JP4164883B2 - Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate - Google Patents

Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate Download PDF

Info

Publication number
JP4164883B2
JP4164883B2 JP22185197A JP22185197A JP4164883B2 JP 4164883 B2 JP4164883 B2 JP 4164883B2 JP 22185197 A JP22185197 A JP 22185197A JP 22185197 A JP22185197 A JP 22185197A JP 4164883 B2 JP4164883 B2 JP 4164883B2
Authority
JP
Japan
Prior art keywords
resin composition
printed wiring
group
silicone oligomer
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22185197A
Other languages
Japanese (ja)
Other versions
JPH1160951A (en
Inventor
希 高野
茂雄 佐瀬
道俊 荒田
富男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP22185197A priority Critical patent/JP4164883B2/en
Publication of JPH1160951A publication Critical patent/JPH1160951A/en
Application granted granted Critical
Publication of JP4164883B2 publication Critical patent/JP4164883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、印刷配線板等の金属張り積層板や多層印刷配線板に用いられる樹脂組成物及びそれを用いたプリプレグ、金属張り積層板に関する。
【0002】
【従来の技術】
電子機器の小型化・高性能化に伴い、印刷配線板に用いられる積層板は、高多層化、薄型化、スルーホールの小径化及び穴間隔の減少などによる高密度化が進んでいる。このため、積層板の耐熱性やドリル加工性、絶縁特性等に対する要求はますます厳しくなっている。
耐熱性や絶縁特性を向上させる手法としては、従来から樹脂の高Tg(ガラス転移温度)化等による樹脂硬化物物性の改良が広く行われてきた。しかしながら、上記特性を十分に満足させるためには樹脂の改良だけでは不十分となってきた。
一方、樹脂の改良と並行して、基材/樹脂界面の接着性の向上を目的とした検討も古くから行われている。特に、耐湿耐熱性やドリル加工性及び耐電食性は、この界面接着性の良否が直接影響するため、界面制御は非常に重要な技術となっている。
【0003】
【発明が解決しようとする課題】
基材/樹脂界面の接着性を向上させる手法としては、ガラス織布等の基材に予めカップリング剤等の表面処理を施す方法が一般的である。表面処理剤としては、処理剤が有する有機官能基の種類や数を調整し樹脂との反応性を高める方法(例えば、特開昭63−230729号公報、特公昭62−40368号公報参照)が一般的であるが、樹脂との反応性を高くするだけでは界面にリジッドな薄い層ができるだけで、ドリル加工時や打ち抜き加工時に界面に生じる応力の緩和や加熱加圧成形時や配線板への部品のはんだ接続時に界面に生じる残留応力等の低減は困難であり接着性の顕著な向上は期待できない。界面の残留応力の低減も含めた改良手法としては、表面処理剤に加えて低応力化のために長鎖のポリシロキサンを併用するもの(特開平3−62845号公報、特開平3−287869号公報)があるが、通常の処理条件では表面処理剤と長鎖ポリシロキサンの反応性が非常に低いこと、また一般的な長鎖ポリシロキサンは基材と反応するアルコキシル基を有していないこと、長鎖ポリシロキサンが有するメチル基等の疎水性の影響によるプリプレグへのワニス樹脂含浸性の低下等により界面の高接着性を発現することは非常に困難である。
【0004】
図1に一般的なシランカップリング剤処理された基材表面の理想的なモデル形態を示す。化学的に吸着したシランカップリング剤がある程度の層を形成し、樹脂層との接着性を発現するものである。しかしながら、工業的に行われる無機材料への処理は、非常に短時間で完結させるため、図2に示すように多くの欠陥を含んだ処理形態になっているといわれている。化学的に吸着したシランカップリング剤も均一に表面を被っておらず、樹脂層へ溶け出しやすい物理的に吸着したシランカップリング剤も多く存在する。このような欠陥の多い化学的吸着層では本来の接着性は期待できず、逆に物理的吸着層によって界面近傍の樹脂硬化物の不均一化や低強度化による接着性の低下を引き起こす可能性が高い。
【0005】
これらに対して、予め樹脂組成物にカップリング剤を配合する方法(特開昭61−272243号公報)もある。樹脂組成物に配合することにより、ガラス基材等のみならず、無機充填剤を併用した場合でも樹脂/充填剤界面の接着性が制御可能となる。しかしながら、市販されている通常のカップリング剤では、上記問題と同じように界面にリジッドな薄い層ができるだけで、接着性の向上は期待できない。
【0006】
一方、特開平1−204953号公報は、無機充填剤と反応するトリアルコキシル基及び樹脂と反応する有機官能基を併せ持つ鎖状ポリシロキサンを用いることを特徴としている。しかしながら、図3に示すようにポリシロキサンの鎖を長くした場合、メチル基等の疎水性基の配向等により基材表面に横向きとなる可能性が高く、樹脂中への鎖の入り込みは難しくかつ数箇所で基材に吸着するためリジッドな層を形成しやすい。樹脂内に侵入しても、鎖の回りを樹脂が取り囲むため、鎖の長さに見合った界面の低応力化を実現するのは困難である。また、物理的に吸着した層は大環状になりやすいため、樹脂硬化物の物性低下を引き起こしやすい。
【0007】
本発明は、上記従来技術の問題点を解消し、積層板や多層印刷配線板を成形した際に優れたドリル加工性及び絶縁特性等を発現する樹脂組成物及びそれを用いたプリプレグ、金属張り積層板を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、4官能性(SiO4/2)シロキサン単位を含有し酸性下で加熱反応させることにより3次元縮合反応させた後、ヒドロシリル化により樹脂と反応する官能基を導入したシリコーンオリゴマであって、かつ基材表面の水酸基と反応する官能基及び樹脂と反応する官能基を各々1個以上有するシリコーンオリゴマを、熱硬化性樹脂組成物に配合する印刷配線板用樹脂組成物である。そして、基材表面の水酸基と反応する官能基が、アルコキシル基、シラノール基の中から選ばれる少なくとも1種以上であり、樹脂と反応する官能基が、プロピレン基を介して珪素と結合する、グリシジルオキシ基、アミノ基、アミノ基の有機酸塩及びアミノ基の無機酸塩の中から選ばれる少なくとも1種類以上であると好ましい印刷配線板用樹脂組成物である。さらに、シリコーンオリゴマが分子内に含有するシロキサン単位として2官能性(RSiO2/2)、3官能性(RSiO3/24官能性(SiO4/2を組み合わせた印刷配線板用樹脂組成物(式中、R基は同じか又は別異な有機基である)であり、シリコーンオリゴマが分子内に含有する4官能性(SiO4/2)シロキサン単位が全体の5mol%以上であると好ましい印刷配線板用樹脂組成物である。また、シリコーンオリゴマが有する樹脂と反応する官能基がエポキシ基、アミノ基、アミノ基の有機酸塩又はアミノ基の無機酸塩のうちいずれか1以上であると好ましい印刷配線板用樹脂組成物である。そして、さらに、シリコーンオリゴマを配合する際に、カップリング剤を併用することが好ましく、樹脂組成物に予め無機充填剤が配合されていると好ましい印刷配線板用樹脂組成物である。また、本発明は、上記の印刷配線板用樹脂組成物のワニスを基材に含浸し、80〜200℃で乾燥して得られるプリプレグで、多層プリント配線板の層間接着用絶縁体としても使用することができる。そして、このプリプレグの1枚ないし複数枚を積層し、その片面ないし両面に金属箔を積層し加熱加圧して得られる金属張り積層板である。
【0009】
【発明の実施の形態】
本発明は、熱硬化性樹脂組成物に、4官能性(SiO4/2)シロキサン単位を含有し酸性下で加熱反応させることにより3次元縮合反応させた後に、ヒドロシリル化により樹脂と反応する官能基を予め導入したシリコーンオリゴマであって、かつ基材表面の水酸基と反応する官能基及び樹脂と反応する官能基を各々1個以上有するシリコーンオリゴマを配合し、図4に示すように基材表面にシリコーンオリゴマの層を付与し、成形、加工時の応力を緩和する層を設けることを特徴とする。
【0010】
本発明で用いる熱硬化性樹脂は特に制限されず、例えばエポキシ樹脂系、ポリイミド樹脂系、トリアジン樹脂系、フェノール樹脂系、メラミン樹脂系、ポリエステル樹脂系やこれら樹脂の変性系等が用いられる。また、これらの樹脂は2種類以上を併用してもよい。
【0011】
熱硬化性樹脂の硬化剤としては、従来公知の種々のものを使用することができ、例えば樹脂としてエポキシ樹脂を用いる場合には、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、フェノールノボラックやクレゾールノボラック等の多官能性フェノール等をあげることができる。また、樹脂と硬化剤との反応等を促進させる目的で促進剤が用いられるが、促進剤の種類や配合量は特に制限するものではなく例えばイミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が用いられ、2種類以上を併用してもよい。
【0012】
本発明のシリコーンオリゴマは、4官能性(SiO4/2)シロキサン単位を少なくとも1種類以上含有し酸性下で加熱反応させることにより3次元縮合反応したシリコーンオリゴマであって、かつ基材表面の水酸基と反応する官能基及び樹脂と反応する官能基を各々1個以上有していればその分子量や骨格等に特に制限はなく、重合体の中でシロキサン単位の重合度が2〜70程度が好ましく、更には5〜30程度がより好ましい。重合度は、GPC(ゲル透過クロマトグラフィー)により数平均分子量或いは重量平均分子量から換算して得られる。重合度が2未満であると加熱乾燥等により揮発もしくは飛散しやすく、重合度が70を超えると耐熱性等が低下するおそれがある。2官能性、3官能性、4官能性シロキサン単位のRSiO2/2、RSiO3/2、SiO4/2は、それぞれ次のような構造を意味する。
【化1】

Figure 0004164883
ここで、Rは同じか又は別な有機基であり、具体的にメチル基、エチル基、フェニル基、ビニル基、または、エポキシ基、メルカプト基、アクリル基、アミノ基、アミノ基の有機酸塩及びアミノ基の無機酸塩を含む基のうちいずれか1以上であると好ましい。有機基としては、基材表面の水酸基と反応する官能基は、アルコキシル基やシラノール基等が主としてその役割を担い、シロキサン結合を有するシリコーンオリゴマには既に含まれる可能性が高いので、少なくとも1個以上樹脂と反応する官能基を含んでいれば特に制限はないが、エポキシ基やアミノ基及びアミノ基の有機酸塩、無機酸塩、特に塩酸塩等が一般的であり好ましい。有機官能基をシリコーンオリゴマ骨格の中に取り込む方法としては特に制限はなく、例えばヒドロシリル化反応等により付加する方法や市販のシランカップリング剤と併用してオリゴマ化する方法等がある。基材表面の水酸基と反応する官能基は特に制限はないが、アルコキシル基やシラノール基等が一般的であり好ましい。また、シリコーンオリゴマは分子内に、4官能性シロキサン単位を含有し、それと2官能性または3官能性シロキサン単位と組合せ3次元縮合反応していることが好ましく、更には4官能性シロキサン単位がシリコーンオリゴマ全体の5mol%以上であるとより好ましい。シリコーンオリゴマは、予め3次元縮合反応しているものであるが、配合前にゲル状態とならない程度に反応させたものを用いる。このためには、反応温度、反応時間、オリゴマ組成比、触媒の種類や量を変えて調整する。触媒としては、酢酸、塩酸、マレイン酸、リン酸等の酸性溶液で合成することが好ましい。
【0013】
シリコーンオリゴマの配合量は特に制限されないが、樹脂固形分に対して0.1重量部〜50重量部の範囲が好ましい。0.1重量部未満では界面接着性向上の効果は得られず、50重量%を超えると耐熱性等が低下するおそれがある。また、シリコーンオリゴマに加えて各種カップリング剤等を含めた添加剤を配合してもよい。カップリング剤としてはシラン系カップリング剤やチタネート系カップリング剤等があり、シラン系カップリング剤としては、一般にエポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系等がある。
【0014】
本発明においては、さらに無機充填剤を配合することも可能であり、好ましい。無機充填剤としては特に制限はなく、例えば、炭酸カルシウム、アルミナ、酸化チタン、マイカ、炭酸アルミニウム、水酸化アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ、ガラス短繊維やホウ酸アルミニウムや炭化ケイ素等の各種ウィスカ等が用いられる。また、これらを数種類併用しても良く、配合量も特に制限するものではない。
【0015】
本発明に係る印刷配線板用樹脂組成物は、各種の形態で利用されるが基材に塗布、含浸する際にはしばしば溶剤が用いられる。それらの溶剤としては特に制限はなく、例えばアセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、メタノール、エタノール等があり、これらは何種類かを併用してもよい。
【0016】
前記各成分を配合して得たワニスは、基材に含浸させ、乾燥炉中で80℃〜200℃の範囲で任意時間乾燥させ室温で粘着性を有しないBステージ状態とすることにより、プリプレグを得る。基材としては、金属張り積層板や多層印刷配線板を製造する際に用いられるものであれば特に制限されず、通常織布や不織布等の繊維基材が用いられる。繊維基材としては、たとえばガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素,ジルコニア等の無機繊維やアラミド,ポリエーテルエーテルケトン,ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。
【0017】
本発明で作製されるプリプレグの塗工条件は特に制約はないが、溶剤溶液を用いる場合には、溶剤が揮発可能な温度以上での乾燥が好ましい。得られたプリプレグは、これを1枚ないし複数枚積層し、その片面若しくは両面に銅箔のような金属箔を積層し、150℃〜200℃、1MPa〜10MPa程度の範囲で加熱加圧して金属張り積層板を製造し、印刷配線板や多層プリント配線板に供される。
【0018】
本発明は、熱硬化性樹脂組成物に予め3次元縮合反応した基材表面の水酸基と反応する官能基及び樹脂と反応する官能基を各々1個以上有するシリコーンオリゴマを配合することにより、積層板や多層印刷配線板にした場合に、従来のシランカップリング剤等による薄くてリジッドな基材表面の処理剤層に対してシリコーンオリゴマが基材/樹脂の界面でクッション的な役割をはたし、界面に発生する歪みや応力を緩和させ、熱硬化性樹脂が本来有している優れた接着性を引き出すことが可能となる。
【0019】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0020】
(実施例1)
撹拌装置、コンデンサ及び温度計を備えたガラスフラスコに、4官能性シロキサン単位であるテトラメトキシシランを40g、2官能性シロキサン単位であるジメトキシメチルシランを14g、メタノールを126g配合した溶液に、触媒として酢酸を0.5g、蒸留水を22g配合して50℃で1時間撹拌した後、官能基を付与するためアリルグリシジルエーテルを15gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.04g添加し更に7時間撹拌してエポキシ変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は13であった(GPCによる数平均分子量から換算,以下同じ)。
【0021】
参考例3
実施例1と同様に、トリメトキシメチルシランを40g、ジメトキシメチルシランを15.6g、メタノールを130g配合した溶液に、酢酸を0.5g、蒸留水を13.2g配合して50℃で1時間攪拌した後、アリルグリシジルエーテルを17gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.04g添加し更に7時間撹拌してエポキシ変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は11であった。
【0022】
(実施例3)
実施例1と同様に、ジメトキシジメチルシランを32g、テトラメトキシシランを8g、ジメトキシメチルシランを17g、メタノールを98g配合した溶液に、酢酸を0.5g、蒸留水を16.2g配合して50℃で1時間撹拌した後、アリルグリシジルエーテルを18.2gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.04g添加し更に7時間撹拌してエポキシ変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は18であった。
【0023】
(実施例4)
実施例1と同様に、ジメトキシジメチルシランを9g、テトラメトキシシランを20g、ジメトキシメチルシランを11g、メタノールを93g配合した溶液に、酢酸を0.5g、蒸留水を14g配合して50℃で1時間撹拌した後、アリルグリシジルエーテルを11.8gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.03g添加し更に7時間撹拌してエポキシ変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は20であった。
【0024】
(実施例5)
実施例1と同様に、トリメトキシメチルシランを9g、テトラメトキシシランを20g、ジメトキシメチルシランを11g、メタノールを92g配合した溶液に、酢酸を0.5g、蒸留水を13.2g配合して50℃で1時間撹拌した後、アリルグリシジルエーテルを11.2gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.03g添加し更に7時間撹拌してエポキシ変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は16であった。
【0025】
(実施例6)
実施例1と同様に、ジメトキシジメチルシランを9g、テトラメトキシシランを20g、ジメトキシメチルシランを11g、メタノールを93g配合した溶液に、酢酸を0.5g、蒸留水を14g配合して50℃で1時間撹拌した後、アリルアミンを5.9gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.02g添加し更に7時間撹拌してアミン変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は18であった。
【0026】
(実施例7)
実施例1と同様に、ジメトキシジメチルシランを9g、テトラメトキシシランを20g、ジメトキシメチルシランを11g、メタノールを93g配合した溶液に、酢酸を0.5g、蒸留水を14g配合して50℃で1時間撹拌した後、塩酸アリルアミンを9.7gと塩化白金酸塩(2重量%イソプロピルアルコール溶液)を0.03g添加し更に7時間撹拌してカチオニック変性のシリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン単位の重合度は17であった。
【0027】
参考例1
実施例1と同様に、ジメトキシジメチルシランを10g、テトラメトキシシランを20g、γ−グリシドキシプロピルトリメトキシシラン(A−187、日本ユニカー株式会社製商品名)を10g、メタノールを93g配合した溶液に、酢酸を0.25g、蒸留水を14g配合後、50℃で8時間攪拌し、シリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン繰り返し単位の平均は25であった。
【0028】
参考例2
実施例1と同様に、ジメトキシジメチルシランを10g、テトラメトキシシランを20g、N−β−[N−(ビニルベンジル)アミノエチル]−γ−アミノプロピルトリメトキシシラン・塩酸塩(SZ−6032、東レ・ダウコーニング・シリコーン株式会社製商品名)を10g、メタノールを93g配合した溶液に、酢酸を0.3g、蒸留水を13.5g配合後、50℃で8時間攪拌し、シリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン繰り返し単位の平均は27であった。
【0029】
次に、実施例1、3〜7、参考例1〜3で作製した各種シリコーンオリゴマを以下に示すエポキシ樹脂ワニスに配合した。
臭素化ビスフェノールA型エポキシ樹脂 100重量部
(エポキシ当量:530)
ジシアンジアミド 4重量部
各種シリコーンオリゴマ 2重量部
2−エチル−4−メチルイミダゾール 0.5重量部
上記化合物をメチルエチルケトン及びエチレングリコールモノメチルエーテル(50重量%)に溶解し、不揮発分70重量%の印刷配線板用樹脂組成物のワニスを作製した。
【0030】
(実施例10)
実施例1で得られたシリコーンオリゴマを1重量部配合した上記ワニスに、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(A−187、日本ユニカー株式会社製商品名)を1重量部加えて、不揮発分70重量%の印刷配線板用樹脂組成物のワニスを作製した。
【0031】
(実施例11)
実施例1で得られたシリコーンオリゴマを1重量部配合した上記ワニスに、シランカップリング剤としてN−β−[N−(ビニルベンジル)アミノエチル]−γ−アミノプロピルトリメトキシシラン・塩酸塩(SZ−6032、東レ・ダウコーニング・シリコーン株式会社製商品名)を1重量部加えて、不揮発分70重量%の印刷配線板用樹脂組成物のワニスを作製した。
【0032】
(実施例12)
実施例1のシリコーンオリゴマを配合したワニスに、無機充填剤として焼成クレーを50重量部配合して、不揮発分70重量%の印刷配線板用樹脂組成物のワニスを作製した。
【0033】
(比較例1)
シリコーンオリゴマを配合しないこと以外は、実施例と同様のワニスを作製した。
【0034】
(比較例2)
撹拌装置、コンデンサ及び温度計を備えたガラスフラスコに、テトラメトキシシランを40g、メタノールを93g配合した溶液に、酢酸を0.47g、蒸留水を18.9g配合後、50℃で8時間撹拌し、シリコーンオリゴマを合成した。得られたシリコーンオリゴマのシロキサン繰り返し単位の平均は20であった。
【0035】
(比較例3)
シリコーンオリゴマを配合せず、シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(A−187、日本ユニカー株式会社製商品名)を2重量部加えた以外は、実施例と同様の印刷配線板用樹脂組成物のワニスを作製した。
【0036】
(比較例4)
シリコーンオリゴマを配合せず、シランカップリング剤としてN−β−[N−(ビニルベンジル)アミノエチル]−γ−アミノプロピルトリメトキシシラン・塩酸塩(SZ−6032,東レ・ダウコーニング・シリコーン株式会社製商品名)を2重量部加えた以外は、実施例と同様の印刷配線板用樹脂組成物のワニスを作製した。
【0037】
(比較例5)
シリコーンオリゴマのかわりに、エポキシ変性シリコーンオイル(KF101、信越化学工業株式会社製商品名)を2重量部配合した以外は、実施例と同様の印刷配線板用樹脂組成物のワニスを作製した。
【0038】
(比較例6)
比較例1に無機充填剤として焼成クレーを50重量部配合して、不揮発分70重量%の印刷配線板用樹脂組成物のワニスを作製した。
【0039】
実施例1、3〜7、10〜12、参考例1〜3及び比較例1〜6で作製した印刷配線板用樹脂組成物のワニスを厚さ約0.2mmのガラス布(坪量210g/m)に含浸後、140℃で5〜10分加熱乾燥して樹脂分41重量%のプリプレグを得た。このプリプレグ4枚を重ね、その両側に厚みが35μmの銅箔を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張り積層板を作製した。
【0040】
得られた両面銅張り積層板について、ドリル加工性、吸水率、はんだ耐熱性及び耐電食性を評価した。その結果を表1に示す。
【0041】
【表1】
Figure 0004164883
【0042】
試験方法は以下の通りである。耐電食性以外の試験片はすべて銅箔をエッチングしたものを使用した。
ドリル加工性:直径0.4mmのドリルを用いて、回転数;80,000rpm、送り速度;3,200mm/minで穴あけを行い、基材/樹脂界面の剥離等による穴壁クラックを評価した。穴壁クラックは、穴あけした試験片をレッドチェック液で1時間煮沸後、顕微鏡による表面観察より穴面積に対する穴回りに染み込んだ面積の割合を画像処理装置で測定した(20穴の平均)。単位:%
吸水率:常態及びプレッシャークッカーテスター中に2時間保持した後の重量差より算出した。単位:重量%
はんだ耐熱性:プレッシャークッカーテスター中に2時間保持した後、260℃のはんだ浴に20秒間浸漬して、外観を目視で調べた。表中の良好とは、ミーズリング、ふくれがないことを意味する。
耐電食性:ドリル加工性で評価した穴壁間隔300μmのスルーホールを使用し、85℃/85%RH、100V印加での導通破壊までの時間を測定した。また、導通破壊は全てスルーホール間のCAF(CONDUCTIVE ANODIC FILAMENTS)であることを確認した。
【0043】
以上の結果より、実施例1、3〜7、10〜12は、はんだ耐熱性が低下することなく、ドリル加工時の内壁クラックや吸水率が小さく耐電食性が向上している。
【0044】
【発明の効果]】
本発明の印刷配線板用樹脂組成物及びこれを用いたプリプレグ、金属張り積層板は、これまでの積層板が有する特性を低下させることなく、ドリル加工性や耐電食性等の絶縁特性を向上させることができる。
【図面の簡単な説明】
【図1】 基材表面にシランカップリング剤を処理したときの理想状態を示す基材断面のモデル。
【図2】 基材表面にシランカップリング剤を処理したときの実際の状態を示す基材断面のモデル。
【図3】 基材表面を長鎖ポリシロキサンで処理したときの基材断面モデル。
【図4】 基材表面に本発明のシリコーンオリゴマを処理したときの理想状態を示す基材断面のモデル。
【符号の説明】
1:化学的に吸着されたシリコーン鎖(基材との化学的結合があり)
2:物理的に吸着されたシリコーン鎖(基材との化学的結合がない)
3:樹脂
4:シリコーン鎖内の結合による環状鎖[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition used for a metal-clad laminate such as a printed wiring board or a multilayer printed wiring board, a prepreg using the resin composition, and a metal-clad laminate.
[0002]
[Prior art]
With the downsizing and high performance of electronic devices, laminated boards used for printed wiring boards have been increasing in density due to higher multilayers, thinner thicknesses, smaller through-hole diameters and reduced hole spacing. For this reason, the requirements for the heat resistance, drilling workability, insulation characteristics, etc. of the laminated board are becoming stricter.
As a technique for improving heat resistance and insulation characteristics, conventionally, improvement of physical properties of a cured resin by increasing the Tg (glass transition temperature) of the resin has been widely performed. However, improvement of the resin alone has been insufficient to sufficiently satisfy the above characteristics.
On the other hand, in parallel with the improvement of the resin, studies aimed at improving the adhesiveness at the substrate / resin interface have been conducted for a long time. In particular, the control of the interface has become a very important technique because the quality of the interfacial adhesion directly affects the moisture and heat resistance, drilling workability and electric corrosion resistance.
[0003]
[Problems to be solved by the invention]
As a method for improving the adhesiveness of the substrate / resin interface, a method of subjecting a substrate such as a glass woven fabric to a surface treatment such as a coupling agent in advance is common. As the surface treatment agent, there is a method for adjusting the kind and number of organic functional groups of the treatment agent to increase the reactivity with the resin (for example, see JP-A 63-230729 and JP-B 62-40368). Although it is common to only increase the reactivity with the resin, a rigid thin layer can be formed at the interface, reducing stress generated at the interface during drilling or punching, heating and pressure molding, and application to the wiring board It is difficult to reduce the residual stress generated at the interface when soldering the parts, and a significant improvement in adhesion cannot be expected. As an improved technique including reduction of residual stress at the interface, a long-chain polysiloxane is used in combination with the surface treatment agent for reducing the stress (Japanese Patent Laid-Open Nos. 3-62845 and 3-287869). However, under normal processing conditions, the reactivity between the surface treatment agent and long-chain polysiloxane is very low, and general long-chain polysiloxanes do not have alkoxyl groups that react with the substrate. It is very difficult to exhibit high adhesion at the interface due to a decrease in varnish resin impregnation into the prepreg due to the influence of hydrophobicity such as methyl groups of the long-chain polysiloxane.
[0004]
FIG. 1 shows an ideal model configuration of a general silane coupling agent-treated substrate surface. The chemically adsorbed silane coupling agent forms a certain layer and exhibits adhesiveness with the resin layer. However, it is said that the treatment for inorganic materials that is carried out industrially is completed in a very short time, so that the treatment form includes many defects as shown in FIG. The chemically adsorbed silane coupling agent does not cover the surface uniformly, and there are many physically adsorbed silane coupling agents that are easily dissolved into the resin layer. In such a chemically adsorbed layer with many defects, the original adhesiveness cannot be expected, and conversely, the physical adsorbing layer may cause non-uniformity of the cured resin near the interface and decrease in adhesiveness due to low strength. Is expensive.
[0005]
On the other hand, there is also a method (Japanese Patent Laid-Open No. 61-272243) in which a coupling agent is blended in advance with the resin composition. By blending in the resin composition, not only the glass substrate and the like but also the adhesiveness at the resin / filler interface can be controlled even when an inorganic filler is used in combination. However, with a normal coupling agent that is commercially available, only a rigid thin layer can be formed at the interface as in the above problem, and an improvement in adhesion cannot be expected.
[0006]
On the other hand, JP-A-1-204953 is characterized by using a chain polysiloxane having both a trialkoxyl group that reacts with an inorganic filler and an organic functional group that reacts with a resin. However, when the polysiloxane chain is lengthened as shown in FIG. 3, it is highly possible that the polysiloxane is oriented sideways on the surface of the substrate due to the orientation of hydrophobic groups such as methyl groups, and it is difficult to enter the chain into the resin. It is easy to form a rigid layer because it adsorbs to the substrate at several locations. Even if the resin penetrates into the resin, the resin surrounds the chain, so that it is difficult to realize low stress at the interface corresponding to the length of the chain. In addition, since the physically adsorbed layer tends to become a macrocycle, the physical properties of the cured resin are easily lowered.
[0007]
The present invention eliminates the above-mentioned problems of the prior art and provides a resin composition that exhibits excellent drilling workability and insulation characteristics when a laminated board or multilayer printed wiring board is molded, and a prepreg using the resin composition and a metal-clad A laminated board is provided.
[0008]
[Means for Solving the Problems]
The present invention is a silicone oligomer containing a tetrafunctional (SiO 4/2 ) siloxane unit and having a functional group that reacts with a resin by hydrosilylation after a three-dimensional condensation reaction by heating under acidic conditions. And a resin composition for printed wiring boards in which a silicone oligomer having at least one functional group that reacts with a hydroxyl group on the surface of a substrate and one or more functional groups that react with a resin is added to the thermosetting resin composition. The functional group reactive with a hydroxyl group of the substrate surface is at least one selected from among alkoxyl groups, a silanol group, a functional group that reacts with the resin, binds to silicon via a propylene group, a glycidyl It is a resin composition for printed wiring boards that is preferably at least one selected from an oxy group, an amino group, an amino acid organic acid salt, and an amino acid inorganic acid salt. Further, bifunctional as siloxane units silicone oligomer contains in a molecule (R 2 SiO 2/2), 3-functional (RSiO 3/2) and tetrafunctional printed wiring combining (SiO 4/2) and A resin composition for plates (wherein the R groups are the same or different organic groups), and the tetrafunctional (SiO 4/2 ) siloxane unit contained in the molecule of the silicone oligomer is 5 mol% or more of the whole. It is a preferable resin composition for printed wiring boards. Moreover, the functional group which reacts with the resin which a silicone oligomer has is preferable in any one or more types among an epoxy group, an amino group, an organic acid salt of an amino group, or an inorganic acid salt of an amino group. It is. Further, when the silicone oligomer is blended, it is preferable to use a coupling agent together, and when the inorganic filler is blended in advance in the resin composition, it is a preferable resin composition for printed wiring boards. Further, the present invention is a prepreg obtained by impregnating a varnish of a resin composition for a printed wiring board as described above and drying at 80 to 200 ° C., and is also used as an insulator for interlayer adhesion of a multilayer printed wiring board can do. And it is a metal-clad laminate obtained by laminating one or a plurality of the prepregs, laminating a metal foil on one side or both sides, and heating and pressing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the thermosetting resin composition contains a tetrafunctional (SiO 4/2 ) siloxane unit and is subjected to a three-dimensional condensation reaction by heating and reacting under acidic conditions, and then reacts with the resin by hydrosilylation. A silicone oligomer having a group introduced in advance and having a functional group that reacts with a hydroxyl group on the surface of the substrate and one or more functional groups that react with the resin, respectively, as shown in FIG. A layer of silicone oligomer is added to the substrate, and a layer for relaxing stress during molding and processing is provided.
[0010]
The thermosetting resin used in the present invention is not particularly limited, and for example, an epoxy resin system, a polyimide resin system, a triazine resin system, a phenol resin system, a melamine resin system, a polyester resin system, and a modified system of these resins are used. Two or more of these resins may be used in combination.
[0011]
Various conventionally known curing agents for thermosetting resins can be used. For example, when an epoxy resin is used as the resin, dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride Examples thereof include polyfunctional phenols such as acid, phenol novolak and cresol novolak. An accelerator is used for the purpose of accelerating the reaction between the resin and the curing agent, but the type and amount of the accelerator are not particularly limited. For example, imidazole compounds, organophosphorus compounds, tertiary amines are used. A quaternary ammonium salt or the like is used, and two or more kinds may be used in combination.
[0012]
The silicone oligomer of the present invention is a silicone oligomer that contains at least one tetrafunctional (SiO 4/2 ) siloxane unit and undergoes a three-dimensional condensation reaction by heating under acidic conditions, and has a hydroxyl group on the surface of the substrate. As long as it has at least one functional group that reacts with the resin and one functional group that reacts with the resin, there is no particular limitation on the molecular weight or skeleton, and the degree of polymerization of the siloxane units in the polymer is preferably about 2 to 70 Furthermore, about 5-30 is more preferable. The degree of polymerization is obtained by conversion from the number average molecular weight or the weight average molecular weight by GPC (gel permeation chromatography). Polymerization degree is more volatile or easily scattered in drying by heating is less than 2, the degree of polymerization is likely to heat resistance decreases when exceeding 70. Bifunctional, trifunctional, and tetrafunctional siloxane units R 2 SiO 2/2 , RSiO 3/2 , and SiO 4/2 each have the following structure.
[Chemical 1]
Figure 0004164883
Here, R is the same or different, organic group, specifically a methyl group, an ethyl group, a phenyl group, a vinyl group or an epoxy group, a mercapto group, an acrylic group, an amino group, an organic acid of the amino group It is preferable that it is any one or more of a group containing a salt and an inorganic acid salt of an amino group. As the organic group, at least one functional group that reacts with the hydroxyl group on the surface of the substrate is mainly an alkoxyl group or a silanol group, and is likely to be already contained in a silicone oligomer having a siloxane bond. As long as it contains a functional group capable of reacting with the resin, there is no particular limitation. The method for incorporating the organic functional group into the silicone oligomer skeleton is not particularly limited, and examples thereof include a method of adding by a hydrosilylation reaction and the like, and a method of oligomerization in combination with a commercially available silane coupling agent. The functional group that reacts with the hydroxyl group on the surface of the substrate is not particularly limited, but an alkoxyl group, a silanol group, and the like are common and preferable. In addition, the silicone oligomer preferably contains a tetrafunctional siloxane unit in the molecule and is subjected to a three-dimensional condensation reaction in combination with the bifunctional or trifunctional siloxane unit, and the tetrafunctional siloxane unit is preferably a silicone. More preferably, it is 5 mol% or more of the whole oligomer. Although the silicone oligomer has been subjected to a three-dimensional condensation reaction in advance, a silicone oligomer that has been reacted to such an extent that it does not become a gel state before blending is used. For this purpose, the reaction temperature, reaction time, oligomer composition ratio, and type and amount of the catalyst are changed and adjusted. The catalyst is preferably synthesized in an acidic solution such as acetic acid, hydrochloric acid, maleic acid or phosphoric acid.
[0013]
The compounding amount of the silicone oligomer is not particularly limited, but is preferably in the range of 0.1 to 50 parts by weight with respect to the resin solid content. If it is less than 0.1 part by weight, the effect of improving the interfacial adhesion cannot be obtained, and if it exceeds 50% by weight, the heat resistance and the like may be lowered. In addition to the silicone oligomer, additives including various coupling agents and the like may be blended. Examples of coupling agents include silane coupling agents and titanate coupling agents. Generally, silane coupling agents include epoxy silane, amino silane, cationic silane, vinyl silane, acrylic silane, and mercapto silane. Systems and their composite systems.
[0014]
In the present invention, an inorganic filler can be further blended, which is preferable. The inorganic filler is not particularly limited, and examples thereof include calcium carbonate, alumina, titanium oxide, mica, aluminum carbonate, aluminum hydroxide, magnesium silicate, aluminum silicate, silica, short glass fiber, aluminum borate, and silicon carbide. Various whiskers are used. Moreover, several of these may be used in combination, and the blending amount is not particularly limited.
[0015]
Although the resin composition for printed wiring boards according to the present invention is used in various forms, a solvent is often used when applied to and impregnated on a substrate. There are no particular restrictions on these solvents, and examples include acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, N, N-dimethylformamide, methanol, ethanol, etc. May be used in combination.
[0016]
The varnish obtained by blending each of the above components is impregnated into a base material, dried in a range of 80 ° C. to 200 ° C. for an arbitrary time in a drying furnace, and brought into a B-stage state having no adhesiveness at room temperature. Get. The substrate is not particularly limited as long as it is used when producing a metal-clad laminate or a multilayer printed wiring board, and a fiber substrate such as a woven fabric or a nonwoven fabric is usually used. Examples of the fiber substrate include inorganic fibers such as glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, and zirconia, aramid, polyether ether ketone, polyether imide, polyether sal There are organic fibers such as phon, carbon, and cellulose, and mixed papers thereof, and glass fiber woven fabrics are particularly preferably used.
[0017]
The coating conditions for the prepreg produced in the present invention are not particularly limited, but when a solvent solution is used, drying at a temperature at which the solvent can be volatilized is preferable. The obtained prepreg is made by laminating one or a plurality of prepregs, laminating a metal foil such as a copper foil on one or both sides, and heating and pressurizing in the range of about 150 to 200 ° C. A laminated laminate is manufactured and used for a printed wiring board or a multilayer printed wiring board.
[0018]
The present invention provides a laminate by blending a thermosetting resin composition with a silicone oligomer having at least one functional group that reacts with a hydroxyl group on a substrate surface that has been subjected to a three-dimensional condensation reaction in advance and one functional group that reacts with a resin. When a multilayer printed wiring board is used, the silicone oligomer plays a cushioning role at the substrate / resin interface against the thin and rigid substrate surface treatment layer using conventional silane coupling agents. It is possible to relieve strain and stress generated at the interface and to draw out excellent adhesiveness inherent to the thermosetting resin.
[0019]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0020]
(Example 1)
As a catalyst, a glass flask equipped with a stirrer, a condenser and a thermometer was mixed with 40 g of tetramethoxysilane, which is a tetrafunctional siloxane unit, 14 g of dimethoxymethylsilane, which is a bifunctional siloxane unit, and 126 g of methanol. 0.5 g of acetic acid and 22 g of distilled water were mixed and stirred at 50 ° C. for 1 hour, and then 15 g of allyl glycidyl ether and 0.04 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added to give a functional group. Then, the mixture was further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The degree of polymerization of the siloxane units of the obtained silicone oligomer was 13 (converted from the number average molecular weight by GPC, the same applies hereinafter).
[0021]
( Reference Example 3 )
Similarly to Example 1, 0.5 g of acetic acid and 13.2 g of distilled water were added to a solution containing 40 g of trimethoxymethylsilane, 15.6 g of dimethoxymethylsilane, and 130 g of methanol, and 1 hour at 50 ° C. After stirring, 17 g of allyl glycidyl ether and 0.04 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added and further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The polymerization degree of the siloxane unit of the obtained silicone oligomer was 11.
[0022]
(Example 3)
In the same manner as in Example 1, 32 g of dimethoxydimethylsilane, 8 g of tetramethoxysilane, 17 g of dimethoxymethylsilane, and 98 g of methanol were mixed with 0.5 g of acetic acid and 16.2 g of distilled water. After stirring for 1 hour, 18.2 g of allyl glycidyl ether and 0.04 g of chloroplatinate (2 wt% isopropyl alcohol solution) were added and further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The degree of polymerization of siloxane units in the obtained silicone oligomer was 18.
[0023]
Example 4
As in Example 1, 9 g of dimethoxydimethylsilane, 20 g of tetramethoxysilane, 11 g of dimethoxymethylsilane, and 93 g of methanol were mixed with 0.5 g of acetic acid and 14 g of distilled water. After stirring for 1 hour, 11.8 g of allyl glycidyl ether and 0.03 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added and further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The degree of polymerization of siloxane units in the obtained silicone oligomer was 20.
[0024]
(Example 5)
As in Example 1, 9 g of trimethoxymethylsilane, 20 g of tetramethoxysilane, 11 g of dimethoxymethylsilane, and 92 g of methanol were mixed with 0.5 g of acetic acid and 13.2 g of distilled water. After stirring for 1 hour at 0 ° C., 11.2 g of allyl glycidyl ether and 0.03 g of chloroplatinate (2 wt% isopropyl alcohol solution) were added and further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The degree of polymerization of siloxane units in the obtained silicone oligomer was 16.
[0025]
(Example 6)
As in Example 1, 9 g of dimethoxydimethylsilane, 20 g of tetramethoxysilane, 11 g of dimethoxymethylsilane, and 93 g of methanol were mixed with 0.5 g of acetic acid and 14 g of distilled water. After stirring for a period of time, 5.9 g of allylamine and 0.02 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to synthesize an amine-modified silicone oligomer. The degree of polymerization of siloxane units in the obtained silicone oligomer was 18.
[0026]
(Example 7)
As in Example 1, 9 g of dimethoxydimethylsilane, 20 g of tetramethoxysilane, 11 g of dimethoxymethylsilane, and 93 g of methanol were mixed with 0.5 g of acetic acid and 14 g of distilled water. After stirring for a period of time, 9.7 g of allylamine hydrochloride and 0.03 g of chloroplatinate (2 wt% isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to synthesize a cationically modified silicone oligomer. The degree of polymerization of the siloxane units of the obtained silicone oligomer was 17.
[0027]
( Reference Example 1 )
As in Example 1, 10 g of dimethoxydimethylsilane, 20 g of tetramethoxysilane, 10 g of γ-glycidoxypropyltrimethoxysilane (A-187, trade name of Nihon Unicar Co., Ltd.), and 93 g of methanol After adding 0.25 g of acetic acid and 14 g of distilled water, the mixture was stirred at 50 ° C. for 8 hours to synthesize a silicone oligomer. The average of siloxane repeating units of the obtained silicone oligomer was 25.
[0028]
( Reference Example 2 )
Similarly to Example 1, 10 g of dimethoxydimethylsilane, 20 g of tetramethoxysilane, N-β- [N- (vinylbenzyl) aminoethyl] -γ-aminopropyltrimethoxysilane hydrochloride (SZ-6032, Toray Industries, Inc.) -A solution containing 10 g of Dow Corning Silicone Co., Ltd. and 93 g of methanol was mixed with 0.3 g of acetic acid and 13.5 g of distilled water, and then stirred at 50 ° C for 8 hours to synthesize a silicone oligomer. . The average of siloxane repeating units of the obtained silicone oligomer was 27.
[0029]
Next, the various silicone oligomers produced in Examples 1 and 3 to 7 and Reference Examples 1 to 3 were blended in the epoxy resin varnish shown below.
Brominated bisphenol A type epoxy resin 100 parts by weight (epoxy equivalent: 530)
Dicyandiamide 4 parts by weight Various silicone oligomers 2 parts by weight 2-ethyl-4-methylimidazole 0.5 parts by weight The above compound is dissolved in methyl ethyl ketone and ethylene glycol monomethyl ether (50% by weight), and a printed wiring board having a nonvolatile content of 70% by weight A resin composition varnish was prepared.
[0030]
(Example 10)
1 part by weight of γ-glycidoxypropyltrimethoxysilane (A-187, trade name, manufactured by Nihon Unicar Co., Ltd.) as a silane coupling agent was added to the varnish containing 1 part by weight of the silicone oligomer obtained in Example 1. In addition, a varnish of a resin composition for printed wiring boards having a nonvolatile content of 70% by weight was produced.
[0031]
(Example 11)
In the varnish containing 1 part by weight of the silicone oligomer obtained in Example 1, N-β- [N- (vinylbenzyl) aminoethyl] -γ-aminopropyltrimethoxysilane / hydrochloride as a silane coupling agent ( 1 part by weight of SZ-6032, a product name manufactured by Toray Dow Corning Silicone Co., Ltd.) was added to prepare a varnish of a resin composition for printed wiring boards having a nonvolatile content of 70% by weight.
[0032]
(Example 12)
A varnish of a resin composition for printed wiring boards having a nonvolatile content of 70% by weight was prepared by blending 50 parts by weight of calcined clay as an inorganic filler with the varnish blended with the silicone oligomer of Example 1.
[0033]
(Comparative Example 1)
A varnish similar to the example was prepared except that the silicone oligomer was not blended.
[0034]
(Comparative Example 2)
In a glass flask equipped with a stirrer, a condenser and a thermometer, 40 g of tetramethoxysilane and 93 g of methanol were mixed with 0.47 g of acetic acid and 18.9 g of distilled water, and then stirred at 50 ° C. for 8 hours. A silicone oligomer was synthesized. The average of siloxane repeating units of the obtained silicone oligomer was 20.
[0035]
(Comparative Example 3)
Printed wiring similar to the example except that no silicone oligomer was added and 2 parts by weight of γ-glycidoxypropyltrimethoxysilane (A-187, trade name, manufactured by Nihon Unicar Co., Ltd.) was added as a silane coupling agent. A varnish of the resin composition for plates was prepared.
[0036]
(Comparative Example 4)
N-β- [N- (vinylbenzyl) aminoethyl] -γ-aminopropyltrimethoxysilane hydrochloride (SZ-6032, Dow Corning Toray Silicone Co., Ltd.) The varnish of the resin composition for printed wiring boards similar to the Example was produced except having added 2 weight part of the product name.
[0037]
(Comparative Example 5)
A printed circuit board resin composition varnish was prepared in the same manner as in Example except that 2 parts by weight of epoxy-modified silicone oil (KF101, trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was blended in place of the silicone oligomer.
[0038]
(Comparative Example 6)
50 parts by weight of calcined clay as an inorganic filler was added to Comparative Example 1 to prepare a varnish of a resin composition for printed wiring boards having a nonvolatile content of 70% by weight.
[0039]
Example 1 3-7, 10-12, the varnish of the resin composition for printed wiring boards produced in Reference Examples 1-3 and Comparative Examples 1-6 was a glass cloth (basis weight 210 g / weight) of about 0.2 mm. After impregnating m 2 ), it was dried by heating at 140 ° C. for 5 to 10 minutes to obtain a prepreg having a resin content of 41% by weight. Four prepregs were stacked and a copper foil having a thickness of 35 μm was stacked on both sides thereof, and a double-sided copper-clad laminate was produced under a press condition of 170 ° C., 90 minutes, 4.0 MPa.
[0040]
About the obtained double-sided copper clad laminated board, drill workability, water absorption, solder heat resistance, and electric corrosion resistance were evaluated. The results are shown in Table 1.
[0041]
[Table 1]
Figure 0004164883
[0042]
The test method is as follows. All test pieces other than the electric corrosion resistance were etched copper foil.
Drill workability: Drilling was performed using a drill with a diameter of 0.4 mm at a rotational speed of 80,000 rpm, a feed rate of 3,200 mm / min, and hole wall cracks due to peeling of the substrate / resin interface were evaluated. The hole wall crack was measured by measuring the ratio of the area soaked around the hole area with respect to the hole area with an image processing apparatus by surface observation with a microscope after boiling the test piece for 1 hour with a red check solution (average of 20 holes). unit:%
Water absorption rate: Calculated from the difference in weight after holding for 2 hours in a normal state and pressure cooker tester. Unit:% by weight
Solder heat resistance: After being held in a pressure cooker tester for 2 hours, it was immersed in a solder bath at 260 ° C. for 20 seconds, and the appearance was visually examined. “Good” in the table means that there is no measling or blistering.
Electric corrosion resistance: Using a through hole having a hole wall interval of 300 μm evaluated by drilling workability, the time until conduction breakdown at 85 ° C./85% RH and 100 V application was measured. It was also confirmed that all conduction breakdowns were CAF (CONDUCTIVE ANODIC FILAMENTS) between through holes.
[0043]
From the above results, Examples 1 , 3 to 7 , and 10 to 12 have reduced inner wall cracks and water absorption at the time of drilling , and improved electrolytic corrosion resistance without lowering solder heat resistance.
[0044]
【The invention's effect]】
The resin composition for a printed wiring board of the present invention, and a prepreg and a metal-clad laminate using the same improve the insulating properties such as drill workability and electric corrosion resistance without deteriorating the properties of conventional laminates. be able to.
[Brief description of the drawings]
FIG. 1 is a model of a cross section of a substrate showing an ideal state when a silane coupling agent is treated on the surface of the substrate.
FIG. 2 is a cross-sectional model of a base material showing an actual state when a silane coupling agent is treated on the surface of the base material.
FIG. 3 is a cross-sectional model of a substrate when the substrate surface is treated with a long-chain polysiloxane.
FIG. 4 is a cross-sectional model of a base material showing an ideal state when the surface of the base material is treated with the silicone oligomer of the present invention.
[Explanation of symbols]
1: Chemically adsorbed silicone chain (with chemical bond to substrate)
2: Physically adsorbed silicone chain (no chemical bond with substrate)
3: Resin 4: Cyclic chain due to bond in silicone chain

Claims (7)

4官能性(SiO4/2)シロキサン単位を含有し酸性下で加熱反応させることにより3次元縮合反応させた後、ヒドロシリル化により樹脂と反応する官能基を導入したシリコーンオリゴマであって、かつ基材表面の水酸基と反応する官能基及び樹脂と反応する官能基を各々1個以上有するシリコーンオリゴマを、熱硬化性樹脂組成物に配合する印刷配線板用樹脂組成物であって、
基材表面の水酸基と反応する官能基が、アルコキシル基、シラノール基の中から選ばれる少なくとも1種以上であり、樹脂と反応する官能基が、プロピレン基を介して珪素と結合する、グリシジルオキシ基、アミノ基、アミノ基の有機酸塩及びアミノ基の無機酸塩の中から選ばれる少なくとも1種類以上であることを特徴とする印刷配線板用樹脂組成物。
A silicone oligomer which contains a tetrafunctional (SiO 4/2 ) siloxane unit and has a functional group which reacts with a resin by hydrosilylation after a three-dimensional condensation reaction by heating under acidic conditions. A resin composition for a printed wiring board , wherein a silicone oligomer having at least one functional group that reacts with a hydroxyl group on the surface of a material and one or more functional groups that react with a resin is blended in a thermosetting resin composition ,
A glycidyloxy group in which the functional group that reacts with the hydroxyl group on the substrate surface is at least one selected from an alkoxyl group and a silanol group, and the functional group that reacts with the resin is bonded to silicon via a propylene group , an amino group, for printed wiring board resin composition characterized in that at least one or more selected from among inorganic acid salt of an organic acid salt and an amino group of the amino group.
シリコーンオリゴマが分子内に含有するシロキサン単位として、さらに2官能性(RSiO2/2を含む請求項に記載の印刷配線板用樹脂組成物(式中、R基は同じか又は別異な有機基である)。As siloxane units silicone oligomer contains in a molecule, further bifunctional (R 2 SiO 2/2) for printed wiring board resin composition according to claim 1 comprising (wherein, R groups are the same or different Different organic groups). シリコーンオリゴマが分子内に含有するシロキサン単位として、さらに3官能性(RSiO3/2を含む請求項に記載の印刷配線板用樹脂組成物(式中、R基は同じか又は別異な有機基である)。As siloxane units silicone oligomer contains in a molecule, further trifunctional (RSiO 3/2) for printed wiring board resin composition according to claim 1 comprising (wherein, R groups are the same or different different organic Group). シリコーンオリゴマが分子内に含有するシロキサン単位として、さらに2官能性(RSiO2/2)と3官能性(RSiO3/2とを含む請求項に記載の印刷配線板用樹脂組成物(式中、R基は同じか又は別異な有機基である)。As siloxane units silicone oligomer contains in a molecule, further bifunctional (R 2 SiO 2/2) and trifunctional (RSiO 3/2) and printed wiring board resin composition according to claim 1 comprising (Wherein the R groups are the same or different organic groups). シリコーンオリゴマが分子内に含有する4官能性(SiO4/2)シロキサン単位が全体の5mol%以上である請求項1ないし請求項4のいずれかに記載の印刷配線板用樹脂組成物。The resin composition for a printed wiring board according to any one of claims 1 to 4, wherein the tetrafunctional (SiO 4/2 ) siloxane unit contained in the molecule of the silicone oligomer is 5 mol% or more of the whole. シリコーンオリゴマを配合する際に、カップリング剤を併用することを特徴とする請求項1ないし請求項のいずれかに記載の印刷配線板用樹脂組成物。The resin composition for printed wiring boards according to any one of claims 1 to 5, wherein a coupling agent is used in combination with the silicone oligomer. 樹脂組成物に予め無機充填剤が配合されていることを特徴とする請求項1ないし請求項のいずれかに記載の印刷配線板用樹脂組成物。The resin composition for a printed wiring board according to any one of claims 1 to 6, wherein an inorganic filler is blended in advance in the resin composition.
JP22185197A 1997-08-19 1997-08-19 Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate Expired - Lifetime JP4164883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22185197A JP4164883B2 (en) 1997-08-19 1997-08-19 Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22185197A JP4164883B2 (en) 1997-08-19 1997-08-19 Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate

Publications (2)

Publication Number Publication Date
JPH1160951A JPH1160951A (en) 1999-03-05
JP4164883B2 true JP4164883B2 (en) 2008-10-15

Family

ID=16773189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22185197A Expired - Lifetime JP4164883B2 (en) 1997-08-19 1997-08-19 Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate

Country Status (1)

Country Link
JP (1) JP4164883B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070885A1 (en) * 2000-03-21 2001-09-27 Hitachi Chemical Co., Ltd. Resin composition with excellent dielectric characteristics, process for producing resin composition, varnish prepared from the same, process for producing the same, prepreg made with these, and metal-clad laminate
JP4872160B2 (en) * 2000-03-21 2012-02-08 日立化成工業株式会社 Resin composition having excellent dielectric properties, varnish produced using the same, varnish production method, prepreg and metal-clad laminate
KR100840456B1 (en) 2000-03-31 2008-06-20 히다치 가세고교 가부시끼가이샤 Thermosetting Resin Composition, Resin Film, Metal Foil with Insulating Material, Insulating Film with Metal Foil on Each Side, Metal-Clad Laminate, Multilayered Metal-Clad Laminate, and Multilayered Printed Circuit Board
US6706409B2 (en) * 2000-10-13 2004-03-16 Hitachi Chemical Co., Ltd. Incombustible resin composition, prepreg, laminated plate, metal-clad laminated plate, printed wiring board and multi-layer printed wiring board
JP2002322343A (en) * 2001-04-24 2002-11-08 Hitachi Chem Co Ltd Thermosetting resin composition and method for producing the same
JP4821059B2 (en) * 2001-06-29 2011-11-24 日立化成工業株式会社 Resin composition and flame-retardant laminate and printed wiring board using the same
JP4847767B2 (en) * 2005-03-09 2011-12-28 日立化成ポリマー株式会社 Adhesive composition for flexible printed wiring board and adhesive film for flexible printed wiring board using the same
JP4845422B2 (en) * 2005-05-24 2011-12-28 日立化成ポリマー株式会社 Adhesive composition for coverlay of flexible printed wiring board and flexible printed wiring board using the same
JP2009007442A (en) * 2007-06-27 2009-01-15 Hitachi Kasei Polymer Co Ltd Adhesive composition for flexible printed wiring board and adhesive film for flexible printed wiring board obtained using the same
JP2011144386A (en) * 2011-03-18 2011-07-28 Hitachi Chem Co Ltd Thermosetting resin composition and method for producing the same
WO2012165012A1 (en) * 2011-05-27 2012-12-06 味の素株式会社 Resin composition
JP2012031431A (en) * 2011-11-04 2012-02-16 Hitachi Chem Co Ltd Thermosetting resin composition and method of producing the same

Also Published As

Publication number Publication date
JPH1160951A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6696155B1 (en) Prepreg for printed wiring boards, resin varnish, resin composition and laminate for printed wiring boards produced by using these substances
KR100840456B1 (en) Thermosetting Resin Composition, Resin Film, Metal Foil with Insulating Material, Insulating Film with Metal Foil on Each Side, Metal-Clad Laminate, Multilayered Metal-Clad Laminate, and Multilayered Printed Circuit Board
JP4164883B2 (en) Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate
JP5186221B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
US6524717B1 (en) Prepreg, metal-clad laminate, and printed circuit board obtained from these
JP4572423B2 (en) Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JP3731264B2 (en) Method for producing prepreg for printed wiring board
JP4245197B2 (en) Manufacturing method of prepreg for printed wiring board and metal-clad laminate using the same
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
JP2904311B2 (en) Prepreg for printed wiring board, resin varnish, resin composition, and laminated board for printed wiring board manufactured using them
JPH0959346A (en) Epoxy resin composition for laminate
JP4899280B2 (en) Composite material for wiring board and manufacturing method thereof
JP2003012892A (en) Resin composition and flame-retardant laminate board and printed wiring board using the composition
JP4619084B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP4171952B2 (en) Thermosetting resin composition, prepreg, laminate and printed wiring board
JPH1171475A (en) Preparation of printed circuit board prepreg and metal clad laminate using the same
JP2000212309A (en) Prepreg and metal foil-clad laminate
JP2003008212A (en) Resin material with wiring circuit, method of manufacturing the same, and multilayer printed wiring board
JP2008111188A (en) Copper foil for printed circuit board
JP2000072969A (en) Thermosetting resin composition, prepreg, laminated board, and printed circuit board
JP4924326B2 (en) Copper foil for printed wiring boards
JPH05105778A (en) Production of laminated board
JP2004165268A (en) Laminate and printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term