molding a hollow molded article made of fiber-reinforced plastic, and is formed by preforming a foam material and offset from the outer shape of the molded article. A pressure bladder is placed on a mandrel having the shape described above to form a primary laminate, and reinforcing fibers are applied to the outer periphery of the primary laminate as a braiding base material by a braiding machine. A second forming step of forming a secondary laminate by weaving while weaving, an arrangement step of arranging the secondary laminate in a molding die, an injection step of injecting a resin into the molding die, An integration step of integrating the reinforcing fiber and the resin by heating, and removing the primary laminate from the integrated molded product, while applying pressure to the pressurizing bladder of the secondary laminate disposed in the mold. A removal step .
 また上記課題を解決するために、本発明に係る繊維強化プラスチックの製造方法では、前記した中空成形品の成形方法を用いる。 In addition, in order to solve the above-described problems, the method for manufacturing a hollow molded product described above is used in the method for manufacturing a fiber-reinforced plastic according to the present invention.
 本発明による成形方法によれば、中空成形品の断面が異形であったり、屈曲部を有する形状であっても、軽量・高剛性な繊維強化プラスチック製中空成形品をほぼ等しい肉厚で、表面意匠性良く、かつ容易に成形することができる。 According to the molding method of the present invention, even if the hollow molded article has an irregular cross section or a shape having a bent portion, a lightweight and highly rigid hollow molded article made of fiber-reinforced plastic with a substantially equal thickness and surface It can be easily molded with good design.
 また、本発明による成形方法によれば、成形すべき繊維強化プラスチック製中空成形品の全領域にわたって、エアーの巻き込みを抑制して注入樹脂がプリフォームの強化繊維基材に良好に含浸され、樹脂未含浸部やピットが殆どない繊維強化プラスチック製中空成形品を得ることができる。 Also, according to the molding method of the present invention, the injection resin is satisfactorily impregnated into the reinforcing fiber base of the preform while suppressing the entrainment of air over the entire area of the hollow molded product made of fiber reinforced plastic to be molded. A fiber-reinforced plastic hollow molded article having almost no unimpregnated portions and pits can be obtained.
 さらに、本発明による成形方法によれば、中空RTM成形において、非製品部に使用する樹脂量を必要最小限に抑えることができる。 Furthermore, according to the molding method of the present invention, the amount of resin used for the non-product part can be minimized in hollow RTM molding.
本発明の方法で用いる予備成形した発泡材形状の一例を示す斜視図である。It is a perspective view which shows an example of the preformed foam material shape used with the method of this invention. 本発明の方法で用いる予備成形した発泡材形状の一例を示す上面図である。It is a top view which shows an example of the preformed foam material shape used with the method of this invention. 本発明の方法で用いる予備成形した発泡材形状の一例を示す断面図である。It is sectional drawing which shows an example of the preformed foam material shape used with the method of this invention. 本発明の方法で用いる1次積層体の一例を示す断面図である。It is sectional drawing which shows an example of the primary laminated body used with the method of this invention. 本発明の方法で用いる2次積層体の一例を示す断面図である。It is sectional drawing which shows an example of the secondary laminated body used with the method of this invention. 本発明の方法で用いる成形金型の模式図である。It is a schematic diagram of the molding die used with the method of the present invention. 本発明の方法で用いるチューブの配置模式図である。It is an arrangement schematic diagram of the tube used with the method of the present invention. 本発明の方法で用いるマンドレル形状の一例およびその配置図である。It is an example of the mandrel shape used with the method of this invention, and its layout. 本発明の方法で用いるマンドレル形状の一例およびその配置図である。It is an example of the mandrel shape used with the method of this invention, and its layout. 本発明の方法で用いる金型内における積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body in the metal mold | die used with the method of this invention. 本発明の方法で用いる金型内における積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body in the metal mold | die used with the method of this invention. 本発明の方法で用いる金型内における積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body in the metal mold | die used with the method of this invention. 本発明の方法で用いる金型内における積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body in the metal mold | die used with the method of this invention.
 以下に本発明の望ましい実施の形態について図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1に、本発明に用いるマンドレルの一例を示す。図1(a)は長手方向に断面が一様な場合、図1(b)は長手方向に断面が変化している場合である。マンドレルは発泡材を予備成形することにより作製される。マンドレルに使用する発泡材の材質としてはウレタン、アクリル、スチレンなどの樹脂を挙げることができるが、1次積層体を中空成形品から除去し易いことや低コストであるという観点から、スチレンから作製する発泡スチロールであることが好ましい。発泡スチロールはある温度以上に加熱すると収縮量が大きくなるため、中空成形品形状が途中で曲がっている形状や、中空成形品長手方向で中間部分に少々断面形状が大きい部分があっても除去することが可能となる。図2に一例を示す。図2はマンドレル長手方向に対して上側から見た図である。図2(a)は成形品が途中で曲がっている形状、図2(b)は中間部分の断面形状が大きい場合である。また発泡スチロール製のマンドレルはアセトンなどの有機溶剤によって溶かすことも可能であるので、後述する除去工程において容易に除去できる。発泡材の発泡倍率としては、2次積層体の形成時にブレーディングマシンで積層することからマンドレルとして十分な剛性が必要であるため、30倍以下の発泡倍率であることが好ましく、より好ましくは10~30倍の発泡倍率である。 FIG. 1 shows an example of a mandrel used in the present invention. FIG. 1A shows a case where the cross section is uniform in the longitudinal direction, and FIG. 1B shows a case where the cross section changes in the longitudinal direction. The mandrel is made by preforming a foam material. Examples of the foam material used for the mandrel include resins such as urethane, acrylic, and styrene. From the viewpoint of easy removal of the primary laminate from the hollow molded product and low cost, it is made from styrene. It is preferable that it is a polystyrene foam. Since the amount of shrinkage of expanded polystyrene increases when heated above a certain temperature, it should be removed even if the shape of the hollow molded product is bent in the middle or the middle part of the hollow molded product has a slightly larger cross-sectional shape in the longitudinal direction. Is possible. An example is shown in FIG. FIG. 2 is a top view of the mandrel longitudinal direction. FIG. 2A shows a shape where the molded product is bent in the middle, and FIG. 2B shows a case where the cross-sectional shape of the intermediate portion is large. In addition, since the mandrel made of styrene foam can be dissolved by an organic solvent such as acetone, it can be easily removed in a removing step described later. The foaming ratio of the foamed material is preferably 30 times or less, more preferably 10 because a sufficient rigidity as a mandrel is necessary because it is laminated with a braiding machine when the secondary laminate is formed. The expansion ratio is ˜30 times.
 マンドレルは、成形品外形(製品外形)からオフセットした形状を有するが、製品外形から、積層するブレーディング基材厚みと加圧用ブラダー厚みを足し合わせた厚みt以上にオフセットした形状であることが好ましい。厚みtより小さくオフセットした形状の場合は、成形金型間にブレーディング基材が噛んでしまい、強化繊維を切ってしまう可能性があるためである。またオフセット量はブレーディング基材厚みと加圧用ブラダー厚みにさらに3mm足し合わせた量以下にすることが好ましい。この量を超えてオフセットすると、加圧用ブラダーにどれだけ圧力をかけてもブレーディング基材がつっぱり、ブレーディング基材を金型に十分押し当てることができず、ブレーディング基材と金型との間に空隙が生じ、後述する含浸工程において含浸された樹脂が空隙に溜まり、樹脂リッチな箇所ができてしまうことがあるためである。ただし、2次積層体を作製する第2の形成工程以外の工程において、2次積層体の一部の領域にブレーディング基材を追加で補強する場合は、それ以上オフセットしても問題はない。 The mandrel has a shape that is offset from the outer shape of the molded product (product outer shape), but is preferably a shape that is offset from the product outer shape to a thickness t or more obtained by adding the thickness of the braiding base material to be laminated and the thickness of the pressure bladder. . This is because, in the case of a shape that is offset smaller than the thickness t, the braiding base material bites between the molding dies, and the reinforcing fibers may be cut. Further, it is preferable that the offset amount is not more than an amount obtained by adding 3 mm to the thickness of the braiding substrate and the thickness of the pressure bladder. If offset exceeds this amount, the braiding substrate will be stiffened no matter how much pressure is applied to the pressure bladder, and the braiding substrate cannot be pressed sufficiently against the mold. This is because voids are formed between the two, and the resin impregnated in the impregnation step described later accumulates in the voids, resulting in a resin-rich portion. However, when the braiding base material is additionally reinforced in a part of the secondary laminate in a step other than the second forming step for producing the secondary laminate, there is no problem even if the offset is further offset. .
 また、マンドレルの断面として異形断面とした場合の一例を図3に示す。(a)の楕円形状、(b)の三角形に近い形状や(c)のなみだ形状など、様々な断面形状のものが採用される。なお、本発明において、異形とは円形でないことを意味する。 FIG. 3 shows an example in which the mandrel has an irregular cross section. Various cross-sectional shapes such as an elliptical shape of (a), a shape close to a triangle of (b), and a slender shape of (c) are employed. In the present invention, the irregular shape means not circular.
 マンドレルに加圧用ブラダーを配置した1次積層体の断面の一例を図4に示す。加圧用ブラダーは、成形時にブラダー内に付与された圧力を強化繊維に伝達する役目を果たすものであり、材質として、変形が容易で離型性の良いシリコーンゴムやポリアミド系の樹脂フィルムなどが好ましく用いられる。シリコーンゴムの場合(たとえば、図4(a))は0.5~2mm、樹脂フィルムの場合(たとえば、図4(b))は50μm~150μmの厚みであることが好ましい。形状は、シリコーンゴムの場合は伸縮してマンドレルの外形に容易に沿うことができ、内圧がかかることにより強化繊維を成形金型に対して押し当てることができればどんな形状でも良く、樹脂フィルムの場合は周長が製品周長以上あれば良く、シリコーンゴム、樹脂フィルムともにコストの観点から連続成形が可能な略円筒形状であることが好ましい。加圧用ブラダーをマンドレル長手方向の端部で閉じる際には、樹脂フィルムの場合は一般的に使用されるヒートシラーなどによって加圧用ブラダーの端部を熱融着すれば良い。またシリコーンゴムの場合には、例えば結束バンドを用いて端部を閉じれば良い。 FIG. 4 shows an example of a cross section of a primary laminate in which a pressure bladder is disposed on a mandrel. The pressure bladder serves to transmit the pressure applied in the bladder during molding to the reinforcing fiber, and the material is preferably a silicone rubber or polyamide resin film that is easily deformable and has good releasability. Used. In the case of silicone rubber (for example, FIG. 4 (a)), the thickness is preferably 0.5 to 2 mm, and in the case of a resin film (for example, FIG. 4 (b)), the thickness is preferably 50 to 150 μm. In the case of silicone rubber, the shape can be easily expanded and conformed to the outer shape of the mandrel, and any shape can be used as long as the reinforcing fiber can be pressed against the mold by applying internal pressure. It is sufficient that the circumference is equal to or greater than the product circumference, and it is preferable that both the silicone rubber and the resin film have a substantially cylindrical shape capable of continuous molding from the viewpoint of cost. When the pressurization bladder is closed at the end in the longitudinal direction of the mandrel, in the case of a resin film, the end of the pressurization bladder may be heat-sealed by a commonly used heat sealer or the like. In the case of silicone rubber, the end may be closed using, for example, a binding band.
 次に、1次積層体の外周にブレーディングマシンによって強化繊維をブレーディング基材に製織しながら積層して、2次積層体を形成する。ブレーディング基材とは、強化繊維をブレーディングマシンによって製織して得られる筒状繊維基材を意味する。強化繊維としては、例えば、炭素繊維、ガラス繊維などの無機繊維や、ケブラー繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維が用いられる。強化繊維として、軽量性および剛性の面からは、特に炭素繊維が好ましい。ブレーディングマシンを用いれば、強化繊維の織り角度を調整しながらブレーディング基材を積層でき、中空成形品の長手方向端部以外は強化繊維に切れ目がないため、より軽量かつ高剛性、高強度な筒状成形品を得ることが可能となる。 Next, a reinforcing laminate is laminated on the outer periphery of the primary laminate while weaving the reinforcing fibers on the braiding substrate to form a secondary laminate. A braiding base material means the cylindrical fiber base material obtained by weaving a reinforced fiber with a braiding machine. Examples of the reinforcing fibers include inorganic fibers such as carbon fibers and glass fibers, and organic fibers such as Kevlar fibers, polyethylene fibers, and polyamide fibers. As the reinforcing fiber, carbon fiber is particularly preferable in terms of light weight and rigidity. Using a braiding machine, the braiding base material can be laminated while adjusting the weaving angle of the reinforcing fibers, and the reinforcing fibers are not cut except at the end in the longitudinal direction of the hollow molded product, making it lighter, more rigid, and stronger. Can be obtained.
 また必要に応じて、複数層のブレーディング基材を積層することも可能である。図5に、2層積層した2次積層体32の断面の一例を示す。40が1層目、41が2層目である。またマンドレル形状が長手方向に沿って断面形状が変化している場合にも、強化繊維を積層する際に、断面周長が長い場合には組紐角度を大きくし、断面周長が小さい場合には組紐角度を小さくすることにより織り目を制御することができ、それにより目隙が小さいブレーディング基材を作製することができる。さらにプリプレグを人手で積層する場合と比較しても、工程に要する時間を3分の1以下に抑えることができる。 If necessary, a plurality of layers of braiding base materials can be laminated. FIG. 5 shows an example of a cross section of the secondary laminate 32 in which two layers are laminated. 40 is the first layer and 41 is the second layer. Also, when the cross section of the mandrel is changing along the longitudinal direction, when laminating the reinforcing fibers, if the cross section circumference is long, the braid angle is increased, and if the cross section circumference is small By reducing the braid angle, the weave can be controlled, whereby a braiding substrate with a small gap can be produced. Furthermore, the time required for the process can be suppressed to one third or less as compared with the case where the prepreg is manually laminated.
 次に得られた2次積層体32を、図6に示すような成形金型のキャビティ60に配置する。図6は下型50のみ示しているが、上型51も下型50に対応した形状を有している。成形金型を加熱するために、成形金型自体にヒーター(不図示)や加熱媒体用のパイプ(不図示)が入っていても良いし、成形金型を熱源を有するプレス機上に配置しても良く、また金型自体がプレス機に据え付けてあっても良い。成形金型は加圧用ブラダーの開口端部が配置された箇所90に圧縮空気が漏れないようなシール機構(不図示)を備えると共に、キャビティ60を真空にし、かつ、樹脂を排出するための流路70を供えており、その先に真空ポンプ(不図示)が排出チューブを介して接続されている。さらには加圧用ブラダーのもう一方の端部近傍に、キャビティに樹脂を注入することができる流路80を備えており、その先には樹脂をキャビティに注入することができる樹脂タンク(不図示)が注入チューブ(不図示)を介して接続されている。また図示はしないが通常設けられる、樹脂が成形金型外に漏れないようなシール機構も金型外周に沿って有している。なお、キャビティ60を真空にするためには、流路80から真空引きしても良い。 Next, the obtained secondary laminate 32 is placed in a cavity 60 of a molding die as shown in FIG. Although FIG. 6 shows only the lower mold 50, the upper mold 51 also has a shape corresponding to the lower mold 50. In order to heat the molding die, the molding die itself may include a heater (not shown) or a heating medium pipe (not shown), or the molding die is arranged on a press machine having a heat source. Alternatively, the mold itself may be installed on the press machine. The molding die is provided with a sealing mechanism (not shown) that prevents the compressed air from leaking at a location 90 where the opening end of the pressurization bladder is disposed, and the flow for evacuating the cavity 60 and discharging the resin. A path 70 is provided, and a vacuum pump (not shown) is connected to the end via a discharge tube. Furthermore, a flow path 80 capable of injecting resin into the cavity is provided near the other end of the pressurization bladder, and a resin tank (not shown) capable of injecting resin into the cavity is provided beyond that. Are connected via an injection tube (not shown). Although not shown in the drawing, a sealing mechanism is provided along the outer periphery of the mold that is normally provided and prevents the resin from leaking out of the mold. In order to make the cavity 60 into a vacuum, the channel 80 may be evacuated.
 成形金型を閉じた後、熱源を有するプレス機に配置して、プレスにより成形金型を固定する。プレス機の熱源は予め樹脂硬化温度に設定しておけばよく、プレスと同時に成形金型が加熱される。次に真空ポンプにより、成形金型のキャビティ60内を真空引きする。成形金型がある所定の温度になったら、樹脂タンクから樹脂をキャビティ60に供給する。なお、キャビティに注入され、繊維強化プラスチックのマトリックスとなる樹脂としては通常、エポキシ樹脂などの熱硬化性樹脂が用いられる。 After closing the molding die, place it in a press machine with a heat source and fix the molding die by pressing. The heat source of the press machine may be set in advance to the resin curing temperature, and the molding die is heated simultaneously with the pressing. Next, the inside of the cavity 60 of the molding die is evacuated by a vacuum pump. When the molding die reaches a predetermined temperature, the resin is supplied from the resin tank to the cavity 60. In general, a thermosetting resin such as an epoxy resin is used as the resin that is injected into the cavity and becomes a matrix of the fiber reinforced plastic.
 キャビティの長手方向に沿った成形金型の厚さ(上下)方向の断面模式図を図10~13に示す。加圧用ブラダー22を巻きつけたマンドレル10の外側に、ブレーディング基材40、41が配置されている。ここで、図10は、図6におけるキャビティ60の長手方向に沿った成形金型の厚さ(上下)方向の断面模式図であり、加圧用ブラダー22を巻きつけたマンドレル10の外側に、オフセット量がほぼ一定となるように、ブレーディング基材40、41が配置されている。図10に示すように、マンドレル長手方向に対してオフセット量がほぼ一定となるように配置することで、樹脂の流路が制限されて樹脂が効率よく流れ、ブレーディング基材40,41に対する含浸性を向上させることが可能となり好ましい。 10 to 13 are schematic sectional views in the thickness (up and down) direction of the molding die along the longitudinal direction of the cavity. Braiding substrates 40 and 41 are arranged outside the mandrel 10 around which the pressure bladder 22 is wound. Here, FIG. 10 is a schematic cross-sectional view in the thickness (up and down) direction of the molding die along the longitudinal direction of the cavity 60 in FIG. 6, and an offset is provided outside the mandrel 10 around which the pressure bladder 22 is wound. The braiding substrates 40 and 41 are arranged so that the amount is substantially constant. As shown in FIG. 10, by arranging the offset amount to be substantially constant with respect to the longitudinal direction of the mandrel, the resin flow path is limited and the resin flows efficiently, so that the braiding substrates 40 and 41 are impregnated. It is possible to improve the properties, which is preferable.
 オフセット量を一定にする以外にも、成形金型内における少なくとも一部の領域において、マンドレルの形状、ブレーディング基材の厚み変化(基材投入量の増減)、金型のキャビティ、により構成された樹脂の流路断面積が樹脂注入側から樹脂排出側に向けてオフセット量を減少する構造にすることで、金型内に樹脂の流れ抵抗が高い領域(高流れ抵抗領域)を形成し、注入樹脂がプリフォームの強化繊維基材に良好に含浸され、樹脂未含浸部やピットが殆どない繊維強化プラスチック製中空成形品を得ることができる。 In addition to making the offset amount constant, at least in some areas in the molding die, it is composed of the shape of the mandrel, the thickness change of the braiding base material (increase / decrease in the base material input amount), and the mold cavity. By forming a structure in which the flow path cross-sectional area of the resin decreases in the offset amount from the resin injection side to the resin discharge side, a region with high resin flow resistance (high flow resistance region) is formed in the mold, It is possible to obtain a hollow molded article made of fiber reinforced plastic in which the injection resin is satisfactorily impregnated into the preform reinforcing fiber base and has almost no resin-impregnated portion and pits.
 このような例として、図11に示すように、マンドレル10の中空成形品外形からのオフセット量が樹脂注入側から樹脂排出側に向けて減少するようなテーパー形状のマンドレルを用いることで、金型内に樹脂高流れ抵抗領域を形成することができる。また、図12に示すように、中空成形品の外形状がテーパー状である場合は、敢えてマンドレルの形状をテーパー状とせず、実質的に一定断面形状のマンドレルを使用しても、金型のキャビティの断面積が樹脂注入側から樹脂排出側に向けて縮小する構造とすることで、図11の場合と同じ効果を得ることが可能である。図13に示すように、中空成形品厚み方向におけるブレーディング基材40,41の厚み(基材投入量の増減)を樹脂注入側から樹脂排出側に向けて増加させることでも、金型内に樹脂高流れ抵抗領域を形成することができる。また、上述した各々のパターンを組み合わせることによっても、樹脂の流路断面積を樹脂注入側から樹脂排出側に向けてオフセット量を減少する構造にすることが可能である。 As such an example, as shown in FIG. 11, by using a tapered mandrel in which the offset amount from the outer shape of the hollow molded product of the mandrel 10 decreases from the resin injection side toward the resin discharge side, A resin high flow resistance region can be formed therein. In addition, as shown in FIG. 12, when the outer shape of the hollow molded product is a taper shape, the shape of the mold is not changed even if a mandrel having a substantially constant cross-sectional shape is used instead of a tapered mandrel shape. By adopting a structure in which the sectional area of the cavity is reduced from the resin injection side toward the resin discharge side, the same effect as in the case of FIG. 11 can be obtained. As shown in FIG. 13, the thickness of the braiding base materials 40 and 41 in the thickness direction of the hollow molded product (increase / decrease in the amount of base material input) is increased from the resin injection side to the resin discharge side. A resin high flow resistance region can be formed. Also, by combining the above-described patterns, it is possible to make a structure in which the offset amount is reduced from the resin injection side toward the resin discharge side.
 また、樹脂を注入するに際して、図7に示すように、成形金型に接続している排出チューブ100は成形金型より上側に上げていることが好ましい。より具体的には、上型51のキャビティの一番高い位置よりも上側にあることがより好ましい。そうすることで、キャビティ内に残っていたエアーや注入される樹脂に含まれる僅かなエアーが排出チューブ先端に押し出されるため、外観が良好な中空成形品とすることができる。すなわち、特許文献2のように金型を立てるという作業をしなくても十分良好な外観を有する中空成形品とすることが可能となる。 Further, when injecting the resin, as shown in FIG. 7, it is preferable that the discharge tube 100 connected to the molding die is raised above the molding die. More specifically, it is more preferable that the upper die 51 is located above the highest position of the cavity. By doing so, since the air remaining in the cavity and the slight air contained in the injected resin are pushed out to the tip of the discharge tube, a hollow molded product having a good appearance can be obtained. That is, it is possible to obtain a hollow molded article having a sufficiently good appearance without performing the work of standing up the mold as in Patent Document 2.
 次に加圧用ブラダー内に所定の圧力の圧縮空気を導入すると、強化繊維にほぼ均一な圧力が作用し強化繊維が成形金型の内壁に押し付けられる。成形品外形からオフセットした形状を有するマンドレルがあるため、マンドレルに巻かれている加圧ブラダーも前記形状に沿った膨らみ方をし、強化繊維に均一に力が作用するため、異形断面であっても、肉厚が不均一な箇所や樹脂リッチな箇所ができることは殆どない。 Next, when compressed air with a predetermined pressure is introduced into the pressurization bladder, a substantially uniform pressure acts on the reinforcing fibers and the reinforcing fibers are pressed against the inner wall of the molding die. Since there is a mandrel having a shape that is offset from the outer shape of the molded product, the pressure bladder wound around the mandrel also swells along the shape, and the force acts uniformly on the reinforcing fiber. However, there are hardly any places where the thickness is uneven or resin-rich.
 また供給する樹脂量としては、成形金型に接続した排出チューブに樹脂の排出を塞き止めるためのクランプを設置し、そのクランプ位置110まで樹脂で埋まる量であることが好ましい。またこのとき、未だ加圧用ブラダーが膨張していないため、マンドレルを使用することで、金型内を埋めるために必要な樹脂量に対し、マンドレル体積と同等の樹脂量を減らすことが可能となっている。クランプ位置としては樹脂の利用率を向上できることから、排出チューブのできる限り成形金型に近い位置であることが好ましい。キャビティ60内が樹脂で埋まった状態で、加圧用ブラダー内に圧縮空気を導入すると、強化繊維全体にほぼ等しく圧力がかかり、わずかにエアー溜まりが残っていたとしても、そのエアー溜まりを圧力により潰して小さくすることも可能となる。 Also, the amount of resin to be supplied is preferably an amount in which a clamp is installed in the discharge tube connected to the molding die to block the discharge of the resin and the resin is filled up to the clamp position 110. At this time, since the pressurization bladder has not yet expanded, the use of a mandrel makes it possible to reduce the amount of resin equivalent to the mandrel volume relative to the amount of resin required to fill the mold. ing. Since the utilization rate of the resin can be improved as the clamp position, the position of the discharge tube is preferably as close to the molding die as possible. When compressed air is introduced into the pressurization bladder while the cavity 60 is filled with resin, almost the same pressure is applied to the entire reinforcing fiber, and even if a slight air pool remains, the air pool is crushed by the pressure. It is also possible to make it smaller.
 さらに、加圧用ブラダー内に圧縮空気導入後、排出チューブのクランプ110を開放し、成形品が想定される重量になるまで樹脂を所定量排出することによって、より高い繊維体積含有率(高Vf)を有する中空成形品とすることが可能となる。排出する樹脂量は目標とする重量、剛性などによって決定すればよい。樹脂注入完了後、所定の時間加熱することにより樹脂が硬化し、強化繊維と樹脂が一体化される。樹脂の硬化完了後、プレス機より成形金型を取り出し、成形金型を開く。成形金型から繊維強化プラスチック製中空成形品を取り出し、内部から1次積層体を取り除くことによって、中空成形品が得られる。この成形方法によって、断面が異形であったり、屈曲部を有する形状であっても、軽量・高剛性な繊維強化プラスチック製中空成形品をほぼ等しい肉厚で、表面意匠性良く、かつ容易に成形することができる。 Furthermore, after introducing compressed air into the pressurization bladder, the clamp 110 of the discharge tube is opened, and a predetermined amount of resin is discharged until the weight of the molded product is assumed, so that a higher fiber volume content (high Vf). It becomes possible to make a hollow molded article having What is necessary is just to determine the resin amount to discharge | emit by target weight, rigidity, etc. After completion of the resin injection, the resin is cured by heating for a predetermined time, and the reinforcing fibers and the resin are integrated. After the resin has been cured, the mold is removed from the press and the mold is opened. A hollow molded article is obtained by taking out a fiber-reinforced plastic hollow molded article from the molding die and removing the primary laminate from the inside. With this molding method, lightweight and high-rigidity fiber reinforced plastic hollow molded products can be easily molded with almost equal thickness, good surface design, even if the cross section is irregular or has a bent part. can do.
 図8に、本発明による中空成形品の成形方法の他の形態で用いる複数の2次積層体の配置状態を示している。明示のため図8ではマンドレル形状のみを図示している。前記のようにして、2次積層体を少なくとも2体作製し、図8に示すように、2体の2次積層体を、その長手方向全体に渡って相互に接触させて成形金型に配置することで、内部にリブを有する中空成形品を得ることができる。 FIG. 8 shows an arrangement state of a plurality of secondary laminates used in another embodiment of the method for forming a hollow molded article according to the present invention. For clarity, FIG. 8 shows only the mandrel shape. As described above, at least two secondary laminates were produced, and as shown in FIG. 8, the two secondary laminates were placed in contact with each other over the entire longitudinal direction and placed in the molding die. By doing so, a hollow molded product having ribs inside can be obtained.
 図9に、本発明による中空成形品の成形方法の他の形態で用いる複数の2次積層体の配置状態を示している。明示のため図9においてもマンドレル形状のみを図示している。前記のようにして、2次積層体を少なくとも2体作製し、図9に示すように、2体の2次積層体を、その長手方向の一部を相互に接触させて成形金型に配置することで、二股に分岐した中空成形品を作製することが可能となる。また図8、図9の複数の2次積層体の接触させた部分には、必要に応じて、炭素繊維などの強化繊維基材を、複数の2次積層体を包み込むように巻き付けて、補強することが好ましい。接触した部分が接合されているだけでは、2体の2次積層体を引き剥がそうという方向の力に対しては弱いため、ブレーディングマシンにより作製した筒状基材を配置したり、炭素繊維織物などの強化繊維基材で補強することでより安定した強度を有する中空成形品とすることが可能となる。 FIG. 9 shows an arrangement state of a plurality of secondary laminates used in another embodiment of the method for forming a hollow molded product according to the present invention. For the sake of clarity, only the mandrel shape is shown in FIG. As described above, at least two secondary laminates are produced, and as shown in FIG. 9, the two secondary laminates are arranged in a molding die with their longitudinal parts in contact with each other. By doing so, it becomes possible to produce a hollow molded product that is bifurcated. In addition, a reinforcing fiber base material such as carbon fiber is wrapped around the contacted portions of the plurality of secondary laminates of FIGS. 8 and 9 so as to wrap the plurality of secondary laminates as necessary. It is preferable to do. Just by joining the contacted parts, it is weak against the force in the direction of peeling off the two secondary laminates. By reinforcing with a reinforcing fiber base such as a woven fabric, a hollow molded article having more stable strength can be obtained.
 上記したように、本発明による成形方法は、異形断面を有し、かつ3次元的に屈曲部を有するような形状であっても軽量、高剛性な中空成形品を作製するのに適しているが、それに限らず断面が単純な形状であっても用いることは可能である。 As described above, the molding method according to the present invention is suitable for producing a lightweight, high-rigidity hollow molded product having an irregular cross section and having a three-dimensionally bent portion. However, the present invention is not limited to this and can be used even if the cross section is simple.
 以下、本発明を実施例によりさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
 加圧用ブラダー22(材質:ポリアミド6、厚み=60μm)の中に発泡スチロール10(発泡倍率30倍)をセットした1次積層体30の周囲に、ブレーディングマシンによって炭素繊維(東レ株式会社製“トレカ”(登録商標)T300-6K)をブレーディング基材40、41に製織しながら積層し、2次積層体32を形成した。 Around the primary laminate 30 in which the polystyrene foam 10 (foaming ratio 30 times) is set in the pressure bladder 22 (material: polyamide 6, thickness = 60 μm), carbon fiber (Toray Industries, Inc. manufactured by Toray Industries, Inc.) is used. “(Registered trademark) T300-6K) was laminated while weaving on the braiding substrates 40 and 41 to form a secondary laminate 32.
 2次積層体32を成形金型のキャビティ60に配置し、予め熱盤を80℃に設定したプレス機で成形金型50、51を型締めし、成形金型内60、70、80、90を真空引きした。 The secondary laminate 32 is placed in the cavity 60 of the molding die, and the molding dies 50 and 51 are clamped by a press machine in which the hot platen is set to 80 ° C. in advance, and the inside of the molding die 60, 70, 80, 90 Was evacuated.
 成形金型50、51が80℃に達していることを確認した後、排出チューブ100をクランプし、エポキシ樹脂100重量部と酸無水物硬化剤1重量部を含む液状のエポキシ樹脂組成物をキャビティ60に供給した。 After confirming that the molding dies 50 and 51 have reached 80 ° C., the discharge tube 100 is clamped, and a liquid epoxy resin composition containing 100 parts by weight of the epoxy resin and 1 part by weight of the acid anhydride curing agent is cavityd. 60.
 加圧用ブラダー22内に0.5MPaの圧縮空気を導入後、排出チューブのクランプ110を開放し、加圧ブラダーの膨張体積(増分)と同等量の樹脂を排出した後、再び排出チューブ100をクランプし、樹脂圧0.45MPaで加圧した状態で30分間加熱することにより樹脂を硬化させて強化繊維と樹脂を一体化させた。 After 0.5 MPa of compressed air is introduced into the pressure bladder 22, the discharge tube clamp 110 is opened, and an amount of resin equivalent to the expansion volume (increment) of the pressure bladder is discharged, and then the discharge tube 100 is clamped again. The resin was cured by heating for 30 minutes in a state where the resin pressure was 0.45 MPa, and the reinforcing fibers and the resin were integrated.
 樹脂の硬化が完了した後、プレス機より成形金型50、51を取り出し、成形金型51を開き、成形金型50から繊維強化プラスチック製中空成形品を取り出し、内部から1次積層体30を取り除くことによって、中空成形品を得た。 After the curing of the resin is completed, the molding dies 50 and 51 are taken out from the press machine, the molding die 51 is opened, the fiber-reinforced plastic hollow molded product is taken out from the molding die 50, and the primary laminate 30 is taken from the inside. By removing, a hollow molded article was obtained.
 実施例の結果より、本発明によれば、非製品部に使用する樹脂量を必要最小限に抑え、肉厚がほぼ等しく、表面意匠性良く、かつ樹脂未含浸部やピットの殆どない繊維強化プラスチック製中空成形品を得ることができることが認識できた。 From the results of the examples, according to the present invention, the amount of resin used in the non-product part is minimized, the wall thickness is almost equal, the surface design is good, and the fiber reinforcement with no resin-impregnated part and almost no pits. It was recognized that a plastic hollow molded product can be obtained.
10,11,12,13,14,15,16,17・・・マンドレル
20,21,22・・・加圧用ブラダー
30,31・・・1次積層体
32・・・2次積層体
40,41・・・ブレーディング基材
50,51・・・成形金型
60・・・キャビティ
70,80・・・流路
90・・・加圧用ブラダー開口端部
100・・・排出チューブ
110・・・クランプ位置
10, 11, 12, 13, 14, 15, 16, 17 ... mandrels 20, 21, 22 ... pressure bladders 30, 31 ... primary laminate 32 ... secondary laminate 40, 41 ... Braiding substrate 50, 51 ... Mold 60 ... Cavity 70, 80 ... Flow path 90 ... Bladder opening end 100 for pressurization ... Discharge tube 110 ... Clamp position

Claims (13)

  1. 繊維強化プラスチックから構成される中空成形品を成形する方法であって、
    発泡材を予備成形し、成形品外形からオフセットした形状を有するマンドレルに、加圧用ブラダーを配置して、1次積層体を形成する第1の形成工程と、
    前記1次積層体の外周に、強化繊維をブレーディングマシンでブレーディング基材に製織しながら積層して2次積層体を形成する第2の形成工程と、
    前記2次積層体を成形金型内に配置する配置工程と、
    成形金型内に樹脂を注入する注入工程と、
    成形型内に配置した2次積層体の加圧用ブラダー内に圧力を付与しながら、加熱により強化繊維と樹脂を一体化する一体化工程と、
    一体化した成形品から1次積層体を除去する除去工程と、
    を含む、中空成形品の成形方法。
    A method of molding a hollow molded article composed of fiber reinforced plastic,
    A first forming step in which a foaming material is preformed and a pressure bladder is disposed on a mandrel having a shape offset from the outer shape of the molded product to form a primary laminate;
    A second forming step of forming a secondary laminate by laminating reinforcing fibers on the outer circumference of the primary laminate while weaving the reinforcing fiber on a braiding substrate with a braiding machine;
    An arrangement step of arranging the secondary laminate in a molding die;
    An injection step of injecting resin into the molding die;
    An integration step in which the reinforcing fiber and the resin are integrated by heating while applying pressure in the bladder for pressurization of the secondary laminate disposed in the mold;
    A removal step of removing the primary laminate from the integrated molded article;
    A method for forming a hollow molded article, comprising:
  2. 成形金型が、成形金型内から樹脂を排出できる排出チューブに接続されており、前記注入工程において、当該排出チューブの少なくとも一部を成形金型より高い位置に配置する、請求項1に記載の中空成形品の成形方法。 The molding die is connected to a discharge tube capable of discharging resin from inside the molding die, and in the injection step, at least a part of the discharge tube is disposed at a position higher than the molding die. Of forming a hollow molded article.
  3. 成形金型が、成形金型内から樹脂を排出でき、かつ樹脂の排出を塞き止めるためのクランプを有する排出チューブに接続されており、前記注入工程において、注入する樹脂量が、排出チューブのクランプ位置まで樹脂で実質的に埋まる樹脂量である、請求項1または2に記載の中空成形品の成形方法。 The molding die is connected to a discharge tube that can discharge the resin from inside the molding die and has a clamp for blocking the discharge of the resin. In the injection step, the amount of resin to be injected is The method for forming a hollow molded product according to claim 1 or 2, wherein the amount of the resin is substantially filled with the resin up to the clamp position.
  4. 前記一体化工程において、成形品が想定される重量になるまで樹脂を排出する、請求項1~3のいずれかに記載の中空成形品の成形方法。 The method for molding a hollow molded article according to any one of claims 1 to 3, wherein in the integration step, the resin is discharged until the weight of the molded article is assumed.
  5. 発泡材が発泡スチロールである、請求項1~4のいずれかに記載の中空成形品の成形方法。 The method for molding a hollow molded article according to any one of claims 1 to 4, wherein the foam material is a polystyrene foam.
  6. 前記2次積層体を少なくとも2体作製し、前記配置工程において、それら2次積層体を長手方向全体に渡って相互に接触させて成形金型に配置する、請求項1~5のいずれかに記載の中空成形品の成形方法。 6. At least two secondary laminates are produced, and in the arranging step, the secondary laminates are placed in contact with each other over the entire longitudinal direction and placed in a molding die. A method for forming the hollow molded article as described.
  7. 前記2次積層体を少なくとも2体作製し、前記配置工程において、それら2次積層体を、その長手方向の一部を相互に接触させて成形金型に配置する、請求項1~5のいずれかに記載の中空成形品の成形方法。 At least two of the secondary laminates are produced, and in the arranging step, the secondary laminates are arranged in a molding die with a part of their longitudinal directions in contact with each other. A method for forming a hollow molded product according to claim 1.
  8. 複数作製した2次積層体の相互に接触させた部分の少なくとも一部を強化繊維基材で補強する、請求項6または7に記載の中空成形品の成形方法。 The method for forming a hollow molded article according to claim 6 or 7, wherein at least a part of the plurality of secondary laminates brought into contact with each other is reinforced with a reinforcing fiber substrate.
  9. マンドレルの成形品外形からのオフセット量が一定である、請求項1~8のいずれかに記載の中空成形品の成形方法。 The method for molding a hollow molded article according to any one of claims 1 to 8, wherein an offset amount of the mandrel from the outer shape of the molded article is constant.
  10. 成形金型内の少なくとも一部の領域において、マンドレルの成形品外形からのオフセット量が、樹脂注入側から樹脂排出側に向けて減少する構成を有する、請求項1~8のいずれかに記載の中空成形品の成形方法。 The offset amount from the outer shape of the molded product of the mandrel is configured to decrease from the resin injection side to the resin discharge side in at least a part of the region within the molding die. A method for forming a hollow molded product.
  11. 成形金型内の少なくとも一部の領域において、成形金型内の中空成形品厚み方向におけるブレーディング基材の厚みが樹脂注入側から樹脂排出側に向けて増加する構成を有する、請求項10に記載の中空成形品の成形方法。 The structure according to claim 10, wherein the thickness of the braiding substrate in the thickness direction of the hollow molded product in the molding die increases from the resin injection side to the resin discharge side in at least a part of the region in the molding die. A method for forming the hollow molded article as described.
  12. 成形金型内における少なくとも一部の領域において、金型のキャビティの断面積が樹脂注入側から樹脂排出側に向けて縮小する構造を有する、請求項10に記載の中空成形品の成形方法。 The method for molding a hollow molded article according to claim 10, wherein the mold cavity has a structure in which the cross-sectional area of the mold cavity is reduced from the resin injection side toward the resin discharge side in at least a part of the region within the molding die.
  13. 請求項1~12のいずれかに記載の中空成形品の成形方法を用いた繊維強化プラスチックの製造方法。 A method for producing a fiber-reinforced plastic using the method for forming a hollow molded article according to any one of claims 1 to 12.
PCT/JP2014/050908 2013-01-24 2014-01-20 Method for molding hollow molding and method for manufacturing fiber reinforced plastic WO2014115668A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480004321.7A CN104903076A (en) 2013-01-24 2014-01-20 Method for molding hollow moldings and method for manufacturing fiber reinforced plastic
JP2014515741A JPWO2014115668A1 (en) 2013-01-24 2014-01-20 Method for molding hollow molded article and method for producing fiber reinforced plastic

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013010970 2013-01-24
JP2013-010970 2013-01-24
JP2013246067 2013-11-28
JP2013-246067 2013-11-28

Publications (1)

Publication Number Publication Date
WO2014115668A1 true WO2014115668A1 (en) 2014-07-31

Family

ID=51227459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050908 WO2014115668A1 (en) 2013-01-24 2014-01-20 Method for molding hollow molding and method for manufacturing fiber reinforced plastic

Country Status (4)

Country Link
JP (1) JPWO2014115668A1 (en)
CN (1) CN104903076A (en)
TW (1) TW201434613A (en)
WO (1) WO2014115668A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102358500B1 (en) * 2020-12-29 2022-02-08 한국항공대학교산학협력단 Method and apparatus for making composite hollow structure, and composite hollow structure made thereby
JP2022520917A (en) * 2018-12-11 2022-04-04 ゼネラル・エレクトリック・カンパニイ Methods for Manufacturing Fiber Reinforced Polymer Composite Beams, Especially Girder Beams for Wind Turbine Rotor Blades

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661965B (en) * 2018-12-12 2019-06-11 財團法人自行車暨健康科技工業研究發展中心 Bicycle component capable of improving structural rigidity
CN110001080A (en) * 2019-05-07 2019-07-12 航天神舟飞行器有限公司 A kind of special-shaped support construction method for manufacturing parts applied to unmanned plane

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321434A (en) * 1989-06-19 1991-01-30 Nippon Steel Corp Manufacture of fiber reinforced plastic pipe
JPH04265714A (en) * 1991-02-21 1992-09-21 Kawasaki Heavy Ind Ltd Manufacture of hollow composite member
JPH0839692A (en) * 1994-07-29 1996-02-13 Yokohama Rubber Co Ltd:The Manufacture of front fork for bicycle
JPH11192991A (en) * 1998-01-06 1999-07-21 Exedy Corp Structure of frp monocock frame for bicycle and its manufacture
JP2001030360A (en) * 1999-07-21 2001-02-06 Shingo Mase Composite tubular object made of fiber-reinforced resin and manufacture thereof
JP2004017412A (en) * 2002-06-14 2004-01-22 Murata Mach Ltd Manufacturing method for bent pipe
JP2008073876A (en) * 2006-09-19 2008-04-03 Toray Ind Inc Manufacturing method of hollow frp
WO2009078419A1 (en) * 2007-12-17 2009-06-25 Toyota Jidosha Kabushiki Kaisha Method of molding fiber-reinforced-resin hollow part
JP2009202440A (en) * 2008-02-28 2009-09-10 Toray Ind Inc Demolding method and manufacturing process of fiber-reinforced plastic
JP2012066397A (en) * 2010-09-21 2012-04-05 Toray Ind Inc Method for manufacturing fiber-reinforced plastic
WO2012115067A1 (en) * 2011-02-25 2012-08-30 東レ株式会社 Method for producing frp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI296237B (en) * 2004-12-08 2008-05-01 Chung Shan Inst Of Science Hollow composite material structure and fabricating method thereof
CN101786329A (en) * 2009-01-22 2010-07-28 李世鹏 Method for molding reinforced carbon fiber bicycle component
US8303882B2 (en) * 2009-02-23 2012-11-06 General Electric Company Apparatus and method of making composite material articles
FR2957845B1 (en) * 2010-03-26 2012-08-10 Messier Dowty Sa METHOD FOR MANUFACTURING A COMPOSITE MATERIAL ARM COMPRISING A TRANSVERSAL BEARING FOR RECEIVING A FIXED OR ROTATING AXIS

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321434A (en) * 1989-06-19 1991-01-30 Nippon Steel Corp Manufacture of fiber reinforced plastic pipe
JPH04265714A (en) * 1991-02-21 1992-09-21 Kawasaki Heavy Ind Ltd Manufacture of hollow composite member
JPH0839692A (en) * 1994-07-29 1996-02-13 Yokohama Rubber Co Ltd:The Manufacture of front fork for bicycle
JPH11192991A (en) * 1998-01-06 1999-07-21 Exedy Corp Structure of frp monocock frame for bicycle and its manufacture
JP2001030360A (en) * 1999-07-21 2001-02-06 Shingo Mase Composite tubular object made of fiber-reinforced resin and manufacture thereof
JP2004017412A (en) * 2002-06-14 2004-01-22 Murata Mach Ltd Manufacturing method for bent pipe
JP2008073876A (en) * 2006-09-19 2008-04-03 Toray Ind Inc Manufacturing method of hollow frp
WO2009078419A1 (en) * 2007-12-17 2009-06-25 Toyota Jidosha Kabushiki Kaisha Method of molding fiber-reinforced-resin hollow part
JP2009202440A (en) * 2008-02-28 2009-09-10 Toray Ind Inc Demolding method and manufacturing process of fiber-reinforced plastic
JP2012066397A (en) * 2010-09-21 2012-04-05 Toray Ind Inc Method for manufacturing fiber-reinforced plastic
WO2012115067A1 (en) * 2011-02-25 2012-08-30 東レ株式会社 Method for producing frp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022520917A (en) * 2018-12-11 2022-04-04 ゼネラル・エレクトリック・カンパニイ Methods for Manufacturing Fiber Reinforced Polymer Composite Beams, Especially Girder Beams for Wind Turbine Rotor Blades
US11628634B2 (en) 2018-12-11 2023-04-18 General Electric Company Method for manufacturing a fiber reinforced polymer composite beam, particularly a spar beam for a wind turbine rotor blade
JP7282890B2 (en) 2018-12-11 2023-05-29 ゼネラル・エレクトリック・カンパニイ Method for manufacturing fiber reinforced polymer composite beams, in particular girder beams for wind turbine rotor blades
KR102358500B1 (en) * 2020-12-29 2022-02-08 한국항공대학교산학협력단 Method and apparatus for making composite hollow structure, and composite hollow structure made thereby

Also Published As

Publication number Publication date
TW201434613A (en) 2014-09-16
CN104903076A (en) 2015-09-09
JPWO2014115668A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6140679B2 (en) Resin injection molding process using vacuum with reusable resin distribution line
JP6557972B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic
EP2860005B1 (en) Molding method for fiber-reinforced plastic structure
CA2935481C (en) Frp shaping jig and method of shaping frp structure
JP4384221B2 (en) Method for molding fiber reinforced resin hollow parts
KR101669381B1 (en) Method for molding fiber-reinforced plastic
JP2005534533A5 (en)
JP2013532596A (en) Molded plastic multilayer component with continuous reinforcing fiber layer and method of manufacturing the same
WO2014115668A1 (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP2016535689A (en) Continuous production method of sandwich-shaped profile with foam core and profile filled with hard foam
US10307975B2 (en) Resin-infusion process for composites manufacturing
CN110914046B (en) Multi-stage resin delivery
KR101447136B1 (en) Method for Forming Fiber Reinforced Plastic Composite
KR101219397B1 (en) Method for manufacturing composite hollow structure
JP4292971B2 (en) FRP manufacturing method and manufacturing apparatus
KR20170007883A (en) the mold of hollow type composite materials for molding and the molding method therewith
JP2007062150A (en) Reinforcing fiber preform and rtm molding method
KR101387394B1 (en) Method for making composite hollow structures and metallic mould the same
KR20150062195A (en) Pressurized Molding Machine For CFRP Product and Pressurized Molding Method Of CFRP Product
JP4382869B2 (en) Molding method of hollow fiber reinforced plastic parts with flange
JP4508618B2 (en) Bag molding method
KR101561029B1 (en) Method manufacturing for helmet
JP2006159420A (en) Manufacturing method of frp molded product
JP2017105062A (en) Fiber-reinforced plastic production device and production method
JP2009028958A (en) Molding method for fiber-reinforced resin and molding die used therefor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014515741

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201505121

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14743138

Country of ref document: EP

Kind code of ref document: A1