JP2003008212A - Resin material with wiring circuit, method of manufacturing the same, and multilayer printed wiring board - Google Patents

Resin material with wiring circuit, method of manufacturing the same, and multilayer printed wiring board

Info

Publication number
JP2003008212A
JP2003008212A JP2001190565A JP2001190565A JP2003008212A JP 2003008212 A JP2003008212 A JP 2003008212A JP 2001190565 A JP2001190565 A JP 2001190565A JP 2001190565 A JP2001190565 A JP 2001190565A JP 2003008212 A JP2003008212 A JP 2003008212A
Authority
JP
Japan
Prior art keywords
resin
wiring circuit
layer
silicone polymer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001190565A
Other languages
Japanese (ja)
Other versions
JP4487448B2 (en
Inventor
Akio Baba
日男 馬場
Mare Takano
希 高野
Takeshi Madarame
健 斑目
Tetsuya Saito
哲也 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001190565A priority Critical patent/JP4487448B2/en
Publication of JP2003008212A publication Critical patent/JP2003008212A/en
Application granted granted Critical
Publication of JP4487448B2 publication Critical patent/JP4487448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin material which hardly decomposes, when it is subjected to chemicals such as an etching solution even if it is semi-cured, serves an insulation layer, is equipped with the wiring that is embedded in a resin sheet at molding and smooth after molding, and provided with a top surface that can be smoothed, and is suitable for fine wiring. SOLUTION: A wiring circuit-attached resin material is equipped with a wiring circuit layer formed on an insulating resin layer in a B-Stage state, and the wiring circuit-attached resin material and an inner plate are laminated, thermocompressed and molded into a printed wiring board in a manufacturing method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配線回路付き樹脂
材料及びその製造方法と多層プリント配線板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin material with a wiring circuit, a method for manufacturing the same, and a multilayer printed wiring board.

【0002】[0002]

【従来の技術】電子機器に広く用いられているプリント
配線板は、金属はく張積層板に配線回路加工を施して得
られる。この金属はく張積層板としては、織布基材に熱
硬化性樹脂組成物の樹脂ワニスを含浸乾燥して得られる
プリプレグを金属はくとともに積層成形したものが広く
用いられていた。すなわち、絶縁基材層が熱硬化性樹脂
組成物の硬化物と織布基材とからなりこれに金属はくが
接着された構造となっていた。なお、単にプリント配線
板というときは、両面プリント配線板のほか多層プリン
ト配線板を含む。また、従来汎用の多層プリント配線板
は、両面プリント配線板と金属はくとをプリプレグや樹
脂シートを介して加熱加圧して接着一体化し得た内層配
線回路入り金属はく張多層積層板に配線回路加工を施し
て得られたものであった。4層金属はく張積層板は、両
面プリント配線板1枚の両面に金属はくを接着一体化し
たものであり、6層金属はく張積層板は、両面プリント
配線板2枚の間にプリプレグや樹脂シートを介し、さら
に、その両面に金属はくを接着一体化したものであっ
た。
2. Description of the Related Art A printed wiring board widely used in electronic equipment is obtained by subjecting a metal-clad laminate to a wiring circuit process. As the metal foil-clad laminate, a prepreg obtained by impregnating a woven fabric substrate with a resin varnish of a thermosetting resin composition and drying the laminate has been widely used. That is, the insulating base material layer was composed of a cured product of the thermosetting resin composition and a woven fabric base material, to which a metal foil was adhered. The term "printed wiring board" includes a double-sided printed wiring board and a multilayer printed wiring board. In addition, the conventional multi-layer printed wiring board is a conventional multi-layer printed wiring board and a metal foil that has been bonded and integrated by heating and pressing through a prepreg or resin sheet via a prepreg or resin sheet. It was obtained by applying circuit processing. A four-layer metal-clad laminate is a single-sided printed wiring board with metal foil bonded and integrated on both sides. A six-layer metal-clad laminate is a two-sided printed wiring board between two sheets. A metal foil was bonded and integrated on both sides of the prepreg or resin sheet.

【0003】近年、電子機器の小型化にともない、プリ
ント配線板も薄型化し、さらに、配線を高密度化する必
要がでてきている。材料として織布基材を用いると、薄
型化には限度があることから、金属はく張多層積層板の
製造において、樹脂シートを用いることが提案された。
In recent years, along with the miniaturization of electronic devices, it has become necessary to make printed wiring boards thinner and to densify wirings. When a woven fabric substrate is used as a material, there is a limit to reduction in thickness, and therefore it has been proposed to use a resin sheet in the production of a metal-clad multilayer laminate.

【0004】[0004]

【発明が解決しようとする課題】電子機器の小型軽量
化、高性能化、低コスト化が進行し、プリント配線板に
は高密度化、薄型化、高信頼性化、低コスト化が要求さ
れている。高密度化のためには、微細配線が必要であ
り、そのためには表面の平坦性が良好でなくてはならな
い。表面の平坦性を良好にするためには、研磨加工が有
効であるが、工程数が多くなりコストが高くなること
や、均一な厚みを得ることが困難などの問題があった。
また、多層化する場合も高密度化のためには、微細配線
が必要であり、そのためには表面の平坦性が良好でなく
てはならない。表面の平坦性を良好にするためには、内
層の配線を研磨加工し、平坦化することが有効である
が、工程数が多くなりコストが高くなることや、均一な
厚みに加工するのが難しいことなどの問題があった。そ
こで、柔軟な樹脂シートを使用し、成形時に配線を樹脂
シートに潜り込ませる方法が考えられる。一般の配線板
用樹脂シートに配線を潜り込ませるためには、樹脂シー
トが柔軟である必要がある。このため、樹脂を半硬化状
態で使用することが考えられる。しかし、半硬化の状態
では配線を形成するためのエッチング処理に樹脂が耐え
られず,樹脂の分解が起こり、絶縁層としての役割を成
さなくなる。また、樹脂を硬化させた状態で配線を潜り
込ませるまで柔軟にするためには,柔軟成分としてエラ
ストマなどを配合することも考えられるが、樹脂シート
にエラストマを使用すると吸水率が高くなり、耐熱性が
悪くなるなどの問題がある。
As electronic devices are becoming smaller, lighter weight, higher performance, and lower cost, printed wiring boards are required to have higher density, thinner thickness, higher reliability, and lower cost. ing. For high density, fine wiring is required, and for that purpose the surface flatness must be good. Polishing is effective for improving the flatness of the surface, but there are problems that the number of steps is large and the cost is high, and it is difficult to obtain a uniform thickness.
Further, even in the case of forming a multi-layer structure, fine wiring is required for high density, and for that purpose, the flatness of the surface must be good. In order to improve the flatness of the surface, it is effective to polish and flatten the inner layer wiring, but the number of steps increases and the cost increases, and processing to a uniform thickness is preferable. There were problems such as difficult things. Therefore, it is conceivable to use a flexible resin sheet and have the wiring embedded in the resin sheet during molding. The resin sheet must be flexible in order to allow wiring to be embedded in a general resin sheet for wiring boards. Therefore, it is conceivable to use the resin in a semi-cured state. However, in the semi-cured state, the resin cannot withstand the etching process for forming the wiring, the resin is decomposed, and the resin does not serve as an insulating layer. In addition, in order to make the wiring flexible until the wiring is submerged in the state where the resin is cured, it may be possible to mix an elastomer as a soft component, but if an elastomer is used for the resin sheet, the water absorption will be high and the heat resistance will be high. There is a problem such as getting worse.

【0005】[0005]

【課題を解決するための手段】上記の問題を解決する手
段として、半硬化の状態でもエッチング液などの薬液に
対して、分解が起こらず、絶縁層としての役割を果た
し、かつ成形時に配線を樹脂シートに潜り込ませること
が可能で,成形後の配線の凹凸が無く、表面の平坦化が
可能であり、微細配線に適した樹脂材料を本発明にて提
案する。
[Means for Solving the Problems] As means for solving the above problems, decomposition of chemicals such as an etching solution does not occur even in a semi-cured state, it functions as an insulating layer, and wiring is formed at the time of molding. The present invention proposes a resin material that can be dipped into a resin sheet, has no unevenness of wiring after molding, and can flatten the surface, and is suitable for fine wiring.

【0006】本発明は、以下に記載の各事項に関する。 (1) B−Stage状態の絶縁樹脂層上に配線回路
層を有する配線回路付き樹脂材料。 (2) B−Stage状態の絶縁樹脂シートと、その
絶縁樹脂シート上に設けられた配線回路層とからなる
(1)記載の配線回路付き樹脂材料。 (3) 内層回路板上に設けられたB−Stage状態
の絶縁樹脂層と、さらにその絶縁樹脂層上に設けられた
配線回路からなる(1)記載の配線回路付き樹脂材料。 (4) 絶縁樹脂層が樹脂硬化性シリコーン重合体、硬
化剤及び無機充填剤を含有してなる樹脂組成物からなる
(1)〜(3)のいずれかに記載の配線回路付き樹脂材
料。 (5) 絶縁樹脂層を形成する樹脂組成物中の樹脂硬化
性シリコーン重合体100重量部に対する無機充填剤の
配合量が100重量部以上である(4)に記載の配線回
路付き樹脂材料。 (6) 絶縁樹脂層が樹脂硬化性シリコーン重合体10
0重量部、硬化剤0.8〜1当量及び無機充填剤100
〜2000重量部を含有してなる樹脂組成物からなる
(4)に記載の配線回路付き樹脂材料。 (7) 絶縁樹脂層が、硬化物の熱膨張係数が50×1
-6/℃以下である樹脂組成物を使用して形成される絶
縁樹脂層であることを特徴とする(1)〜(6)のいず
れかに記載の配線回路付き樹脂材料。 (8) 絶縁樹脂層が、硬化物の引張試験での伸びが
1.0%以上である樹脂組成物を使用して形成される絶
縁樹脂層であることを特徴とする(1)〜(7)のいず
れかに記載の配線回路付き樹脂材料。
The present invention relates to the items described below. (1) A resin material with a wiring circuit having a wiring circuit layer on an insulating resin layer in a B-Stage state. (2) The resin material with a wiring circuit according to (1), which comprises an insulating resin sheet in a B-Stage state and a wiring circuit layer provided on the insulating resin sheet. (3) The resin material with a wiring circuit according to (1), which comprises an insulating resin layer in a B-Stage state provided on the inner layer circuit board and a wiring circuit further provided on the insulating resin layer. (4) The resin material with a wiring circuit according to any one of (1) to (3), wherein the insulating resin layer comprises a resin composition containing a resin-curable silicone polymer, a curing agent, and an inorganic filler. (5) The resin material with a wiring circuit according to (4), wherein the blending amount of the inorganic filler is 100 parts by weight or more based on 100 parts by weight of the resin-curable silicone polymer in the resin composition forming the insulating resin layer. (6) The insulating resin layer is a resin-curable silicone polymer 10
0 parts by weight, curing agent 0.8 to 1 equivalent and inorganic filler 100
The resin material with a wiring circuit according to (4), which comprises a resin composition containing about 2000 parts by weight. (7) The insulating resin layer has a cured product having a thermal expansion coefficient of 50 × 1.
The resin material with a wiring circuit according to any one of (1) to (6), which is an insulating resin layer formed by using a resin composition having a temperature of 0 -6 / ° C or less. (8) The insulating resin layer is an insulating resin layer formed by using a resin composition having an elongation of 1.0% or more in a tensile test of a cured product, (1) to (7) The resin material with a wiring circuit according to any one of 1).

【0007】(9) (2)に記載の配線回路付き樹脂
材料と内層板とを重ねて加熱加圧成形するプリント配線
板の製造方法。 (10) B−Stage状態である絶縁樹脂層と該絶
縁樹脂層上に配設された金属箔とを含む積層体から不要
な金属をエッチング除去して回路形成することを特徴と
する配線回路付き樹脂材料の製造方法。 (11) 絶縁樹脂層が樹脂硬化性シリコーン重合体、
硬化剤及び無機充填剤を含有してなる樹脂組成物からな
ることを特徴とする(10)に記載の配線回路付き樹脂
材料の製造方法。 (12) 樹脂硬化性シリコーン重合体100重量部に
対する無機充填剤の配合量が100重量部以上であるこ
とを特徴とする(11)に記載の配線回路付き樹脂材料
の製造方法。 (13) 絶縁樹脂層が樹脂硬化性シリコーン重合体1
00重量部、無機充填剤100〜2000重量部及び硬
化剤を樹脂硬化性シリコーン重合体に対して0.8〜1
当量を含有してなる樹脂組成物からなることを特徴とす
る(11)に記載の配線回路付き樹脂材料の製造方法。
(9) A method for manufacturing a printed wiring board, comprising: stacking a resin material with a wiring circuit and an inner layer board on top of each other and heating and pressurizing them. (10) With a wiring circuit characterized in that a circuit is formed by etching away unnecessary metal from a laminate including an insulating resin layer in a B-Stage state and a metal foil arranged on the insulating resin layer. Method for manufacturing resin material. (11) The insulating resin layer is a resin-curable silicone polymer,
The method for producing a resin material with a wiring circuit according to (10), which comprises a resin composition containing a curing agent and an inorganic filler. (12) The method for producing a resin material with a wiring circuit according to (11), wherein the compounding amount of the inorganic filler is 100 parts by weight or more based on 100 parts by weight of the resin-curable silicone polymer. (13) The insulating resin layer is a resin-curable silicone polymer 1
00 parts by weight, 100 to 2000 parts by weight of the inorganic filler, and 0.8 to 1 part by weight of the curing agent with respect to the resin-curable silicone polymer.
The method for producing a resin material with a wiring circuit according to (11), which comprises a resin composition containing an equivalent amount.

【0008】[0008]

【発明の実施の形態】本発明における配線回路付き樹脂
材料とは、十分な回路埋め込み性を有する状態の絶縁層
上に配線回路が形成された樹脂材料であり、例えば、B
−Stage状態の熱硬化性樹脂シート上に配線回路が
形成された配線回路付き樹脂シートや、内層回路板上に
設けられたB−Stage状態の熱硬化性樹脂からなる
絶縁層の上にさらに配線回路が形成された配線板材料な
どが挙げられる。なお、本発明におけるB−Stage
状態とは、樹脂ワニス化に用いる溶剤と同じ溶剤に樹脂
を浸漬し、25℃で1時間攪拌した場合に樹脂分の5〜
95重量%が溶解せずに残る硬化状態である。樹脂分の
溶解せずに残る量が95重量%を越える硬化状態をC−
Stage状態、5重量%未満の硬化状態をA−Sta
ge状態とする。
BEST MODE FOR CARRYING OUT THE INVENTION The resin material with a wiring circuit in the present invention is a resin material in which a wiring circuit is formed on an insulating layer in a state of having sufficient circuit embedding properties, and for example, B
-Wiring is further provided on a resin sheet with a wiring circuit in which a wiring circuit is formed on a thermosetting resin sheet in a Stage state, or on an insulating layer made of a thermosetting resin in a B-Stage state provided on an inner layer circuit board. Examples include wiring board materials on which circuits are formed. In addition, B-Stage in the present invention
The state means that when the resin is immersed in the same solvent as that used for forming the resin varnish and stirred at 25 ° C. for 1 hour, the resin content is 5 to 5 parts.
It is a cured state in which 95% by weight remains without being dissolved. When the cured state in which the amount of the resin component that remains without being dissolved exceeds 95% by weight is C-
Stage state, 5% by weight less than the cured state A-Sta
ge state.

【0009】本発明における絶縁樹脂としては、十分な
回路埋め込み性を有する状態においても、配線回路加工
時における金属のエッチング除去などの薬品処理に対し
て必要な耐薬品性を満足する樹脂を用いる。B−Sta
ge状態で必要な耐薬品性を満足する熱硬化性樹脂を用
いることが好ましい。また、多層配線板とした場合の層
間導通路などの接続信頼性を考慮すると絶縁樹脂硬化物
の熱膨張係数が50×10-6/℃以下である樹脂を用い
ることが好ましく、熱膨張係数が30×10-6/℃以下
である樹脂を用いることがさらに好ましく、熱膨張係数
が15×10-6/℃以下である樹脂を用いることが特に
好ましい。多層配線板作製時の取り扱い性や多層配線板
としたときの信頼性の観点から、硬化物の引張試験での
伸びが1.0%以上である樹脂を用いることが好まし
く、伸びが2.0%以上である樹脂を用いることが特に
好ましい。このような樹脂の例としては、樹脂硬化性シ
リコーン重合体とその硬化剤及び無機充填剤を含有して
なる樹脂組成物が挙げられる。
As the insulating resin in the present invention, a resin satisfying the chemical resistance required for chemical treatment such as etching removal of metal during wiring circuit processing is used even in the state of having sufficient circuit embedding property. B-Sta
It is preferable to use a thermosetting resin that satisfies the required chemical resistance in the ge state. Further, in consideration of connection reliability of an interlayer conduction path in the case of a multilayer wiring board, it is preferable to use a resin having a thermal expansion coefficient of 50 × 10 −6 / ° C. or less as a cured product of an insulating resin. It is more preferable to use a resin having a temperature of 30 × 10 −6 / ° C. or less, and it is particularly preferable to use a resin having a thermal expansion coefficient of 15 × 10 −6 / ° C. or less. From the viewpoint of handleability when producing a multilayer wiring board and reliability when a multilayer wiring board is used, it is preferable to use a resin having an elongation of 1.0% or more in a tensile test of a cured product, and an elongation of 2.0. It is particularly preferable to use a resin whose content is at least%. Examples of such a resin include a resin composition containing a resin-curable silicone polymer, a curing agent therefor, and an inorganic filler.

【0010】前記樹脂硬化性シリコーン重合体は、一般
式(I)
The resin-curable silicone polymer has the general formula (I)

【化1】R′m(H)kSiX4-(m+k) (I) (式中Xは、加水分解、重縮合可能な基であり、例え
ば、塩素、臭素等のハロゲン又は−ORを示し、ここ
で、Rは炭素数1〜4のアルキル基、炭素数1〜4のア
ルキルカルボニル基を示す。R′は、非反応性の基であ
り、例えば、炭素数1〜4のアルキル基、フェニル基等
のアリール基を示す。kは1又は2、mは0又は1、m
+kは1又は2を意味する)で表されるシラン化合物と
ヒドロシリル化反応剤とを反応させて得ることができ
る。一般式(I)のシラン化合物は加水分解、重縮合に
よってSi−H基含有シリコーン重合体とされ、ヒドロ
シリル化反応剤をSi−H基含有シリコーン重合体のS
i−H基との間でヒドロシリル化反応させて、樹脂硬化
性官能基が導入されたシリコーン重合体が得られる。
Embedded image R ′ m (H) k SiX 4- (m + k) (I) (wherein X is a group capable of being hydrolyzed and polycondensed, and examples thereof include halogen such as chlorine and bromine, or —OR. Wherein R represents an alkyl group having 1 to 4 carbon atoms and an alkylcarbonyl group having 1 to 4 carbon atoms, and R'is a non-reactive group, for example, an alkyl group having 1 to 4 carbon atoms. Group, an aryl group such as a phenyl group, k is 1 or 2, m is 0 or 1, m
+ K means 1 or 2) and can be obtained by reacting a silane compound represented by the formula (1) and a hydrosilylation reaction agent. The silane compound of the general formula (I) is hydrolyzed and polycondensed to form a Si—H group-containing silicone polymer, and the hydrosilylation reagent is used as a Si—H group-containing silicone polymer S.
A hydrosilylation reaction is carried out with the i-H group to obtain a resin-curable functional group-introduced silicone polymer.

【0011】一般式(I)のSi−H基含有シラン化合
物に一般式(II)
The Si-H group-containing silane compound of the general formula (I) has the general formula (II)

【化2】R′nSiX4-n (II) (式中R′及びXは一般式(I)に同じであり、nは0
〜2の整数を意味する。)で表されるシラン化合物を併
用することができる。
Embedded image R ′ n SiX 4-n (II) (wherein R ′ and X are the same as in the general formula (I), and n is 0
Means an integer of ~ 2. ) The silane compound represented by the formula (1) can be used in combination.

【0012】前記一般式(I)で表されるSi−H基含
有シラン化合物は、具体的には
The Si-H group-containing silane compound represented by the general formula (I) is specifically

【化3】HCH3Si(OCH32、HC25Si(O
CH32、H3CH7Si(OCH32、HC49Si
(OCH32、HCH3Si(OC252、HC25
i(OC252、HC37Si(OC252、HC4
9Si(OC252、HCH3Si(OC372、H
25Si(OC372、HC37Si(OC
372、HC49Si(OC372、HCH3Si
(OC492、HC25Si(OC492、HC37
Si(OC492、HC49Si(OC492、等の
アルキルジアルコキシシラン
Embedded image HCH 3 Si (OCH 3 ) 2 , HC 2 H 5 Si (O
CH 3 ) 2 , H 3 CH 7 Si (OCH 3 ) 2 , HC 4 H 9 Si
(OCH 3 ) 2 , HCH 3 Si (OC 2 H 5 ) 2 , HC 2 H 5 S
i (OC 2 H 5 ) 2 , HC 3 H 7 Si (OC 2 H 5 ) 2 , HC 4
H 9 Si (OC 2 H 5 ) 2 , HCH 3 Si (OC 3 H 7 ) 2 , H
C 2 H 5 Si (OC 3 H 7 ) 2 , HC 3 H 7 Si (OC
3 H 7 ) 2 , HC 4 H 9 Si (OC 3 H 7 ) 2 , HCH 3 Si
(OC 4 H 9 ) 2 , HC 2 H 5 Si (OC 4 H 9 ) 2 , HC 3 H 7
Si (OC 4 H 9 ) 2 , HC 4 H 9 Si (OC 4 H 9 ) 2 , etc. alkyldialkoxysilane

【0013】[0013]

【化4】H2Si(OCH32、H2Si(OC
252、H2Si(OC372、H2Si(OC49
2、等のジアルコキシシラン
[Image Omitted] H 2 Si (OCH 3 ) 2 , H 2 Si (OC
2 H 5 ) 2 , H 2 Si (OC 3 H 7 ) 2 , H 2 Si (OC 4 H 9 )
2 , etc. dialkoxysilane

【0014】[0014]

【化5】HPhSi(OCH32、HPhSi(OC2
52、HPhSi(OC372、HPhSi(OC4
92、(ただし、Phはフェニル基を示す。以下同
様)等のフェニルジアルコキシシラン
Embedded image HPhSi (OCH 3 ) 2 , HPhSi (OC 2
H 5 ) 2 , HPhSi (OC 3 H 7 ) 2 , HPhSi (OC 4
H 9 ) 2 , (wherein Ph represents a phenyl group, and so on) and the like.

【0015】[0015]

【化6】H2Si(OCH32、H2Si(OC
252、H2Si(OC372、H2Si(OC49
2、等のジアルコキシシランなどの2官能性シラン化合
物(以下、シラン化合物における官能性とは、縮合反応
性の官能基を有することを意味する。)
Embedded image H 2 Si (OCH 3 ) 2 , H 2 Si (OC
2 H 5 ) 2 , H 2 Si (OC 3 H 7 ) 2 , H 2 Si (OC 4 H 9 )
2 , a bifunctional silane compound such as dialkoxysilane (hereinafter, the functionality in the silane compound means having a condensation-reactive functional group).

【0016】[0016]

【化7】HSi(OCH33、HSi(OC253
HSi(OC373、HSi(OC493、等のトリ
アルコキシシランなどの3官能性シラン化合物などがあ
る。
Embedded image HSi (OCH 3 ) 3 , HSi (OC 2 H 5 ) 3 ,
There are trifunctional silane compounds such as trialkoxysilane such as HSi (OC 3 H 7 ) 3 and HSi (OC 4 H 9 ) 3 .

【0017】一般式(II)で表されるシラン化合物
は、具体的には、
The silane compound represented by the general formula (II) is specifically

【化8】Si(OCH34、Si(OC254、Si
(OC374、Si(OC494等のテトラアルコキ
シシランなどの4官能性シラン化合物、
Embedded image Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si
A tetrafunctional silane compound such as tetraalkoxysilane such as (OC 3 H 7 ) 4 or Si (OC 4 H 9 ) 4 ;

【0018】[0018]

【化9】H3CSi(OCH33、H52Si(OC
33、H73Si(OCH33、H94Si(OCH
33、H3CSi(OC253、H52Si(OC
253、H73Si(OC253、H94Si(OC
253、H3CSi(OC373、H52Si(OC3
73、H73Si(OC373、H94Si(OC3
73、H3CSi(OC493、H52Si(OC4
93、H73Si(OC493、H94Si(OC4
93、等のモノアルキルトリアルコキシシラン、
Embedded image H 3 CSi (OCH 3 ) 3 , H 5 C 2 Si (OC
H 3) 3, H 7 C 3 Si (OCH 3) 3, H 9 C 4 Si (OCH
3 ) 3 , H 3 CSi (OC 2 H 5 ) 3 , H 5 C 2 Si (OC
2 H 5 ) 3 , H 7 C 3 Si (OC 2 H 5 ) 3 , H 9 C 4 Si (OC
2 H 5 ) 3 , H 3 CSi (OC 3 H 7 ) 3 , H 5 C 2 Si (OC 3
H 7) 3, H 7 C 3 Si (OC 3 H 7) 3, H 9 C 4 Si (OC 3
H 7) 3, H 3 CSi (OC 4 H 9) 3, H 5 C 2 Si (OC 4
H 9) 3, H 7 C 3 Si (OC 4 H 9) 3, H 9 C 4 Si (OC 4
H 9 ) 3 , monoalkyltrialkoxysilanes,

【0019】[0019]

【化10】PhSi(OCH33、PhSi(OC
253、PhSi(OC373、PhSi(OC
493(ただし、Phはフェニル基を示す。以下同
様)等のフェニルトリアルコキシシラン、
Embedded image PhSi (OCH 3 ) 3 , PhSi (OC
2 H 5 ) 3 , PhSi (OC 3 H 7 ) 3 , PhSi (OC
4 H 9 ) 3 (wherein Ph represents a phenyl group, the same applies hereinafter), etc.,

【0020】[0020]

【化11】(H3CCOO)3SiCH3、(H3CCO
O)3SiC25、(H3CCOO)3SiC37、(H3
CCOO)3SiC49等のモノアルキルトリアシルオ
キシシラン
Embedded image (H 3 CCOO) 3 SiCH 3 , (H 3 CCO
O) 3 SiC 2 H 5 , (H 3 CCOO) 3 SiC 3 H 7 , (H 3
CCOO) 3 SiC 4 H 9 and other monoalkyltriacyloxysilanes

【0021】[0021]

【化12】Cl3SiCH3、Cl3SiC25、Cl3
iC37、Cl3SiC49Br3SiCH3、Br3Si
25、Br3SiC37、Br3SiC49等のモノア
ルキルトリハロゲノシランなどの3官能性シラン化合
物、
Embedded image Cl 3 SiCH 3 , Cl 3 SiC 2 H 5 , Cl 3 S
iC 3 H 7, Cl 3 SiC 4 H 9 Br 3 SiCH 3, Br 3 Si
Trifunctional silane compounds such as monoalkyltrihalogenosilanes such as C 2 H 5 , Br 3 SiC 3 H 7 and Br 3 SiC 4 H 9 .

【0022】[0022]

【化13】(H3C)2Si(OCH32、(H522
Si(OCH3)2、(H732Si(OCH32
(H942Si(OCH32、(H3C)2Si(OC
252、(H522Si(OC252、(H732
Si(OC252、(H942Si(OC252
(H3C)2Si(OC372、(H522Si(OC
372、(H732Si(OC372、(H942
Si(OC372、(H3C)2Si(OC492
(H522Si(OC492、(H732Si(O
492、(H942Si(OC492等のジアル
キルジアルコキシシラン、
Embedded image (H 3 C) 2 Si (OCH 3 ) 2 , (H 5 C 2 ) 2
Si (OCH3) 2, (H 7 C 3) 2 Si (OCH 3) 2,
(H 9 C 4) 2 Si (OCH 3) 2, (H3C) 2 Si (OC
2 H 5 ) 2 , (H 5 C 2 ) 2 Si (OC 2 H 5 ) 2 , (H 7 C 3 ) 2
Si (OC 2 H 5 ) 2 , (H 9 C 4 ) 2 Si (OC 2 H 5 ) 2 ,
(H 3 C) 2 Si ( OC 3 H 7) 2, (H 5 C 2) 2 Si (OC
3 H 7 ) 2 , (H 7 C 3 ) 2 Si (OC 3 H 7 ) 2 , (H 9 C 4 ) 2
Si (OC 3 H 7 ) 2 , (H 3 C) 2 Si (OC 4 H 9 ) 2 ,
(H 5 C 2) 2 Si (OC 4 H 9) 2, (H 7 C 3) 2 Si (O
Dialkyldialkoxysilanes such as C 4 H 9 ) 2 and (H 9 C 4 ) 2 Si (OC 4 H 9 ) 2 ;

【0023】[0023]

【化14】Ph2Si(OCH32、Ph2Si(OC2
52等のジフェニルジアルコキシシラン、
Embedded image Ph 2 Si (OCH 3 ) 2 , Ph 2 Si (OC 2
Diphenyl dialkoxy silane such as H 5 ) 2 ,

【0024】[0024]

【化15】(H3CCOO)2Si(CH32、(H3
COO)2Si(C252、(H3CCOO)2Si(C
372、(H3CCOO)2Si(C492等のジアル
キルジアシルオキシシラン、
Embedded image (H 3 CCOO) 2 Si (CH 3 ) 2 , (H 3 C
COO) 2 Si (C 2 H 5 ) 2 , (H 3 CCOO) 2 Si (C
3 H 7) 2, (H 3 CCOO) 2 Si (C 4 H 9) dialkyl acyloxysilanes of 2 or the like,

【0025】[0025]

【化16】Cl2Si(CH32、Cl2Si(C25
2、Cl2Si(C373、Cl2Si(C492、B
2Si(CH32、Br2Si(C252、Br2Si
(C372、Br2Si(C492等のアルキルジハ
ロゲノシランなどの2官能性シラン化合物がある。
Embedded image Cl 2 Si (CH 3 ) 2 , Cl 2 Si (C 2 H 5 )
2 , Cl 2 Si (C 3 H 7 ) 3 , Cl 2 Si (C 4 H 9 ) 2 , B
r 2 Si (CH 3 ) 2 , Br 2 Si (C 2 H 5 ) 2 , Br 2 Si
There are bifunctional silane compounds such as alkyldihalogenosilanes such as (C 3 H 7 ) 2 and Br 2 Si (C 4 H 9 ) 2 .

【0026】本発明に用いられる前記一般式(I)で表
されるSi−H基含有シラン化合物は必須成分として使
用され、前記一般式(II)で表されるシラン化合物は
任意成分とされる。前記一般式(I)又は前記一般式
(II)のシラン化合物中に含まれる加水分解・重縮合
可能な基としては、反応性などを考慮すると、アルコキ
シ基が好ましく、前記一般式(I)で表されるSi−H
基含有シラン化合物としてはトリアルコキシシラン又は
モノアルキルジアルコキシシランが特に好ましく、前記
一般式(II)で表されるシラン化合物としてはテトラ
アルコキシシラン、モノアルキルトリアルコキシシラン
又はジアルキルジアルコキシシランが特に好ましい。ま
た、重合度の大きいシリコーン重合体を製造する場合に
は一般式(I)で表されるシラン化合物として、3官能
性シラン化合物を含むことが好ましく、一般式(II)
で表されるシラン化合物を用いる場合には4官能又は3
官能の一般式(II)で表されるシラン化合物を含むこ
とが好ましい。
The Si-H group-containing silane compound represented by the general formula (I) used in the present invention is used as an essential component, and the silane compound represented by the general formula (II) is an optional component. . As the hydrolyzable / polycondensable group contained in the silane compound of the general formula (I) or the general formula (II), an alkoxy group is preferable in view of reactivity and the like. Si-H represented
The group-containing silane compound is particularly preferably trialkoxysilane or monoalkyldialkoxysilane, and the silane compound represented by the general formula (II) is particularly preferably tetraalkoxysilane, monoalkyltrialkoxysilane or dialkyldialkoxysilane. . Further, in the case of producing a silicone polymer having a high degree of polymerization, it is preferable that the silane compound represented by the general formula (I) contains a trifunctional silane compound, and the general formula (II)
When a silane compound represented by
It is preferable to include a functional silane compound represented by the general formula (II).

【0027】本発明のシリコーン重合体の製造方法はシ
ラン化合物の総量に対して、Si−H基含有シラン化合
物35モル%以上配合するものであり、シラン化合物の
総量に対して、一般式(I)で表されるSi−H基含有
シラン化合物35〜100モル%(より好ましくは35
〜85モル%)及び一般式(II)で表されるシラン化
合物0〜65モル%(15〜65モル%)の割合で使用
されることが好ましい。
In the method for producing a silicone polymer of the present invention, 35 mol% or more of Si-H group-containing silane compound is added to the total amount of silane compounds. ) 35 to 100 mol% of the Si-H group-containing silane compound represented by the formula (more preferably 35
~ 85 mol%) and the silane compound represented by the general formula (II) are preferably used in a proportion of 0 to 65 mol% (15 to 65 mol%).

【0028】本発明のシリコーン重合体は三次元架橋し
ているものであることが好ましい。このため、全シラン
化合物のうち3〜100モル%が3官能以上のシラン化
合物であることが好ましく、全シラン化合物のうち3〜
75モル%が3官能以上のシラン化合物であることが特
に好ましい。また、シラン化合物のうち15〜100モ
ル%が4官能性シラン化合物又は3官能性シラン化合物
であることが好ましく、20〜85モル%が4官能性シ
ラン化合物又は3官能性シラン化合物であることがより
好ましい。すなわち、一般式(II)で表されるシラン
化合物のうち2官能性シラン化合物は、0〜85モル%
であることが好ましく、より好ましくは0〜80モル%
の割合で使用される。特に好ましくは、一般式(II)
で表されるシラン化合物のうち4官能性シラン化合物が
15〜100モル%、より好ましくは20〜100モル
%、3官能性シラン化合物が0〜85モル%、より好ま
しくは0〜80モル%及び2官能性シラン化合物が0〜
85モル%、より好ましくは0〜80モル%の割合で使
用される。
The silicone polymer of the present invention is preferably three-dimensionally crosslinked. Therefore, 3 to 100 mol% of all silane compounds are preferably trifunctional or higher functional silane compounds, and 3 to 10 mol% of all silane compounds are preferable.
It is particularly preferable that 75 mol% is a trifunctional or higher functional silane compound. Further, 15 to 100 mol% of the silane compound is preferably a tetrafunctional silane compound or a trifunctional silane compound, and 20 to 85 mol% is preferably a tetrafunctional silane compound or a trifunctional silane compound. More preferable. That is, in the silane compound represented by the general formula (II), the content of the bifunctional silane compound is 0 to 85 mol%.
Is preferable, and more preferably 0 to 80 mol%.
Used in proportion. Particularly preferably, the compound of the general formula (II)
In the silane compound represented by, the tetrafunctional silane compound is 15 to 100 mol%, more preferably 20 to 100 mol%, and the trifunctional silane compound is 0 to 85 mol%, more preferably 0 to 80 mol%. The bifunctional silane compound is 0
It is used in a proportion of 85 mol%, more preferably 0 to 80 mol%.

【0029】2官能性シラン化合物が85モル%を越え
ると、シリコーン重合体の鎖が長くなり、メチル基等の
疎水性基の配向等により無機材料表面に横向きとなる可
能性が高く、リジットな層を形成しやすいため、低応力
化が難しくなる。
When the content of the bifunctional silane compound exceeds 85 mol%, the chain of the silicone polymer becomes long and there is a high possibility that it will be laterally oriented to the surface of the inorganic material due to the orientation of the hydrophobic group such as methyl group and the like. Since it is easy to form a layer, it is difficult to reduce the stress.

【0030】本発明におけるシリコーン重合体は、前記
した一般式(I)で表されるSi−H基含有シラン化合
物と一般式(II)で表されるシラン化合物を加水分解
・重縮合させ、さらにヒドロシリル化反応して製造され
るが、このとき、加水分解・重縮合触媒としては、塩
酸、硫酸、リン酸、硝酸、フッ酸等の無機酸、シュウ
酸、マレイン酸、スルホン酸、ギ酸等の有機酸を使用す
ることが好ましく、アンモニア、トリメチルアンモニウ
ムなどの塩基性触媒を用いることもできる。これら加水
分解・重縮合触媒は、一般式(I)で表されるSi−H
基含有シラン化合物と一般式(II)で表されるシラン
化合物の量に応じて適当量用いられるが、好適には一般
式(I)で表されるSi−H基含有シラン化合物と一般
式(II)で表されるシラン化合物の合計1モルに対し
0.001〜10モルの範囲で用いられる。ヒドロシリ
ル化触媒としては、白金、パラジウム、ロジウム系の遷
移金属化合物を用いることができ、特に塩化白金酸等の
白金化合物を使用することが好ましく、過酸化亜鉛、過
酸化カルシウム、過酸化水素、過酸化ジ−tert−ブ
チル、過酸化ストロンチウム、過酸化ナトリウム、過酸
化鉛、過酸化バリウム等の過酸化物、また、3級アミ
ン、ホスフィンを用いることもできる。これらヒドロシ
リル化触媒は、一般式(I)で表されるSi−H基含有
シラン化合物のSi−H基1モルに対し、好ましくは
0.0000001〜0.0001モルの範囲で用いら
れる。
The silicone polymer according to the present invention is obtained by hydrolyzing and polycondensing the Si-H group-containing silane compound represented by the general formula (I) and the silane compound represented by the general formula (II). It is produced by a hydrosilylation reaction. At this time, as the hydrolysis / polycondensation catalyst, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, hydrofluoric acid, oxalic acid, maleic acid, sulfonic acid, formic acid, etc. It is preferable to use an organic acid, and a basic catalyst such as ammonia or trimethylammonium can also be used. These hydrolysis / polycondensation catalysts are Si-H represented by the general formula (I).
It is used in an appropriate amount depending on the amounts of the group-containing silane compound and the silane compound represented by the general formula (II), and preferably the Si—H group-containing silane compound represented by the general formula (I) and the general formula ( It is used in the range of 0.001 to 10 mol per 1 mol in total of the silane compound represented by II). As the hydrosilylation catalyst, platinum, palladium, rhodium-based transition metal compounds can be used, and it is particularly preferable to use a platinum compound such as chloroplatinic acid. Zinc peroxide, calcium peroxide, hydrogen peroxide, peroxide Peroxides such as di-tert-butyl oxide, strontium peroxide, sodium peroxide, lead peroxide and barium peroxide, as well as tertiary amines and phosphines can also be used. These hydrosilylation catalysts are preferably used in the range of 0.0000001 to 0.0001 mol with respect to 1 mol of the Si-H group of the Si-H group-containing silane compound represented by the general formula (I).

【0031】本発明のヒドロシリル化反応剤は、ビニル
基等のヒドロシリル化反応のための二重結合と、エポキ
シ基やアミノ基等の樹脂硬化性官能基を有しているもの
である。樹脂硬化性官能基とは有機化合物又は無機化合
物と反応又は相互作用する官能基のことである。ここ
で、この官能基としては、硬化剤又は架橋剤と反応する
反応性有機基、自硬化反応する反応性有機基、無機充填
剤の表面に存在する官能基と反応又は相互作用しする有
機基、水酸基と反応する基等がある。具体例としては、
エポキシ基を有するヒドロシリル化反応剤としてアリル
グリシジルエーテル等を用いることができ、また、アミ
ノ基を有するヒドロシリル化反応剤としてアリルアミ
ン、塩酸アリルアミン、アミノエチルアクリレート等の
アミノアルキルアクリレート、アミノエチルメタクリレ
ート等のアミノアルキルメタクリレートなどを用いるこ
とができる。これらヒドロシリル化反応剤は、一般式
(I)で表されるSi−H基含有シラン化合物のSi−
H基に対し、0.1〜2当量の範囲とすることが好まし
く、さらに0.5〜1.5当量が好ましく、特に0.9
〜1.1当量とすることが好ましい。
The hydrosilylation reaction agent of the present invention has a double bond such as a vinyl group for the hydrosilylation reaction and a resin-curable functional group such as an epoxy group or an amino group. The resin-curable functional group is a functional group that reacts or interacts with an organic compound or an inorganic compound. Here, as the functional group, a reactive organic group that reacts with a curing agent or a cross-linking agent, a reactive organic group that undergoes a self-curing reaction, an organic group that reacts or interacts with a functional group present on the surface of an inorganic filler. , And groups that react with hydroxyl groups. As a specific example,
As the hydrosilylation reagent having an epoxy group, allyl glycidyl ether and the like can be used, and as the hydrosilylation reagent having an amino group, allylamine, allylamine hydrochloride, aminoalkyl acrylate such as aminoethyl acrylate, and amino such as aminoethyl methacrylate. Alkyl methacrylate or the like can be used. These hydrosilylation reaction agents are Si- of the Si-H group-containing silane compound represented by the general formula (I).
It is preferably in the range of 0.1 to 2 equivalents, more preferably 0.5 to 1.5 equivalents, and particularly preferably 0.9 to H group.
It is preferable to set it to 1.1 equivalents.

【0032】また、上記の加水分解・重縮合、ヒドロシ
リル化反応は、メタノール、エタノールなどのアルコー
ル系溶剤、エチレングリコールモノメチルエーテルなど
のエーテル系溶剤、アセトン、メチルエチルケトン、メ
チルイソブチルケトンなどのケトン系溶剤、N,N−ジ
メチルホルムアミドなどのアミド系溶剤、トルエン、キ
シレンなどの芳香族炭化水素系溶剤、酢酸エチルなどの
エステル系溶剤、ブチロニトリルなどのニトリル系溶剤
等の溶剤中で行うことが好ましい。これら溶剤は単独で
用いてもよく、数種類を併用した混合溶剤を用いること
もできる。また、前記加水分解・重縮合は特に水を添加
しなくても大気雰囲気下で進行するが、水を添加しても
よい。水の量は適宜決められるが、多すぎる場合には塗
布液の保存安定性が低下するなどの問題があるので、水
の量は、前記シラン化合物の総量1モルに対して0〜5
モルの範囲とすることが好ましく、特に、0.5〜4モ
ルが好ましい。
The above-mentioned hydrolysis / polycondensation and hydrosilylation reaction can be carried out by using alcohol solvents such as methanol and ethanol, ether solvents such as ethylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, It is preferably carried out in an amide solvent such as N, N-dimethylformamide, an aromatic hydrocarbon solvent such as toluene or xylene, an ester solvent such as ethyl acetate, or a nitrile solvent such as butyronitrile. These solvents may be used alone, or a mixed solvent of several kinds may be used together. Further, the hydrolysis / polycondensation proceeds in the atmosphere without particularly adding water, but water may be added. The amount of water is appropriately determined, but if it is too large, there is a problem that the storage stability of the coating solution decreases, so the amount of water is 0 to 5 relative to 1 mol of the total amount of the silane compound.
It is preferably in the range of moles, particularly preferably 0.5 to 4 moles.

【0033】シリコーン重合体の製造は、上記の条件、
配合を調整してゲル化しないように行われる。シリコー
ン重合体は、上記の反応溶媒と同じ溶媒に溶解して使用
することが作業性の点で好ましい。このためには、上記
の反応生成溶液をそのまま使用してもよく、反応生成溶
液からシリコーン重合体を分離し、改めて上記溶媒に溶
解してもよい。
The production of the silicone polymer is carried out under the above conditions,
The formulation is adjusted so that gelation does not occur. From the viewpoint of workability, the silicone polymer is preferably used by dissolving it in the same solvent as the above reaction solvent. For this purpose, the above reaction product solution may be used as it is, or the silicone polymer may be separated from the reaction product solution and dissolved again in the above solvent.

【0034】本発明におけるシリコーン重合体は、三次
元架橋しているが完全硬化又はゲル化していないもので
あり、本発明おけるシリコーン重合体の重合は、例え
ば、反応溶媒に溶解する程度に制御される。このため
に、樹脂硬化性シリコーン重合体の製造、保管及び使用
に際し、温度は、常温以上200℃以下であることが好
ましく、150℃以下であることがより好ましい。
The silicone polymer in the present invention is three-dimensionally crosslinked but is not completely cured or gelled, and the polymerization of the silicone polymer in the present invention is controlled, for example, to such an extent that it is dissolved in a reaction solvent. It For this reason, in the production, storage and use of the resin-curable silicone polymer, the temperature is preferably room temperature or higher and 200 ° C. or lower, and more preferably 150 ° C. or lower.

【0035】本発明におけるシリコーン重合体の製造に
あたっては、Si−H基含有シリコーン重合体を中間生
成物として作製することができる。このSi−H基含有
シリコーン重合体のSi−H基はSi−H基含有2官能
性シロキサン単位(HR′SiO2/2)又は(H2SiO
2/2)(式中、R′は前記の通りであり、シリコーン重
合体中のR′基は互いに同一であってもよいし、異なっ
てもよい。以下同様)又はSi−H基含有3官能性シロ
キサン単位(HSiO3/2)によって導入されている。
In producing the silicone polymer of the present invention, a Si-H group-containing silicone polymer can be produced as an intermediate product. Si-H groups of the Si-H group-containing silicone polymer is Si-H group-containing difunctional siloxane units (HR'SiO 2/2) or (H 2 SiO
2/2 ) (in the formula, R'is as described above, and the R'groups in the silicone polymer may be the same or different from each other. The same applies hereinafter) or Si-H group-containing 3 It is introduced by a functional siloxane unit (HSiO 3/2 ).

【0036】本発明のシリコーン重合体は、重合度が3
以上のものであればよく、重合度が7000以下である
ことが好ましい。溶液としての使用する際の効率を考慮
すると重合度が2000以下であることが好ましく、重
合度を3〜500の範囲とすることが特に好ましい。こ
のシリコーン重合体の側鎖及び末端には、Si−H基に
対するヒドロシリル化反応によって導入された樹脂硬化
性官能基が存在する。ここで、シリコーン重合体の重合
度は、その重合体の分子量(低重合度の場合)又はゲル
パーミエーションクロマトグラフィーにより標準ポリス
チレン若しくはポリエチレングリコールの検量線を利用
して測定した数平均分子量から算出したものである。
The silicone polymer of the present invention has a degree of polymerization of 3
The above is sufficient, and the degree of polymerization is preferably 7,000 or less. The polymerization degree is preferably 2000 or less, and particularly preferably in the range of 3 to 500, in consideration of the efficiency when used as a solution. A resin-curable functional group introduced by a hydrosilylation reaction with respect to the Si-H group is present on the side chain and terminal of this silicone polymer. Here, the degree of polymerization of the silicone polymer was calculated from the molecular weight of the polymer (in the case of a low degree of polymerization) or the number average molecular weight measured by gel permeation chromatography using a calibration curve of standard polystyrene or polyethylene glycol. It is a thing.

【0037】なお、シリコーン重合体を作製する際に
は、前記の様にシリコーン重合体を製造してからヒドロ
シリル化反応剤を添加してヒドロシリル化反応を行って
もよく、また、ヒドロシリル化反応剤を前記シラン化合
物と同時に配合し、シラン化合物の加水分解・重縮合と
同時に又はその途中でヒドロシリル化反応を行ってもよ
い。
When the silicone polymer is produced, the hydrosilylation reaction may be carried out by adding the hydrosilylation reaction agent after producing the silicone polymer as described above. May be added at the same time as the silane compound, and the hydrosilylation reaction may be carried out simultaneously with or during the hydrolysis / polycondensation of the silane compound.

【0038】上記の樹脂硬化性官能基を有するシリコー
ン重合体(本発明において、樹脂硬化性シリコーン重合
体と記載する。)を含有してなる熱硬化性樹脂組成物に
は、無機充填剤を多量に配合することができる。無機充
填剤としては、その種類は特に制約はなく、例えば、炭
酸カルシウム、アルミナ、酸化チタン、マイカ、炭酸ア
ルミニウム、水酸化アルミニウム、ケイ酸マグネシウ
ム、ケイ酸アルミニウム、シリカ、ガラス短繊維、ホウ
酸アルミニウムウィスカや炭化ケイ素ウィスカ等の各種
ウィスカ等が用いられる。また、これらを数種類併用し
ても良い。無機充填剤の形状、粒径については特に制限
はなく、通常用いられている粒径0.001〜50μm
のものを本発明においても用いることができ、好ましく
は0.01〜10μmのものが好適に用いられる。これ
ら無機充填剤の配合量は、樹脂硬化性シリコーン重合体
100重量部に対して100〜2000重量部が好まし
く、300〜1500重量部が特に好ましい。無機充填
剤の配合量が少なすぎると熱膨張係数が大きくなる傾向
があり、無機充填剤が多すぎるとフィルム化が困難にな
る傾向がある。
The thermosetting resin composition containing the above-mentioned silicone polymer having a resin-curable functional group (referred to as a resin-curable silicone polymer in the present invention) contains a large amount of an inorganic filler. Can be blended with. The type of the inorganic filler is not particularly limited, and examples thereof include calcium carbonate, alumina, titanium oxide, mica, aluminum carbonate, aluminum hydroxide, magnesium silicate, aluminum silicate, silica, short glass fibers, aluminum borate. Various whiskers such as whiskers and silicon carbide whiskers are used. Moreover, you may use these together in several types. The shape and particle size of the inorganic filler are not particularly limited, and the commonly used particle size is 0.001 to 50 μm.
Those having a thickness of 0.01 to 10 μm can be preferably used in the present invention. The blending amount of these inorganic fillers is preferably 100 to 2000 parts by weight, and particularly preferably 300 to 1500 parts by weight, based on 100 parts by weight of the resin-curable silicone polymer. If the content of the inorganic filler is too small, the coefficient of thermal expansion tends to increase, and if the content of the inorganic filler is too large, it tends to be difficult to form a film.

【0039】本発明おけるシリコーン重合体を含有する
熱硬化性樹脂組成物の硬化剤は、シリコーン重合体の樹
脂硬化性官能基と反応(硬化)する化合物であればよ
く、特に制限はない。例えば樹脂硬化性官能基がエポキ
シ基の場合には、アミン系硬化剤やフェノール系硬化剤
などの一般にエポキシ樹脂用硬化剤として用いられるも
のを利用することができる。エポキシ樹脂用硬化剤とし
ては多官能フェノール化合物が好ましい。多官能フェノ
ール化合物としては、ビスフェノールA、ビスフェノー
ルF、ビスフェノールS、レゾルシン、カテコール等の
多価フェノールがあり、また、これらの多価フェノー
ル、フェノール、クレゾール等の一価のフェノール化合
物とホルムアルデヒドを反応させて得られるノボラック
樹脂などがある。多官能フェノール化合物は臭素等のハ
ロゲンで置換されていてもよい。硬化剤の使用量は、シ
リコーン重合体の樹脂硬化性官能基1当量に対して、
0.2〜1.5当量使用することが好ましく、0.5〜
1.2当量使用することが特に好ましい。硬化物と金属
との接着性を向上させるためにはエポキシ樹脂用硬化剤
にアミン化合物を含むことが好ましく、また、硬化剤が
過剰に含まれていることが好ましい。このアミン化合物
は接着性補強剤として作用するものであり、具体例につ
いては後に記載する。耐熱性などの他の特性と接着性と
のバランスを考慮すると、アミン化合物を含む硬化剤を
シリコーン重合体の樹脂硬化性官能基1当量に対して
1.0〜1.5当量用いることが好ましく、樹脂硬化性
官能基1当量に対して1.0〜1.2当量用いることが
特に好ましい。
The curing agent for the thermosetting resin composition containing the silicone polymer in the present invention is not particularly limited as long as it is a compound that reacts (cures) with the resin-curable functional group of the silicone polymer. For example, when the resin-curable functional group is an epoxy group, those generally used as epoxy resin curing agents such as amine-based curing agents and phenol-based curing agents can be used. A polyfunctional phenol compound is preferable as the curing agent for the epoxy resin. As the polyfunctional phenol compound, there are polyphenols such as bisphenol A, bisphenol F, bisphenol S, resorcin, and catechol. Further, monovalent phenol compounds such as these polyphenols, phenol and cresol are reacted with formaldehyde. There are novolac resins and the like. The polyfunctional phenol compound may be substituted with halogen such as bromine. The amount of the curing agent used is 1 equivalent of the resin-curable functional group of the silicone polymer.
It is preferable to use 0.2 to 1.5 equivalents, and 0.5 to
It is particularly preferred to use 1.2 equivalents. In order to improve the adhesion between the cured product and the metal, the curing agent for epoxy resin preferably contains an amine compound, and it is preferable that the curing agent is contained in excess. This amine compound acts as an adhesive reinforcing agent, and specific examples will be described later. Considering the balance between other properties such as heat resistance and adhesiveness, it is preferable to use a curing agent containing an amine compound in an amount of 1.0 to 1.5 equivalents per equivalent of the resin-curable functional group of the silicone polymer. It is particularly preferable to use 1.0 to 1.2 equivalents relative to 1 equivalent of the resin-curable functional group.

【0040】また、硬化剤とともに硬化促進剤を加えて
もよい。例えば樹脂硬化性官能基がエポキシ基の場合に
は、イミダゾール化合物などが一般に使用されており、
本発明においてもこれを用いることができる。硬化促進
剤として用いられるイミダゾール化合物の具体例として
はイミダゾール、2−エチルイミダゾール、2−エチル
−4−メチルイミダゾール2−フェニルイミダゾール、
2−ウンデシルイミダゾール、1−ベンジル−2−メチ
ルイミダゾール、2−ヘプタデシルイミダゾール、4,
5−ジフェニルイミダゾール、2−メチルイミダゾリ
ン、2−フェニルイミダゾリン、2−ウンデシルイミダ
ゾリン、2−ヘプタデシルイミダゾリン、2−イソプロ
ピルイミダゾール、2,4−ジメチルイミダゾール、2
−フェニル−4−メチルイミダゾール、2−エチルイミ
ダゾリン、2−イソプロピルイミダゾリン、2,4−ジ
メチルイミダゾリン、2−フェニル−4−メチルイミダ
ゾリン等が挙げられる。硬化促進剤の十分な効果を得る
ためには、シリコーン重合体100重量部に対して0.
01重量部以上使用することが好ましく、熱膨張率や伸
び等の観点から10重量部以下が好ましい。
A curing accelerator may be added together with the curing agent. For example, when the resin-curable functional group is an epoxy group, an imidazole compound or the like is generally used,
This can also be used in the present invention. Specific examples of the imidazole compound used as a curing accelerator include imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole 2-phenylimidazole,
2-undecyl imidazole, 1-benzyl-2-methyl imidazole, 2-heptadecyl imidazole, 4,
5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2
-Phenyl-4-methylimidazole, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4-methylimidazoline and the like can be mentioned. In order to obtain the sufficient effect of the curing accelerator, it is necessary that the amount of the curing accelerator be 0.1% with respect to 100 parts by weight of the silicone polymer.
It is preferably used in an amount of 01 parts by weight or more, and is preferably 10 parts by weight or less from the viewpoint of thermal expansion coefficient and elongation.

【0041】本発明おけるシリコーン重合体を含有する
熱硬化性樹脂組成物には必要に応じて両末端シリル基変
性エラストマを加えることができる。熱硬化性樹脂組成
物に両末端シリル基変性エラストマを加えることで樹脂
硬化物の破断応力が大きくなり、取り扱い性が向上す
る。本発明における両末端シリル基変性エラストマと
は、重量平均分子量が3000〜10万程度の長鎖状エ
ラストマであり、主鎖の両末端にアルコキシシリル基を
有する。エラストマの主鎖については特に制限はなく、
ポリイソブチレンやポリプロピレンなどのポリオレフィ
ン、ポリプロピレンオキシドなどのポリエーテル、ブタ
ジエンゴム又はアクリルゴム等の主鎖骨格を有するエラ
ストマが利用できる。アルコキシシリル基はSi元素に
1〜3個のアルコキシ基が結合したものでよく、Si元
素に結合したアルコキシ基の炭素数は1〜4であること
が好ましい。両末端シリル基変性エラストマとしては、
例えばSAT200(両末端シリル基変性ポリエーテ
ル、鐘淵化学工業株式会社製商品名)、EP103S、
EP303S(両末端シリル基変性ポリイソブチレン、
鐘淵化学工業株式会社製商品名)等を用いることができ
る。両末端シリル基変性エラストマの配合量は、シリコ
ーン重合体100重量部に対して0.1〜30重量部で
あることが好ましい。0.1重量部未満では配合するこ
とによる効果が現れにくく、30重量部を越えると熱膨
張率が大きくなる傾向がある。
The silicone resin-containing thermosetting resin composition of the present invention may optionally contain a silyl group-modified elastomer at both ends. By adding the elastomer modified with silyl groups at both ends to the thermosetting resin composition, the breaking stress of the cured resin becomes large and the handleability is improved. The both-end silyl group-modified elastomer in the present invention is a long-chain elastomer having a weight average molecular weight of about 3,000 to 100,000 and has an alkoxysilyl group at both ends of its main chain. There are no particular restrictions on the main chain of the elastomer,
Polyolefin such as polyisobutylene or polypropylene, polyether such as polypropylene oxide, elastomer having a main chain skeleton such as butadiene rubber or acrylic rubber can be used. The alkoxysilyl group may be a Si element to which 1 to 3 alkoxy groups are bonded, and the alkoxy group bonded to the Si element preferably has 1 to 4 carbon atoms. Elastomer modified with silyl groups at both ends
For example, SAT200 (polyether modified with silyl groups at both ends, trade name manufactured by Kanegafuchi Chemical Co., Ltd.), EP103S,
EP303S (polyisobutylene modified with silyl groups at both ends,
Kanebuchi Chemical Industry Co., Ltd.) can be used. The compounding amount of the silyl group-modified elastomer at both ends is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the silicone polymer. If the amount is less than 0.1 part by weight, the effect due to the compounding is difficult to appear, and if it exceeds 30 parts by weight, the coefficient of thermal expansion tends to increase.

【0042】本発明における熱硬化性樹脂組成物におい
ては、本発明の樹脂硬化性シリコーン重合体にエポキシ
基を持つシリコーンオイル(本発明において、エポキシ
変性シリコーンオイルと記載する)を併用することもで
きる。樹脂硬化性シリコーン重合体とエポキシ変性シリ
コーンオイルの配合割合は、これらの合計100重量部
に対して樹脂硬化性シリコーン重合体が0.1重量部以
上含まれていることが好ましく、熱膨張率、伸び、破断
応力の観点から、樹脂硬化性シリコーン重合体が5重量
部以上含まれていることがより好ましく、20重量部以
上含まれていることが特に好ましい。また、伸び、破断
応力の観点から、樹脂硬化性シリコーン重合体とエポキ
シ変性シリコーンオイルの配合の合計100重量部に対
してエポキシ変性シリコーンオイルが5重量部以上含ま
れていることが好ましく、40重量部以上が特に好まし
い。樹脂硬化性シリコーン重合体が0.1重量部未満の
場合は無機充填剤の分散性が低下する傾向がある。樹脂
硬化性シリコーン重合体とエポキシ変性シリコーンオイ
ルの配合比は熱膨張係数と伸びの値から、目的に応じて
決めることができる。すなわち、樹脂硬化性シリコーン
重合体の配合比が大きいほど熱膨張係数が小さくなり、
エポキシ変性シリコーンオイルの配合比を増やすことで
伸びの値を大きくすることができる。ここで、エポキシ
変性シリコーンオイルとは側鎖にエポキシ基を含む官能
基を有する鎖状ポリシロキサン化合物であり、25℃に
おける粘度が10−2〜10Pa・sの範囲にあるも
のである。なお、本発明における粘度は東京計器(株)
製EMD型粘度計を用いて、25℃で測定した。エポキ
シ変性シリコーンオイルのエポキシ当量は150〜50
00であることが好ましく、300〜1000であるこ
とが特に好ましい。
In the thermosetting resin composition of the present invention, the resin-curable silicone polymer of the present invention may be used in combination with a silicone oil having an epoxy group (referred to as an epoxy-modified silicone oil in the present invention). . The mixing ratio of the resin-curable silicone polymer and the epoxy-modified silicone oil is preferably such that the resin-curable silicone polymer is contained in an amount of 0.1 part by weight or more based on 100 parts by weight of the total of these, and the coefficient of thermal expansion is From the viewpoint of elongation and breaking stress, the resin-curable silicone polymer is more preferably contained in an amount of 5 parts by weight or more, and particularly preferably 20 parts by weight or more. From the viewpoint of elongation and breaking stress, it is preferable that the epoxy-modified silicone oil is contained in an amount of 5 parts by weight or more based on 100 parts by weight of the total of the resin-curable silicone polymer and the epoxy-modified silicone oil, and 40 parts by weight. Part or more is particularly preferable. When the amount of the resin-curable silicone polymer is less than 0.1 part by weight, the dispersibility of the inorganic filler tends to decrease. The compounding ratio of the resin-curable silicone polymer and the epoxy-modified silicone oil can be determined according to the purpose from the values of thermal expansion coefficient and elongation. That is, the larger the compounding ratio of the resin-curable silicone polymer, the smaller the coefficient of thermal expansion,
The elongation value can be increased by increasing the compounding ratio of the epoxy-modified silicone oil. Here, the epoxy-modified silicone oil is a chain polysiloxane compound having a functional group containing an epoxy group in its side chain, and has a viscosity at 25 ° C. in the range of 10 −2 to 10 3 Pa · s. The viscosity in the present invention is the value of Tokyo Keiki Co., Ltd.
It measured at 25 degreeC using the EMD viscometer made from. Epoxy equivalent of epoxy-modified silicone oil is 150-50
00 is preferable, and 300 to 1000 is particularly preferable.

【0043】前記のエポキシ変性シリコーンオイルを含
む熱硬化性樹脂組成物において、本発明の樹脂硬化性シ
リコーン重合体の一部又は全部に換えて樹脂硬化性官能
基を含まないシリコーン重合体(本発明において、非樹
脂硬化性シリコーン重合体と記載する。)を使用するこ
ともできる。非樹脂硬化性シリコーン重合体を用いる場
合には、非樹脂硬化性シリコーン重合体の配合量は、エ
ポキシ変性シリコーンオイルとシリコーン重合体の合計
100重量部に対して30重量部以下であることが好ま
しい。非樹脂硬化性シリコーン重合体が30重量部を越
える場合は樹脂硬化物の伸びの値が低下する傾向があ
る。
In the thermosetting resin composition containing the above epoxy-modified silicone oil, a silicone polymer containing no resin-curable functional group in place of a part or all of the resin-curable silicone polymer of the present invention (the present invention In the above, it is also referred to as a non-resin curable silicone polymer). When the non-resin curable silicone polymer is used, the amount of the non-resin curable silicone polymer compounded is preferably 30 parts by weight or less based on 100 parts by weight of the total of the epoxy-modified silicone oil and the silicone polymer. . When the amount of the non-resin curable silicone polymer exceeds 30 parts by weight, the elongation value of the resin cured product tends to decrease.

【0044】ここで、非樹脂硬化性シリコーン重合体と
は、2官能性シロキサン単位(R2SiO2/2)、3官能
性シロキサン単位(RSiO3/2)(式中、Rは有機基
であり、シリコーン重合体中のR基は互いに同一であっ
てもよいし、異なっていてもよい。)及び4官能性シロ
キサン単位(SiO4/2)から選ばれる少なくとも1種
類のシロキサン単位を含有し、末端に水酸基と反応する
官能基を1個以上有するものである。重合度は2〜70
00が好ましく、さらに好ましい重合度は2〜100、
特に好ましい重合度は2〜70である。前記Rとして
は、炭素数1〜4のアルキル基、フェニル基等の芳香族
基などがある。水酸基と反応する官能基としては、シラ
ノール基、炭素数1〜4のアルコキシル基、炭素数1〜
4のアシルオキシ基、塩素等の臭素以外のハロゲン等が
ある。
Here, the non-resin curable silicone polymer means a bifunctional siloxane unit (R 2 SiO 2/2 ), a trifunctional siloxane unit (RSiO 3/2 ), where R is an organic group. R groups in the silicone polymer may be the same as or different from each other) and at least one siloxane unit selected from tetrafunctional siloxane units (SiO 4/2 ). , Having at least one functional group that reacts with a hydroxyl group at the terminal. Degree of polymerization is 2-70
00 is preferable, and the more preferable degree of polymerization is 2 to 100,
A particularly preferred degree of polymerization is 2 to 70. Examples of R include an alkyl group having 1 to 4 carbon atoms and an aromatic group such as a phenyl group. Examples of the functional group that reacts with a hydroxyl group include a silanol group, an alkoxyl group having 1 to 4 carbon atoms, and 1 to 1 carbon atoms.
4 includes an acyloxy group of 4, a halogen other than bromine such as chlorine, and the like.

【0045】このような非樹脂硬化性シリコーン重合体
は、前記一般式(II)で表されるシラン化合物を加水
分解、重縮合させて得ることができる。非樹脂硬化性シ
リコーン重合体の合成に用いられる前記一般式(II)
で表されるシラン化合物としては、4官能性シラン化合
物又は3官能性シラン化合物が必須成分として用いら
れ、2官能性シラン化合物は必要に応じて適宜使用され
る。特に、4官能性シラン化合物としてはテトラアルコ
キシシランが好ましく、3官能性シラン化合物としては
モノアルキルトリアルコキシシランが好ましく、2官能
性シラン化合物としてはジアルキルジアルコキシシラン
が好ましい。シラン化合物の使用割合は、好ましくは、
4官能性シラン化合物又は3官能性シラン化合物15〜
100モル%及び2官能性シラン化合物を0〜85モル
%が好ましく、4官能性シラン化合物または3官能性シ
ラン化合物の1種以上を20〜100モル%及び2官能
性シラン化合物を0〜80モル%がより好ましい。ま
た、特に、4官能性シラン化合物を15〜100モル
%、3官能性シラン化合物0〜85モル%及び2官能性
シラン化合物0〜85モル%の割合で使用することが好
ましく、4官能性シラン化合物を20〜100モル%、
3官能性シラン化合物を0〜80モル%と、2官能性シ
ラン化合物を0〜80モル%の割合で使用することがよ
り好ましい。加水分解・重縮合反応の触媒及び溶剤は樹
脂硬化性シリコーン重合体を製造する際の加水分解・重
縮合反応と同様のものを適用することができる。非樹脂
硬化性シリコーン重合体の製造は条件、配合を調整して
ゲル化しないように行われる。非樹脂硬化性シリコーン
重合体は、3次元架橋しているが完全硬化又はゲル化し
ていないものであり、3次元架橋は、例えば、反応溶媒
に溶解する程度に制御される。このために、非樹脂硬化
性シリコーン重合体の製造、保管及び使用に際し、温度
は、常温以上200℃以下であることが好ましく、15
0℃以下であることがより好ましい。
Such a non-resin curable silicone polymer can be obtained by hydrolyzing and polycondensing the silane compound represented by the general formula (II). The above-mentioned general formula (II) used for the synthesis of a non-resin curable silicone polymer
As the silane compound represented by, a tetrafunctional silane compound or a trifunctional silane compound is used as an essential component, and a difunctional silane compound is appropriately used as necessary. Particularly, the tetrafunctional silane compound is preferably tetraalkoxysilane, the trifunctional silane compound is preferably monoalkyltrialkoxysilane, and the bifunctional silane compound is preferably dialkyldialkoxysilane. The use ratio of the silane compound is preferably
Tetrafunctional silane compound or trifunctional silane compound 15 to
100 mol% and 0 to 85 mol% of the bifunctional silane compound are preferable, 20 to 100 mol% of one or more kinds of the tetrafunctional silane compound or the trifunctional silane compound, and 0 to 80 mol of the bifunctional silane compound. % Is more preferable. Further, it is particularly preferable to use the tetrafunctional silane compound in an amount of 15 to 100 mol%, the trifunctional silane compound 0 to 85 mol%, and the bifunctional silane compound 0 to 85 mol%. 20 to 100 mol% of the compound,
It is more preferable to use the trifunctional silane compound in an amount of 0 to 80 mol% and the bifunctional silane compound in an amount of 0 to 80 mol%. As the catalyst and solvent for the hydrolysis / polycondensation reaction, the same ones as those used in the hydrolysis / polycondensation reaction for producing the resin-curable silicone polymer can be applied. The non-resin curable silicone polymer is produced by adjusting the conditions and blending so as not to gel. The non-resin curable silicone polymer is three-dimensionally crosslinked but not completely cured or gelled, and the three-dimensional crosslinking is controlled, for example, to such an extent that it is dissolved in the reaction solvent. Therefore, the temperature is preferably room temperature or higher and 200 ° C. or lower during the production, storage and use of the non-resin curable silicone polymer.
It is more preferably 0 ° C. or lower.

【0046】樹脂硬化性シリコーン重合体又は非樹脂硬
化性シリコーン重合体と、エポキシ変性シリコーンオイ
ルとを併用する場合において、シリコーン重合体成分と
して非樹脂硬化性シリコーン重合体のみを用いた場合と
比較し、樹脂硬化性シリコーン重合体を含む場合は熱膨
張率、伸び、破断応力の観点から好ましく、シリコーン
重合体成分として樹脂硬化性シリコーン重合体のみを用
いることが特に好ましい。
When a resin-curable silicone polymer or a non-resin-curable silicone polymer is used in combination with an epoxy-modified silicone oil, a comparison is made with the case where only the non-resin-curable silicone polymer is used as the silicone polymer component. When the resin-curable silicone polymer is contained, it is preferable from the viewpoint of thermal expansion coefficient, elongation and breaking stress, and it is particularly preferable to use only the resin-curable silicone polymer as the silicone polymer component.

【0047】本発明の熱硬化性樹脂組成物には、金属箔
との接着性を高め、樹脂硬化物と金属箔との引き剥がし
強度を高めるために、必要に応じて接着性補強剤を加え
ることができる。接着性補強剤としてはアミノ基や水酸
基などの反応性官能基を複数持つ化合物を用いることが
でき、これらはエポキシ樹脂硬化剤としても作用する。
反応性官能基を複数持つアミン化合物としては、例え
ば、m−フェニレンジアミン、4,4'−ジアミノベン
ズアニリド、4,4'−ジアミノ−2,2'−ジメチルビ
フェニル等の分子内に複数のアミノ基を持つ化合物やジ
シアンジアミドなどの、分子内に複数の活性N−H基を
有する化合物、3−アミノ−1−プロパノール、4−ア
ミノフェノール等の分子内にアミノ基と水酸基を併せ持
つ化合物などを用いることができる。接着性補強剤の配
合量は前記シリコーン重合体100重量部に対して0.
01〜9重量部であることが好ましく、0.1〜6重量
部であることが特に好ましい。0.01重量部未満の場
合は配合による効果が現れにくい傾向があり、また、9
重量部を越える場合は、硬化物の耐熱性が低下する傾向
がある。
An adhesive reinforcing agent is added to the thermosetting resin composition of the present invention, if necessary, in order to enhance the adhesiveness to the metal foil and the peeling strength between the cured resin and the metal foil. be able to. A compound having a plurality of reactive functional groups such as amino groups and hydroxyl groups can be used as the adhesion reinforcing agent, and these also act as an epoxy resin curing agent.
As the amine compound having a plurality of reactive functional groups, for example, m-phenylenediamine, 4,4′-diaminobenzanilide, 4,4′-diamino-2,2′-dimethylbiphenyl and the like can be used. A compound having a plurality of active NH groups in a molecule such as a compound having a group or dicyandiamide, a compound having both an amino group and a hydroxyl group in a molecule such as 3-amino-1-propanol and 4-aminophenol is used. be able to. The compounding amount of the adhesive reinforcing agent is 0.1 with respect to 100 parts by weight of the silicone polymer.
It is preferably from 01 to 9 parts by weight, particularly preferably from 0.1 to 6 parts by weight. If the amount is less than 0.01 part by weight, the effect of the composition tends to be difficult to appear, and 9
When it exceeds the weight part, the heat resistance of the cured product tends to decrease.

【0048】前記樹脂組成物は、溶剤に溶解ないし分散
させて樹脂ワニスとすることができる。樹脂ワニスの濃
度は、作業性等を考慮して適宜決定される。また、シリ
コーン重合体の合成に続いて、樹脂組成物の調整を行う
場合、シリコーン重合体の合成に用いた溶剤と同じもの
を使用することが好ましい。溶剤としては、メタノー
ル、エタノールなどのアルコール系溶剤、エチレングリ
コールモノメチルエーテルなどのエーテル系溶剤、アセ
トン、メチルエチルケトン、メチルイソブチルケトンな
どのケトン系溶剤、N,N−ジメチルホルムアミドなど
のアミド系溶剤、トルエン、キシレンなどの芳香族炭化
水素系溶剤、酢酸エチルなどのエステル系溶剤、ブチロ
ニトリルなどのニトリル系溶剤等が好ましく使用され
る。また、これら溶剤の数種類を併用した混合溶剤を用
いることもできる。
The resin composition can be dissolved or dispersed in a solvent to form a resin varnish. The concentration of the resin varnish is appropriately determined in consideration of workability and the like. Further, when the resin composition is prepared after the synthesis of the silicone polymer, it is preferable to use the same solvent as that used for the synthesis of the silicone polymer. Examples of the solvent include alcohol solvents such as methanol and ethanol, ether solvents such as ethylene glycol monomethyl ether, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, amide solvents such as N, N-dimethylformamide, and toluene. Aromatic hydrocarbon solvents such as xylene, ester solvents such as ethyl acetate, nitrile solvents such as butyronitrile are preferably used. It is also possible to use a mixed solvent in which several kinds of these solvents are used in combination.

【0049】(樹脂付金属箔)樹脂ワニスを、金属箔に
塗布し、乾燥炉内で80〜200℃の範囲で乾燥させる
ことにより樹脂付き金属箔を製造することができる。乾
燥時間は、室温での樹脂の流動性がなくなる程度でよ
く、高温で乾燥させた場合は樹脂が完全硬化しない程度
であればよい。金属箔は、特に制限はなく、一般に配線
板分野で配線回路導体として使用されている金属箔を使
用することができ、電気的特性やコスト面を考慮すると
銅箔を用いることが好ましい。特に好ましくは、少なく
とも片面に粗化面を有する電解銅箔、圧延銅箔又はキャ
リアフィルム付き極薄銅箔を使用することができる。金
属箔は通常用いられている厚さ5〜200μmのものを
使用することができる。また、ニッケル、ニッケル−リ
ン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−
スズ合金等を中間層とし、この両面に銅層を設けた3層
構造の複合箔や、あるいはアルミニウムと銅箔を複合し
た複合箔等の複合箔を用いることもできる。
(Metal Foil with Resin) The resin varnish is applied to the metal foil and dried in a drying oven at 80 to 200 ° C. to produce the metal foil with resin. The drying time may be such that the resin loses fluidity at room temperature, and may be such that the resin does not completely cure when dried at high temperature. The metal foil is not particularly limited, and a metal foil generally used as a wiring circuit conductor in the field of wiring boards can be used, and it is preferable to use a copper foil in consideration of electrical characteristics and cost. Particularly preferably, an electrolytic copper foil having at least one roughened surface, a rolled copper foil, or an ultrathin copper foil with a carrier film can be used. The metal foil having a thickness of 5 to 200 μm which is usually used can be used. In addition, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-
It is also possible to use a composite foil having a three-layer structure in which a tin alloy or the like is used as an intermediate layer and copper layers are provided on both surfaces thereof, or a composite foil such as a composite foil in which aluminum and copper foil are composited.

【0050】樹脂付き金属箔の絶縁樹脂層の厚みは、銅
箔の厚み以上であることが好ましく、また、配線回路加
工後に内層配線回路板に積層する場合は、その内層配線
回路の導体厚みと、樹脂付き金属箔の銅箔厚みの和より
も大きいことが好ましい。また、厚すぎると重量が必要
以上に増え、加えてコスト高になりやすい。厚さは好ま
しくは6〜200μmとされるが、これより厚くてもよ
い。厚い絶縁樹脂層を作製するために、数回に分けて塗
工と乾燥を繰り返すこともできる。なお、内層配線回路
板とは、最外層に回路形成された配線板であり、例え
ば、紙・繊維等の基材を樹脂に含浸硬化させた基板の片
面又は両面に回路形成された配線板や、複数の配線板を
プリプレグを介して積層した多層配線板、ビルドアップ
工法で多層化された多層配線板などが挙げられる。
The thickness of the insulating resin layer of the metal foil with resin is preferably equal to or more than the thickness of the copper foil, and when laminated on the inner wiring circuit board after processing the wiring circuit, the thickness of the conductor of the inner wiring circuit is It is preferably larger than the sum of the copper foil thicknesses of the metal foil with resin. Further, if it is too thick, the weight increases more than necessary, and in addition, the cost tends to increase. The thickness is preferably 6 to 200 μm, but may be thicker than this. In order to produce a thick insulating resin layer, coating and drying can be repeated several times. The inner layer wiring circuit board is a wiring board in which a circuit is formed in the outermost layer, and for example, a wiring board in which a circuit is formed on one side or both sides of a substrate obtained by impregnating and curing a base material such as paper or fiber into a resin or Examples thereof include a multilayer wiring board in which a plurality of wiring boards are laminated via a prepreg, a multilayer wiring board multilayered by a build-up method, and the like.

【0051】(配線回路付き樹脂シート)樹脂付き金属
箔の絶縁樹脂層が十分な回路埋め込み性を有する状態で
配線回路加工を施すことで、配線回路付き樹脂シートが
作製される。絶縁樹脂層が十分な回路埋め込み性を有す
る状態としては、熱硬化性樹脂におけるB−Stage
状態が挙げられる。絶縁樹脂層をB−Stage状態に
調整する方法としては、金属箔に樹脂ワニスを塗布・乾
燥する際に乾燥温度、乾燥時間を調整する方法、樹脂付
き金属箔に配線回路加工を施す際に、加熱することによ
ってB−Stage状態に調整する方法が挙げられる。
B−Stage状態に調整するためのB−Stage化
の条件は温度80〜200℃、時間1〜120分の範囲
とすることが好ましい。
(Resin Sheet with Wiring Circuit) A resin sheet with a wiring circuit is produced by processing a wiring circuit in a state where the insulating resin layer of the metal foil with resin has a sufficient circuit embedding property. As a state in which the insulating resin layer has a sufficient circuit embedding property, B-Stage in the thermosetting resin is used.
State. As a method of adjusting the insulating resin layer to a B-Stage state, a method of adjusting a drying temperature and a drying time when applying / drying a resin varnish on the metal foil, a method of processing a wiring circuit on the metal foil with resin, The method of adjusting to a B-Stage state by heating is mentioned.
It is preferable that the conditions for forming B-Stage for adjusting to the B-Stage state are a temperature of 80 to 200 ° C. and a time of 1 to 120 minutes.

【0052】樹脂付き金属箔に配線回路加工を施すこと
によって、本発明の配線回路付き樹脂材料を作製するこ
とができる。配線回路加工は、サブトラクティブ法など
一般的に知られる方法を適用することができる。例え
ば、樹脂付き金属箔の表面にレジストパターンを形成
し、エッチングによって不要部分の銅箔を除去して、レ
ジストパターンを剥離することによって、配線回路が形
成される。また、樹脂付き金属箔にあらかじめレーザー
やドリルなどで孔部を形成してもよく、配線回路加工後
に孔部を形成しても良い。さらに、孔部に導電ペースト
を充填してもよく、また、めっき等によって孔部を金属
で充たしても良い。
The resin material with a wiring circuit of the present invention can be produced by subjecting the metal foil with a resin to a wiring circuit process. A generally known method such as a subtractive method can be applied to the wiring circuit processing. For example, a wiring pattern is formed by forming a resist pattern on the surface of a resin-coated metal foil, removing unnecessary portions of the copper foil by etching, and peeling the resist pattern. The holes may be formed in advance on the resin-coated metal foil with a laser, a drill, or the like, or the holes may be formed after the wiring circuit processing. Furthermore, the holes may be filled with a conductive paste, or the holes may be filled with a metal by plating or the like.

【0053】配線回路付き樹脂シートと内層配線回路板
とを積層成形し、層間導通をとることによって、多層配
線板を作製することができる。積層成形や層間導通は、
常法に従い行うことができる。積層成形の条件は、13
0〜200℃の温度範囲で、好ましくは150〜180
℃の範囲で、また、0.5〜20MPaの圧力で、好ま
しくは2〜8MPaの圧力で加熱加圧して行われ、プレ
ス機の能力、目的の厚さ等により適宜選択される。加熱
加圧の処理時間は、温度や圧力など他の条件に合わせて
適時決められるが、一般には30分〜2時間程度とされ
る。層間導通は、導電ペーストやめっきなどによる一般
的な方法でとることができる。例えば、配線回路付き樹
脂材料と内層配線回路板を積層成形した後、レーザーや
ドリルなどで孔部を設けて層間導通路を設け、配線回路
上にレジストパターンを形成し、メッキによって内層配
線回路との導通をとり、レジストパターンを剥離するこ
とにより層間導通がなされた多層配線板とすることがで
きる。
A multilayer wiring board can be produced by laminating and molding a resin sheet with a wiring circuit and an inner layer wiring circuit board, and establishing interlayer conduction. Laminate molding and interlayer conduction are
It can be performed according to a conventional method. The conditions for lamination molding are 13
In the temperature range of 0 to 200 ° C., preferably 150 to 180
It is carried out by heating and pressurizing in the range of 0 ° C. and at a pressure of 0.5 to 20 MPa, preferably at a pressure of 2 to 8 MPa, and is appropriately selected depending on the capacity of the press machine, the target thickness and the like. The treatment time of heating and pressurizing is appropriately determined according to other conditions such as temperature and pressure, but is generally about 30 minutes to 2 hours. Interlayer conduction can be achieved by a general method using a conductive paste or plating. For example, after laminating a resin material with a wiring circuit and an inner wiring circuit board, forming a hole with a laser or a drill to provide an interlayer conduction path, forming a resist pattern on the wiring circuit, and plating the inner layer wiring circuit. Is obtained and the resist pattern is peeled off to obtain a multilayer wiring board having interlayer conduction.

【0054】以上のようにして作製された多層配線板に
さらに前記樹脂付金属箔や前記回路付き樹脂シートを積
層し、一体化、層間導通形成を繰り返してビルドアップ
することができる。本発明の配線回路付き樹脂材料を用
いて作製したビルドアップ層は、積層成型した際に配線
回路層が樹脂中に埋没することにより、薄型化が可能で
ある。また、複数の配線回路付き樹脂材料を用いて一括
積層しても良い。
The metal foil with resin or the resin sheet with circuit can be further laminated on the multilayer wiring board manufactured as described above, and integration and interlayer conduction formation can be repeated to build up. The build-up layer produced using the resin material with a wiring circuit of the present invention can be thinned by burying the wiring circuit layer in the resin when laminated and molded. Alternatively, a plurality of resin materials with wiring circuits may be used for a single layering.

【0055】(内層回路入り配線回路付き樹脂材料)内
層回路板上に前記樹脂ワニスからなるB−Stage状
態の樹脂層が積層され、さらに金属箔が積層されてなる
積層板に配線回路加工を施すことで、配線回路付き樹脂
材料を作製することができる。この配線回路付き樹脂材
料の作製に用いる積層板を作製する方法としては、前記
樹脂付き金属箔を内層回路板に積層・一体化する方法
や、前記樹脂ワニスを内層回路板に塗布し乾燥したのち
金属箔を積層・一体化する方法、内層回路板に前記樹脂
ワニスをキャリアフィルムに塗布し乾燥してなる樹脂シ
ート及び金属箔を積層・一体化する方法等があげられ
る。B−Stage状態に調整する方法としては、積層
・一体化の際に同時にB−Stage状態に調整するこ
とが好ましい。また、一体化した後さらに加熱すること
により調整することもできる。積層・一体化により適切
なB−Stage状態に調整するためのB−Stage
化の条件は温度80〜200℃、時間1〜120分、圧
力0.1〜8MPaの範囲とすることが好ましい。
(Resin Material with Wiring Circuit with Inner Layer Circuit) A B-Stage state resin layer made of the above resin varnish is laminated on the inner layer circuit board, and a wiring board is further processed by wiring circuit processing. As a result, a resin material with a wiring circuit can be manufactured. As a method for producing a laminated board used for producing the resin material with a wiring circuit, a method of laminating / integrating the metal foil with a resin on an inner layer circuit board or a method of applying the resin varnish to the inner layer circuit board and drying it Examples thereof include a method of laminating / integrating a metal foil, a method of laminating / integrating a resin sheet and a metal foil obtained by applying the resin varnish to a carrier film on an inner circuit board and drying. As a method of adjusting to the B-Stage state, it is preferable to simultaneously adjust to the B-Stage state at the time of stacking and integration. It can also be adjusted by further heating after being integrated. B-Stage for adjusting to an appropriate B-Stage state by stacking and unifying
It is preferable that the conditions for the reaction are set such that the temperature is 80 to 200 ° C., the time is 1 to 120 minutes, and the pressure is 0.1 to 8 MPa.

【0056】この配線回路付き樹脂材料に、前記樹脂付
金属箔、前記配線回路付き樹脂シートなどのビルドアッ
プ材を積層し、一体化して、層間導通を形成することに
より多層配線板を製造することができる。また、これを
繰り返してビルドアップすることによって、さらに多層
化することができる。本発明の配線回路付き樹脂材料を
用いて作製したビルドアップ層は、積層成型した際に配
線回路層が樹脂中に埋没することにより、薄型化が可能
である。
A multilayer wiring board is manufactured by laminating a build-up material such as the resin-coated metal foil and the wiring-circuit-equipped resin sheet on the resin material with the wiring circuit and integrating them to form interlayer conduction. You can Further, by repeating this and building up, it is possible to further increase the number of layers. The build-up layer produced using the resin material with a wiring circuit of the present invention can be thinned by burying the wiring circuit layer in the resin when laminated and molded.

【0057】[0057]

【実施例】(参考例)撹拌装置、コンデンサ及び温度計
を備えたガラスフラスコに、テトラメトキシシラン(東
京化成工業株式会社製)を20g、ジメトキシジメチル
シラン(東京化成工業株式会社製)を60g、ジメトキ
シメチルシラン(東京化成工業株式会社製)を67g、
合成溶剤としてメタノール(東京化成工業株式会社製)
を37g配合した溶液に、合成触媒としてマレイン酸を
1.5g、蒸留水を50g配合して80℃で2時間攪拌
した後、アリルグリシジルエーテル(東京化成工業株式
会社製)を72gと塩化白金酸塩(2重量%イソプロピ
ルアルコール溶液)を0.2g添加し、更に4時間撹拌
してエポキシ変性のシリコーン重合体、を合成した。得
られたシリコーン重合体のシロキサン単位の重合度は6
5であった(GPCによって標準ポリスチレンの検量線
を利用して測定した数平均分子量から換算、以下同
じ)。
(Reference example) In a glass flask equipped with a stirrer, a condenser and a thermometer, 20 g of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 60 g of dimethoxydimethylsilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 67 g of dimethoxymethylsilane (manufactured by Tokyo Chemical Industry Co., Ltd.),
Methanol as a synthetic solvent (made by Tokyo Chemical Industry Co., Ltd.)
In a solution containing 37 g of the above compound, 1.5 g of maleic acid as a synthetic catalyst and 50 g of distilled water were mixed and stirred at 80 ° C. for 2 hours, then 72 g of allyl glycidyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) and chloroplatinic acid. 0.2 g of a salt (2 wt% isopropyl alcohol solution) was added, and the mixture was stirred for 4 hours to synthesize an epoxy-modified silicone polymer. The degree of polymerization of siloxane units of the obtained silicone polymer is 6
5 (converted from the number average molecular weight measured by GPC using a calibration curve of standard polystyrene, the same applies hereinafter).

【0058】(実施例1)撹拌装置、コンデンサ及び温
度計を備えたガラスフラスコに、前記参考例と同様な方
法で合成したシリコーン重合体の固形分100重量部に
対してシリカ粉末(製品名:SO−25R,平均粒径:
0.5μm,株式会社アドマテックス製)450重量部
と希釈溶剤としてメタノールを202重量部配合し、8
0℃で1時間攪拌した後、室温まで冷却し、シリコーン
重合体の固形分100重量部に対してテトラブロモビス
フェノールAを78重量部と2−エチル−4−メチルイ
ミダゾール3重量部を配合し、室温で1時間撹拌して樹
脂ワニスを調製した。この樹脂ワニスの硬化物の熱膨張
係数は22×10−6/℃であり、伸びは3.1%であ
った。
(Example 1) In a glass flask equipped with a stirrer, a condenser and a thermometer, 100 parts by weight of a solid content of a silicone polymer synthesized in the same manner as in the above-mentioned Reference Example was mixed with silica powder (product name: SO-25R, average particle size:
(0.5 μm, manufactured by Admatechs Co., Ltd.) 450 parts by weight and 202 parts by weight of methanol as a diluent solvent are mixed,
After stirring at 0 ° C. for 1 hour, the mixture was cooled to room temperature, and 78 parts by weight of tetrabromobisphenol A and 3 parts by weight of 2-ethyl-4-methylimidazole were added to 100 parts by weight of the solid content of the silicone polymer. A resin varnish was prepared by stirring at room temperature for 1 hour. The cured product of this resin varnish had a thermal expansion coefficient of 22 × 10 −6 / ° C. and an elongation of 3.1%.

【0059】なお、本発明において、樹脂硬化物の熱膨
張係数及び伸びの測定には、樹脂ワニスを、厚さ50μ
mのポリエチレンテレフタレートフィルムをキャリヤー
フィルムとして用い、加熱乾燥後の厚さが50μmとな
るようにナイフコータにより塗工し、170℃・2時間
の条件で加熱・硬化させ、キャリヤーフィルムを取り外
して、作製された樹脂シートを試料として用いた。熱膨
張率は、熱機械分析(TMA:MAC SCIENCE
社製TMA)により引張モードで測定した。伸びは、幅
10mm×長さ80mm、厚み50〜100μmのフィ
ルムを試料として用いて、引張試験機(島津製作所オー
トグラフAG−100C)により、測定条件をチャック
間距離:60mm、引張速度:5mm/minとして、
引張試験で測定した。
In the present invention, a resin varnish having a thickness of 50 μm is used for measuring the thermal expansion coefficient and elongation of the cured resin.
m polyethylene terephthalate film was used as a carrier film, coated with a knife coater so that the thickness after heating and drying would be 50 μm, heated and cured at 170 ° C. for 2 hours, and the carrier film was removed to prepare. The resin sheet was used as a sample. The coefficient of thermal expansion is measured by thermomechanical analysis (TMA: MAC SCIENCE).
It was measured in tensile mode by TMA manufactured by the company. Elongation is measured by a tensile tester (Shimadzu Autograph AG-100C) using a film having a width of 10 mm × a length of 80 mm and a thickness of 50 to 100 μm as a sample, and a chuck distance: 60 mm, a pulling speed: 5 mm / As min
It was measured by a tensile test.

【0060】この樹脂ワニスを、厚さ50μmのポリエ
チレンテレフタレートフィルムをキャリヤーフィルムと
して用い、加熱乾燥後の厚さが50μmとなるようにナ
イフコータにより塗工し、温度130℃で10分間加熱
乾燥し、加熱乾燥後にキャリヤーフィルムを剥がして樹
脂シートを作製した。
Using a polyethylene terephthalate film having a thickness of 50 μm as a carrier film, this resin varnish was applied by a knife coater so that the thickness after heating and drying would be 50 μm, followed by heating and drying at a temperature of 130 ° C. for 10 minutes and heating. After drying, the carrier film was peeled off to prepare a resin sheet.

【0061】また、この樹脂ワニスを、厚さ18μmの
片面粗化銅はくを用い、加熱乾燥後の樹脂シートの厚さ
が50μmとなるようにナイフコータにより粗化面側に
塗工し、温度130℃で10分間加熱乾燥し、銅箔付樹
脂シートを作製した。
This resin varnish was applied to the roughened surface side by a knife coater so that the thickness of the resin sheet after heating and drying was 50 μm, using a single-sided roughened copper foil having a thickness of 18 μm. It heat-dried at 130 degreeC for 10 minute (s), and produced the resin sheet with a copper foil.

【0062】前記樹脂ワニスを、厚さ18μmの片面粗
化銅はくを用い、加熱乾燥後の樹脂シートの厚さが50
μmとなるようにナイフコータにより粗化面側に塗工
し、温度130℃で60分間加熱乾燥し、エッチング液
(水1kgに対し,過硫酸アンモニウム(三菱ガス化学
製)200gを溶解。)を用いて配線回路加工を施し
て、配線回路付き樹脂材料(配線回路付き樹脂シート)
(図1)とした。
The resin varnish was formed into a single-sided roughened copper foil having a thickness of 18 μm, and the thickness of the resin sheet after heating and drying was 50.
It is coated on the roughened surface side with a knife coater so as to have a thickness of μm, heated and dried at a temperature of 130 ° C. for 60 minutes, and an etching solution (200 g of ammonium persulfate (manufactured by Mitsubishi Gas Chemical Co., Inc. is dissolved in 1 kg of water)) is used. Wiring circuit processing is applied, and wiring material with wiring circuit (resin sheet with wiring circuit)
(Fig. 1).

【0063】厚さ0.8mmのガラス布基材エポキシ樹
脂両面銅張積層板(日立化成工業株式会社製、MCL−
E−67(商品名)を使用)に配線回路加工を施し、そ
の上下に前記で作製した銅箔付樹脂シートを重ね、13
0℃、3MPaで60分間加熱加圧して最外絶縁層がB
−Stage状態である銅張4層積層板A1を作製し
た。銅張4層積層板A1にエッチングにより配線回路加
工を施し回路付き絶縁樹脂材料(図2)とした。この回
路付き絶縁樹脂材料の両面に先に作製した銅箔付樹脂シ
ートを重ね、温度175℃、圧力3MPaで60分間加
熱加圧して銅張6層積層板B1(図3)を作製した。
0.8 mm thick glass cloth substrate epoxy resin double-sided copper clad laminate (MCL-manufactured by Hitachi Chemical Co., Ltd.)
E-67 (trade name) is used for wiring circuit processing, and the copper foil-attached resin sheet prepared above is placed on the upper and lower sides of the wiring circuit processing.
The outermost insulating layer is B when heated and pressed at 0 ° C. and 3 MPa for 60 minutes.
A copper clad 4-layer laminate A1 in the −Stage state was produced. A wiring circuit process was performed on the copper-clad 4-layer laminate A1 by etching to obtain an insulating resin material with a circuit (FIG. 2). The above-prepared resin sheet with a copper foil was laminated on both surfaces of this insulating resin material with a circuit, and heated and pressed at a temperature of 175 ° C. and a pressure of 3 MPa for 60 minutes to produce a copper-clad 6-layer laminate B1 (FIG. 3).

【0064】厚さ0.8mmのガラス布基材エポキシ樹
脂両面銅張積層板(日立化成工業株式会社製、MCL−
E−67(商品名)を使用)に配線回路加工を施し、そ
の上下に前記で作製した銅箔付樹脂シートを重ね、17
5℃、3MPaで60分間加熱加圧して、最外絶縁層が
C−Stage状態である銅張4層積層板C1を作製し
た。銅張積層板C1にエッチングにより配線回路加工を
施し、その両面に先に作製した銅箔付樹脂シートを重
ね、温度175℃、圧力3MPaで60分間加熱加圧し
て銅張6層積層板D1を作製した。
0.8 mm thick glass cloth substrate epoxy resin double-sided copper clad laminate (MCL-manufactured by Hitachi Chemical Co., Ltd.)
E-67 (trade name) is used for wiring circuit processing, and the copper foil-attached resin sheet prepared above is stacked on the top and bottom of the wiring circuit processing.
By heating and pressing at 5 ° C. and 3 MPa for 60 minutes, a copper clad 4-layer laminate C1 in which the outermost insulating layer was in the C-Stage state was produced. A wiring circuit process is performed on the copper-clad laminate C1 by etching, and the copper foil-coated resin sheets prepared above are stacked on both surfaces of the copper-clad laminate C1 and heated and pressed at a temperature of 175 ° C. and a pressure of 3 MPa for 60 minutes to form a copper-clad 6-layer laminate D1. It was made.

【0065】厚さ0.8mmのガラス布基材エポキシ樹
脂両面銅張積層板(日立化成工業株式会社製、MCL−
E−67(商品名)を使用)に配線回路加工を施し、そ
の上下に前記で作製した配線回路付き樹脂シートを重
ね、更にその上下に前記で作製した銅箔付樹脂シートを
重ねて温度175℃、圧力3MPaで60分間加熱加圧
して銅張6層積層板E1を作製した。
0.8 mm thick glass cloth substrate epoxy resin double-sided copper clad laminate (MCL-manufactured by Hitachi Chemical Co., Ltd.)
E-67 (trade name) is used for wiring circuit processing, the resin sheet with a wiring circuit prepared in the above is overlaid on the upper and lower sides thereof, and the resin sheet with the copper foil produced in the above is overlaid on the upper and lower sides thereof to obtain a temperature of 175. A copper clad 6-layer laminate E1 was produced by heating and pressurizing at 60 ° C. and a pressure of 3 MPa for 60 minutes.

【0066】(実施例2)シリコーン重合体の固形分1
00重量部に対して、シリカ粉末(商品名:SO−25
R,平均粒径:0.5μm,株式会社アドマテックス
製)の配合量を900重量部、メタノールの配合量を2
50重量部に変えた以外は実施例1と同様にして樹脂ワ
ニスを調製した。この樹脂ワニスの硬化物の熱膨張係数
は15×10 −6/℃であり、伸びは2.2%であっ
た。この樹脂ワニスを用いて、実施例1と同様の方法で
樹脂シート、銅箔付樹脂シート、配線回路付き樹脂シー
ト、銅張4層積層板A2、銅張6層積層板B2、銅張4
層積層板C2、銅張6層積層板D2および銅張6層積層
板E2を作製した。
(Example 2) Solid content of silicone polymer 1
Silica powder (trade name: SO-25
R, average particle size: 0.5 μm, Admatechs Co., Ltd.
Made) is 900 parts by weight, and the amount of methanol is 2
Resin resin was prepared in the same manner as in Example 1 except that the amount was changed to 50 parts by weight.
A varnish was prepared. Thermal expansion coefficient of the cured product of this resin varnish
Is 15 × 10 -6/ ° C and the elongation is 2.2%
It was Using this resin varnish, in the same manner as in Example 1.
Resin sheet, resin sheet with copper foil, resin sheet with wiring circuit
G, copper-clad 4-layer laminate A2, copper-clad 6-layer laminate B2, copper-clad 4
Layer laminated plate C2, copper clad 6 layer laminated plate D2 and copper clad 6 layer laminated
A plate E2 was produced.

【0067】(実施例3)シリコーン重合体の固形分1
00重量部に対して、シリカ粉末(商品名:SO−25
R,平均粒径:0.5μm,株式会社アドマテックス
製)の配合量を1300重量部、メタノールの配合量を
490重量部に変えた以外は実施例1と同様にして樹脂
ワニスを調製した。この樹脂ワニスの硬化物の熱膨張係
数は10×10−6/℃であり、伸びは1.2%であっ
た。この樹脂ワニスを用いて、実施例1と同様の方法で
樹脂シート、銅箔付樹脂シート、配線回路付き樹脂シー
ト、銅張4層積層板A3、銅張6層積層板B3、銅張4
層積層板C3、銅張6層積層板D3および銅張6層積層
板E3を作製した。
(Example 3) Solid content of silicone polymer 1
Silica powder (trade name: SO-25
R, average particle size: 0.5 μm, manufactured by Admatechs Co., Ltd.) A resin varnish was prepared in the same manner as in Example 1 except that the compounding amount was changed to 1300 parts by weight and the compounding amount of methanol was changed to 490 parts by weight. The cured product of this resin varnish had a thermal expansion coefficient of 10 × 10 −6 / ° C. and an elongation of 1.2%. Using this resin varnish, a resin sheet, a resin sheet with a copper foil, a resin sheet with a wiring circuit, a copper-clad 4-layer laminate A3, a copper-clad 6-layer laminate B3, and a copper-clad 4 were prepared in the same manner as in Example 1.
A layer laminate C3, a copper clad 6 layer laminate D3 and a copper clad 6 layer laminate E3 were produced.

【0068】(比較例)ビスフェノールAノボラック型
エポキシ樹脂(エポキシ当量210、大日本インキ化学
工業株式会社製、エピクロンN865(商品名)を使
用)100部,ビスフェノールAノボラック樹脂(水酸
基当量118、大日本インキ化学工業株式会社製、プラ
イオーフェンVH−4170(商品名)を使用)60部
及びジシアンジアミド2部をメチルエチルケトン120
部に溶解し,室温で1時間撹拌して樹脂ワニスを調製し
た。この樹脂ワニスを用いて、実施例1と同様の方法で
樹脂シート、銅箔付樹脂シート、銅張4層積層板A4、
銅張6層積層板B4、銅張4層積層板C4および銅張6
層積層板D4を作製した。なお、配線回路付き樹脂シー
ト及び銅張6層積層板E4については、エッチング時に
配線回路付き樹脂シートの形状が保てず、作製が不可能
であった。
Comparative Example 100 parts of bisphenol A novolac type epoxy resin (epoxy equivalent 210, manufactured by Dainippon Ink and Chemicals, Inc., Epicron N865 (trade name) is used) 100 parts, bisphenol A novolac resin (hydroxyl equivalent 118, Dainippon 60 parts of Priofen VH-4170 (trade name) manufactured by Ink Kagaku Kogyo Co., Ltd. and 2 parts of dicyandiamide are added to methyl ethyl ketone 120.
And then stirred at room temperature for 1 hour to prepare a resin varnish. Using this resin varnish, a resin sheet, a resin sheet with a copper foil, a copper clad four-layer laminate A4, in the same manner as in Example 1.
Copper-clad 6-layer laminate B4, Copper-clad 4-layer laminate C4 and Copper-clad 6
A layer laminate D4 was produced. Note that the resin sheet with a wiring circuit and the copper clad 6-layer laminate E4 could not be manufactured because the shape of the resin sheet with a wiring circuit could not be maintained during etching.

【0069】実施例1〜4及び比較例の樹脂シート10
gをエッチング液(水1kgに対し,過硫酸アンモニウ
ム(三菱ガス化学製)200gを溶解。)で室温にて1
時間処理した後の重量減少と樹脂シート形状を表1に示
す。銅張6層積層板B1〜B4、銅張6層積層板D1〜
D4、銅張6層積層板E1〜E3の表面粗さを、触針式
表面粗さ計にて測定した。測定箇所は直下に内層配線回
路が存在する部分から存在しない部分にかけて長さ25
mmの一直線上とし,直下に内層配線回路が存在する部
分から存在しない部分の段差の10点平均粗さを測定し
た。結果を表1に示す。また,銅張6層積層板B1〜B
4、銅張6層積層板D1〜D4、銅張6層積層板E1〜
E3の260℃で30秒間半田槽にフロートし、半田耐熱性
を評価した。結果を表1に示す。
Resin sheets 10 of Examples 1 to 4 and Comparative Example
g with an etching solution (200 g of ammonium persulfate (manufactured by Mitsubishi Gas Chemical Co., Inc. is dissolved in 1 kg of water) at room temperature.
Table 1 shows the weight reduction and the resin sheet shape after the time treatment. Copper-clad 6-layer laminates B1 to B4, Copper-clad 6-layer laminates D1
The surface roughness of D4 and the copper clad 6-layer laminates E1 to E3 was measured with a stylus type surface roughness meter. The measurement point has a length of 25 from the part where the inner layer wiring circuit exists directly below to the part that does not exist.
The 10-point average roughness of the step between the portion where the inner layer wiring circuit exists and the portion where the inner layer wiring circuit does not exist immediately below was measured. The results are shown in Table 1. Also, copper-clad 6-layer laminates B1 to B
4, copper-clad 6-layer laminate D1 to D4, copper-clad 6-layer laminate E1
E3 was floated in a solder bath at 260 ° C. for 30 seconds, and solder heat resistance was evaluated. The results are shown in Table 1.

【0070】[0070]

【表1】 [Table 1]

【0071】表1に示すように、本発明の樹脂シートは
低温で硬化させてもエッチング液に溶解しないため,銅
張6層積層板Bや銅張6層積層板Eの状態でも半田耐熱
性を有し、また、回路埋め込み性に優れ、半田耐熱性に
優れることが分かる。
As shown in Table 1, the resin sheet of the present invention does not dissolve in the etching solution even when it is cured at a low temperature. Therefore, even in the state of the copper-clad 6-layer laminate B or the copper-clad 6-layer laminate E, the solder heat resistance is high. It can be seen that, in addition, it has excellent circuit embedding properties and excellent solder heat resistance.

【0072】[0072]

【発明の効果】本発明によって、完全に硬化していない
状態でもエッチング液などの薬液に対して分解が起こら
ない樹脂を用いることで、絶縁層としての役割を果た
し、成形時に配線を樹脂シートに潜り込ませることが可
能で、成形後に内層配線回路による凸の影響が小さいこ
とから表面の平坦化が可能であり、微細配線に適した樹
脂材料を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, by using a resin that does not decompose into a chemical liquid such as an etching liquid even when it is not completely cured, it functions as an insulating layer and the wiring is formed into a resin sheet during molding. The resin material suitable for fine wiring can be provided because it can be made to sneak in, the surface of the resin can be flattened because the influence of the projections of the inner layer wiring circuit is small after molding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の配線回路付き樹脂材料の一例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of a resin material with a wiring circuit according to the present invention.

【図2】本発明の配線回路付き樹脂材料の一例を示す断
面図である。
FIG. 2 is a cross-sectional view showing an example of a resin material with a wiring circuit according to the present invention.

【図3】本発明の配線回路付き樹脂材料を使用して作製
される銅張6層積層板を示す断面図である。
FIG. 3 is a cross-sectional view showing a copper-clad 6-layer laminate manufactured using the resin material with a wiring circuit of the present invention.

【符号の説明】[Explanation of symbols]

1,1',1''.樹脂層(銅箔付樹脂シート由来) 2,2'.配線導体(銅箔付樹脂シート由来) 3.内層回路板の絶縁層 4.内層回路板の回路配線 5.銅層(銅箔付樹脂シート由来) 1,1 ', 1' '. Resin layer (derived from resin sheet with copper foil) 2, 2 '. Wiring conductor (derived from resin sheet with copper foil) 3. Insulation layer of inner layer circuit board 4. Circuit wiring of inner layer circuit board 5. Copper layer (from resin sheet with copper foil)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/06 H05K 3/06 A (72)発明者 齊藤 哲也 茨城県下館市大字小川1500番地 日立化成 工業株式会社総合研究所内 Fターム(参考) 4J002 CP031 CP041 DE136 DE146 DE236 DE246 DJ006 DJ016 DJ056 DK006 DL006 FA046 FA066 FD016 FD147 5E339 AB02 AC10 AD05 BC02 BE11 5E346 AA05 AA06 AA12 AA15 AA22 AA51 CC02 CC08 CC32 DD02 DD12 DD32 EE06 EE07 EE09 EE13 EE14 EE20 GG22 GG28 HH11 HH13 HH31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05K 3/06 H05K 3/06 A (72) Inventor Tetsuya Saito 1500 Ogawa, Shimodate-shi, Ibaraki Hitachi Chemical Co., Ltd. Research Institute Co., Ltd. F-term (reference) 4J002 CP031 CP041 DE136 DE146 DE236 DE246 DJ006 DJ016 DJ056 DK006 DL006 FA046 FA066 FD016 FD147 5E339 AB02 AC10 AD05 BC02 BE11 5E346 AA05 AA06 AA12 AA15 AA22 AA51 CC02 CC08 CC32 DD14 EEEEEEEEEE EE20 GG22 GG28 HH11 HH13 HH31

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】B−Stage状態の絶縁樹脂層上に配線
回路層を有する配線回路付き樹脂材料。
1. A resin material with a wiring circuit having a wiring circuit layer on an insulating resin layer in a B-Stage state.
【請求項2】B−Stage状態の絶縁樹脂シートと、
その絶縁樹脂シート上に設けられた配線回路層とからな
る請求項1記載の配線回路付き樹脂材料。
2. An insulating resin sheet in a B-Stage state,
The resin material with a wiring circuit according to claim 1, comprising a wiring circuit layer provided on the insulating resin sheet.
【請求項3】内層回路板上に設けられたB−Stage
状態の絶縁樹脂層と、さらにその絶縁樹脂層上に設けら
れた配線回路からなる請求項1記載の配線回路付き樹脂
材料。
3. A B-Stage provided on an inner layer circuit board.
2. The resin material with a wiring circuit according to claim 1, comprising an insulating resin layer in a state and a wiring circuit provided on the insulating resin layer.
【請求項4】絶縁樹脂層が樹脂硬化性シリコーン重合
体、硬化剤及び無機充填剤を含有してなる樹脂組成物か
らなる請求項1〜請求項3のいずれかに記載の配線回路
付き樹脂材料。
4. The resin material with a wiring circuit according to claim 1, wherein the insulating resin layer comprises a resin composition containing a resin-curable silicone polymer, a curing agent and an inorganic filler. .
【請求項5】絶縁樹脂層を形成する樹脂組成物中の樹脂
硬化性シリコーン重合体100重量部に対する無機充填
剤の配合量が100重量部以上である請求項4に記載の
配線回路付き樹脂材料。
5. The resin material with a wiring circuit according to claim 4, wherein the compounding amount of the inorganic filler is 100 parts by weight or more based on 100 parts by weight of the resin-curable silicone polymer in the resin composition forming the insulating resin layer. .
【請求項6】絶縁樹脂層が樹脂硬化性シリコーン重合体
100重量部、硬化剤0.8〜1当量及び無機充填剤1
00〜2000重量部を含有してなる樹脂組成物からな
る請求項4に記載の配線回路付き樹脂材料。
6. An insulating resin layer comprising 100 parts by weight of a resin-curable silicone polymer, 0.8-1 equivalent of a curing agent and 1 inorganic filler.
The resin material with a wiring circuit according to claim 4, comprising a resin composition containing 100 to 2000 parts by weight.
【請求項7】絶縁樹脂層が、硬化物の熱膨張係数が50
×10-6/℃以下である樹脂組成物を使用して形成され
る絶縁樹脂層であることを特徴とする請求項1〜6のい
ずれかに記載の配線回路付き樹脂材料。
7. The insulating resin layer, wherein the cured product has a thermal expansion coefficient of 50.
It is an insulating resin layer formed using the resin composition which is x10 -6 / ° C or less, and the resin material with a wiring circuit according to any one of claims 1 to 6.
【請求項8】絶縁樹脂層が、硬化物の引張試験での伸び
が1.0%以上である樹脂組成物を使用して形成される
絶縁樹脂層であることを特徴とする請求項1〜7のいず
れかに記載の配線回路付き樹脂材料。
8. The insulating resin layer is an insulating resin layer formed using a resin composition having an elongation of 1.0% or more in a tensile test of a cured product. 7. The resin material with a wiring circuit according to any one of 7.
【請求項9】請求項2に記載の配線回路付き樹脂材料と
内層板とを重ねて加熱加圧成形するプリント配線板の製
造方法。
9. A method for producing a printed wiring board, comprising stacking the resin material with a wiring circuit according to claim 2 and an inner layer board and heating and pressurizing them.
【請求項10】B−Stage状態である絶縁樹脂層と
該絶縁樹脂層上に配設された金属箔とを含む積層体から
不要な金属をエッチング除去して回路形成することを特
徴とする配線回路付き樹脂材料の製造方法。
10. A wiring characterized in that a circuit is formed by etching away unnecessary metal from a laminated body including an insulating resin layer in a B-Stage state and a metal foil provided on the insulating resin layer. Manufacturing method of resin material with circuit.
【請求項11】絶縁樹脂層が樹脂硬化性シリコーン重合
体、硬化剤及び無機充填剤を含有してなる樹脂組成物か
らなることを特徴とする請求項10に記載の配線回路付
き樹脂材料の製造方法。
11. The method for producing a resin material with a wiring circuit according to claim 10, wherein the insulating resin layer comprises a resin composition containing a resin-curable silicone polymer, a curing agent and an inorganic filler. Method.
【請求項12】樹脂硬化性シリコーン重合体100重量
部に対する無機充填剤の配合量が100重量部以上であ
ることを特徴とする請求項11に記載の配線回路付き樹
脂材料の製造方法。
12. The method for producing a resin material with a wiring circuit according to claim 11, wherein the compounding amount of the inorganic filler is 100 parts by weight or more based on 100 parts by weight of the resin-curable silicone polymer.
【請求項13】絶縁樹脂層が樹脂硬化性シリコーン重合
体100重量部、無機充填剤100〜2000重量部及
び硬化剤を樹脂硬化性シリコーン重合体に対して0.8
〜1当量を含有してなる樹脂組成物からなることを特徴
とする請求項11に記載の配線回路付き樹脂材料の製造
方法。
13. The insulating resin layer comprises 100 parts by weight of a resin-curable silicone polymer, 100 to 2000 parts by weight of an inorganic filler, and 0.8% of a curing agent with respect to the resin-curable silicone polymer.
The method for producing a resin material with a wiring circuit according to claim 11, wherein the resin composition comprises a resin composition containing 1 to 1 equivalent.
JP2001190565A 2001-06-25 2001-06-25 Resin material with wiring circuit, manufacturing method thereof and multilayer printed wiring board Expired - Fee Related JP4487448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190565A JP4487448B2 (en) 2001-06-25 2001-06-25 Resin material with wiring circuit, manufacturing method thereof and multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190565A JP4487448B2 (en) 2001-06-25 2001-06-25 Resin material with wiring circuit, manufacturing method thereof and multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2003008212A true JP2003008212A (en) 2003-01-10
JP4487448B2 JP4487448B2 (en) 2010-06-23

Family

ID=19029316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190565A Expired - Fee Related JP4487448B2 (en) 2001-06-25 2001-06-25 Resin material with wiring circuit, manufacturing method thereof and multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP4487448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073370A1 (en) * 2003-02-13 2004-08-26 Fujikura Ltd. Multilayer board and its manufacturing method
JP2005072187A (en) * 2003-08-22 2005-03-17 Denso Corp Multilayer circuit board, and its manufacturing method
JP2015042765A (en) * 2013-07-23 2015-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper clad laminate, and method for manufacturing printed wiring board
JP2019179793A (en) * 2018-03-30 2019-10-17 住友ベークライト株式会社 Method for manufacturing coreless substrate and method for manufacturing printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073370A1 (en) * 2003-02-13 2004-08-26 Fujikura Ltd. Multilayer board and its manufacturing method
KR100751470B1 (en) * 2003-02-13 2007-08-23 가부시키가이샤후지쿠라 Multilayer board and its manufacturing method
US7421779B2 (en) 2003-02-13 2008-09-09 Fujikura Ltd. Multilayer board manufacturing method
US8726495B2 (en) 2003-02-13 2014-05-20 Fujikura Ltd. Multi-layer board manufacturing method thereof
JP2005072187A (en) * 2003-08-22 2005-03-17 Denso Corp Multilayer circuit board, and its manufacturing method
JP2015042765A (en) * 2013-07-23 2015-03-05 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper clad laminate, and method for manufacturing printed wiring board
JP2019179793A (en) * 2018-03-30 2019-10-17 住友ベークライト株式会社 Method for manufacturing coreless substrate and method for manufacturing printed wiring board
JP7147223B2 (en) 2018-03-30 2022-10-05 住友ベークライト株式会社 Method for manufacturing coreless substrate and method for manufacturing printed wiring board

Also Published As

Publication number Publication date
JP4487448B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP5545194B2 (en) Method for producing novel silicone polymer, silicone polymer produced by the method, thermosetting resin composition, resin film, metal foil with insulating material, insulating film with double-sided metal foil, metal-clad laminate, multilayer metal-clad Laminated board and multilayer printed wiring board
JP5370333B2 (en) Low thermal expansion thermosetting resin composition and resin film
TWI264448B (en) Prepreg, metal-clad laminated board and printed wiring board using these
JP4572423B2 (en) Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JPH1160951A (en) Resin composition for printed circuit board and prepreg, metal-clad laminate using the same
JP4487448B2 (en) Resin material with wiring circuit, manufacturing method thereof and multilayer printed wiring board
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
JP4899280B2 (en) Composite material for wiring board and manufacturing method thereof
JP5251949B2 (en) PCB and printed circuit board
JP2003007138A (en) Inter-layer insulating varnish for multi-layer interconnection board, inter-layer insulating material using it, multi-layer interconnection board, manufacturing method therefor
JP2010258462A (en) Composite material for wiring board and production method thereof
JP2904311B2 (en) Prepreg for printed wiring board, resin varnish, resin composition, and laminated board for printed wiring board manufactured using them
JP2008111188A (en) Copper foil for printed circuit board
JP2008222906A (en) Adhesive composition for flexible wiring board, cover-lay, adhesive film, flexible copper-clad laminate, flexible wiring board and wiring board with stiffening plate each using the same
JP4734781B2 (en) Substrate, printed circuit board, and manufacturing method thereof
JPH11106530A (en) Production of prepreg for printed-wiring board and metal-clad laminated sheet using it
JPH11262974A (en) Manufacture of copper-clad laminate, printed circuit board and multilayer printed circuit board using it
JP4924326B2 (en) Copper foil for printed wiring boards
JP2012084923A (en) Composite material for wiring board and manufacturing method thereof
JP2001106811A (en) Prepreg and laminate for printed wiring board
JP2003231763A (en) Prepreg and metal foil-clad laminated sheet
JP2001106814A (en) Prepreg and laminate for printed wiring board and its manufacture
JP2004175936A (en) Prepreg and metal foil-clad laminate
JP2001284753A (en) Prepreg for printed wiring board and laminated board
JP2007126678A (en) Thermosetting resin composition of low thermal expansibility and resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4487448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees