JP4214574B2 - センサ回路 - Google Patents

センサ回路 Download PDF

Info

Publication number
JP4214574B2
JP4214574B2 JP27213998A JP27213998A JP4214574B2 JP 4214574 B2 JP4214574 B2 JP 4214574B2 JP 27213998 A JP27213998 A JP 27213998A JP 27213998 A JP27213998 A JP 27213998A JP 4214574 B2 JP4214574 B2 JP 4214574B2
Authority
JP
Japan
Prior art keywords
sensor
current
npn transistor
transistor
pnp transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27213998A
Other languages
English (en)
Other versions
JP2000098010A (ja
Inventor
一夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27213998A priority Critical patent/JP4214574B2/ja
Publication of JP2000098010A publication Critical patent/JP2000098010A/ja
Application granted granted Critical
Publication of JP4214574B2 publication Critical patent/JP4214574B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、検出対象物の情報に応じてインピーダンスが変化するセンサを用いたセンサ回路に関する。
【0002】
【従来の技術】
検出対象物の情報に応じてインピーダンスが変化するセンサは、産業用や民生用として広く使用されている。
【0003】
例えば外部磁界を探知する磁気探知装置は、磁場の検出器や測定器などの計測用から始まり、近年では、磁気式スイッチ、磁気式ロータリ・エンコーダ、地磁気センサなどが使用されている。この磁気探知装置としては、ホール素子を用いた磁気探知装置、フラックスゲートセンサを用いた磁気探知装置、磁気抵抗効果素子を用いた磁気探知装置などがある。
【0004】
ホール素子を用いた磁気探知装置は、図13に示すように、両端に電極101,102を設けたホール素子103のホール効果を応用して外部磁界を検出するものである。すなわち、ホール素子を用いた磁気探知装置では、外部磁界の変化によってホール素子103に発生するホール電圧Vhの変化に基づいて外部磁界を検出する。ここで、ホール素子103の厚さをdとし、ホール素子103を流れる電流をIとし、ホール素子103を通る磁束をBとすると、ホール電圧Vhは、下記式(1−1)のようになる。
【0005】
Vh=Rh・I・B/d ・・・(1−1)
しかし、このようなホール電圧Vhは非常に小さいため、ホール素子を用いた磁気探知装置では、例えば、約0.3ガウス程度の地磁気のような微弱な磁界を検出することは困難である。
【0006】
また、フラックスゲートセンサを用いた磁気探知装置は、図14に示すように、外部磁界によってヒステリシス曲線がシフトする特殊な高透磁率材料からなる環状の磁気コア110に、励磁用コイル111及び検出用コイル112を巻回してなるものである。
【0007】
この磁気探知装置で外部磁界を検出する際には、磁気コア110が過飽和状態にまで励磁されるような高周波電流を励磁用コイル111に流しておく。このとき、外部からの磁界が磁気コア110に作用していなければ、検出用コイル112の左右のコイル112a,112bからの出力は同じ出力波形となる。そして、検出用コイル112の左右のコイル112a,112bは逆相に接続されているので、検出用コイル112の左側のコイル112aからの出力と、検出用コイル112の右側のコイル112bからの出力とが互いに打ち消し合って検出用コイル112全体からは何も出力されないこととなる。
【0008】
一方、例えば、励磁用コイル111によって右回りの磁束Bが磁気コア110内に発生しているときに、図14中のNからSに至る方向より外部磁界Heが加わると、外部磁界Heがバイアス磁界として作用して、磁気コア110の右側が早く飽和し、磁気コア110の左側が逆に遅れて飽和する。そして、検出用コイル112の左右のコイル112a,112bは逆相に接続されているので、検出用コイル112の左側のコイル112aからの出力と、検出用コイル112の右側のコイル112bからの出力との差分が、外部磁界Heの大きさに対応して出力されることとなる。
【0009】
しかし、このような磁気探知装置では、検出用コイル112によって磁気信号を電気信号に変換するため、感度を上げるには検出用コイル112の巻き数を多くしたり、外部磁界Heの集束効果を高めるために磁気コア110の形状を大きくする必要がある。したがって、フラックスゲートセンサを用いた磁気探知装置では、小型化や低価格化が非常に困難であった。
【0010】
また、磁気抵抗効果素子を用いた磁界探知装置は、磁気抵抗効果素子の磁気抵抗効果を利用して外部磁界を検出するものである。ここで、磁気抵抗効果素子とは、Ni合金等からなる強磁性薄膜の磁気抵抗効果を応用した磁電変換素子であり、印加された磁界の強さに応じて、その抵抗値が変化する特性を持っている。そして、図15に示すように、磁気抵抗効果素子120を流れる電流Iの方向と、外部磁界Heによる磁気抵抗効果素子120の磁化Mの方向とのなす角をθとし、電流Iの方向と磁化Mの方向とが同一のときの磁気抵抗効果素子120の抵抗値をRaとし、電流Iの方向と磁化Mの方向とのなす角θが90°のときの磁気抵抗効果素子120の抵抗値をRbとすると、磁気抵抗効果素子120の抵抗値Rは、下記式(1−2)のようになる。
【0011】
R=Rb+(Ra−Rb)・cos2θ ・・・(1−2)
また、上記式(1−2)で示される磁気抵抗効果素子120の磁気抵抗効果特性は図16のようになる。ここで、縦軸は、磁気抵抗効果素子120の抵抗値Rであり、横軸は、磁気抵抗効果素子120を流れる電流Iの方向と、外部磁界Heによる磁気抵抗効果素子120の磁化Mの方向とのなす角度θである。
【0012】
しかし、このような磁気抵抗効果素子120において、抵抗変化率の最大値は2〜3%程度と非常に小さいため、適当な大きさのバイアス磁界を加えて感度の良いところを使用したとしても、地磁気のような微弱な磁界では0.05%程度しか抵抗変化が得られない。したがって、磁気抵抗効果素子120を用いた磁気探知装置も感度が不十分であり、地磁気のような微弱な磁界の検出には適してない。さらに、磁気抵抗効果素子120の抵抗変化率は、0.3%/℃程度の大きな温度係数を持っているため、磁気抵抗効果素子120を用いた磁気探知装置では、温度ドリフト等の問題もある。
【0013】
【発明が解決しようとする課題】
上述のように、従来から知られている磁気探知装置では、感度が不十分であったり、小型化や低価格化が難しいという問題があった。
【0014】
そこで、本件出願人は、小型化や低価格化が容易で、高い感度が得られる磁気探知装置として、例えば特願平9−106418号において、磁性体にコイルが巻かれてなる磁気センサを備え、上記磁気センサのコイルに発振電圧が供給されたときに上記コイルに流れる発振電流について、外部磁界により変化する発振電流のピーク値を検出し、この発振電流のピーク値の変化によって外部磁界を探知するようにした磁気探知装置を先に提案している。
【0015】
この磁気探知装置に用いられる磁気センサは、図1に示すように、リボン状やワイヤー状に形成された細長いアモルファス等からなる磁性体1と、この磁性体1の長手方向に巻回された銅線等からなるコイル2とから構成される。ここで、磁性体1には、数ガウス程度の微弱な磁界で急峻な透磁率変化を示す角形特性に優れた磁性材料を用いる。そして、この磁気センサ3のコイル2からは、2つの端子4,5が導出される。
【0016】
つぎに、このような磁気センサ3を用いて外部磁界Heの大きさを検出するときの原理について、図2を参照しながら説明する。図2は、パルス幅Tおよびパルス電圧Vが一定の発振電圧信号Vosを磁気センサ3に供給したときに、磁気センサ3に流れる電流i01及び電流i01を反転させた電流i02が磁気センサ3に流れているときの状態について、磁気センサ3のインダクタンスLの変化と対応させて示したものである。
【0017】
このとき、電流i01及び電流i02を直流バイアス成分を含んだ交流電流とすることが好ましい。このように、電流i01及び電流i02に直流バイアス成分を含ませることにより、これら電流i01及び電流i02からは直流バイアス成分を有する交流磁界が発生し、磁性体1がその長手方向に磁化されることになる。ここで、供給される電流i01及び電流i02は、外部磁界Heが加わって交流磁界がシフトしたとしても、交流磁界が、磁気センサ3のインダクタンスLが急峻な変化を示す範囲を包括するように設定する。
【0018】
以下の説明において、先ず、磁気センサ3に電流i01が流れる場合に関して説明し、次に、磁気センサ3に電流i02が流れる場合に関して説明する。
【0019】
ここで、磁気センサ3に加わる外部磁界HeがHe=0の場合、図2に示すように、磁気センサ3のコイル2に流れる電流i01が0からIhまで変化するように設定すると、磁気センサ3のインダクタンスLはLmaxからLminに変化する。すなわち、この場合、電流i01のピーク値はIhであり、そのときのインダクタンスLはLminである。また、このインダクタンスLがLmaxからLminに変化する電流値をIcとすると、発振電圧信号Vosのパルス幅Tとパルス電圧Vとの積は、ファラデーの法則により下記式(2−1)のように表される。
【0020】
V・T=Lmax・Ic+Lmin・(Ih−Ic)・・・(2−1)
そして、磁気センサ3に対して外部磁界Heが加わる場合、図2に示すように、電流i01が供給された磁気センサ3には、直流バイアス成分が外部磁界He分だけシフトすることとなり、その結果、図2中Ieで示す分だけシフトした電流ie1が流れることになる。そして、電流ie1のピーク値をIe1とすると、発振電圧信号Vosのパルス幅Tとパルス電圧Vとの積は、ファラデーの法則により下記式(2−2)のように表される。
【0021】
V・T=Lmax・(Ic−Ie)+Lmin・(Ie1+Ie−Ic) ・・・(2−2)
したがって、外部磁界Heが加わらない状態から外部磁界Heが加わった状態に変化したときの発振電圧信号Vosのピーク値の変化量をΔI1とすると、変化量ΔI1は、上記式(2−1)及び上記式(2−2)より下記式(2−3)のように表される。
【0022】
ΔI1=Ie1−Ih
={(Lmax−Lmin)/Lmin}・Ie・・・(2−3)
上記式(2−3)から分かるように、見かけ上シフトしたこととなる電流Ieとピーク値の変化量ΔI1とは比例関係にある。そして、この関係において、インダクタンスLの変化量が大きいほどピーク値の変化量ΔI1が大きくなる。また、この関係において、インダクタンスLの変化量が一定、すなわち、インダクタンスLが直線的に変化すると、ピーク値の変化量ΔI1が電流Ieに対してリニアリティをもって変化することとなる。
【0023】
次に、磁気センサ3に対して電流i01を反転させた電流i02が供給された場合について説明する。
【0024】
電流i02が供給された場合において、磁気センサ3に加わる外部磁界HeがHe=0の場合、図5に示すように、磁気センサ3のコイル2に流れる電流i02が0から−Ihまで変化するように設定すると、磁気センサ3のインダクタンスLはLmaxからLminに変化する。すなわち、この場合、電流i01のピーク値は−Ihであり、そのときのインダクタンスLはLminである。また、このインダクタンスLがLmaxからLminに変化する電流値を−Icとすると、発振電圧信号Vosのパルス幅Tとパルス電圧−Vとの積は、ファラデーの法則により下記式(2−4)のように表される。
【0025】
−V・T=Lmax・−Ic+Lmin・(−Ih+Ic)・・・(2−4)
そして、電流i02が供給された状態において、磁気センサ3に対して外部磁界Heが加わる場合、図2に示すように、電流i02が供給された磁気センサ3には、直流バイアス成分が外部磁界He分だけシフトすることとなり、その結果、図5中Ieで示す分だけシフトした電流ie2が流れることになる。そして、電流ie2のピーク値をIe2とすると、発振電圧信号Vosのパルス幅Tとパルス電圧Vとの積は、ファラデーの法則により下記式(2−5)のように表される。
【0026】
−V・T=Lmax・(−Ic−Ie)+Lmin・(Ie−Ie2+Ic)・・・(2−5)
したがって、外部磁界Heが加わらない状態から外部磁界Heが加わった状態に変化したときの発振電圧信号Vosのピーク値の変化量をΔI2とすると、変化量ΔI2は、上記式(2−4)及び上記式(2−5)より下記式(2−6)のように表される。
【0027】
ΔI2=Ie2−Ih
=−{(Lmax−Lmin)/Lmin}・Ie
=−ΔI1 ・・・(2−6)
上記式(2−6)から分かるように、見かけ上シフトしたこととなる電流Ieとピーク値の変化量ΔI2とは比例関係にある。そして、この関係においても、インダクタンスLの変化量が大きいほどピーク値の変化量ΔI2が大きくなる。また、この関係において、インダクタンスLの変化量が一定、すなわち、インダクタンスLが直線的に変化すると、ピーク値の変化量ΔI2が電流Ieに対してリニアリティをもって変化することとなる。また、このピーク値の変化量ΔI2は、上述したピーク値の変化量ΔI1と符号が逆で同じ大きさとなっている。すなわち、ピーク値の変化量ΔI1とピーク値の変化量ΔI2とは、差動の関係にある。
【0028】
そこで、順方向に電流を流したとき、すなわち電流i01を供給したときのピーク値Ie1と、逆方向に電流を流したとき、すなわち電流i02を供給したときのピーク値Ie2とを測定し、これらの差動を取ることにより、外部磁界Heの変化に応じた信号を、一定の方向にだけ電流を流したときに比べて約2倍の出力として取り出すことができる。
【0029】
また、ピーク値Ie1とピーク値Ie2との差動を取ることにより、外部磁界He=0のときには、磁気センサ3に流れるピーク値が互いにキャンセルされるので、外部磁界Heがない状態である0点を容易に認識することができる。
【0030】
さらに、磁気センサ3は温度等によってインダクタンスLの大きさが変化して磁気センサに流れる電流のピーク値に変化が生じるが、磁気センサ3に流れる電流を短時間で反転させることにより、このような温度ドリフトや時間ドリフト等の影響を互いにキャンセルすることができる。したがって、この磁気センサ3では、温度ドリフトや時間ドリフト等の影響を受けることなく、高精度に外部磁界Heを検出することができる。
【0031】
つぎに、以上のような磁気センサを用いて、外部磁界の大きさを電気信号に変換するためのセンサ回路について説明する。
【0032】
このセンサ回路は、図3に示すように、アナログスイッチ回路6内に配された磁気センサ3と、このアナログスイッチ回路6に接続された抵抗7と発振電圧信号を供給するパルス信号発振器8とアナログスイッチ回路6を切り替えるための信号を供給する周波数分周器9を備えている。そして、上記磁気センサ3は、ブリッジ接続された4個のスイッチ6a〜6dを備えたアナログスイッチ回路6内に配されている。磁気センサ3に流れる電流方向は、これら4個のスイッチ6a〜6dをオン/オフ制御することによって反転させることができるようになっている。また、アナログスイッチ回路6に接続された抵抗7は、磁気センサ3に対して直列となるように接続されており、磁気センサ3とこの抵抗7によって積分回路を構成している。
【0033】
この積分回路は、パルス信号発振器8に接続されており、このパルス信号発振器8からパルス幅Tおよびパルス電圧Vが一定の発振電圧信号Vosが供給されると、磁気センサ3および抵抗7に積分電流irが流れ、抵抗7には積分電圧Vrが生じる。この積分電流irは、磁気センサ3に流れる電流の方向を交互に反転させた電流を時系列になるように配置している。
【0034】
なお、アナログスイッチ回路6を切り替えるための信号Q,Q’は、パルス信号発生器8から供給される発振電圧信号Vosを周波数分周器9で分周することによって生成する。これは、磁気センサと抵抗17によって形成される積分回路に供給する発振電圧信号Vosと上記アナログスイッチ回路6の切り替えタイミングを同期させることによって、このセンサ回路の動作の安定度を高めるためである。
【0035】
このようなセンサ回路の動作について、各部の電圧波形のタイムチャートである図4を参照しながら説明する。
【0036】
このセンサ回路では、パルス信号発振器8から、図4の(A)に示すように、パルス幅Tおよびパルス電圧Vが一定の発振電圧信号Vosが周波数分周器9に供給され、図4の(B),(C)に示すように、アナログスイッチ回路6を切り替えるための信号Q,Q’が上記周波数分周器9により作られる。
【0037】
また、上記パルス信号発振器8から発振電圧信号Vosがアナログスイッチ回路6を介して磁気センサ3に供給される。これにより、磁気センサ3と抵抗7とからなる積分回路に積分電流が流れる。このとき、抵抗7に生じる積分電圧Vrの波形は、図4の(D)に示すように、磁気センサ3に流れる電流の応答波形に対応するものであり、したがって、この積分電圧Vrのピーク電圧値は、磁気センサ3に加わる外部磁界Heの大きさに応じて変化する。
【0038】
ここで、切り替え信号Qが“H”で切り替え信号Q’が“L”のときには、図3に示したスイッチ6aおよびスイッチ6bがオンで、スイッチ6cおよびスイッチ6dがオフとなり、磁気センサ3には図3の矢印Aの向きに電流が流れる。
【0039】
また、切り替え信号Qが“L”で切り替え信号Q’が“H”のときには、図3に示したスイッチ6aおよびスイッチ6bがオフで、スイッチ6cおよびスイッチ6dがオンとなり、磁気センサ3には図3の矢印Bの向きに電流が流れる。
【0040】
したがって、積分電圧Vrは、図4の(D)に示すように、磁気センサ3に流れる各々の電流の方向に応じた積分電圧Vr1および積分電圧Vr2によって構成されるので、積分電圧Vr1のピーク値Ve1および積分電圧Vr2のピーク値Ve2は、外部磁界の大きさに対して差動の関係にある。
【0041】
すなわち、この電圧信号Ve1と電圧信号Ve2は、磁気センサ3に発振電圧信号を供給したときに、磁気センサ3に流れる電流の方向を反転させたときの磁気センサ3に流れる発振電流の各々のピーク値を検出したものである。
【0042】
このように、このセンサ回路では、磁気センサ3に加わった外部磁界Heが、磁気センサ3と直列に接続された抵抗7に生じるピーク電圧値として現れ、このピーク電圧値を検出することによって、外部磁界の大きさを探知する。
【0043】
つぎに、磁気センサ3に加わった外部磁界Heが磁気センサ3と直列に接続された抵抗7に生じるピーク電圧値として現れる原理について、さらに詳細に説明する。
【0044】
磁気センサ3と抵抗7が直列に接続された積分回路に流れる電流が立ち上がるときの状態をモデル化した回路図を図5に示す。このような回路において、スイッチ10をオフからオンにすると、磁気センサ3と抵抗7からなる積分回路に直流電源11から直流電圧が印加され、磁気センサ3に電流iが流れる。ここで、磁気センサ3に流れる電流iは、積分回路に印加される直流電圧をV、磁気センサ3のインダクタンスをL、抵抗7の抵抗値をR、電流iの立ち上がり時間をtとすると、下記式(3−1)で表される。
【0045】
【数1】
Figure 0004214574
【0046】
上述したように、磁気センサ3のインダクタンスLは、電流iが立ち上がっている間に、LmaxからLminへ変化する。ここで、電流iは、インダクタンスLがLmaxからLminへの変化を示す範囲を包括するように設定しておく。
【0047】
そして、磁気センサ3のインダクタンスLがLmaxからLminへ変化するため、磁気センサ3に流れる電流iは、図6に示すように、初めはインダクタンスLがLmaxの状態で立ち上がり、やがて、インダクタンスLがLminの状態で立ち上がることとなる。
【0048】
ここで、磁気センサ3に流れる電流iは、インダクタンスLmaxの状態で電流値0から電流値Icまで立ち上がり、この立ち上がり時間をt1とする。つぎに、磁気センサ3に流れる電流iは、インダクタンスLminの状態で電流値Icから電流値Ihまで立ち上がり、この立ち上がり時間をt2とする。これらの立ち上がり時間t1と立ち上がり時間t2との合計の立ち上がり時間をTとし、この時間Tは一定であるとすると上記式(3−1)より、下記式(3−2)のように表される。
【0049】
【数2】
Figure 0004214574
【0050】
そして、上記式(3−2)において、磁気センサ3に加わる外部磁界の大きさに応じて、インダクタンスLがLmaxからLminに変化する電流値Icがシフトするので、立ち上がり時間t1と立ち上がり時間t2の大きさも変化することになる。したがって、外部磁界の大きさに応じて、上述した立ち上がり時間Tの間に磁気センサ3に流れる立ち上がりの電流値Ihも変化することとなる。
【0051】
よって、上述の図3および図4に示したように、磁気センサ3と抵抗7によって構成された積分回路に、パルス幅Tおよびパルス電圧Vが一定の発振電圧信号Vosを供給したときに生じる積分電流のピーク値すなわち抵抗7に生じるピーク電圧Vrは、磁気センサ3に加わった外部磁界Heの大きさに応じて変化することとなる。
【0052】
しかし、このようなセンサ回路では、磁気センサ3と抵抗7との時定数でセンサに流れる電流が決まるため、上記式(3−2)に示したように積分電流のピーク値と外部磁界Heの大きさ(電流値Ic)の関係は直線的であるとはいえず、リニアリティを保証できる外部磁界検出範囲を拡げることは困難であった。
【0053】
上述のように、従来から知られているセンサ回路ではリニアリティの保証が難しいという問題があった。
【0054】
そこで、本発明は、このような従来の実情を鑑みて提案されたものであり、容易にリニアリティの確保ができ、高精度なセンサ回路を提供することを目的とする。
【0055】
【課題を解決するための手段】
上述の目的を達成するために完成された本発明に係るセンサ回路は、検出対象物の情報に応じてインピーダンスが変化するセンサと、各コレクタが互いに接続された第1のNPNトランジスタ及び第2のNPNトランジスタと、各コレクタが互いに接続された第1のPNPトランジスタ及び第2のPNPトランジスタと、上記第1のNPNトランジスタ及び第1のPNPトランジスタの各ベースが出力端に接続されるとともに、上記第1のNPNトランジスタ及び第1のPNPトランジスタの各エミッタ及び上記センサの一端が非反転入力端に共通接続された第1の演算増幅器と、上記第2のNPNトランジスタ及び第2のPNPトランジスタの各ベースが出力端に接続されるとともに、上記第2のNPNトランジスタ及び第2のPNPトランジスタの各エミッタ及び上記センサの他端が非反転入力端に共通接続された第2の演算増幅器とを備え、上記第1の演算増幅器と第2の演算増幅器の非反転入力端に電圧信号を供給し、上記センサのインピーダンス変化に応じて上記第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは上記第1のPNPトランジスタと第2のPNPトランジスタの各コレクタの接続点の少なくともどちらか一方を流れる電流として検出信号を出力することを特徴する。
【0056】
このセンサ回路は、対象物がもっている情報をセンサのインピーダンスの変化としてのみ検出できるので、容易にリニアリティを確保することができることとなる。例えば、上述した磁気センサ3に発振電圧信号を供給したときに、磁気センサに流れる電流の変化を検出することによって外部磁界の大きさを探知することができる。これは、外部磁界の大きさに応じて磁性体の磁化量が変化し、その結果、コイルのインピーダンス(インダクタンス)が変化するためである。
【0057】
また、このセンサ回路では、第1のNPNトランジスタと第1のPNPトランジスタおよび第2のNPNトランジスタと第2のPNPトランジスタによるブリッジ回路を構成しているので、センサに流れる電流の方向を反転させることができる。それぞれの方向に応じた信号を時系列で、第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは第1のPNPトランジスタと第2PNPのトランジスタの各コレクタに接続点を流れる電流として出力することとなる。
【0058】
また、このセンサ回路では、第1の演算増幅器と第2の演算増幅器の非反転入力端にパルス電圧を供給すると、センサに流れるピーク電流の変化を検出することによって外部磁界の大きさを探知することができる。
【0059】
また、このセンサ回路では、センサに流れる電流の方向を短時間に反転させたときには、センサのインピータンスに温度ドリフトや時間的ドリフト等が生じても、これらの影響は互いにキャンセルされる。したがって、高精度に外部磁界の大きさを探知することができる。
【0060】
さらに、このセンサ回路では、第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは第1のPNPトランジスタと第2のPNPトランジスタの各コレクタの接続点に流れる電流を基準電位に接続された抵抗に流すことによって電圧信号として出力することができる。さらに、上記電流をカレントミラー回路を通して抵抗に流すことによって出力ダイナミックレンジを容易に拡げることができる。
【0061】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で変更が可能であることは言うまでもない。
【0062】
本発明に係るセンサ回路は、例えば図7の回路図に示すような回路構成を有する。
【0063】
この図7に示したセンサ回路は、外部磁界に応じてインピーダンスが変化するセンサ12を備え、NPNトランジスタ13a及びPNPトランジスタ14aの各エミッタと演算増幅器15aの非反転入力端が上記センサ12の一端に共通接続され、NPNトランジスタ13b及びPNPトランジスタ14bの各エミッタと演算増幅器15bの非反転入力端が上記センサ12の他端に共通接続されている。
【0064】
NPNトランジスタ13a及びNPNトランジスタ13bは、各コレクタが互いに接続されており、その接続点が抵抗17を介して直流電源18に接続されている。また、PNPトランジスタ14a及びPNPトランジスタ14bは、各コレクタが互いに接続されており、その接続点が接地されている。
【0065】
演算増幅器15aは、NPNトランジスタ13a及びPNPトランジスタ14aの各ベースに出力端が接続されるとともに、NPNトランジスタ13a及びPNPトランジスタ14aの各エミッタに非反転入力端が接続されている。また、演算増幅器15bは、NPNトランジスタ13b及びPNPトランジスタ14bの各ベースに出力端が接続されるとともに、NPNトランジスタ13b及び第2のPNPトランジスタ14bの各エミッタに非反転入力端が接続されている。
【0066】
そして、演算増幅器15a,15bの各非反転入力端に発振器16から図8に示すような電圧信号V1,V2が供給されるようになっている。
【0067】
つぎに、このセンサ回路の動作について説明する。
【0068】
このセンサ回路において、発振器16から供給される電圧信号V1,V2は、演算増幅器15aとNPNトランジスタ13aとPNPトランジスタ14aで構成する負帰還増幅回路および演算増幅器15bとNPNトランジスタ13bとPNPトランジスタ14bで構成する負帰還増幅回路によって、それぞれセンサ12の両端子間に伝えられる。
【0069】
したがって、センサ12のインピーダンスが対象物がもっている情報により変化すると当該センサ12に流れる電流も変化することとなる。
【0070】
また、センサ12の端子間の電位差によって当該センサ12に流れる電流の方向を反転させることができる。電流がi1のときは、NPNトランジスタ13aとPNPトランジスタ14bを通して流れる。電流がi2のときは、NPNトランジスタ13bとPNPトランジスタ14aを通して流れる。
【0071】
したがって、この電流は流れる方向に応じてNPNトランジスタ13aあるいはNPNトランジスタ13bのコレクタから供給されるので、これらのコレクタの接続点を介して流れる電流isは、センサ12に流れる電流の方向を交互に反転させた電流i1と電流i2を時系列で出力したものとなる。
【0072】
この電流isが抵抗17に流れるので、センサ12のインピーダンスの変化を抵抗17の両端電圧信号Vsとして出力することとなる。したがって、対象物がもっている情報をセンサ12のインピーダンスの変化としてのみ検出しているので、リニアリティが良好である。
【0073】
つぎに、センサ12の一例として上述した磁気センサ3を用いたときの上記センサ回路の動作について、各部の信号波形のタイムチャートである図8を参照しながら説明する。
【0074】
上記センサ回路では、発振器16から、図8の(A),(B)に示すように、パルス幅Tおよびパルス電圧Vが一定の発振電圧信号V1,V2が、上記の負帰還増幅回路によって磁気センサ3の両端子間に伝えられる。この端子間の電位差によって、電流の向きを反転させ、図8の(C),(D)に示すように、センサ10のインピーダンスに応じた大きさの電流i1,i2を流す。電流の方向を交互に反転させた電流i1のピーク電流値ie1と電流i2のピーク電流値ie2は外部磁界の大きさに応じて変化し、差動の関係にある。
【0075】
抵抗17に流れる電流isは、図8の(E)に示すように、ピーク電流値ie1とピーク電流値ie2を時系列で出力したものとなる。この電流isが抵抗17を通して流れることにより、抵抗17の両端電圧信号Vsとして外部磁界の大きさに応じた信号が得られる。
【0076】
ここで、抵抗17の値をRsとすると、両端電圧信号Vsは下記式(4−1)のように表される。
【0077】
Vs=Rs・is ・・・ (4−1)
したがって、センサ回路の感度を上げるためにはRsを大きくすれば良いのであるが、回路の出力ダイナミックレンジが問題となる。図9に示すように、電流isをカレントミラー回路19aを介して抵抗17に流すことによって出力ダイナミックレンジを拡げることができる。
【0078】
また、図10に示すように、NPNトランジスタ13aとNPNトランジスタ13bのコレクタが直流電源18に接続され、PNPトランジスタ14aとPNPトランジスタ14bの各コレクタの接続点を抵抗17を介して基準電位(接地)に接続するようにしても、センサ10のインピーダンスの変化を抵抗17の両端電圧信号Vsとして出力できることは言うまでもない。
【0079】
さらに、図11に示すように、電流isをカレントミラー回路19bを介して抵抗17に流すことによって出力ダイナミックレンジを拡げることができることも言うまでもない。
【0080】
つぎに、上述した外部磁界の大きさを検出する磁気センサ3以外のセンサ回路の一例についても説明する。
【0081】
図12に示すように、コイル20の中に高透磁率のコア21を挿入するとコイルのインダクタンスが変化する。上記センサ12として、このような変位を電気信号に変換する変位センサ22を用いるようにしてもよい。
【0082】
【発明の効果】
以上の説明から明らかなように、本発明によれば、対象物がもっている情報をセンサのインピーダンスの変化としてのみ検出できるので、容易にリニアリティの確保ができ、高精度なセンサ回路を提供することができる。
【図面の簡単な説明】
【図1】磁気センサの一例を示す模式図である。
【図2】図1に示した磁気センサによる外部磁界検出の原理を説明するための図である。
【図3】センサ回路の一構成例を示す回路図である。
【図4】図3に示したセンサ回路の動作を示す各部における信号波形のタイムチャートである。
【図5】磁気センサと抵抗からなる積分回路に電流が立ち上がるときの状態をモデル化した回路図である。
【図6】図5に示した積分回路に流れる電流の立ち上がり時の様子を示す図である。
【図7】本発明に係るセンサ回路の一構成例を示す回路図である。
【図8】図7に示したセンサ回路の各部における信号波形のタイムチャートである。
【図9】本発明に係るセンサ回路の他の構成例を示す回路図である。
【図10】本発明に係るセンサ回路の他の構成例を示す回路図である。
【図11】本発明に係るセンサ回路の他の構成例を示す回路図である。
【図12】本発明に係るセンサ回路におけるセンサとして用いられる変位センサの例を示す模式図である。
【図13】ホール素子を用いた磁気探知装置の一例を示す模式図である。
【図14】フラックスゲートセンサを用いた磁気探知装置の一例を示す模式図である。
【図15】磁気抵抗効果素子の一例を示す模式図である。
【図16】磁気抵抗効果素子の磁気抵抗効果特性を示す図である。
【符号の説明】
12 センサ、13a,13b NPNトランジスタ、14a,14b PNPトランジスタ、15a,15b 演算増幅器、16 発振器、17 抵抗、18 直流電源、19a,19b カレントミラー回路

Claims (6)

  1. 検出対象物の情報に応じてインピーダンスが変化するセンサと、
    各コレクタが互いに接続された第1のNPNトランジスタ及び第2のNPNトランジスタと、
    各コレクタが互いに接続された第1のPNPトランジスタ及び第2のPNPトランジスタと、
    上記第1のNPNトランジスタ及び第1のPNPトランジスタの各ベースが出力端に接続されるとともに、上記第1のNPNトランジスタ及び第1のPNPトランジスタの各エミッタ及び上記センサの一端が非反転入力端に共通接続された第1の演算増幅器と、
    上記第2のNPNトランジスタ及び第2のPNPトランジスタの各ベースが出力端に接続されるとともに、上記第2のNPNトランジスタ及び第2のPNPトランジスタの各エミッタ及び上記センサの他端が非反転入力端に共通接続された第2の演算増幅器とを備え、
    上記第1の演算増幅器と第2の演算増幅器の非反転入力端に電圧信号を供給し、上記センサのインピーダンス変化に応じて上記第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは上記第1のPNPトランジスタと第2のPNPトランジスタの各コレクタの接続点の少なくともどちらか一方を流れる電流として検出信号を出力することを特徴としたセンサ回路。
  2. 上記第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは上記第1のPNPトランジスタと第2のPNPトランジスタの各コレクタの接続点のどちらか他方を基準電位に接続することを特徴とする請求項1記載のセンサ回路。
  3. 上記第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは上記第1のPNPトランジスタと第2のPNPトランジスタの各コレクタの接続点を流れる電流は、時系列で出力される少なくとも2つ以上の信号を持つことを特徴とする請求項1記載のセンサ回路。
  4. 上記電圧信号がパルス電圧であることを特徴とする請求項1記載のセンサ回路。
  5. 上記第1のNPNトランジスタと第2のNPNトランジスタの各コレクタの接続点あるいは上記第1のPNPトランジスタと第2のPNPトランジスタの各コレクタの接続点を流れる電流をカレントミラー回路を介して抵抗に流すことによって電圧信号に変換して出力することを特徴とする請求項1記載のセンサ回路。
  6. 上記センサが長手方向にコイルを巻いた磁気センサであることを特徴とする請求項1記載のセンサ回路。
JP27213998A 1998-09-25 1998-09-25 センサ回路 Expired - Fee Related JP4214574B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27213998A JP4214574B2 (ja) 1998-09-25 1998-09-25 センサ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27213998A JP4214574B2 (ja) 1998-09-25 1998-09-25 センサ回路

Publications (2)

Publication Number Publication Date
JP2000098010A JP2000098010A (ja) 2000-04-07
JP4214574B2 true JP4214574B2 (ja) 2009-01-28

Family

ID=17509640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27213998A Expired - Fee Related JP4214574B2 (ja) 1998-09-25 1998-09-25 センサ回路

Country Status (1)

Country Link
JP (1) JP4214574B2 (ja)

Also Published As

Publication number Publication date
JP2000098010A (ja) 2000-04-07

Similar Documents

Publication Publication Date Title
JP2923307B2 (ja) 電流センサ
JP3096413B2 (ja) 磁気検出素子、磁気センサー、地磁気検出型方位センサー、及び姿勢制御用センサー
US6229307B1 (en) Magnetic sensor
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
CN113203885B (zh) 电流传感器、磁传感器和电路
JPH10513549A (ja) 副ループ動作された電流変圧器を有する直流及び交流電流センサ
JP2001013231A (ja) 半導体基板上に形成された磁気センサ
WO1991018299A1 (fr) Dispositif detecteur de magnetisme
JPH09152473A (ja) 磁気探知装置
US4290018A (en) Magnetic field strength measuring apparatus with triangular waveform drive means
JP4007464B2 (ja) 磁気探知装置
JPH10332722A (ja) 回転速度検出装置
JP4418755B2 (ja) 電流強度を測定するための装置
JP4214574B2 (ja) センサ回路
JP3341036B2 (ja) 磁気センサ
JP3794122B2 (ja) 磁気探知装置
JPH06347489A (ja) 電流センサ
JP2004239828A (ja) フラックスゲート磁界センサ
KR100451480B1 (ko) 직류 및 교류의 측정이 가능한 클램프형 전류측정기
JP3399185B2 (ja) 磁気検知装置及び磁気検知方法
JP4233161B2 (ja) 磁気センサ
EP0990919A2 (en) Magneto-Impedance effect element driving circuit
JP2002286821A (ja) 磁場検出装置
JPH0224476B2 (ja)
JP2003004830A (ja) 磁界検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees