JP4119977B2 - Sintering method - Google Patents

Sintering method Download PDF

Info

Publication number
JP4119977B2
JP4119977B2 JP2003046661A JP2003046661A JP4119977B2 JP 4119977 B2 JP4119977 B2 JP 4119977B2 JP 2003046661 A JP2003046661 A JP 2003046661A JP 2003046661 A JP2003046661 A JP 2003046661A JP 4119977 B2 JP4119977 B2 JP 4119977B2
Authority
JP
Japan
Prior art keywords
sintered
sintering
electrode
mold
sintering method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003046661A
Other languages
Japanese (ja)
Other versions
JP2004256844A (en
Inventor
周二 多田
正明 孫
等 橋本
利彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003046661A priority Critical patent/JP4119977B2/en
Priority to US10/541,641 priority patent/US20060104849A1/en
Priority to AU2003289384A priority patent/AU2003289384A1/en
Priority to PCT/JP2003/016155 priority patent/WO2004076100A1/en
Publication of JP2004256844A publication Critical patent/JP2004256844A/en
Application granted granted Critical
Publication of JP4119977B2 publication Critical patent/JP4119977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属、セラミックス等の被焼結材料の加熱部位を特定位置に限定しながら、被焼結材料と加熱部位とを相対的に移動させることにより直接加圧通電し、短時間で材料を焼結する方法に関する。本発明は、長尺の棒材や断面が一様とならない焼結体を得るのに好適な製造方法を提供するものである。
【0002】
【従来の技術】
直接通電による加圧焼結法によれば、被焼結材をきわめて高速に昇温できるため、雰囲気加熱による従来の焼結手法と比較して製造時間の大幅な短縮が可能である。
一般に、従来の直接通電による加熱焼結法は、被焼結体の軸方向の両端に通電加熱用の電極を配置して加圧すると同時に加熱する手法が取られている(例えば、特許文献1参照)。
しかしながら、このような直接通電による加熱では、通電経路における両者の接触部分での発熱量が、他の被焼結粉末の部位に比べて特に大きくなるため、電極接触面から焼結材料中央部(電極から離れた位置)へ向かって、温度勾配が発生する。
したがって、棒材のように通電経路が長い焼結製品を製造する場合には材料全体を均一な温度で焼結することがきわめて難しいという問題がある。
【0003】
また,通電経路に対して焼結体の断面が長さ方向に一様とならない部材(すなわち断面積が変化する部材)では、通電経路に垂直な断面の面積差によって電気抵抗が変わるため、発熱量が変化して均一な焼結体が得られないという問題がある。
したがって、従来の直接通電による加圧焼結法では、ある長さ以上を有する棒材ならびに段付の部材など断面が一様でない焼結体を、均一な材質をもつ製品に製造することが難しいという問題があった。
【0004】
このようなことから、従来の被焼結体の軸方向の両端に通電加熱用の電極を配置して加圧する替わりに、被焼結体の側面に電極を配置し加熱する方法が提案されている(例えば、特許文献2参照)。しかし、この場合電極及び焼結体は固定された位置で行われているので、長尺のものを連続的に焼結することはできない。
また、連続的に焼結するという観点からみると、被焼結粉末をロールに挟んで薄板をロール状の電極で通電加熱する提案もある(例えば、特許文献3参照)。しかし、この場合薄板を製造することだけに限定され、他の形状の部品を焼結できないという問題がある。
【0005】
【特許文献1】
特開2000−239707号公報
【特許文献2】
特開平10−259405号公報
【特許文献3】
特開平9−268302号公報
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、長尺の棒材又は断面が一様でない焼結体であっても、焼結体の品質が均一であり、焼結性に優れた焼結方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、棒状又は断面が一様でない焼結体を得るために研究を重ねた結果、被焼結材料の加熱する部分(位置)を制限(限定)し、被焼結材料と通電部とを相対的に順次移動させながら焼結を行うことにより、この目的を達成し得ることを見いだした。
すなわち、本発明は、上記知見に基づき
1.棒状の成形空間を有する型内で粉末を直接通電加圧焼結する方法において、電極を筒状の型の側壁周囲に配置し、該電極又は被焼結体を一軸方向に移動させ、且つ通電した該電極の移動又は被焼結体の移動に従って、通電部分と通電により焼結している焼結体の一部である被焼結部位とを相対的に移動させながら連続的に焼結することを特徴とする焼結方法
2.棒状の型内に配置した焼結粉末材料を型の端部から加圧するとともに、型の周囲に該型の長さ方向に移動可能な電極を配置し、該電極から焼結粉末材料に通電加熱して焼結することを特徴とする上記1記載の焼結方法
3.焼結粉末材料を型の両端部から加圧することを特徴とする上記2記載の焼結方法
4.棒状の成形空間を有する型の横方向の断面形状と同じ形状の穴を有する電極の接続端子板を、該穴を通して型の周囲に配置し、該接続端子板によって通電部位を移動させて焼結することを特徴とする上記1〜3のいずれかに記載の焼結方法
5.固定した棒状のダイスの周囲に固定電極を配置し、該ダイス内に焼結粉末材料を装入して通電加熱焼結すると共に、ダイスの一方から原料粉末を押圧し、かつそれによって焼結された焼結体をダイスの他方から押出して順次焼結することを特徴とする上記項1記載の焼結方法
6.焼結粉末材料を一方向に焼結することを特徴とする上記1〜5のいずれかに記載の焼結方法
7.長尺の焼結粉末材料を焼結することを特徴とする上記1〜6のいずれかに記載の焼結方法
8.加熱部位を設定しながら断面が一様でない材料を焼結することを特徴とする上記1〜7のいずれかに記載の焼結方法、を提供する。
【0008】
【発明の実施の形態】
本発明においては、公知の通電加圧焼結法を基に、従来は被焼結材料と焼結空間を備えた型とを一体として全体的に加熱していたものを、通電部分を型の特定位置に限定し、被焼結部位と加熱部分とを相対的に移動させながら一方向へ連続的に焼結していくことによって、焼結品質が良好な棒状又は断面が一様でない焼結部材を製造する方法を開発した。
【0009】
原料を固定して電極を移動する場合を図1に、電極を固定して原料を移動させる場合を図2にそれぞれ概略を示す。
図1に示すように、原料を固定して電極側を移動する場合には、まず加熱したい部分に相当する厚みをもつ電極接続端子板(可動電極)1を、原料粉末2充填用の筒形の型(シリンダ)3の外壁に密着させ、かつ一軸(筒形の型の)上で自由に動くように配置する。
一方、充填された焼結用粉末2は、型の内部でパンチ4により両端から加圧される。符号5は加圧盤である。
この状態で、粉末を加圧しながら可動電極1に通電し、所望の温度および速度となるように制御しながら電極1を移動させる。これによって、棒状若しくは断面が一様でない焼結体が得られる。
【0010】
一方、図2に示すように、焼結用原料2を移動する場合には、電極1に接続したダイス6に通電し、所望の温度に制御したところで原料粉末2をプッシュロッド10により加圧し送り込む。
このとき、出口側には回転抵抗をもったロール7や内径を通電するダイス6よりも若干小さくした2次ダイス的なもの(図示せず)などを設置することにより、焼結品9の進行に対して抵抗が生ずる措置を講じて、原料粉末を加圧する。
以上の方法によって、焼結品の均一性に優れた棒状若しくは断面が一様でない焼結製品を得ることができる。
【0011】
【実施例】
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。すなわち、本発明の技術思想の範囲で、本実施例以外の態様あるいは変形を全て包含するものである。
【0012】
(実施例1)
図3に示すように、原料粉末となるアルミニウムを充填した型に厚さt=10.0mmのグラファイト製電極接続端子板11を取り付け、これに通電したときの接続端子板11からの距離に対する温度分布を測定した。
実施例1により測定した温度分布の結果を図4に示す。電極接続端子板11から離れるにつれ温度は低下することがわかる。この結果から、本発明によって、任意の限られた領域のみを焼結温度まで加熱できることが分かる。
被焼結材料における断面形状(電気抵抗)が変化しても、加熱領域を小さくすれば形状変化に伴う各位置での発熱量の差の絶対値は小さくなる。したがって、焼結の良否に影響を及ぼさない程度まで加熱領域を決定する電極接続端子板11の厚みtを十分薄くすれば、断面が一様でない部材でも良好に焼結することができる。
また、電極接続端子板11からはずれる領域では発熱が生じないため、端子板でカバーされた部分の温度よりも高くなることはなく、原料が過熱したりあるいは溶解したりすることはない。
【0013】
(実施例2)
図5に示すように、外径φ30mm、内径φ15mm、長さL=160mmのグラファイト製シリンダ型の中に、平均粒径20μmのアルミニウムを3.82g充てんし、長さ80mmのグラファイト製パンチで上下から押さえる。
このシリンダに、中央にφ30mmの穴をあけた一辺の長さが70mmで厚さ、t=10.0〜13.2mmのグラファイト製の電極接続用端子板(穴あき角板)11を側壁に密着するように嵌め込む。熱電対12が存在する加熱部の断面図を図6に示す。
【0014】
この場合、電極接続用端子板(穴あき角板)11の材質をシリンダと同質の材料を使用する。これによってシリンダまで電流が流れ、さらにシリンダ内の原料粉の電気抵抗が小さい場合には、原料粉が通電により加熱される。また、原料粉の電気抵抗が大きい場合はシリンダが発熱し、原料粉が間接的に加熱され焼結される。
なお、電極接続用端子板11を分割してシリンダに密着させてシリンダ又はその中にある粉末に通電して加熱する方法を採ることもできる。特に通電加熱方法に制限されず、いずれの方法も使用することができる。
【0015】
端子板11には電極1を取り付け、加圧軸とは垂直方向に通電できるようにする。また、型(シリンダ)3中央部には電極接続用端子板(角板)を貫通して深さ7mmの穴をあけ、熱電対12を差し込むことによって温度の制御およびモニタリングに利用した。
上記準備を行った後、約10kNの荷重で加圧しながら、電極間に通電することによって型(シリンダ)中央部を580°C〜640°Cまで加熱し、焼結を行った。
【0016】
上記実施例2における型(シリンダ)の温度変化について測定した結果の一例を図7に示す。実線で示した設定温度(制御用熱電対に対応)に対し、被焼結材料をはさんだ反対側の温度もほぼ一致していることがわかる。
すなわち、型(シリンダ)にはめ込んだ電極接続用端子板11を介して通電を行った場合でも、被焼結材2を所望の温度に制御できることが分かる。
また、実施例2により得られたアルミニウム焼結品の密度について調べた結果を図8に示す。
【0017】
この図8ら焼結温度の上昇とともに密度は高くなり、640°Cでほぼ緻密化することがわかる。この結果より、通電経路を加圧軸から分離しても良好な焼結体を得られることが明らかである。
電極を接続した端子板は型(シリンダ)にはめ込んであるだけなので、シリンダ長手方向に対して自由に移動させることができる。したがって、端子板を動かしながら焼結を実行すれば、長尺の均質な焼結体を製造することができ、本発明を遂行できることができる。
【0018】
(実施例3)
図9に示すように、実施例2に示した焼結手法に準じ、アルミニウムを9.54g充てんし、グラファイト製端子板を1番の位置から3番の位置まで順次動かしながら、それぞれの位置で通電加熱し焼結を行った。
実施例3により得られたアルミニウム焼結品の密度について調べたところ、相対密度で99%以上の値が示された。移動する距離を長くすれば、さらに長い製品の製造も可能である。よって、本方法により、緻密性に優れた棒状の焼結品を製造できることが明らかである。
【0019】
次に、加熱部位を設定しながら断面が一様でない材料を焼結する一例として、図10に示すような段付き部品の焼結を考えると、この例は径の大きい部分と径の小さい部分からなる段付きの焼結品を焼結する場合であり、まず大径部分13の焼結を行う場合には、電極接続用端子板11を原料粉末の大径部分13に設置する。この場合、電極接続用端子板11が小径部分14の原料粉末に掛からないようにする。
通電領域は図10の上方の図に示すように、斜線で示す加熱領域15である。これによって大径部分13に位置する粉末は加熱され焼結する。
【0020】
次に、電極接続用端子板11を小径部分14に移動させ、同様に通電加熱し焼結する。通電加熱部は図10の下方の図における中央加熱領域16である。この場合、電極接続用端子板11は大径部分13に掛からないようにする。
それぞれの位置で、電気抵抗に合わせた通電を独立して行うことができる。これによって、段付き部分でも均一に通電焼結できる。なお、電極接続用端子板11の移動中は、通電を停止しても良いし、また保温程度の電流を流しても良い。これは任意に設定できる。
また、図11に示すように、テーパ部を有する材料であっても、加熱領域を決定する電極接続端子板11の厚みtを発熱量の差が焼結の良否に影響を及ぼさない程度まで十分薄くすることにより、良好な焼結品を製造することが可能となる。
【0021】
【発明の効果】
本発明は、原料と電極とを相対的に移動させながら焼結する方法を提案するものであり、製品全体を一度に焼結する必要がないため加熱する領域を小さくすることができるという効果がある。また、型に取り付けた電極接続端子板を通して通電するので、電極接続端子板の厚さに相当する部分にだけ発熱が生ずる。
これにより、焼結時の温度むらが抑制され、品質に優れた長尺焼結体又は断面形状が一様でない部材の焼結体の製造が可能となる著しい効果を有する。
また、原料粉末を逐次供給する方法を適用することによって、棒材の連続的な製造が可能となる。その結果、従来のバッチ的生産手法と比べて、焼結部材にかかる生産性の大幅な向上が期待できるという優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の、原料を固定して電極を移動させて長尺の焼結体を製造する方法に使用する装置の一例を示す概略説明図である。
【図2】本発明の、電極及びダイスを固定して焼結用粉末原料を移動させて長尺の焼結体を製造する方法に使用する装置の一例を示す概略説明図である。
【図3】電極接続端子板を介して通電したときの型の温度分布測定方法を示す説明図である。
【図4】電極接続端子板を介した通電時の温度分布測定結果を示す図である。
【図5】実施例2で使用した焼結方法の装置の概要を示した図である。
【図6】実施例2の焼結条件において、熱電対12が存在する位置の加熱部の断面図である。
【図7】加圧軸から通電経路を分離して加熱を行ったときの型(シリンダ)の温度変化を示す図である。
【図8】実施例2により得られたアルミニウム焼結品の密度に及ぼす焼結温度の影響について示した図である。
【図9】通電経路すなわち加熱部位を動かしながら焼結する方法の概略を示す図である。
【図10】実施例4に示す段付き部品の焼結例を示す断面概略説明図である。
【図11】径が変更される部品(テーパ部品)の焼結例を示す断面概略説明図である。
【符号の説明】
1:電極
2:焼結体用粉末
3:型(シリンダ)
4:パンチ
5:加圧盤
6:ダイス
7:背圧ロール
8:背圧ロッド
9:焼結体
10:プッシュロッド
11:電極接続用端子板
12:熱電対
13:大径部分
14:小径部分
15:加熱領域
16:加熱領域
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the material to be heated is directly energized by moving the material to be sintered and the heated part relatively while the heating part of the material to be sintered such as metal and ceramics is limited to a specific position. It relates to a method of sintering. The present invention provides a production method suitable for obtaining a long bar or a sintered body having a non-uniform cross section.
[0002]
[Prior art]
According to the pressure sintering method by direct energization, the material to be sintered can be heated at a very high speed, so that the manufacturing time can be greatly reduced as compared with the conventional sintering method by atmospheric heating.
Generally, the conventional heating and sintering method by direct energization employs a technique in which electrodes for energization heating are disposed at both ends in the axial direction of a sintered body and simultaneously heated (for example, Patent Document 1). reference).
However, in such heating by direct energization, the calorific value at the contact portion of both in the energization path is particularly large as compared to other parts of the powder to be sintered. A temperature gradient is generated toward a position away from the electrode.
Therefore, when manufacturing a sintered product having a long energization path such as a bar, it is very difficult to sinter the entire material at a uniform temperature.
[0003]
In addition, in a member in which the cross section of the sintered body is not uniform in the length direction with respect to the energization path (that is, a member whose cross-sectional area changes), the electric resistance changes due to the area difference of the cross section perpendicular to the energization path. There is a problem that a uniform sintered body cannot be obtained due to a change in the amount.
Therefore, in the conventional pressure sintering method by direct current application, it is difficult to produce a sintered body having a non-uniform cross section such as a rod having a certain length or more and a stepped member into a product having a uniform material. There was a problem.
[0004]
For this reason, instead of placing and heating the electrodes for current heating at both ends in the axial direction of the conventional sintered body, a method of arranging and heating the electrodes on the side surfaces of the sintered body has been proposed. (For example, refer to Patent Document 2). However, in this case, since the electrode and the sintered body are carried out at fixed positions, it is not possible to continuously sinter long objects.
From the viewpoint of continuous sintering, there is also a proposal of energizing and heating a thin plate with a roll-shaped electrode with the powder to be sintered sandwiched between rolls (see, for example, Patent Document 3). However, in this case, it is limited to manufacturing a thin plate, and there is a problem that parts of other shapes cannot be sintered.
[0005]
[Patent Document 1]
JP 2000-239707 A [Patent Document 2]
JP-A-10-259405 [Patent Document 3]
Japanese Patent Laid-Open No. 9-268302
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a sintering method in which the quality of the sintered body is uniform and the sinterability is excellent, even if it is a long bar or a sintered body having a non-uniform cross section. Is.
[0007]
[Means for Solving the Problems]
In the present invention, as a result of repeated research to obtain a sintered body having a rod-like shape or a non-uniform cross section, the portion (position) to be heated of the material to be sintered is limited (limited), It has been found that this object can be achieved by carrying out the sintering while sequentially moving the materials.
That is, the present invention is based on the above findings. In a method in which powder is directly energized and pressure-sintered in a mold having a rod-shaped molding space, an electrode is arranged around the side wall of the cylindrical mold, the electrode or the object to be sintered is moved in a uniaxial direction, and energized. In accordance with the movement of the electrode or the sintered body, the current-carrying part and the part to be sintered, which is a part of the sintered body sintered by the current-carrying, are moved relative to each other and sintered continuously. 1. A sintering method characterized by The sintered powder material placed in the rod-shaped mold is pressed from the end of the mold, and an electrode movable in the length direction of the mold is placed around the mold, and the sintered powder material is energized and heated from the electrode 2. The sintering method according to 1 above, wherein the sintering is performed. 3. The sintering method according to 2 above, wherein the sintered powder material is pressurized from both ends of the mold. An electrode connection terminal plate having a hole having the same shape as the cross-sectional shape in the lateral direction of the die having a rod-shaped molding space is arranged around the die through the hole , and the current-carrying portion is moved by the connection terminal plate and sintered. 4. The sintering method according to any one of 1 to 3 above, wherein A fixed electrode is placed around a fixed rod-shaped die, and a sintered powder material is placed in the die and subjected to current heating and sintering, and the raw material powder is pressed from one of the dies and sintered by that. 5. The sintering method according to item 1 above, wherein the sintered body is extruded from the other die and sequentially sintered. 6. The sintering method according to any one of 1 to 5 above, wherein the sintered powder material is sintered in one direction. 7. The sintering method according to any one of 1 to 6 above, wherein a long sintered powder material is sintered. The sintering method according to any one of 1 to 7 above, wherein a material having a non-uniform cross section is sintered while setting a heating site.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, on the basis of a known energization pressure sintering method, conventionally, the material to be sintered and the mold provided with the sintering space are heated as a whole, and the energized portion is replaced with the mold. Sintered in a single direction with limited movement to the sintered part and heated part relative to each other. A method of manufacturing a member was developed.
[0009]
FIG. 1 shows the case of moving the electrode while fixing the raw material, and FIG. 2 shows the case of moving the raw material while fixing the electrode.
As shown in FIG. 1, when the raw material is fixed and moved on the electrode side, an electrode connection terminal plate (movable electrode) 1 having a thickness corresponding to the portion to be heated is first formed into a cylindrical shape for filling the raw material powder 2. It is placed in close contact with the outer wall of the mold (cylinder) 3 and can move freely on one axis (tubular mold).
On the other hand, the filled sintering powder 2 is pressed from both ends by the punch 4 inside the mold. Reference numeral 5 denotes a pressure plate.
In this state, the movable electrode 1 is energized while applying pressure to the powder, and the electrode 1 is moved while being controlled to achieve a desired temperature and speed. Thereby, a sintered body having a rod-like shape or a non-uniform cross section is obtained.
[0010]
On the other hand, as shown in FIG. 2, when the sintering raw material 2 is moved, the die 6 connected to the electrode 1 is energized, and the raw material powder 2 is pressurized and fed by the push rod 10 when controlled to a desired temperature. .
At this time, by installing a roll 7 having rotational resistance or a secondary die (not shown) slightly smaller than the die 6 energizing the inner diameter on the outlet side, the progress of the sintered product 9 is progressed. Measures to generate resistance against the pressure of the raw material powder.
By the above method, it is possible to obtain a sintered product having a uniform bar shape or a non-uniform cross section with excellent uniformity of the sintered product.
[0011]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. That is, all aspects or modifications other than the embodiment are included within the scope of the technical idea of the present invention.
[0012]
(Example 1)
As shown in FIG. 3, a graphite electrode connection terminal plate 11 having a thickness t = 10.0 mm is attached to a mold filled with aluminum as a raw material powder, and the temperature relative to the distance from the connection terminal plate 11 when energized. Distribution was measured.
The results of the temperature distribution measured in Example 1 are shown in FIG. It can be seen that the temperature decreases as the distance from the electrode connection terminal plate 11 increases. From this result, it can be seen that according to the present invention, only any limited region can be heated to the sintering temperature.
Even if the cross-sectional shape (electric resistance) of the material to be sintered changes, if the heating region is reduced, the absolute value of the difference in the amount of heat generated at each position accompanying the change in shape is reduced. Therefore, if the thickness t of the electrode connection terminal plate 11 that determines the heating region to an extent that does not affect the quality of sintering is sufficiently reduced, even a member having a non-uniform cross section can be satisfactorily sintered.
In addition, since no heat is generated in the region that is separated from the electrode connection terminal plate 11, the temperature does not become higher than the temperature of the portion covered with the terminal plate, and the raw material does not overheat or melt.
[0013]
(Example 2)
As shown in FIG. 5, a graphite cylinder mold having an outer diameter of 30 mm, an inner diameter of 15 mm, and a length of L = 160 mm is filled with 3.82 g of aluminum having an average particle diameter of 20 μm and is vertically moved by a graphite punch having a length of 80 mm. Hold from.
This cylinder has a hole with a diameter of 30 mm in the center, a side length of 70 mm and a thickness of t = 10.0 to 13.2 mm made of graphite electrode connection terminal plate (perforated square plate) 11 on the side wall. Fit in close contact. A cross-sectional view of the heating portion where the thermocouple 12 exists is shown in FIG.
[0014]
In this case, the electrode connection terminal plate (perforated square plate) 11 is made of the same material as the cylinder. As a result, a current flows to the cylinder, and when the electric resistance of the raw material powder in the cylinder is small, the raw material powder is heated by energization. Further, when the electric resistance of the raw material powder is large, the cylinder generates heat, and the raw material powder is indirectly heated and sintered.
It is also possible to divide the electrode connection terminal plate 11 and bring it into close contact with the cylinder, and energize and heat the cylinder or the powder in it. In particular, any method can be used without being limited to the electric heating method.
[0015]
The electrode 1 is attached to the terminal plate 11 so that it can be energized in a direction perpendicular to the pressure shaft. Further, a hole having a depth of 7 mm was drilled through the electrode connection terminal plate (square plate) in the center of the mold (cylinder) 3 and the thermocouple 12 was inserted for use in temperature control and monitoring.
After performing the above preparation, the middle part of the mold (cylinder) was heated to 580 ° C. to 640 ° C. by applying current between the electrodes while being pressurized with a load of about 10 kN, and sintered.
[0016]
An example of the result of measuring the temperature change of the mold (cylinder) in Example 2 is shown in FIG. It can be seen that the temperature on the opposite side of the material to be sintered is almost the same as the set temperature indicated by the solid line (corresponding to the control thermocouple).
That is, it can be seen that the material to be sintered 2 can be controlled to a desired temperature even when energization is performed through the electrode connection terminal plate 11 fitted in the mold (cylinder).
Moreover, the result of having investigated about the density of the aluminum sintered product obtained by Example 2 is shown in FIG.
[0017]
From FIG. 8, it can be seen that the density increases as the sintering temperature rises, and that the density becomes almost dense at 640 ° C. From this result, it is clear that a good sintered body can be obtained even if the energization path is separated from the pressure shaft.
Since the terminal plate to which the electrodes are connected is only fitted in the mold (cylinder), it can be moved freely with respect to the longitudinal direction of the cylinder. Therefore, if sintering is performed while moving the terminal plate, a long homogeneous sintered body can be manufactured, and the present invention can be accomplished.
[0018]
(Example 3)
As shown in FIG. 9, in accordance with the sintering method shown in Example 2, 9.54 g of aluminum was charged, and the graphite terminal board was sequentially moved from the first position to the third position, at each position. Sintering was performed by heating with electric current.
When the density of the aluminum sintered product obtained in Example 3 was examined, the relative density showed a value of 99% or more. If the moving distance is increased, longer products can be manufactured. Therefore, it is clear that this method can produce a rod-like sintered product having excellent denseness.
[0019]
Next, as an example of sintering a material having a non-uniform cross-section while setting a heating part, considering the sintering of a stepped part as shown in FIG. 10, this example has a large diameter part and a small diameter part. In the case of sintering a stepped sintered product consisting of the above, when the large-diameter portion 13 is first sintered, the electrode connection terminal plate 11 is placed on the large-diameter portion 13 of the raw material powder. In this case, the electrode connection terminal plate 11 is prevented from being applied to the raw material powder of the small diameter portion 14.
The energization region is a heating region 15 indicated by hatching as shown in the upper diagram of FIG. Thereby, the powder located in the large diameter portion 13 is heated and sintered.
[0020]
Next, the electrode connecting terminal plate 11 is moved to the small diameter portion 14 and similarly heated by current and sintered. The energization heating unit is the central heating region 16 in the lower diagram of FIG. In this case, the electrode connection terminal plate 11 is not hung on the large diameter portion 13.
At each position, energization according to the electrical resistance can be performed independently. As a result, even the stepped portion can be uniformly energized and sintered. During the movement of the electrode connection terminal board 11, the energization may be stopped, or a current that is about the same temperature may be passed. This can be set arbitrarily.
Moreover, as shown in FIG. 11, even if it is a material which has a taper part, the thickness t of the electrode connection terminal board 11 which determines a heating area | region is enough to such an extent that the difference in emitted-heat amount does not affect the quality of sintering. By reducing the thickness, it becomes possible to produce a good sintered product.
[0021]
【The invention's effect】
The present invention proposes a method of sintering while relatively moving the raw material and the electrode, and since it is not necessary to sinter the entire product at once, there is an effect that the heating area can be reduced. is there. Further, since current is passed through the electrode connection terminal plate attached to the mold, heat is generated only in a portion corresponding to the thickness of the electrode connection terminal plate.
Thereby, the temperature unevenness at the time of sintering is suppressed, and a long sintered body excellent in quality or a sintered body having a non-uniform cross-sectional shape can be produced.
Moreover, the continuous manufacture of a bar becomes possible by applying the method of supplying raw material powder sequentially. As a result, compared with the conventional batch production method, it has the outstanding effect that the productivity concerning a sintered member can be expected to be greatly improved.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of an apparatus used in a method for producing a long sintered body by fixing a raw material and moving an electrode according to the present invention.
FIG. 2 is a schematic explanatory view showing an example of an apparatus used in the method of manufacturing a long sintered body by fixing an electrode and a die and moving a powder raw material for sintering according to the present invention.
FIG. 3 is an explanatory diagram showing a method for measuring a temperature distribution of a mold when energized through an electrode connection terminal plate.
FIG. 4 is a diagram showing a temperature distribution measurement result when energizing through an electrode connection terminal plate.
5 is a view showing an outline of an apparatus for a sintering method used in Example 2. FIG.
6 is a cross-sectional view of a heating unit at a position where a thermocouple 12 exists under the sintering conditions of Example 2. FIG.
FIG. 7 is a diagram showing a temperature change of a mold (cylinder) when heating is performed by separating an energization path from a pressure shaft.
8 is a diagram showing the influence of sintering temperature on the density of an aluminum sintered product obtained in Example 2. FIG.
FIG. 9 is a diagram showing an outline of a method for sintering while moving an energization path, that is, a heating part.
10 is a schematic cross-sectional explanatory view showing a sintering example of a stepped part shown in Example 4. FIG.
FIG. 11 is a schematic cross-sectional explanatory view showing an example of sintering of a part whose diameter is changed (tapered part).
[Explanation of symbols]
1: Electrode 2: Powder for sintered body 3: Mold (cylinder)
4: Punch 5: Pressure plate 6: Die 7: Back pressure roll 8: Back pressure rod 9: Sintered body 10: Push rod 11: Terminal plate 12 for electrode connection: Thermocouple 13: Large diameter portion 14: Small diameter portion 15 : Heating area 16: Heating area

Claims (8)

棒状の成形空間を有する型内で粉末を直接通電加圧焼結する方法において、電極を筒状の型の側壁周囲に配置し、該電極又は被焼結体を一軸方向に移動させ、且つ通電した該電極の移動又は被焼結体の移動に従って、通電部分と通電により焼結している焼結体の一部である被焼結部位とを相対的に移動させながら連続的に焼結することを特徴とする焼結方法。 In a method in which powder is directly energized and pressure-sintered in a mold having a rod-shaped molding space, an electrode is arranged around the side wall of the cylindrical mold, the electrode or the object to be sintered is moved in a uniaxial direction, and energized. In accordance with the movement of the electrode or the sintered body, the current-carrying part and the part to be sintered, which is a part of the sintered body sintered by the current-carrying, are moved relative to each other and sintered continuously. A sintering method characterized by the above. 棒状の型内に配置した焼結粉末材料を型の端部から加圧するとともに、型の周囲に該型の長さ方向に移動可能な電極を配置し、該電極から焼結粉末材料に通電加熱して焼結することを特徴とする請求項1記載の焼結方法。 The sintered powder material placed in the rod-shaped mold is pressed from the end of the mold, and an electrode movable in the length direction of the mold is placed around the mold, and the sintered powder material is energized and heated from the electrode The sintering method according to claim 1, wherein the sintering is performed. 焼結粉末材料を型の両端部から加圧することを特徴とする請求項2記載の焼結方法。  The sintering method according to claim 2, wherein the sintered powder material is pressurized from both ends of the mold. 棒状の成形空間を有する型の横方向の断面形状と同じ形状の穴を有する電極の接続端子板を、該穴を通して型の周囲に配置し、該接続端子板によって通電部位を移動させて焼結することを特徴とする請求項1〜3のいずれかに記載の焼結方法。 An electrode connection terminal plate having a hole having the same shape as the cross-sectional shape in the lateral direction of the die having a rod-shaped molding space is arranged around the die through the hole , and the current-carrying portion is moved by the connection terminal plate and sintered. The sintering method according to claim 1, wherein the sintering method is performed. 固定した棒状のダイスの周囲に固定電極を配置し、該ダイス内に焼結粉末材料を装入して通電加熱焼結すると共に、ダイスの一方から原料粉末を押圧し、かつそれによって焼結された焼結体をダイスの他方から押出して順次焼結することを特徴とする請求項1記載の焼結方法。A fixed electrode is placed around a fixed rod-shaped die, and a sintered powder material is placed in the die and subjected to current heating and sintering, and the raw material powder is pressed from one of the dies and sintered by that. 2. The sintering method according to claim 1, wherein the sintered body is extruded from the other die and sequentially sintered. 焼結粉末材料を一方向に焼結することを特徴とする請求項1〜5のいずれかに記載の焼結方法。  The sintering method according to any one of claims 1 to 5, wherein the sintered powder material is sintered in one direction. 長尺の焼結粉末材料を焼結することを特徴とする請求項1〜6のいずれかに記載の焼結方法。  The long sintering powder material is sintered, The sintering method in any one of Claims 1-6 characterized by the above-mentioned. 加熱部位を設定しながら断面が一様でない材料を焼結することを特徴とする請求項1〜7のいずれかに記載の焼結方法。  The sintering method according to any one of claims 1 to 7, wherein a material having a non-uniform cross section is sintered while the heating part is set.
JP2003046661A 2003-02-25 2003-02-25 Sintering method Expired - Lifetime JP4119977B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003046661A JP4119977B2 (en) 2003-02-25 2003-02-25 Sintering method
US10/541,641 US20060104849A1 (en) 2003-02-25 2003-12-17 Sintering method and device
AU2003289384A AU2003289384A1 (en) 2003-02-25 2003-12-17 Sintering method and device
PCT/JP2003/016155 WO2004076100A1 (en) 2003-02-25 2003-12-17 Sintering method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046661A JP4119977B2 (en) 2003-02-25 2003-02-25 Sintering method

Publications (2)

Publication Number Publication Date
JP2004256844A JP2004256844A (en) 2004-09-16
JP4119977B2 true JP4119977B2 (en) 2008-07-16

Family

ID=33113105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046661A Expired - Lifetime JP4119977B2 (en) 2003-02-25 2003-02-25 Sintering method

Country Status (1)

Country Link
JP (1) JP4119977B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119978B2 (en) * 2003-02-25 2008-07-16 独立行政法人産業技術総合研究所 Sintering apparatus and sintering method
SG141268A1 (en) * 2006-09-13 2008-04-28 Univ Singapore System and method for generating a bill of quantities
JP4958510B2 (en) * 2006-10-10 2012-06-20 東洋アルミニウム株式会社 Electrode material for aluminum electrolytic capacitor and method for producing the same

Also Published As

Publication number Publication date
JP2004256844A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
US20060104849A1 (en) Sintering method and device
JPS5834523B2 (en) Continuous extrusion processing equipment for electrically conductive granular materials
CN108748620B (en) Power-on sintering mold
JP5845135B2 (en) Forging die equipment
JP4119977B2 (en) Sintering method
JP4449847B2 (en) Method of manufacturing discharge surface treatment electrode and apparatus for manufacturing the same
JPH0784352B2 (en) Method of manufacturing functionally graded material
CN109328120A (en) Method for the ducted body of ferrite FeCrAl alloy to be shaped to pipe
JP4119978B2 (en) Sintering apparatus and sintering method
RU182033U1 (en) Print head for molten metal volumetric printing device
CN1056706C (en) Apparatus for sealing of semiconductor with resin
JP5946323B2 (en) Forging die equipment
JPH10330804A (en) Sintering device
JP2011011927A (en) Method for producing hafnium carbide sintered compact
JP4427846B2 (en) Thermoelectric semiconductor material manufacturing method and thermoelectric semiconductor material manufacturing apparatus
JP3681993B2 (en) Sintering die of the current pressure sintering equipment
JP4217852B2 (en) Manufacturing method of sintered molded products
JP4163394B2 (en) Pressurized current sintering apparatus and punch temperature control method thereof
JP4550961B2 (en) Sintering die for electric current sintering
JP5964783B2 (en) Current sintering mold
Tada et al. Fabrication of a dense long rod through pulse discharge sintering assisted by traveling zone heating
JP2013141690A (en) Forging die
JP7447718B2 (en) Extrusion press equipment container
CN2671738Y (en) Composite graphite mold for self resistance heating welding non-conductive material
Tada et al. Fabrication of dense shoulder components through traveling zone sintering assisted by a multi-way loading system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

R150 Certificate of patent or registration of utility model

Ref document number: 4119977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term