JP4188461B2 - 複合型冷媒回路設備 - Google Patents

複合型冷媒回路設備 Download PDF

Info

Publication number
JP4188461B2
JP4188461B2 JP24201898A JP24201898A JP4188461B2 JP 4188461 B2 JP4188461 B2 JP 4188461B2 JP 24201898 A JP24201898 A JP 24201898A JP 24201898 A JP24201898 A JP 24201898A JP 4188461 B2 JP4188461 B2 JP 4188461B2
Authority
JP
Japan
Prior art keywords
refrigeration
refrigerant circuit
air conditioning
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24201898A
Other languages
English (en)
Other versions
JPH11287523A (ja
Inventor
敏明 山口
浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24201898A priority Critical patent/JP4188461B2/ja
Publication of JPH11287523A publication Critical patent/JPH11287523A/ja
Application granted granted Critical
Publication of JP4188461B2 publication Critical patent/JP4188461B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、大規模小売店等に設置される冷媒回路設備であって、冷凍装置、冷蔵装置、空気調和装置及び冷熱を蓄熱する蓄熱槽とによって構成される複合型冷媒回路設備に関する。
【0002】
【従来の技術】
図11は、例えば特開平6−241591号公報に示された従来の複合型冷媒回路設備を示す冷媒回路図である。図において、1は冷蔵側圧縮機、2は冷蔵側凝縮器、3は後述する冷蔵側蒸発器へ供給する冷媒を制御する冷蔵側電磁弁、4は膨張弁からなる冷蔵側絞り装置、5は冷蔵側蒸発器、6は環状をなし冷蔵側圧縮機1、冷蔵側凝縮器2、冷蔵側電磁弁3、冷蔵側絞り装置4及び冷蔵側蒸発器5を管路により順次接続した冷蔵側冷媒回路である。
【0003】
7は冷蔵側蓄熱用蒸発器からなる冷蔵側蓄熱用熱交換器、8は冷蔵側蓄熱用熱交換器7へ供給する冷媒を制御する冷蔵側蓄熱用電磁弁、9は冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置、10は冷蔵側冷媒回路6に接続されて並列に配置され、冷蔵側蓄熱用熱交換器7へ冷媒を送る冷媒管路である。
【0004】
11は冷凍側圧縮機、12は冷凍側凝縮器、13は後述する冷凍側蒸発器へ供給する冷媒を制御する冷凍側電磁弁、14は冷凍側膨張弁からなる冷凍側絞り装置、15は冷凍側蒸発器、16は冷凍側圧縮機11、冷凍側凝縮器12、冷凍側電磁弁13、冷凍側絞り装置14及び冷凍側蒸発器15を管路により接続した冷凍側冷媒回路である。
【0005】
17は冷凍側過冷却用熱交換器からなる冷凍側冷熱供給用熱交換器、18は水などの蓄熱剤を収容した蓄熱槽、19は冷媒管路で、冷凍側冷媒回路16の一部をなし冷凍側凝縮器12と冷凍側電磁弁13との間に、蓄熱槽18内に配置された冷凍側冷熱供給用熱交換器17を直列に接続する。
【0006】
すなわち、冷凍側冷媒回路16には冷凍側冷熱供給用熱交換器17と冷媒管路19が設けられる。また、図11に示す複合型冷媒回路設備では、冷蔵側冷媒回路6に接続された冷蔵側蓄熱用熱交換器7が、蓄熱剤を介して冷凍側冷熱供給用熱交換器17に対して熱移動できるように蓄熱槽18内に配置されている。
【0007】
従来の複合型冷媒回路設備は上記のように構成され、冷蔵側冷媒回路6において冷蔵側圧縮機1や冷蔵側凝縮器2はショーケース等の冷蔵側冷却環境について予め設定されている最大冷凍能力に対する最大負荷に対応できるように設計されている。このため、冷蔵側冷却環境における負荷が減少すると、前述の最大負荷とそのときの冷蔵側冷却環境における負荷との差からなる余剰の冷凍能力が発生する。
【0008】
この余剰冷凍能力に対応する量の冷媒液が冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置9を経て冷蔵側蓄熱用熱交換器7に供給される。これによって、前述の余剰冷凍能力が冷熱として蓄熱槽18内の蓄熱剤に蓄冷される。また、冷凍側冷媒回路16においては冷凍側圧縮機11で発生した高温、高圧のガス冷媒が、冷凍側凝縮器12で液化された後に冷媒管路19を経て蓄熱槽18内の冷凍側冷熱供給用熱交換器17に供給されて蓄熱剤により冷却される。
【0009】
これによって、より低い温度に冷却された冷媒が冷凍側電磁弁13等を経て冷凍側蒸発器15に供給される。このように、余剰の冷凍能力として冷蔵側冷媒回路6から蓄熱槽18内の蓄熱剤に蓄えられた冷熱が、冷蔵側冷媒回路6及び冷凍側冷媒回路16に共用される蓄熱槽18内の蓄熱剤を介して冷凍側冷媒回路16で消費される。
【0010】
したがって、冷蔵側蒸発器5での冷媒の蒸発温度が高い、すなわち運転効率の高い冷蔵側冷媒回路6で余剰になった冷熱が蓄冷される。また、蓄冷された冷熱は冷凍側蒸発器15での冷媒の蒸発温度が低い、すなわち運転効率の低い冷凍側冷媒回路16で利用される。これにより、冷蔵側冷媒回路6及び冷凍側冷媒回路16を含めた設備全体としての総合的な冷凍効率を向上させることができ、冷凍側冷媒回路16の容量が11kW、15kWと大きいほど、その冷凍効率向上作用が増大する。
【0011】
【発明が解決しようとする課題】
上記のような従来の複合型冷媒回路設備において、冷却状況の異なる複数の冷却環境をそれぞれ冷却する複数の冷媒回路相互間で、冷凍効率の高い高冷却温度側冷媒回路からの余剰の冷熱を蓄熱槽18の蓄熱剤を介して、冷凍効率の低い低冷却温度側冷媒回路へ移動させる。これによって、設備全体として総合的な冷凍効率の向上が図られている。そして、冷凍側冷媒回路16の容量が11kW、15kWと大きいほど、その冷凍効率向上作用が増大する。
【0012】
しかし、冷凍側冷媒回路16の容量が1.5kWと小さい場合には、この容量よりも冷凍側冷媒回路16の出力を低減させることが難しいため、総合的な冷凍効率の向上作用が得られないという問題点があった。
なお、契約受電容量に制限がある複合型冷媒回路設備の場合に、設備全体の容量によっては契約受電容量が超過するので、契約受電容量を増す必要があって費用が増加することになる。
【0013】
また、冷蔵側冷媒回路の余剰冷凍能力が非常に大きい場合、蓄熱槽内の氷の量が多くなって蓄熱槽内の配管又は蓄熱槽自体が損傷する恐れがあるという問題点があった。
【0014】
また、空調側冷媒回路が暖房運転している場合、冷蔵側冷媒回路で余剰になった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費されても暖房能力が向上しないという問題点があった。
【0015】
また、冷蔵側冷媒回路で余剰となった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費される場合、空調側冷媒回路の空調側熱交換器と熱交換する冷熱供給回路の配管温度が所定値以上になると、空調側冷媒回路の液温が上昇して冷房能力が逆に低下するという問題点があった。
【0016】
また、冷蔵側冷媒回路で余剰となった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費される場合、空調側冷媒回路の温度が低下して空調側熱交換器が凍結する恐れがあるという問題点があった。
【0017】
この発明は、かかる問題点を解消するためになされたものであり、冷凍側冷媒回路の容量が小さい場合であっても、冷蔵側冷媒回路の余剰能力により蓄熱槽に蓄えられた冷熱を効率よく利用でき、少ない費用で運転できる複合型冷媒回路設備を得ることを目的とする。
【0018】
【課題を解決するための手段】
この発明に係る複合型冷媒回路設備においては、冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、この蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び上記空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の運転モードを設定する運転モード決定手段と、運転モード決定手段の設定による暖房運転時に空調側放熱用電磁弁を閉成し、かつ上記空調側放熱バイパス電磁弁を開放する制御回路とが設けられる。
【0019】
また、この発明に係る複合型冷媒回路設備においては、冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、この蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の四方弁の出力接点の閉成時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とが設けられる。
【0021】
また、この発明に係る複合型冷媒回路設備においては、蓄熱槽内の氷の温度を検知する氷温検知手段と、この氷温検知手段の出力値が所定値以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とが設けられる。
【0022】
また、この発明に係る複合型冷媒回路設備においては、蓄熱槽内の氷の温度を検知する氷温検知手段と、蓄熱槽内の水位を検知する水位検知手段と、氷温検知手段の出力値が所定値以下、水位検知手段の出力値が所定値以上のいずれかになると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とが設けられる。
【0026】
また、この発明に係る複合型冷媒回路設備においては、冷凍側圧縮機、冷凍側凝縮器、冷凍側熱交換器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、この蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けられた冷凍側冷熱供給回路とが設けられる。
【0027】
また、この発明に係る複合型冷媒回路設備においては、冷凍側熱交換器を介し蓄熱槽の蓄熱剤からの冷熱を冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が常時付勢される
【0028】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態の一例を示す冷媒回路図である。図において、1は冷蔵側圧縮機、2は冷蔵側凝縮器、3は後述する冷蔵側蒸発器へ供給する冷媒を制御する冷蔵側電磁弁、4は膨張弁からなる冷蔵側絞り装置、5は冷蔵側蒸発器、6は環状をなし冷蔵側圧縮機1、冷蔵側凝縮器2、冷蔵側電磁弁3、冷蔵側絞り装置4及び冷蔵側蒸発器5を管路により順次接続した冷蔵側冷媒回路である。
【0029】
7は冷蔵側蓄熱用蒸発器からなる冷蔵側蓄熱用熱交換器、8は冷蔵側蓄熱用熱交換器7へ供給する冷媒を制御する冷蔵側蓄熱用電磁弁、9は冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置、10は冷蔵側冷媒回路6に連通して並列に設けられて、冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用絞り装置9及び冷蔵側蓄熱用熱交換器7を接続し、冷蔵側蓄熱用熱交換器7へ冷媒を送る冷蔵側蓄熱用冷媒回路である。
【0030】
11は冷凍側圧縮機、12は冷凍側凝縮器、13は後述する冷凍側蒸発器へ供給する冷媒を制御する冷凍側電磁弁、14は冷凍側膨張弁からなる冷凍側絞り装置、15は冷凍側蒸発器、16は冷凍側圧縮機11、冷凍側凝縮器12、冷凍側電磁弁13、冷凍側絞り装置14及び冷凍側蒸発器15を管路により順次接続した冷凍側冷媒回路である。
【0031】
18は水などの蓄熱剤を収容した蓄熱槽、20は空調側圧縮機、21は空調側凝縮器、22は空調側減圧装置からなる空調側絞り装置、23は空調側凝縮器21と空調側絞り装置22の間に配置された空調側過冷却用熱交換器からなる空調側熱交換器、24は空調側蒸発器、25は空調側圧縮機20、空調側凝縮器21、空調側熱交換器23、空調側絞り装置22、空調側蒸発器24を管路により順次接続した空調側冷媒回路である。
【0032】
26は蓄熱槽18の蓄熱剤からの冷熱を冷熱供給用熱交換器27に供給する冷熱供給管路である。
28は蓄熱槽18の蓄熱剤からの冷熱を循環させるポンプである。
なお、空調側熱交換器23と冷熱供給用熱交換器27は互いに熱交換できるように構成されている。
【0033】
そして、特に図1における複合型冷媒回路設備では、冷蔵側冷媒回路6の冷蔵側蓄熱用熱交換器7が、蓄熱剤を介して空調側熱交換器23に対して熱移動できるように蓄熱槽18内に設けられている。また、冷凍側冷媒回路16は独立して配置されて、冷蔵側冷媒回路6及び空調側冷媒回路25に対して熱移動できる管路が設けられていない。
【0034】
上記のように構成された複合型冷媒回路設備において、冷蔵側冷媒回路6において冷蔵側圧縮機1や冷蔵側凝縮器2はショーケース等の冷蔵側冷却環境について予め設定されている最大冷凍能力に対する最大負荷に対応できるように設計されている。このため、冷蔵側冷却環境における負荷が減少すると、前述の最大負荷とそのときの冷蔵側冷却環境における負荷との差からなる余剰の冷凍能力が発生する。
【0035】
この余剰冷凍能力に対応する量の冷媒液が冷蔵側蓄熱用電磁弁8、冷蔵側蓄熱用膨張弁からなる冷蔵側蓄熱用絞り装置9を経て冷蔵側蓄熱用熱交換器7に供給される。これによって、前述の余剰冷凍能力が冷熱として蓄熱槽18内の蓄熱剤に蓄冷される。また、空調側冷媒回路25においては空調側圧縮機20で発生した高温、高圧のガス冷媒が、空調側凝縮器21で液化された後に空調側熱交換器23に送出される。
【0036】
そして、蓄熱槽18からの冷熱供給管路26により送出される蓄熱剤によって冷熱供給用熱交換器27と空調側熱交換器23の間で熱交換されて液化した冷媒が冷却される。これにより、より低い温度に冷却された冷媒が空調側絞り装置22、空調側蒸発器24に供給される。このようにして、余剰の冷凍能力として冷蔵側冷媒回路6から蓄熱槽18に蓄熱剤に蓄えられた冷熱が、冷蔵側冷媒回路6及び空調側冷媒回路25に共用される蓄熱槽18の蓄熱剤を介して空調側冷媒回路25によって消費される。
【0037】
すなわち、冷蔵側冷媒回路6で余剰となった冷熱が蓄冷されて、蓄冷された冷熱は空調側冷媒回路25で利用される。このため、冷凍側冷媒回路16の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合と比較して、総合的な冷凍効率を向上させることができる。また、空調側熱交換器23において液冷媒がさらに低い温度に冷却されて、過冷却度を大きくする。したがって、空調側冷媒回路25の能力が向上するので、例えば、空調側冷媒回路25の容量が7.5kWであった場合に、5.5kWとすることができる。
【0038】
このため、電力の低減が可能になり設備全体の契約受電容量を増すことなく、少ない費用で運転できる複合型冷媒回路設備を実現することができる。
なお、図1の実施の形態において、蓄熱槽18に蓄熱剤に蓄えられた冷熱が、冷熱供給用熱交換器27と空調側熱交換器23の間で熱交換されるものとした。しかし、冷熱供給回路26を介して蓄熱槽18の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷却環境に対し直接的に熱交換することも可能である。
【0039】
実施の形態2.
図2は、この発明の他の実施の形態の一例を示す冷媒回路図である。図において、前述の図1と同符号は相当部分を示し、29は空調用熱交換器である。
【0040】
上記のように構成された複合型冷媒回路設備において、前述の図1における空調側冷媒回路25の機器が省略される。そして、冷蔵側冷媒回路6、冷凍側冷媒回路16が基本的には図1の実施の形態と同様に冷凍サイクル動作し、蓄熱槽18内の蓄熱剤に蓄えられた冷熱が、蓄熱剤を介して冷熱供給管路26を通じて送出される。この蓄熱剤によって空調用熱交換器29部にて冷蔵側冷媒回路6の冷蔵側冷却環境に関連した空調冷却環境における空調負荷、例えば店舗内空気と熱交換される。
【0041】
これにより、店舗内を25°C等の快適な温度に保持することができ、冷蔵側冷媒回路6で余剰となった冷熱が蓄冷されて、蓄冷された冷熱は空調冷却環境における空調負荷のために利用される。したがって、冷凍側冷媒回路16の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合と比較して、総合的な冷凍効率を向上させることができる。
【0042】
実施の形態3.
図3も、この発明の他の実施の形態の一例を示す冷媒回路図である。図において、前述の図1と同符号は相当部分を示し、30は空調側凝縮器、32は空調側減圧装置からなる空調側絞り装置、31は空調側凝縮器30と空調側絞り装置32の間に配置された空調側過冷却用熱交換器からなる空調側熱交換器、33は空調側蒸発器、34は空調側圧縮機、35は空調側圧縮機34、空調側凝縮器30、空調側熱交換器31、空調側絞り装置32、空調側蒸発器33を管路により順次接続した空調側冷媒回路である。
【0043】
36は600〜700W程度の小型の第一圧縮機、37は第一凝縮器、38は絞り装置、39は第一蒸発器であり空調側熱交換器31と熱交換できるようになっている。40は第一圧縮機36、第一凝縮器37、絞り装置38、第一蒸発器39を管路により順次接続した小型冷凍機冷媒回路である。
【0044】
上記のように構成された複合型冷媒回路設備において、前述の冷蔵側冷媒回路6、冷凍側冷媒回路16の基本的な冷凍サイクル動作は、図1の実施の形態及び図2の実施の形態とほぼ同じである。ただし、冷蔵側冷媒回路6においては蓄熱槽18内の蓄冷剤に冷熱を蓄えない部分のみ図1の実施の形態及び図2の実施の形態と相違する。
【0045】
すなわち、空調側冷媒回路35においては、空調側圧縮機34で圧縮された高温、高圧ガス冷媒が空調側凝縮器30で液化され、その後空調側冷媒回路35を経て空調側熱交換器31へ送出される。ここで、第一圧縮機36、第一凝縮器37、絞り装置38、第一蒸発器39からなる小型冷凍機における第一蒸発器39で蒸発する冷媒の潜熱により液化された冷媒が冷却される。
【0046】
これによって、より低い温度に冷却された冷媒が空調側絞り装置32、空調側蒸発器33に供給される。以上のように構成された小型冷凍機は蓄熱槽18に比べ小形であって安価に製造できる。また、空気調和負荷が増加した場合に、機器を入れ替えることなく、前述の小型冷凍機を追加することにより能力増加が可能であって、容易に空気調和負荷増加に対処することができる。
【0047】
実施の形態4.
図4及び図5も、この発明の他の実施の形態の一例を示す図で、図4は冷媒回路図、図5は図4の冷媒回路に係わる制御回路図である。図において、前述の図1と同符号は相当部分を示し、41は空調側冷媒回路25の空調側熱交換器23と直列に接続された空調側放熱用電磁弁、42は空調側放熱用電磁弁41及び空調側熱交換器23と並列に接続された空調側放熱バイパス電磁弁である。
【0048】
43は空調側放熱バイパス電磁弁42と並列に接続された逆止弁、44は蓄熱槽18内の氷の温度を検知する氷温検知手段、45は蓄熱槽18内の水位を検知する水位検知手段、49は冷熱供給回路26の配管温度を検出する配管温度検出装置である。440は氷温検知手段44及び冷蔵側蓄熱用電磁弁8を主要部として構成された制御回路である。
【0049】
上記のように構成された複合型冷媒回路設備において、氷温検知手段44は例えばサーモスタットであって蓄熱槽18内の氷の温度を検知して、氷の温度が所定値以下になると接点が開放する。これによって、冷蔵側冷媒回路6内の冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8を閉成する制御回路440が形成されている。
【0050】
したがって、冷蔵側冷媒回路6の余剰冷凍能力が非常に大きい場合には、氷温検知手段44によって蓄熱槽18内の氷の温度を検知する。そして、氷の温度が所定温度以下になると冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8が閉成し、蓄熱槽18内の氷の量が多くならず蓄熱槽18内の配管又は蓄熱槽18自体の損傷の発生を未然に防止することができる。
【0051】
実施の形態5.
図6も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、氷温検知手段44は例えばサーモスタットであって蓄熱槽18内の氷の温度を検知して、氷の温度が所定値以下になると接点が開放する。また、水位検知手段45は蓄熱槽18内の水位が所定値以上になると接点が開放し、氷の温度が所定温度以下となるか又は蓄熱槽18内の水位が所定値以上になると、冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8を閉成する制御回路440が形成されている。
【0052】
したがって、冷蔵側冷媒回路6の余剰冷凍能力が非常に大きい場合には、氷温検知手段44によって蓄熱槽18内の氷の温度を検知する。そして、氷の温度が所定温度以下になるか又は水位検知手段45によって蓄熱槽18内の水位が所定値以上になると冷蔵側冷媒回路6内の冷蔵側蓄熱用電磁弁8を閉成する。このため、蓄熱槽18内の氷の量が多くならず蓄熱槽18内の配管又は蓄熱槽18自体の損傷の発生を未然に防止することができる。
【0053】
実施の形態6.
図7も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、46は空調側冷媒回路25の運転モードを決定する運転モード決定手段で、例えばスイッチからなり運転モード決定手段46によって暖房運転となった場合、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する制御回路440が形成されている。
【0054】
したがって、空調側冷媒回路25が暖房運転している場合、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する。これにより冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱を空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり蓄熱槽18内の氷を余分に消費しないようにすることができる。
【0055】
実施の形態7.
図8も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、47は空調側冷媒回路25の四方弁の出力接点、48は補助リレーである。そして、四方弁の出力接点47が閉成すると空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する制御回路440が形成されている。
【0056】
したがって、空調側冷媒回路25の四方弁の出力接点47が閉成した場合、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する。これにより冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱を空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり蓄熱槽18内の氷を余分に消費しないようにすることができる。
【0057】
実施の形態8.
図9も、この発明の他の実施の形態の一例を示す制御回路図である。図において、前述の図4と同符号は相当部分を示し、49は配管温度検出装置で、例えばサーモスタットからなり冷熱供給回路26の配管温度を検知する。そして、配管温度が所定温度以上になると接点が閉成し、補助リレー50が動作して空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する制御回路440が形成されている。
【0058】
したがって、冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄える。そして、その冷熱が空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、空調側冷媒回路25の空調側熱交換器23と熱交換する冷熱供給回路26の配管温度が所定値以上になると、空調側放熱用電磁弁41を閉成し、空調側放熱バイパス電磁弁42を開放する。これにより、空調側熱交換器23で熱交換せず、空調側冷媒回路25の液温が上昇しなくなって冷房能力が逆に低下しないようにすることができる。
【0059】
実施の形態9.
図10も、この発明の他の実施の形態の一例を示す冷媒回路図である。図において、前述の図4と同符号は相当部分を示し、51は冷凍側熱交換器、52は冷凍側冷熱供給回路で、蓄熱槽18の蓄熱剤から冷熱を冷凍側冷熱供給用熱交換器53に供給する。
【0060】
上記のように構成された複合型冷媒回路設備において、蓄熱槽18から冷凍側冷熱供給回路52により送出される蓄熱剤によって、冷凍側冷熱供給用熱交換器53と冷凍側熱交換器51の間で熱交換されることにより冷媒が冷却される。これにより、より低い温度に冷却された冷媒が冷凍側絞り装置14、冷凍側蒸発器15に供給される。
【0061】
このようにして、余剰の冷凍能力として冷蔵側冷媒回路6から蓄熱槽18の蓄熱剤に蓄えられた冷熱が、冷蔵側冷媒回路6、空調側冷媒回路25及び冷凍側冷媒回路16に共用される蓄熱槽18の蓄熱剤を介して、空調側冷媒回路25及び冷凍側冷媒回路16によって消費される。
【0062】
これにより、冷蔵側冷媒回路6で余剰となった冷熱が蓄熱槽18内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53を有する冷凍側冷熱供給回路52が設けられている。このため、空調側冷媒回路25の温度低下が抑制されて空調側熱交換器23の凍結を防ぐことができる。
【0063】
また、蓄熱槽18の蓄熱剤から冷熱を空調側熱交換器23に供給する空調側冷熱供給用熱交換器27及び冷凍側熱交換器51を介して冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53を有する冷凍側冷熱供給回路52が設けられて、冷凍側熱交換器51を介し冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53が常時付勢されるように構成されている。
【0064】
これにより、冷蔵側冷媒回路6で余剰となった冷熱を蓄熱槽18内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器23により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、冷凍側冷媒回路16に供給する冷凍側冷熱供給用熱交換器53を有する冷凍側冷熱供給回路52が設けられている。このため、空調側冷媒回路25の温度低下が抑制されて空調側熱交換器23が凍結を防ぐことができる。
【0065】
【発明の効果】
この発明は以上説明したように、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷却環境に対し直接的に熱交換する冷熱供給回路とを設けたものである。
【0066】
これによって、冷蔵側冷媒回路で余剰になった冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用される蓄熱槽内の蓄熱剤に蓄えて、その冷熱が冷蔵側冷媒回路の冷蔵側冷却環境に関連した空調冷却環境における空調負荷によって消費される。したがって、冷凍側冷媒回路の容量が小さくて設備全体とし総合的な冷凍効率の向上作用が得られ難い場合であっても、総合的な冷凍効率を向上する効果がある。
【0067】
また、この発明は以上説明したように、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介し空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路とを設けたものである。
【0068】
これによって、冷蔵側冷媒回路で余剰になった冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用される蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器及び冷熱供給用熱交換器を介し空調側冷媒回路によって消費される。したがって、冷凍側冷媒回路の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合であっても、総合的な冷凍効率を向上する効果がある。
また、空調側熱交換器において液冷媒がさらに低い温度に冷却されて、過冷却度を大きくすることができ、空調側冷媒回路の能力が向上するので、空調側冷媒回路の容量を小さくすることができる。このため、電力の低減が可能になり設備全体の契約受電容量増を要せず、運転費を低減する効果がある。
【0069】
また、この発明は以上説明したように、冷凍側圧縮機、冷凍側凝縮器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、この冷凍側冷媒回路と並列に形成された冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、冷蔵側冷媒回路の最大冷凍能力と冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、この蓄熱槽の蓄熱剤からの冷熱を冷蔵側冷却環境に関連した空調冷却環境に対して、熱交換する空調用熱交換器が設けられた冷熱供給回路とを設けたものである。
【0070】
これによって、冷蔵側冷媒回路で余剰になった冷熱を冷蔵側冷媒回路及び空調側冷媒回路に共用される蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調用熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することによって消費される。したがって、冷凍側冷媒回路の容量が小さく設備全体とし総合的な冷凍効率の向上作用が得られ難い場合であっても、総合的な冷凍効率を向上する効果がある。
【0071】
また、この発明は以上説明したように、蓄熱槽内の氷の温度を検知する氷温検知手段と、この氷温検知手段の出力値が所定値以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とを設けたものである。
【0072】
これによって、冷蔵側冷媒回路の余剰冷凍能力が非常に大きい場合に、氷温検知手段によって蓄熱槽内の氷の温度を検知する。そして、氷の温度が所定温度以下になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁が閉成されるので、蓄熱槽内の氷の量が多くならず蓄熱槽内の配管又は蓄熱槽自体の損傷発生を未然に防止する効果がある。
【0073】
また、この発明は以上説明したように、蓄熱槽内の氷の温度を検知する氷温検知手段と、蓄熱槽内の水位を検知する水位検知手段と、氷温検知手段の出力値が所定値以下、水位検知手段の出力値が所定値以上のいずれかになると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路とを設けたものである。
【0074】
これによって、冷蔵側冷媒回路の余剰冷凍能力が非常に大きい場合に、氷温検知手段によって蓄熱槽の氷の温度を検知する。そして、氷の温度が所定温度以下になるか又は水位検知手段による蓄熱槽内の水位が所定値以上になると冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁が閉成されるので、蓄熱槽内の氷の量が多くならず蓄熱槽内の配管又は蓄熱槽自体の損傷発生を未然に防止する効果がある。
【0075】
また、この発明は以上説明したように、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の運転モードを設定する運転モード決定手段と、この運転モード決定手段の設定による暖房運転時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とを設けたものである。
【0076】
これによって、空調側冷媒回路の暖房運転時に、空調側放熱用電磁弁が閉成されて空調側放熱バイパス電磁弁が開放される。これにより冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱を空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり、蓄熱槽内の氷の浪費を抑制する効果がある。
【0077】
また、この発明は以上説明したように、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、空調側冷媒回路の四方弁の出力接点の閉成時に空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とを設けたものである。
【0078】
これによって、空調側冷媒回路の四方弁の出力接点の閉成時に、空調側放熱用電磁弁が閉成され、空調側放熱バイパス電磁弁が開放される。これにより冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱を空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換することがなくなり、蓄熱槽内の氷の浪費を抑制する効果がある。
【0079】
また、この発明は以上説明したように、空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、空調側熱交換器及び空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、冷熱供給回路の配管温度を検出する配管温度検出装置と、この配管温度検出装置の出力値が所定値以上になると空調側放熱用電磁弁を閉成し、かつ空調側放熱バイパス電磁弁を開放する制御回路とを設けたものである。
【0080】
これによって、冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、空調側冷媒回路の空調側熱交換器と熱交換する冷熱供給回路の配管温度が所定値以上になると、空調側放熱用電磁弁を閉成し、空調側放熱バイパス電磁弁を開放する。これにより、空調側熱交換器で熱交換せず、空調側冷媒回路の液温が上昇しなくなって冷房能力が逆に低下することを防ぐ効果がある。
【0081】
また、この発明は以上説明したように、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介して空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷熱供給回路とを設けたものである。
【0082】
これによって、冷蔵側冷媒回路で余剰となった冷熱を蓄熱槽内の蓄熱剤に蓄えて、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合、冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷熱供給回路が設けられているので、空調側冷媒回路の温度低下が抑制されて空調側熱交換器の凍結発生を防止する効果がある。
【0083】
また、この発明は以上説明したように、蓄熱槽の蓄熱剤からの冷熱を空調側熱交換器を介して空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、蓄熱槽の蓄熱剤からの冷熱を冷凍側熱交換器を介し冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けられた冷凍側冷熱供給回路とを設けたものである。そして、冷凍側熱交換器を介して冷熱を冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を常時付勢するものである。
【0084】
これによって、冷蔵側冷媒回路で余剰となった冷熱が蓄熱槽内の蓄熱剤に蓄えられる。そして、その冷熱が空調側熱交換器により冷蔵側冷却環境に関連した空調冷却環境において熱交換して消費される場合に、冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器を有する冷凍側冷熱供給回路が設けられているので、空調側冷媒回路の温度低下が抑制されて空調側熱交換器の凍結を防止する効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す冷媒回路図。
【図2】 この発明の実施の形態2を示す冷媒回路図。
【図3】 この発明の実施の形態3を示す冷媒回路図。
【図4】 この発明の実施の形態4を示す冷媒回路図。
【図5】 図4の冷媒回路に係わる制御回路図。
【図6】 この発明の実施の形態5を示す制御回路図。
【図7】 この発明の実施の形態6を示す制御回路図。
【図8】 この発明の実施の形態7を示す制御回路図。
【図9】 この発明の実施の形態8を示す制御回路図。
【図10】 この発明の実施の形態9を示す冷媒回路図。
【図11】 従来の複合型冷媒回路設備を示す冷媒回路図。
【符号の説明】
6 冷蔵側冷媒回路、7 冷蔵側蓄熱用熱交換器、8 冷蔵側蓄熱用電磁弁、9 冷蔵側蓄熱用絞り装置、10 冷蔵側蓄熱用冷媒回路、11 冷凍側圧縮機、12 冷凍側凝縮器、14 冷凍側絞り装置、15 冷凍側蒸発器、16 冷凍側冷媒回路、18 蓄熱槽、20 空調側圧縮機、21 空調側凝縮器、22空調側絞り装置、23 空調側熱交換器、24 空調側蒸発器、25 空調側冷媒回路、26 冷熱供給回路、27 空調側冷熱供給用熱交換器、29 空調用熱交換器、41 空調側放熱用電磁弁、42 空調側放熱バイパス電磁弁、44 氷温検知手段、45 水位検知手段、46 運転モード決定手段、47 空調側冷媒回路の四方弁の出力接点、49 配管温度検出装置、51 冷凍側熱交換器、52 冷凍側冷熱供給回路、53 冷凍側冷熱供給用熱交換器、440制御回路。

Claims (6)

  1. 冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、
    上記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、
    空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、
    上記蓄熱槽の蓄熱剤からの冷熱を上記空調側熱交換器を介し上記空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と
    上記空調側冷媒回路の空調側熱交換器と直列に接続された空調側放熱用電磁弁と、
    上記空調側熱交換器及び上記空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、
    上記空調側冷媒回路の運転モードを設定する運転モード決定手段と、
    上記運転モード決定手段の設定による暖房運転時に上記空調側放熱用電磁弁を閉成し、かつ上記空調側放熱バイパス電磁弁を開放する制御回路と
    を備えたことを特徴とする複合型冷媒回路設備。
  2. 冷蔵側冷媒回路に接続され、冷蔵側蓄熱用絞り装置及び冷蔵側蓄熱用熱交換器を主要機器として構成された冷蔵側蓄熱用冷媒回路と、
    上記冷蔵側冷媒回路の最大冷凍能力と上記冷蔵側冷媒回路の冷蔵側冷却環境の所要冷凍能力との差に対応した冷熱を蓄冷する蓄熱槽と、
    空調側圧縮機、空調側凝縮器、空調側熱交換器、空調側絞り装置及び空調側冷却環境を冷却する空調側蒸発器を主要機器として構成された空調側冷媒回路と、
    上記蓄熱槽の蓄熱剤からの冷熱を上記空調側熱交換器を介し上記空調側冷媒回路に供給する冷熱供給用熱交換器が設けられた冷熱供給回路と
    上記空調側冷媒回路の上記空調側熱交換器と直列に接続された空調側放熱用電磁弁と、
    上記空調側熱交換器及び上記空調側放熱用電磁弁と並列に接続された空調側放熱バイパス電磁弁と、
    上記空調側冷媒回路の四方弁の出力接点の閉成時に上記空調側放熱用電磁弁を閉成し、かつ上記空調側放熱バイパス電磁弁を開放する制御回路と
    を備えたことを特徴とする複合型冷媒回路設備。
  3. 上記蓄熱槽内の氷の温度を検知する氷温検知手段と、
    上記氷温検知手段の出力値が所定値以下になると上記冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路と
    を備えたことを特徴とする請求項1または請求項2に記載の複合型冷媒回路設備。
  4. 上記蓄熱槽内の水位を検知する水位検知手段と、
    上記氷温検知手段の出力値が所定値以下、上記水位検知手段の出力値が所定値以上のいずれかになると上記冷蔵側冷媒回路内の冷蔵側蓄熱用電磁弁を閉成する制御回路と
    を備えたことを特徴とする請求項3に記載の複合型冷媒回路設備。
  5. 冷凍側圧縮機、冷凍側凝縮器、冷凍側熱交換器、冷凍側絞り装置及び冷凍側冷却環境を冷却する冷凍側蒸発器を主要機器として構成された冷凍側冷媒回路と、
    上記冷熱を上記空調側熱交換器を介し上記空調側冷媒回路に供給する空調側冷熱供給用熱交換器と、
    上記冷熱を上記冷凍側熱交換器を介し上記冷凍側冷媒回路に供給する冷凍側冷熱供給用熱交換器が設けられた冷凍側冷熱供給回路と
    を備えたことを特徴とする請求項1〜請求項4のいずれかに記載の複合型冷媒回路設備。
  6. 上記冷凍側熱交換器を介し上記冷熱を上記冷凍側冷媒回路に供給する上記冷凍側冷熱供給用熱交換器が常時付勢される
    ことを特徴とする請求項5に記載の複合型冷媒回路設備。
JP24201898A 1998-02-09 1998-08-27 複合型冷媒回路設備 Expired - Lifetime JP4188461B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24201898A JP4188461B2 (ja) 1998-02-09 1998-08-27 複合型冷媒回路設備

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-26850 1998-02-09
JP2685098 1998-02-09
JP24201898A JP4188461B2 (ja) 1998-02-09 1998-08-27 複合型冷媒回路設備

Publications (2)

Publication Number Publication Date
JPH11287523A JPH11287523A (ja) 1999-10-19
JP4188461B2 true JP4188461B2 (ja) 2008-11-26

Family

ID=26364698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24201898A Expired - Lifetime JP4188461B2 (ja) 1998-02-09 1998-08-27 複合型冷媒回路設備

Country Status (1)

Country Link
JP (1) JP4188461B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099514A (ja) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd 蓄熱式空調冷凍装置
JP4472383B2 (ja) * 2004-03-01 2010-06-02 高砂熱学工業株式会社 空調システム
JP2019168213A (ja) * 2018-08-08 2019-10-03 株式会社ヤマト ブラインチラー及び冷却システム
CN109713881A (zh) * 2019-02-01 2019-05-03 广东美的暖通设备有限公司 变频器

Also Published As

Publication number Publication date
JPH11287523A (ja) 1999-10-19

Similar Documents

Publication Publication Date Title
US9234675B2 (en) Hot water supply apparatus associated with heat pump
JP2894421B2 (ja) 蓄熱式空気調和装置及び除霜方法
US9217574B2 (en) Hot water supply apparatus associated with heat pump
KR920000452B1 (ko) 냉동사이클
KR960010634B1 (ko) 축열식 공기 조화장치
JP5312075B2 (ja) 二酸化炭素循環・冷却システムにおけるデフロスト装置
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JP2003279079A (ja) 氷蓄熱システムおよび氷蓄熱システムによる暖房方法
KR100852344B1 (ko) 공기 조화 장치
JP4188461B2 (ja) 複合型冷媒回路設備
WO2016170616A1 (ja) 空気調和装置
JP2007102680A (ja) 自動販売機
JP4043348B2 (ja) 炭酸ガス2次冷媒氷蓄熱冷凍装置
JP2013011423A (ja) 冷凍装置
JP2757660B2 (ja) 蓄熱式空気調和装置
JP3781340B2 (ja) 蓄熱式冷凍空調装置
JPH1089729A (ja) 過冷却水による氷蓄熱装置および運転方法
JPH1151523A (ja) 製氷機
CN210153993U (zh) 一种双开闭单工况蓄冰制冷空调***
JPH09280668A (ja) 複合型冷媒回路設備
JPH05118696A (ja) ヒートポンプ装置
JP2007147133A (ja) 空気調和装置
JPH07269983A (ja) 店舗用空調装置
JP2001012812A (ja) 冷媒蓄熱装置
JPH0849938A (ja) 蓄熱式空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term