JP2007051267A - Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board - Google Patents

Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board Download PDF

Info

Publication number
JP2007051267A
JP2007051267A JP2006035088A JP2006035088A JP2007051267A JP 2007051267 A JP2007051267 A JP 2007051267A JP 2006035088 A JP2006035088 A JP 2006035088A JP 2006035088 A JP2006035088 A JP 2006035088A JP 2007051267 A JP2007051267 A JP 2007051267A
Authority
JP
Japan
Prior art keywords
resin composition
resins
flame
weight
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035088A
Other languages
Japanese (ja)
Inventor
Masahisa Ose
昌久 尾瀬
Shinji Shimaoka
伸治 島岡
Masato Miyatake
正人 宮武
Akira Kato
亮 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006035088A priority Critical patent/JP2007051267A/en
Publication of JP2007051267A publication Critical patent/JP2007051267A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a resin composition, prepreg, a flame-retardant laminate that has high heat resistance, excellent copper foil peel strength, resistance to electrolytic corrosion and drill processability and a printed wiring board that deals with Pb-free solder and has high reliability. <P>SOLUTION: The resin composition comprising ≤0.2 wt.% of particles having ≤0.5μm particle diameter as an inorganic filler and aluminum hydroxide having ≤1.5 cm<SP>2</SP>/g BET specific surface area and 1.0-5.0μm average particle diameter in the resin composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,樹脂組成物、それを用いたプリプレグ、難燃性積層板及び印刷配線板に関する。   The present invention relates to a resin composition, a prepreg using the resin composition, a flame-retardant laminate, and a printed wiring board.

電子機器の小型化、高性能化に伴い、プリント配線板の高密度化、薄型化が進んでいる。薄型化に対応するため、金属箔張積層板では高剛性化の要求が高まり、充填剤が使用されるケースが多くなってきている。   With the downsizing and high performance of electronic devices, printed wiring boards are becoming denser and thinner. In order to cope with the reduction in thickness, there is an increasing demand for high rigidity in metal foil-clad laminates, and there are many cases where fillers are used.

充填剤を使用する場合、小径のドリル加工の際にドリルの磨耗等の問題から、特許文献1などに示されるような比較的やわらかい水酸化アルミニウム等の充填剤を併用する方法がある。
特開2005−247889号公報
In the case of using a filler, there is a method of using a filler such as a relatively soft aluminum hydroxide as disclosed in Patent Document 1 due to problems such as wear of a drill when drilling a small diameter.
Japanese Patent Laid-Open No. 2005-247889

しかしながら、水酸化アルミニウムは燃焼時に冷却効果を発現する水を多くトラップしているため、ある程度の量以上配合すると樹脂組成物や積層板の耐熱性が急激に低下する問題がある。これは、水酸化アルミニウムが水をリリースする温度がはんだの溶融温度よりも低いことに起因しており、今後溶融温度が更に高くなるPbフリーはんだではより顕著になると思われる。   However, since aluminum hydroxide traps a lot of water that exhibits a cooling effect at the time of combustion, there is a problem that the heat resistance of the resin composition or the laminate is drastically lowered when blended in a certain amount or more. This is due to the fact that the temperature at which aluminum hydroxide releases water is lower than the melting temperature of the solder, and it seems that it becomes more prominent in Pb-free solder, which will have a higher melting temperature in the future.

本発明は上記の従来技術の問題点を解消し、樹脂組成物やプリプレグ及びこれを用いた、耐熱性が高く、良好な銅箔引き剥がし強さや耐電食性、ドリル加工性の良好な難燃性積層板、及びPbフリーはんだへの対応が可能であり、かつ高い信頼性が得られる印刷配線板を提供するものである。   The present invention eliminates the above-mentioned problems of the prior art, and uses a resin composition, prepreg, and this, which has high heat resistance, good copper foil peeling strength, electric corrosion resistance, and good flame workability of drilling workability. The present invention provides a printed wiring board capable of dealing with a laminated board and Pb-free solder and capable of obtaining high reliability.

本発明は、樹脂組成物中に、無機充填剤として粒子径0.5μm以下の粒子が0.2重量%以下、BET比表面積が1.5m/g以下であり、かつ平均粒子径が1.0〜5.0μmである水酸化アルミニウムを含有してなる樹脂組成物に関する。
また、本発明は、樹脂組成物中の樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、トリアジン樹脂、メラミン樹脂及びこれら樹脂を変性した変性樹脂からなる群から選ばれる1種又は2種以上の樹脂からなる前記の樹脂組成物に関する。
また、本発明は、更に、前記水酸化アルミニウム以外の無機充填剤として、シリカを含有してなる前記の樹脂組成物に関する。
In the resin composition, particles having a particle size of 0.5 μm or less as an inorganic filler are 0.2% by weight or less, a BET specific surface area is 1.5 m 2 / g or less, and an average particle size is 1 in the resin composition. The present invention relates to a resin composition containing aluminum hydroxide having a thickness of 0.0 to 5.0 μm.
In the present invention, the resin in the resin composition is one or more resins selected from the group consisting of epoxy resins, phenol resins, polyimide resins, triazine resins, melamine resins, and modified resins obtained by modifying these resins. It is related with the said resin composition which consists of.
The present invention further relates to the resin composition containing silica as an inorganic filler other than the aluminum hydroxide.

また、本発明は、無機充填剤が、樹脂組成物中の40〜70重量%含有され、かつ無機充填剤の50〜80重量%が平均粒径0.4〜0.7μmのシリカ、20〜50重量%が前記水酸化アルミニウムである前記の樹脂組成物に関する。
また、本発明は、前記の樹脂組成物を使用して製造されるプリプレグに関する。
また、本発明は、前記のプリプレグを積層し、硬化させて得られる難燃性積層板に関する。
また、本発明は、難燃性積層板が、金属張積層板である、前記の難燃性積層板に関する。
さらに、本発明は、前記の難燃性積層板を使用して作製される印刷配線板に関する。
Further, in the present invention, the inorganic filler is contained in 40 to 70% by weight in the resin composition, and 50 to 80% by weight of the inorganic filler is silica having an average particle diameter of 0.4 to 0.7 μm, 20 to 20%. The present invention relates to the resin composition, wherein 50% by weight is the aluminum hydroxide.
Moreover, this invention relates to the prepreg manufactured using the said resin composition.
The present invention also relates to a flame retardant laminate obtained by laminating and curing the prepreg.
The present invention also relates to the above flame-retardant laminate, wherein the flame-retardant laminate is a metal-clad laminate.
Furthermore, this invention relates to the printed wiring board produced using the said flame-retardant laminated board.

本発明の樹脂組成物を用いて作製した難燃性積層板は、粒度分布がシャープであり、かつ微粒子の少ない水酸化アルミニウムを用いているため、高い耐熱性を発現する。また同時に良好な銅箔引き剥がし強さや耐電食性、ドリル加工性が得られる。このような積層板から回路を形成して得られるプリント配線板は、鉛フリーはんだへの対応が可能であり、かつ高い信頼性が得られる。   The flame-retardant laminate produced using the resin composition of the present invention exhibits high heat resistance because it uses aluminum hydroxide having a sharp particle size distribution and few fine particles. At the same time, good copper foil peeling strength, electric corrosion resistance, and drillability can be obtained. A printed wiring board obtained by forming a circuit from such a laminate can be compatible with lead-free soldering and can have high reliability.

本発明で使用する水酸化アルミニウムについて詳細に説明する。
本発明で使用する水酸化アルミニウムは、平均粒子径が1.0〜5.0μmであることを特徴とし、更に2.0〜5.0μmであることが好ましく、3.0〜4.5μmであることがより好ましい。平均粒子径が1.0μm未満では、樹脂材料に水酸化アルミニウムを加えてワニスを作製する際に大幅に増粘し、ガラス基材等への含浸や、プリプレグをプレスした時の成形が困難になる。さらに、平均粒子径が小さいと粒子の凝集が発生し、水酸化アルミニウムの分散性が不十分となる。一方、平均粒子径が5.0μmを超えて大きいと、ワニスを作製した際に沈降が早いため作業性が悪くなる。また近年、プリント基板の薄型化が進んでおり、薄物基板の絶縁信頼性等を高いものとするためには平均粒子径が5.0μm以下であることが必要である。
The aluminum hydroxide used in the present invention will be described in detail.
The aluminum hydroxide used in the present invention has an average particle diameter of 1.0 to 5.0 μm, preferably 2.0 to 5.0 μm, and preferably 3.0 to 4.5 μm. More preferably. When the average particle diameter is less than 1.0 μm, the viscosity of the resin material is greatly increased when aluminum hydroxide is added to produce a varnish, and impregnation into a glass substrate or molding when pressing a prepreg becomes difficult. Become. Further, when the average particle size is small, the particles aggregate and the dispersibility of the aluminum hydroxide becomes insufficient. On the other hand, when the average particle diameter is larger than 5.0 μm, the workability is deteriorated because the sedimentation is quick when the varnish is produced. In recent years, the thickness of printed boards has been reduced, and it is necessary that the average particle diameter be 5.0 μm or less in order to increase the insulation reliability of thin substrates.

また、本発明で使用する水酸化アルミニウムは,粒子径0.5μm以下の粒子が0.2重量%以下、BET比表面積が1.5m/g以下であることを特徴とする。更に粒子径0.01〜0.5μmの粒子が0〜0.2重量%であることが好ましく、粒子径0.1〜0.5μmの粒子が0〜0.1重量%であることがより好ましい。水酸化アルミニウムの脱水開始温度はギブサイト型からベーマイト型へ転移する温度と等しいため、ベーマイト化を抑制することにより水酸化アルミニウムの耐熱性は向上する。 The aluminum hydroxide used in the present invention is characterized in that particles having a particle diameter of 0.5 μm or less are 0.2% by weight or less and a BET specific surface area is 1.5 m 2 / g or less. Furthermore, it is preferable that the particles having a particle size of 0.01 to 0.5 μm are 0 to 0.2% by weight, and the particles having a particle size of 0.1 to 0.5 μm are 0 to 0.1% by weight. preferable. Since the dehydration start temperature of aluminum hydroxide is equal to the temperature of transition from the gibbsite type to the boehmite type, the heat resistance of the aluminum hydroxide is improved by suppressing the formation of boehmite.

粒子径0.5μm以下の微粒子は比表面積が高いため表面吸着水分が多く、240℃付近の低い温度で脱水を開始するが、本発明で使用する水酸化アルミニウムはそのような微粒子が殆どなく、シャープな粒度分布を示すのでベーマイト化が抑制され、樹脂組成物や積層板、印刷配線板とした時に耐熱性が大きく改善される。   Fine particles having a particle diameter of 0.5 μm or less have a large specific surface area, so there is a lot of moisture adsorbed on the surface, and dehydration is started at a low temperature around 240 ° C. Since it shows a sharp particle size distribution, boehmite formation is suppressed, and heat resistance is greatly improved when a resin composition, a laminated board, or a printed wiring board is used.

また、BET比表面積が1.5m/g以下と小さく、粒子径0.5μm以下の粒子が0.2重量%以下と微粒子が少ないことから、樹脂材料と水酸化アルミニウム表面との濡れ性が向上し、界面の接着性が上がる。そのため、積層板において銅箔等の引き剥がし強さが向上する効果が得られる。BET比表面積は、0.1〜1.5m/gが好ましく、0.5〜1.5m/gがより好ましい。なおBET比表面積とは、一般的なBET方式の比表面積測定装置等により、求めることができる。 In addition, since the BET specific surface area is as small as 1.5 m 2 / g or less and the particle diameter of 0.5 μm or less is 0.2 wt% or less and there are few fine particles, the wettability between the resin material and the aluminum hydroxide surface is low. Improves interfacial adhesion. Therefore, an effect of improving the peel strength of the copper foil or the like in the laminated plate can be obtained. BET specific surface area is preferably 0.1~1.5m 2 / g, 0.5~1.5m 2 / g is more preferable. The BET specific surface area can be determined by a general BET specific surface area measuring device or the like.

上記水酸化アルミニウムとしては、市販品の水酸化アルミニウムHP−360(昭和電工製、商品名)などが挙げられる。また、比表面積測定装置等を用い、一般の水酸化アルミニウムを選別し、粒子径0.5μm以下の粒子が0.2重量%以下、BET比表面積が1.5m/g以下であり、かつ平均粒子径が1.0〜5.0μmの水酸化アルミニウムとしても良い。 Examples of the aluminum hydroxide include commercially available aluminum hydroxide HP-360 (trade name, manufactured by Showa Denko). Further, using a specific surface area measuring apparatus or the like, general aluminum hydroxide is selected, particles having a particle diameter of 0.5 μm or less are 0.2% by weight or less, a BET specific surface area is 1.5 m 2 / g or less, and Aluminum hydroxide having an average particle diameter of 1.0 to 5.0 μm may be used.

本発明においては、上記水酸化アルミニウムとその他の無機充填剤を併用することもできる。併用する無機充填剤の種類や形状、粒径は特に限定するものではなく、例えば炭酸カルシウム、アルミナ、酸化チタン、マイカ、炭酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ、ガラス短繊維、ホウ酸アルミニウム、炭化ケイ素等の各種ウィスカなどが挙げられる。さらにこれらの数種類を組み合わせて用いてもよいが、シリカが好ましく、更に平均粒径0.4〜0.7μmのシリカがより好ましい。シリカは合成球状シリカが好ましく、平均粒径0.4〜0.7μmの合成球状シリカとしては、アドマテックス製、SO−25H(商品名)などが挙げられる。   In the present invention, the above aluminum hydroxide and other inorganic fillers can be used in combination. The type, shape, and particle size of the inorganic filler used in combination are not particularly limited. For example, calcium carbonate, alumina, titanium oxide, mica, aluminum carbonate, magnesium silicate, aluminum silicate, silica, short glass fiber, boric acid Various whiskers such as aluminum and silicon carbide are listed. Further, several types of these may be used in combination, but silica is preferable, and silica having an average particle size of 0.4 to 0.7 μm is more preferable. Synthetic spherical silica is preferable as the silica, and examples of the synthetic spherical silica having an average particle size of 0.4 to 0.7 μm include SO-25H (trade name) manufactured by Admatechs.

無機充填剤の配合量は、樹脂組成物中40〜70重量%であることが好ましい。40重量%未満ではドリル加工性が劣る傾向にあり、70重量%を超えると樹脂の流動性がなくなり、プレス時の成形性が悪化する傾向がある。   It is preferable that the compounding quantity of an inorganic filler is 40 to 70 weight% in a resin composition. If it is less than 40% by weight, the drillability tends to be inferior, and if it exceeds 70% by weight, the fluidity of the resin is lost and the moldability during pressing tends to deteriorate.

更に、無機充填剤としては、無機充填剤の50〜80重量%が平均粒径0.4〜0.7μmのシリカで、20〜50重量%が前記の水酸化アルミニウムであることが好ましい。0.4〜0.7μmのシリカを使用することで剛性の向上が得られる。但し、平均粒径が0.4μm未満であると、樹脂組成物の粘度の増加が著しく、作業性が悪化する。0.7μmを超えるとドリル加工時にドリル刃のチッピング等の問題が発生する。   Furthermore, as an inorganic filler, it is preferable that 50-80 weight% of an inorganic filler is a silica with an average particle diameter of 0.4-0.7 micrometer, and 20-50 weight% is the said aluminum hydroxide. By using 0.4 to 0.7 μm silica, the rigidity can be improved. However, when the average particle size is less than 0.4 μm, the viscosity of the resin composition is remarkably increased and workability is deteriorated. If it exceeds 0.7 μm, problems such as chipping of the drill blade occur during drilling.

無機充填剤には、樹脂と充填剤の界面接着性や無機充填剤の分散性を向上させるために、各種カップリング剤やシリコーン重合体等を用いて無機充填剤の表面処理をすることが好ましい。カップリング剤としては、例えばシラン系カップリング剤、チタネート系カップリング剤等が用いられる。   In order to improve the interfacial adhesion between the resin and the filler and the dispersibility of the inorganic filler, the inorganic filler is preferably subjected to a surface treatment of the inorganic filler using various coupling agents or silicone polymers. . As the coupling agent, for example, a silane coupling agent, a titanate coupling agent, or the like is used.

シラン系カップリング剤としては、炭素官能性シランが用いられ、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、2−(2,3−エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシ基含有シラン;3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピル(メチル)ジメトキシシランのようなアミノ基含有シラン;3−(トリメトキシリル)プロピルテトラメチルアンモニウムクロリドのようなカチオン性シラン;ビニルトリエトキシシランのようなビニル基含有シラン;3−メタクリロキシプロピルトリメトキシシランのようなアクリル基含有シラン;および3−メルカプトプロピルトリメトキシシランのようなメルカプト基含有シランが例示される。   As the silane coupling agent, carbon functional silane is used, and 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl (methyl) dimethoxysilane, 2- (2,3-epoxycyclohexyl) ethyltri Epoxy group-containing silane such as methoxysilane; 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl (methyl) ) Amino group-containing silane such as dimethoxysilane; Cationic silane such as 3- (trimethoxylyl) propyltetramethylammonium chloride; Vinyl group-containing silane such as vinyltriethoxysilane; 3-Methacryloxypropyltrimethoxysilane Acrylic group-containing silane such as Mercapto group-containing silane such as beauty 3-mercaptopropyltrimethoxysilane and the like.

一方、チタネート系カップリング剤としては、チタンプロポキシド、チタンブトキシドのようなチタン酸アルキルエステルが例示される。カップリング剤やシリコーン重合体は2種以上併用してもよく、その配合量は、特に制限はない。   On the other hand, examples of titanate coupling agents include alkyl titanates such as titanium propoxide and titanium butoxide. Two or more types of coupling agents and silicone polymers may be used in combination, and the blending amount is not particularly limited.

本発明で用いる樹脂は特に限定されず、例えばエポキシ樹脂系、ポリイミド樹脂系、トリアジン樹脂系、フェノール樹脂系、メラミン樹脂系、これら樹脂の変性系等が用いられる。これらの樹脂は2種類以上を併用してもよく、必要に応じて各種硬化剤、硬化促進剤等を使用し、これらを溶剤溶液として配合しても差し支えない。   The resin used in the present invention is not particularly limited, and for example, an epoxy resin system, a polyimide resin system, a triazine resin system, a phenol resin system, a melamine resin system, a modified system of these resins, and the like are used. Two or more kinds of these resins may be used in combination, and various curing agents, curing accelerators and the like may be used as necessary, and these may be blended as a solvent solution.

耐熱性、耐湿性等の特性やコスト等のバランスを考慮するとエポキシ樹脂を用いることが好ましい。エポキシ樹脂としては、分子内に2個以上のエポキシ基を有する化合物であればよく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、多官能フェノール類のグリシジルエーテル化合物、二官能アルコール類のグリシジルエーテル化合物及びこれらの水素添加物等が挙げられる。   In consideration of the balance between characteristics such as heat resistance and moisture resistance and cost, it is preferable to use an epoxy resin. The epoxy resin may be a compound having two or more epoxy groups in the molecule, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy. Resins, bisphenol A novolac type epoxy resins, bisphenol F novolac type epoxy resins, dicyclopentadiene type epoxy resins, glycidyl ether compounds of polyfunctional phenols, glycidyl ether compounds of bifunctional alcohols, and hydrogenated products thereof. .

これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用して用いてもよい。また、硬化後の樹脂組成物のTgや耐熱性を向上するために、分子内に3個以上のエポキシ基を有するエポキシ樹脂を用いることが好ましい。このような樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等が挙げられる。   These epoxy resins may be used alone or in combination of two or more. In order to improve Tg and heat resistance of the cured resin composition, it is preferable to use an epoxy resin having three or more epoxy groups in the molecule. Examples of such resins include phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, bisphenol F novolak type epoxy resins, and the like.

硬化剤としては、従来公知の種々のものを使用することができ、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、フェノールノボラックやクレゾールノボラック等の多官能性フェノール等をあげることができる。これらの硬化剤は何種類か併用することも可能である。硬化促進剤の種類や配合量は特に限定するものではなく、例えばイミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が用いられ、2種類以上を併用してもよい。   As the curing agent, various conventionally known ones can be used, and examples thereof include dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, polyfunctional phenols such as phenol novolac and cresol novolac. be able to. Several kinds of these curing agents can be used in combination. The type and blending amount of the curing accelerator are not particularly limited. For example, imidazole compounds, organophosphorus compounds, tertiary amines, quaternary ammonium salts and the like are used, and two or more kinds may be used in combination. .

本発明の樹脂組成物には、必要に応じて、さらに着色剤、酸化防止剤、還元剤、紫外線遮蔽剤などを適宜配合することができる。   If necessary, the resin composition of the present invention may further contain a colorant, an antioxidant, a reducing agent, an ultraviolet shielding agent and the like.

これら樹脂材料及び無機充填剤を希釈してワニス化するために溶剤が用いられる。この溶剤は特に限定はなく、例えばアセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、メタノール、エタノール等があり、これらは何種類かを混合してもよい。   A solvent is used to dilute the resin material and the inorganic filler to form a varnish. There are no particular limitations on this solvent, and examples include acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, N, N-dimethylformamide, methanol, and ethanol. May be.

また、ワニスの固形分濃度は特に制限はなく、樹脂組成や無機充填剤の種類及び配合量等により適宜変更できるが、50重量%〜80重量%の範囲が好ましい。50重量%より低いとワニス粘度が低く、プリプレグの樹脂分が低くなりすぎ、80重量%より高いとワニスの増粘等によりプリプレグの外観等が著しく低下しやすい。   Further, the solid content concentration of the varnish is not particularly limited and can be appropriately changed depending on the resin composition, the kind and blending amount of the inorganic filler, etc., but the range of 50% by weight to 80% by weight is preferable. If it is lower than 50% by weight, the varnish viscosity is low and the resin content of the prepreg becomes too low.

前記各成分を配合して得たワニスは,基材に含浸させ,乾燥炉中で80℃〜200℃の範囲で乾燥させることにより、印刷配線板用プリプレグを得る。基材としては、金属箔張り積層板や多層印刷配線板を製造する際に用いられるものであれば特に制限されないが、通常織布や不織布等の繊維基材が用いられる。   A varnish obtained by blending the above components is impregnated into a base material and dried in a drying oven in the range of 80 ° C. to 200 ° C. to obtain a prepreg for a printed wiring board. Although it will not restrict | limit especially if it is used when manufacturing a metal foil clad laminated board and a multilayer printed wiring board as a base material, Usually, fiber base materials, such as a woven fabric and a nonwoven fabric, are used.

繊維基材としては、たとえばガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。   Examples of the fiber substrate include inorganic fibers such as glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, aramid, polyether ether ketone, polyether imide, polyether sal There are organic fibers such as phon, carbon, and cellulose, and mixed papers thereof, and glass fiber woven fabrics are particularly preferably used.

本発明で用いるプリプレグは、例えば150℃〜200℃、1.0〜8.0MPa程度の範囲で加熱加圧して難燃性積層板、金属張積層板や多層印刷配線板を製造することに用いられる。また、印刷配線板は、難燃性積層板などを用い、一般的な配線板製造工程により製造することができる。   The prepreg used in the present invention is used for producing a flame-retardant laminate, a metal-clad laminate, and a multilayer printed wiring board by heating and pressing in a range of, for example, 150 to 200 ° C. and about 1.0 to 8.0 MPa. It is done. Moreover, a printed wiring board can be manufactured by a general wiring board manufacturing process using a flame-retardant laminated board.

以下、本発明の実施例について説明するが、本発明はこれらの実施例によって制限されるものではない。なお、以下の実施例及び比較例において、部は重量部を表す。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In the following examples and comparative examples, parts represent parts by weight.

実施例1
下記に示す樹脂材料及び無機充填剤を配合し、メチルエチルケトンを加えて固形分70重量%のワニスを調整した。
・ ビスフェノールAノボラック型エポキシ樹脂(大日本インキ化学工業株式会社の商品名エピクロンN−865)…69部
・ テトラブロモビスフェノールA型エポキシ樹脂(大日本インキ化学工業株式会社の商品名エピクロン153)…31部
・ フェノールノボラック樹脂(大日本インキ化学工業株式会社の商品名フェノライトTD−2106)…42部
・ 2−エチル−4−メチルイミダゾール…0.2部
・ 水酸化アルミニウム(I)(昭和電工製、商品名HP−360、表1参照)…70部
・ シリカ(アドマテックス製、SO−25H、平均粒径0.6μmの合成球状シリカ)…70部
Example 1
The resin material and inorganic filler shown below were blended, and methyl ethyl ketone was added to prepare a varnish having a solid content of 70% by weight.
・ Bisphenol A novolac type epoxy resin (trade name Epicron N-865, Dainippon Ink and Chemicals, Inc.) ... 69 parts ・ Tetrabromobisphenol A epoxy resin (trade name Epicron 153, Dainippon Ink and Chemicals) ... 31 Part ・ Phenol novolac resin (trade name Phenolite TD-2106 of Dainippon Ink & Chemicals, Inc.) 42 parts ・ 2-ethyl-4-methylimidazole 0.2 parts ・ Aluminum hydroxide (I) (manufactured by Showa Denko) , Trade name HP-360, see Table 1) ... 70 parts Silica (manufactured by Admatechs, SO-25H, synthetic spherical silica with an average particle size of 0.6 µm) ... 70 parts

実施例2
水酸化アルミニウム(I)に代えて、水酸化アルミニウム(II)(昭和電工製、商品名HP−360、表1参照)を70部を用いた以外は全て実施例1と同様の配合割合、かつ同様の工程を経てワニスを調整した。
Example 2
Instead of aluminum hydroxide (I), aluminum hydroxide (II) (made by Showa Denko, trade name HP-360, see Table 1) was used except that 70 parts were used, and the same mixing ratio as in Example 1, and The varnish was adjusted through the same steps.

比較例1〜3
水酸化アルミニウム(I)に代えて、表1に示す水酸化アルミニウムを用いた以外は、全て実施例1と同様の配合割合、かつ同様の工程を経てワニスを調整した。
Comparative Examples 1-3
A varnish was prepared through the same blending ratio and the same steps as in Example 1 except that aluminum hydroxide shown in Table 1 was used instead of aluminum hydroxide (I).

Figure 2007051267
Figure 2007051267

実施例1〜2及び比較例1〜3で作製したワニスを厚さ約0.1mmのガラス布(#2116、E−ガラス)に含浸後、150℃で3〜10分加熱乾燥して樹脂分48重量%のプリプレグを得た。これらプリプレグ4枚を重ね、その両側に厚みが18μmの銅箔を重ね、175℃、90分、3.0MPaのプレス条件で両面銅張積層板を作製した。
得られた両面銅張積層板について、耐熱性、銅箔引き剥がし強さ、耐電食性の評価、ドリル加工性評価及び成形性評価を行った。これらの結果をまとめて表2に示す。
A glass cloth (# 2116, E-glass) having a thickness of about 0.1 mm was impregnated with the varnishes produced in Examples 1 and 2 and Comparative Examples 1 to 3, and then dried by heating at 150 ° C. for 3 to 10 minutes. A 48% by weight prepreg was obtained. Four of these prepregs were stacked, and a copper foil having a thickness of 18 μm was stacked on both sides thereof to prepare a double-sided copper-clad laminate under press conditions of 175 ° C., 90 minutes, 3.0 MPa.
About the obtained double-sided copper clad laminated board, heat resistance, copper foil peeling strength, evaluation of electric corrosion resistance, drill workability evaluation, and formability evaluation were performed. These results are summarized in Table 2.

試験方法は以下の通りである。
・ 耐熱性 :両面銅張積層板を50mm×50mmに切断し、260℃のはんだにフローティングし、ふくれが発生するまでの時間を測定した。
・ 耐燃性:JIS C 6481に準じて測定した。
・ 銅箔引き剥がし強さ:JIS C 5016に準じて測定した。銅箔の厚さは18μmとした。
・ 耐電食性:両面銅張積層板を、直径0.4mmのドリルで、穴間隔0.3mmに加工し、穴の間に電圧50Vを印加して、85℃、85%RHの条件で500時間放置後の絶縁抵抗の測定を行った。
・ ドリル加工性:ドリル径直径0.1mm、回転数160kr/min、送り速度1.6m/min、重ね枚数2枚 エントリーボード150μmアルミ板にて加工を実施し、穴位置精度及び壁面粗さを測定した。
・ 成形性:成形性の評価は、両面銅張積層板を全面エッチング後、目視により表面を観察し、ボイド発生の有無を調べ、ボイド発生無しを異常なしとした。
The test method is as follows.
-Heat resistance: A double-sided copper-clad laminate was cut into 50 mm x 50 mm, floated on 260 ° C solder, and the time until blistering was measured.
-Flame resistance: Measured according to JIS C 6481.
-Copper foil peeling strength: Measured according to JIS C 5016. The thickness of the copper foil was 18 μm.
-Electric corrosion resistance: Double-sided copper clad laminate was processed with a drill with a diameter of 0.4 mm to a hole interval of 0.3 mm, a voltage of 50 V was applied between the holes, and the conditions were 85 ° C. and 85% RH for 500 hours. The insulation resistance after standing was measured.
・ Drilling workability: Drill diameter 0.1mm, rotation speed 160kr / min, feed rate 1.6m / min, number of stacks 2 pieces Processing is done with an entry board 150μm aluminum plate, hole position accuracy and wall surface roughness are achieved. It was measured.
-Formability: For evaluation of formability, the double-sided copper-clad laminate was etched on the entire surface, and the surface was visually observed to check for the occurrence of voids.

Figure 2007051267
Figure 2007051267

表2に示されるように、実施例1〜2の両面銅張積層板は、比較例1〜3の両面銅張積層板と比較して、耐熱性、耐燃性、銅箔引き剥がし強さ、耐電食性に優れることが明らかである。
As shown in Table 2, the double-sided copper-clad laminates of Examples 1 and 2 were compared with the double-sided copper-clad laminates of Comparative Examples 1 to 3, in terms of heat resistance, flame resistance, and copper foil peel strength. It is clear that it has excellent electric corrosion resistance.

Claims (8)

樹脂組成物中に、無機充填剤として粒子径0.5μm以下の粒子が0.2重量%以下、BET比表面積が1.5m/g以下であり、かつ平均粒子径が1.0〜5.0μmである水酸化アルミニウムを含有してなる樹脂組成物。 In the resin composition, particles having a particle size of 0.5 μm or less as an inorganic filler are 0.2% by weight or less, a BET specific surface area is 1.5 m 2 / g or less, and an average particle size is 1.0 to 5 A resin composition comprising aluminum hydroxide having a thickness of 0.0 μm. 樹脂組成物中の樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、トリアジン樹脂、メラミン樹脂及びこれら樹脂を変性した変性樹脂からなる群から選ばれる1種又は2種以上の樹脂からなる請求項1に記載の樹脂組成物。   The resin in the resin composition comprises one or more resins selected from the group consisting of epoxy resins, phenol resins, polyimide resins, triazine resins, melamine resins and modified resins obtained by modifying these resins. The resin composition as described. 更に、前記水酸化アルミニウム以外の無機充填剤として、シリカを含有してなる請求項1又は2記載の樹脂組成物。   Furthermore, the resin composition of Claim 1 or 2 formed by containing a silica as inorganic fillers other than the said aluminum hydroxide. 無機充填剤が、樹脂組成物中の40〜70重量%含有され、かつ無機充填剤の50〜80重量%が平均粒径0.4〜0.7μmのシリカ、20〜50重量%が前記水酸化アルミニウムである請求項1〜3のいずれかに記載の樹脂組成物。   An inorganic filler is contained in an amount of 40 to 70% by weight in the resin composition, and 50 to 80% by weight of the inorganic filler is silica having an average particle size of 0.4 to 0.7 μm, and 20 to 50% by weight is the water. It is aluminum oxide, The resin composition in any one of Claims 1-3. 請求項1〜4のいずれかに記載の樹脂組成物を使用して製造されるプリプレグ。   The prepreg manufactured using the resin composition in any one of Claims 1-4. 請求項5に記載のプリプレグを積層し、硬化させて得られる難燃性積層板。   A flame-retardant laminate obtained by laminating and curing the prepreg according to claim 5. 難燃性積層板が、金属張積層板である、請求項6記載の難燃性積層板。   The flame-retardant laminate according to claim 6, wherein the flame-retardant laminate is a metal-clad laminate. 請求項6または7に記載の難燃性積層板を使用して作製される印刷配線板。


The printed wiring board produced using the flame-retardant laminated board of Claim 6 or 7.


JP2006035088A 2005-07-20 2006-02-13 Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board Pending JP2007051267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035088A JP2007051267A (en) 2005-07-20 2006-02-13 Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005209919 2005-07-20
JP2006035088A JP2007051267A (en) 2005-07-20 2006-02-13 Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board

Publications (1)

Publication Number Publication Date
JP2007051267A true JP2007051267A (en) 2007-03-01

Family

ID=37915925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035088A Pending JP2007051267A (en) 2005-07-20 2006-02-13 Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP2007051267A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146095A (en) * 2005-11-02 2007-06-14 Hitachi Chem Co Ltd Resin composition, prepreg, and laminated board and printed circuit board produced by using the same
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2008246858A (en) * 2007-03-30 2008-10-16 Sumitomo Bakelite Co Ltd Insulating resin sheet with copper foil, multi-layer printed wiring board, method for manufacturing multi-layer printed wiring board and semiconductor device
WO2009081610A1 (en) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. Epoxy resin composition, prepreg, metal clad laminate and multilayer printed wiring board
JP2009270000A (en) * 2008-05-07 2009-11-19 Nitto Denko Corp Semiconductor-sealing epoxy resin composition and semiconductor device using it
JP2010031263A (en) * 2008-06-30 2010-02-12 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP2010254807A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Thermosetting resin composition, prepreg, composite laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
JP5277633B2 (en) * 2005-12-26 2013-08-28 日本軽金属株式会社 Method for producing low-soda fine aluminum hydroxide
TWI569957B (en) * 2012-01-18 2017-02-11 Jx Nippon Mining & Metals Corp Surface-treated copper foil for copper-clad laminates and copper-clad laminate using the same
CN109094151A (en) * 2018-07-05 2018-12-28 苏州广型模具有限公司 Carbide cutting cover board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187937A (en) * 2000-12-19 2002-07-05 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, and metal-clad laminate
JP2002212397A (en) * 2001-01-19 2002-07-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004175895A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Resin composition for laminate, electrical prepreg, metal foil with electrical resin, electrical laminate, printed wiring board and multilayer printed wiring board
JP2005239760A (en) * 2004-02-24 2005-09-08 Hitachi Chem Co Ltd Resin composition, prepreg and metal clad laminated board
JP2006124420A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006199565A (en) * 2004-05-13 2006-08-03 Showa Denko Kk Aluminum hydroxide and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187937A (en) * 2000-12-19 2002-07-05 Matsushita Electric Works Ltd Epoxy resin composition, prepreg, and metal-clad laminate
JP2002212397A (en) * 2001-01-19 2002-07-31 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004175895A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Resin composition for laminate, electrical prepreg, metal foil with electrical resin, electrical laminate, printed wiring board and multilayer printed wiring board
JP2005239760A (en) * 2004-02-24 2005-09-08 Hitachi Chem Co Ltd Resin composition, prepreg and metal clad laminated board
JP2006199565A (en) * 2004-05-13 2006-08-03 Showa Denko Kk Aluminum hydroxide and use thereof
JP2006124420A (en) * 2004-10-26 2006-05-18 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706468B2 (en) * 2005-11-02 2011-06-22 日立化成工業株式会社 Resin composition, prepreg, and laminate and printed wiring board using the same
JP2007146095A (en) * 2005-11-02 2007-06-14 Hitachi Chem Co Ltd Resin composition, prepreg, and laminated board and printed circuit board produced by using the same
JP5277633B2 (en) * 2005-12-26 2013-08-28 日本軽金属株式会社 Method for producing low-soda fine aluminum hydroxide
JP2008101062A (en) * 2006-10-17 2008-05-01 Sumitomo Bakelite Co Ltd Resin composition, prepreg, laminated plate and semiconductor device
JP2008246858A (en) * 2007-03-30 2008-10-16 Sumitomo Bakelite Co Ltd Insulating resin sheet with copper foil, multi-layer printed wiring board, method for manufacturing multi-layer printed wiring board and semiconductor device
WO2009081610A1 (en) * 2007-12-25 2009-07-02 Panasonic Electric Works Co., Ltd. Epoxy resin composition, prepreg, metal clad laminate and multilayer printed wiring board
JP2009155398A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Epoxy resin composition, prepreg, metal clad laminate, and multilayer printed wiring board
US8846799B2 (en) 2007-12-25 2014-09-30 Panasonic Corporation Epoxy resin composition, prepreg, and metal-clad laminate and multilayered printed wiring board
JP2009270000A (en) * 2008-05-07 2009-11-19 Nitto Denko Corp Semiconductor-sealing epoxy resin composition and semiconductor device using it
JP2010031263A (en) * 2008-06-30 2010-02-12 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP2010254807A (en) * 2009-04-24 2010-11-11 Panasonic Electric Works Co Ltd Thermosetting resin composition, prepreg, composite laminate, metal-foil-clad laminate, circuit board, and circuit board for led mounting
TWI569957B (en) * 2012-01-18 2017-02-11 Jx Nippon Mining & Metals Corp Surface-treated copper foil for copper-clad laminates and copper-clad laminate using the same
CN109094151A (en) * 2018-07-05 2018-12-28 苏州广型模具有限公司 Carbide cutting cover board

Similar Documents

Publication Publication Date Title
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
JP6587177B2 (en) Prepreg, metal-clad laminate, printed wiring board
KR100699778B1 (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board made with the same
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP2007211182A (en) Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board
JP5194750B2 (en) Prepreg and laminate
JP4706332B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP2009079128A (en) Resin composition, prepreg, cured product, sheet-like laminated body, laminate and multilayer laminate
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
JP4821059B2 (en) Resin composition and flame-retardant laminate and printed wiring board using the same
JP2010260955A (en) Resin composition, production method of resin composition, and prepreg and laminate each using the same
JP5157045B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP5509625B2 (en) Prepreg resin composition, prepreg, laminated board, and printed wiring board
JP4961903B2 (en) Epoxy resin composition, epoxy resin prepreg, metal-clad laminate and printed wiring board
JP4765975B2 (en) Laminated board and printed wiring board using the same
JP2003213021A (en) Prepreg, metal-clad laminated plate and printed wiring plate using the same
JP2005209489A (en) Insulation sheet
JP4572661B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP4245197B2 (en) Manufacturing method of prepreg for printed wiring board and metal-clad laminate using the same
JP6111518B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board
JP5407973B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP4858359B2 (en) Epoxy resin composition for prepreg, prepreg, laminate and printed wiring board using the same
JP2005247889A (en) Thermosetting resin composition, prepreg, and laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101209