JP4217852B2 - Manufacturing method of sintered molded products - Google Patents

Manufacturing method of sintered molded products Download PDF

Info

Publication number
JP4217852B2
JP4217852B2 JP32598799A JP32598799A JP4217852B2 JP 4217852 B2 JP4217852 B2 JP 4217852B2 JP 32598799 A JP32598799 A JP 32598799A JP 32598799 A JP32598799 A JP 32598799A JP 4217852 B2 JP4217852 B2 JP 4217852B2
Authority
JP
Japan
Prior art keywords
pressure
sintering
maximum set
mold
sintered molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32598799A
Other languages
Japanese (ja)
Other versions
JP2001140003A (en
Inventor
文夫 岡
雅弘 斎藤
嘉明 狩野
満 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Miyagi Prefectural Government.
Original Assignee
Honda Motor Co Ltd
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Miyagi Prefectural Government. filed Critical Honda Motor Co Ltd
Priority to JP32598799A priority Critical patent/JP4217852B2/en
Publication of JP2001140003A publication Critical patent/JP2001140003A/en
Application granted granted Critical
Publication of JP4217852B2 publication Critical patent/JP4217852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は焼結成形品の製造方法及び成形型の改良に関する。
【0002】
【従来の技術】
焼結成形品の製造方法として、例えば▲1▼特開平3−56604号公報「放電焼結方法及び装置」や▲2▼特開昭64−55303号公報「焼結方法」が知られている。
上記▲1▼に示される放電焼結方法は、圧縮圧力を5t/cm2から20t/cm2の範囲で通電前に圧縮する工程と、圧縮した材料に加圧下でパルス状電流を通電すると共にそのピーク電流とパルス幅とを制御して材料温度を制御しつつ焼結する工程とからなるものである。
上記▲2▼に示される焼結方法は、離接可能に対抗配置した電極間に焼結材料を介在させ、この材料を加圧しながら電気抵抗加熱によって焼結をさせるものである。
【0003】
【発明が解決しようとする課題】
しかし、上記▲1▼では、圧縮する工程と通電する工程とが別工程で行なうため焼結の時間が長くなる。
また、上記▲2▼では、加圧しながら電気抵抗加熱を加えるだけなので、導電性が高い焼結材料では短時間で粒子自体を加熱することができず、緻密な焼結成形品を作ることができない。
【0004】
そこで、本発明の目的は、短時間で緻密な成形を得ることのできる焼結方法を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために請求項1は、粉末材料を所定の割合で混合する混合工程と、混合した粉末材料を型に入れ、圧力を加えつつ通電して緻密な圧粉成形体を得る焼結前処理工程と、得られた圧粉成形体を型とは別の焼結炉で焼結処理する焼結工程とからなる焼結成形品の製造方法において、焼結前処理工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧するとともに、焼結前処理工程における通電、加圧開始と同時に最大設定電流値を給電することを特徴とする。
【0006】
粉末材料を所定の割合で混合し、混合した粉末材料を型に入れ、圧力を加えつつ通電して緻密な圧粉成形体を作り、得られた圧粉成形体を型とは別の焼結炉で焼結処理し、高密度で高強度の焼結成形品を得るようにする。
焼結前処理工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧し、粉末材料の粒子を効果的に移動させ、圧粉成形体を緻密なものにする。
焼結前処理工程における通電、加圧開始と同時に最大設定電流値を給電し、焼結前処理工程の作業時間の短縮を図る。
【0007】
請求項2は、粉末材料を所定の割合で混合する混合工程と、混合した粉末材料を型に入れ、圧力を加えつつ通電して焼結成形品を得る焼結工程とからなる焼結成形品の製造方法において、焼結工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧するとともに、焼結理工程における通電、加圧開始と同時に最大設定電流値を給電することを特徴とする。
【0008】
粉末材料を所定の割合で混合し、混合した粉末材料を型に入れ、圧力を加えつつ通電して緻密な焼結成形品を得るようにする。
焼結工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧するようにし、粉末材料の粒子を効果的に移動させ、焼結成形体を緻密なものにする。
焼結工程における通電、加圧開始と同時に最大設定電流値を給電し、焼結に要する作業時間の短縮を図る。
【0011】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る焼結成形品の製造装置のレイアウト図であり、焼結成形品の製造装置10は、粉末材料を所定の割合で混合する混合機20と、混合した粉末材料を型に入れプレスするプレス機及びこのときに前記型に通電する給電設備とからなる焼結前処理装置30と、得られた圧粉成形体を前記型とは別の場所で焼結処理する焼結炉50と、得られた焼結成形品を所定の形状に、サイズに整えるサイジングプレス60とからなる。
本発明は、焼結炉50の前設備である焼結前処理装置30で成形のみならず通電することで圧粉成形体をより緻密にすることを特徴とする。そのための焼結前処理装置30の構成を次に詳しく説明する。
【0012】
図2は本発明に係る焼結前処理装置の原理図であり、焼結前処理装置30は、下パンチ31、ダイ32及び上パンチ33からなる型35と、スタンド36にベース37及び、上ラム38を昇降させるシリンダ39を備えたプレス機40と、下パンチ31並びに上パンチ33に給電する給電設備42とからなる。なお、ダイ32は電気的絶縁材であって、セラミック(Si34)が好適である。34,34は電気的絶縁層、43aは下パンチ取付けプレート、43bは上パンチ取付けプレートである。上下パンチ33,31の材質は超硬が好適であり、下パンチ31、粉末材料W、上パンチ33のルートが通電路となる。
【0013】
また、プレス機40は油圧発生ユニット44でシリンダ39を作動させる油圧式プレスマシンとしたが、図1に略図化しものはメカニカルプレスと称する機械式プレスマシンであり、プレス機40は格別に形式、構造を規定するものではない。また、下パンチ31を上パンチ33と同様に昇降させるものであってもよい。
なお、41はダイ32を弾性的に支えるスプリングであり、圧粉体の収縮とともにダイ32を下降可能とするものである。しかし、ダイ32は別の手段でスタンド36側に支持させることは差支えない。
【0014】
以上の構成からなる製造装置10を用いて実施する焼結成形品の製造方法を次に説明する。
図3は本発明に係る焼結成形品の第1実施例の製造フロー図である。ST××はステップ番号を示す。
ST01:先ず、複数種の粉末材料を配合し、十分に混合する。このときに、潤滑材を混合することは差支えないが、その量は少ない方(好ましくはゼロ)が良い。潤滑材が絶縁材となって、粉末材料間で発生する放電現象の妨げになるからである。
ST02:混合した粉末材料を型に入れる。
ST03:プレス機で粉末材料を圧縮する。同時に、通電して粉末材料間で放電させる。
ST04:得られた圧粉成形体を型から外す。
ST05:この圧粉成形体を焼結炉で焼結処理する。
ST06:焼結成形品を所望の形状、サイズに整える。
即ち、ST01が混合工程、ST02〜04が焼結前処理工程、ST05が焼結工程になる。
【0015】
図4は本発明に係る焼結成形品の焼結前処理工程における圧力及び通電を示すグラフであり、横軸は時間(秒)、縦軸は電流(A)及び圧力(t/cm2)としたものであり、すなわち、図3のステップ番ST03における圧力及び通電のタイミングを示す。なお、(a)は比較例を示し、(b)は実施例を示し、(c)は別実施例を示す。
共通条件
粉末材料:金属粉末(鉄粉97.9%、銅粉1.5%、炭素粉0.6%の混合物)但し、%は重量%である。
ダイ :セラミック(Si34
パンチ :超硬
最大設定圧力 :5t/cm2
最大設定電流値:8000A
【0016】
(a)において、焼結前処理工程における圧力を、加圧開始から一定時間かけては最大設定圧力まで徐々に増圧し、焼結前処理工程における通電を、圧力が最大設定圧力に到達後、最大設定電流値まで徐々に立上げたものであり、焼結前処理工程に60秒をかけて密度7.6g/cm3の圧粉成形体を得たものである。
【0017】
(b)において、焼結前処理工程における圧力を、加圧開始から一定時間までは最大設定圧力近傍まで急激に増圧し、その後最大設定圧力まで増圧し、焼結前処理工程における通電を、加圧開始と同時に最大設定電流値まで瞬時に立上げたものであり、焼結前処理工程に10秒をかけて密度7.6g/cm3の圧粉成形体を得たものである。
(c)においては、通電中に(b)よりも初期圧力を最大設定圧力(5t/cm2)近傍まで急激に増加させたので、成形時間を更に短縮させることができる。
【0018】
詳細には、加圧は成形開始と同時に1〜2t/cm2の初期加圧力を付加する。これは大電流を流すときに、粉末材料をある程度の固さに固め、図2に示す下パンチ31と下パンチ取付けプレート43aとの間、又は上パンチ33と上パンチ取付けプレート43bとの間で放電が発生し、下パンチ31と下パンチ取付けプレート43aとの間、又は上パンチ33と上パンチ取付けプレート43bとが接合することを防止するための処置である。その後、最大設定圧力まで増圧する。これは加圧力を増圧することで、粉末材料の移動と放電現象との相互作用が働き、圧粉成形体の緻密化効果が高まると考えられるからである。また、通電は成形開始と同時に最大設定電流値まで瞬時に立上げ、短時間に最大限のエネルギーを付与し、成形終了と同時に止めるようにしたものであり、成形時間の短縮を図かるための処置である。
【0019】
すなわち、(b)に示す実施例は、(a)に示す比較例に比べ大幅に焼結前処理工程の作業時間を短縮したものであり、焼結前処理工程における通電を、加圧開始と同時に最大設定電流値まで瞬時に立上げたので、焼結前処理工程の作業時間の短縮を図ることができた。
【0020】
図5は本発明に係る焼結成形品の焼結前処理工程における粉末材料の移動の状態を示す模式図であり、焼結前処理工程の作業時間を短縮できた論理的理由を示す。なお、(a)は比較例を示し、(b)は実施例を示す。
(a)において、最大設定圧力(5t/cm2)まで加圧後に通電したのでは粉末材料の粒子自体の移動ができないため、緻密化の効果が小さいと考察する。(b)において、通電中に初期加圧力(1〜2t/cm2)から最大設定圧力(5t/cm2)まで加圧すると粉末材料の粒子自体の移動が伴うため、緻密化の効果が大きいと考察する。すなわち、焼結前処理工程における圧力を、加圧開始から一定時間までは最大設定圧力近傍まで急激に増圧し、その後最大設定圧力まで増圧するようにし、粉末材料の粒子を効果的に移動させたので、圧粉成形体を緻密なものにすることができる。
【0021】
【実施例】
本発明に係る実験例を次に説明する。
図6は本発明に係る焼結成形品の製造装置のダイとパンチとのクリアランスが圧粉成形体の密度に与える影響を示すグラフであり、横軸はダイとパンチとのクリアランス(μ)、縦軸は圧粉成形体の密度(g/cm3)を示す。
共通条件:
粉末材料:金属粉末(鉄粉97.9%、銅粉1.5%、炭素粉0.6%の混合物)但し、%は重量%である。
ダイ :セラミック(Si34
パンチ :超硬
最大設定圧力 :5t/cm2
【0022】
(a)において、最大設定電流値が0Aの場合、すなわち、通電を行なわず加圧のみの場合は、クリアランス5μから60μの範囲で密度7.08g/cm3であり、クリアランスに関わらず一定である。
(b)において、最大設定電流値が2000A、通電時間が20秒の場合は、クリアランス5μから15μの範囲で密度が大きくなる傾向を示し、15μ以上では密度7.15g/cm3であり、クリアランスに関わらず一定である。
(c)において、最大設定電流値が4000A、通電時間が20秒の場合は、クリアランス5μから40μの範囲で密度は一定に増加の傾向を示すとともに、40μから60μの範囲で密度は徐々に穏やかになる。
すなわち、最大設定電流値が大きい場合にクリアランスが密度に与える影響が大きいことを示す。
【0023】
図7は本発明に係る焼結成形品の製造装置のダイの材質を変えたときのダイとパンチとのクリアランスが圧粉成形体の密度に与える影響を示すグラフであり、横軸はダイとパンチとのクリアランス(μ)、縦軸は圧粉成形体の密度(g/cm3)を示す。なお、(a)は比較例を示し、(b)は実施例を示す。
共通条件:
粉末材料:金属粉末(鉄粉97.9%、銅粉1.5%、炭素粉0.6%の混合物)但し、%は重量%である。
パンチ :超硬
最大設定圧力 :5t/cm2
最大設定電流値:4000A
通電時間 :20秒
(a)の条件
ダイ :超硬
(b)の条件
ダイ :セラミック(Si34
【0024】
(a)において、ダイの材質が超硬の場合は、クリアランス5μから50μの範囲で圧粉成形体の密度が7.08g/cm3から7.15g/cm3に上昇する。クリアランスが密度に与える影響は少ない。
(b)において、ダイの材質がセラミックの場合は、図6に示した最大設定電流値が4000Aに設定したときと同一曲線であり、クリアランス5μから50μの範囲で圧粉成形体の密度が7.10g/cm3から7.30g/cm3に上昇する。
【0025】
(a)及び(b)を比較すると、(a)に示す比較例はダイ101の材質が超硬であるため、電流は矢印▲1▼,▲1▼の如くダイ101に廻り込みが発生する。従って、電流効率が悪く、有効に圧粉成形体に流すことができない。(b)に示す実施例はダイ32の材質がセラミックであるため、電流は矢印▲2▼,▲2▼の如く上パンチ33−下パンチ31間に流れる。従って、電流効率が良く、有効に圧粉成形体に流すことができる。
【0026】
図8(a)〜(c)は本発明に係る焼結成形品の製造装置の型の変形例の説明図である。なお、図2に示す型35と同一部品は、同一符号を用い詳細な説明を省略する。
(a)において、型71は、上下パンチ33,31及びダイ72から構成したものであり、ダイ72は、インナ部材73にアウタ部材74を被せたものであり、上下パンチ33、31に接するインナ部材73をセラミックで構成し、アウタ部材74を超硬で構成したものである。すなわち、インナ部材73をセラミックで構成し、アウタ部材74を超硬で構成することで、電流効率を良好に維持すると共にダイ72を安価に製作することができる。
【0027】
(b)において、成形型としての型75は、(c)に示すような圧粉成形体又は焼結成形体としての歯車素材W1を製造する型であって、上下パンチ33,31及びダイ76から構成したものであり、ダイ76は、インナ部材77にアウタ部材78を絶縁層79を介して取付けたものであって、矢印▲3▼,▲3▼に示すように、電流の廻り込みを規制するものであり、インナ部材77及びアウタ部材78を超硬またはダイス鋼で構成し、ダイ76の加工性を向上しようとするものである。この結果、複雑な形状の成形型を容易に加工することができる。なお、絶縁層79にはセラミックなどの絶縁物が好適である。
【0028】
図9は本発明に係る焼結成形品の第2実施例の製造フロー図である。ST××はステップ番号を示す。
ST01:先ず、複数種の粉末材料を配合し、十分に混合する。このときに、潤滑材を混合することは差支えないが、その量は少ない方(好ましくはゼロ)が良い。潤滑材が絶縁材となって、粉末材料間で発生する放電現象の妨げになるからである。
ST02:混合した粉末材料を型に入れる。
ST03:プレス機で粉末材料を圧縮する。同時に、通電して粉末材料間で放電させる。すなわち、焼結工程における圧力を、加圧開始から一定時間までは最大設定圧力近傍まで急激に増圧し、その後最大設定圧力まで増圧し、焼結工程における通電を、加圧開始と同時に最大設定電流値まで瞬時に立上げたものである。
ST04:得られた焼結成形体を型から外す。
ST05:焼結成形品を所望の形状、サイズに整える。
即ち、ST01が混合工程、ST02〜04が焼結工程になる。
【0029】
尚、図3に圧粉成形体を形成し、この圧粉成形体を別の焼結炉で焼結処理する焼結成形品の製造方法を示し、図9に焼結成形体を直接製造する焼結成形品の製造方法を示したが、このときに、図2に示す焼結前処理装置を流用して、これを焼結装置として使用してもよい。
【0030】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1は、粉末材料を所定の割合で混合し、混合した粉末材料を型に入れ、圧力を加えつつ通電して緻密な圧粉成形体を作り、得られた圧粉成形体を型とは別の焼結炉で焼結処理し、高密度で高強度の焼結成形品を得るようにした。このときに、焼結前処理工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧したので、粉末材料の粒子を効果的に移動させ、圧粉成形体を緻密なものにすることができる。また、焼結前処理工程における通電、加圧開始と同時に最大設定電流値を給電したので、焼結前処理工程の作業時間の短縮を図ることができる。
【0031】
請求項2は、粉末材料を所定の割合で混合し、混合した粉末材料を型に入れ、圧力を加えつつ通電して緻密な焼結成形品を得るようにした。このときに、焼結工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧したので、粉末材料の粒子を効果的に移動させ、焼結成形体を緻密なものにすることができる。また、焼結工程における通電、加圧開始と同時に最大設定電流値を給電したので、焼結に要する作業時間の短縮を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る焼結成形品の製造装置のレイアウト図
【図2】本発明に係る焼結前処理装置の原理図
【図3】本発明に係る焼結成形品の第1実施例の製造フロー図
【図4】本発明に係る焼結成形品の焼結前処理工程における圧力及び通電を示すグラフ
【図5】本発明に係る焼結成形品の焼結前処理工程における粉末材料の移動の状態を示す模式図
【図6】本発明に係る焼結成形品の製造装置のパンチとダイとのクリアランスが圧粉成形体の密度に与える影響を示すグラフ
【図7】本発明に係る焼結成形品の製造装置のダイの材質を変えたときのパンチとダイとのクリアランスが圧粉成形体の密度に与える影響を示すグラフ
【図8】本発明に係る焼結成形品の製造装置の型の変形例の説明図
【図9】本発明に係る焼結成形品の第2実施例の製造フロー図
【符号の説明】
10…焼結金属成形品の製造装置、20…混合機、30…焼結前処理装置、35…型、31…下パンチ、35…上パンチ、40…プレス機、42…給電設備、50…焼結炉、75…成形型(型)、76…ダイ、77…インナ部材、78…アウタ部材、79…絶縁層、W…粉末材料。W1…圧粉成形体又は焼結成形体(歯車素材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a sintered molded article and improvement of a mold.
[0002]
[Prior art]
As a method for producing a sintered molded product, for example, (1) Japanese Patent Laid-Open No. 3-56604 “Discharge sintering method and apparatus” and (2) Japanese Patent Laid-Open No. 64-55303 “Sintering method” are known. .
The electric discharge sintering method shown in the above (1) includes a step of compressing a compressed pressure before energization in a range of 5 t / cm 2 to 20 t / cm 2 , and applying a pulsed current to the compressed material under pressure. It comprises a step of sintering while controlling the material temperature by controlling the peak current and the pulse width.
In the sintering method shown in (2) above, a sintered material is interposed between electrodes arranged so as to be separable from each other, and sintering is performed by electric resistance heating while pressing the material.
[0003]
[Problems to be solved by the invention]
However, in the above (1), since the compressing step and the energizing step are performed in separate steps, the sintering time becomes longer.
In addition, in (2) above, since electric resistance heating is only applied while applying pressure, a sintered material with high conductivity cannot be used to heat the particles themselves in a short time, and a dense sintered molded product can be produced. Can not.
[0004]
Then, the objective of this invention is providing the sintering method which can obtain precise | minute shaping | molding in a short time.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 includes a mixing step in which powder materials are mixed at a predetermined ratio, and a sintered powder material in which a mixed powder material is put into a mold and energized while applying pressure to obtain a dense green compact. In the method for producing a sintered molded article comprising a sintering pretreatment process and a sintering process in which the obtained green compact is sintered in a sintering furnace different from the mold, pressurization in the sintering pretreatment process imparts an initial pressure less than the pressure started simultaneously with the maximum set pressure, then while the pressure increase up to the maximum set pressure, energized in pre-sintering treatment step, feeding a maximum set current value at the same time as the start pressure vinegar Rukoto and features.
[0006]
Mix the powder material in a certain ratio, put the mixed powder material into a mold, apply electricity while applying pressure to make a dense compacted body, and sinter the obtained compacted body separately from the mold Sintering is performed in a furnace to obtain a high-density and high-strength sintered molded product.
Pressurization in the sintering pretreatment process applies an initial pressure lower than the maximum set pressure simultaneously with the start of pressurization, then increases the pressure to the maximum set pressure, effectively moving the powder material particles, and compacting Make your body dense.
Energizing the pre-sintering process is to feed a maximum set current value at the same time as the start pressure, to shorten the work time of pre-sintering process.
[0007]
Claim 2 is a sintered molded product comprising a mixing step of mixing powder materials at a predetermined ratio, and a sintering step of obtaining the sintered molded product by putting the mixed powder material into a mold and applying current while applying pressure. in the method of manufacturing, the pressure in the sintering step imparts an initial pressure less than the pressure started simultaneously with the maximum set pressure, while the pressure increase thereafter until a maximum set pressure, energized in Shoyuiri step, pressure start and to feed the maximum set current value at the same time, characterized in Rukoto.
[0008]
The powder material is mixed at a predetermined ratio, and the mixed powder material is put into a mold and energized while applying pressure to obtain a dense sintered molded product.
Pressurization in the sintering process applies an initial pressure lower than the maximum set pressure at the same time as the start of pressurization, and then increases the pressure to the maximum set pressure, effectively moving the powder material particles, and a sintered compact. To be precise.
In energization in the sintering process, the maximum set current value is supplied simultaneously with the start of pressurization, thereby shortening the work time required for sintering.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a layout diagram of a sintered molded product manufacturing apparatus according to the present invention. A sintered molded product manufacturing apparatus 10 includes a mixer 20 for mixing powder materials at a predetermined ratio, and a mold for the mixed powder materials. Sintering pre-sintering apparatus 30 comprising a pressing machine for pressing into a mold and a power supply facility for energizing the mold at this time, and sintering for sintering the obtained green compact at a place different from the mold It comprises a furnace 50 and a sizing press 60 for adjusting the size of the obtained sintered molded product to a predetermined shape.
The present invention is characterized in that the green compact is made denser not only by molding but also by energization in the sintering pretreatment apparatus 30 which is the pre-equipment of the sintering furnace 50. The configuration of the sintering pretreatment apparatus 30 for that purpose will now be described in detail.
[0012]
FIG. 2 is a principle view of the sintering pretreatment apparatus according to the present invention. The sintering pretreatment apparatus 30 includes a die 35 comprising a lower punch 31, a die 32 and an upper punch 33, a stand 36, a base 37 and an upper part. The press machine 40 includes a cylinder 39 that moves the ram 38 up and down, and a power supply facility 42 that supplies power to the lower punch 31 and the upper punch 33. The die 32 is an electrically insulating material, and ceramic (Si 3 N 4 ) is preferable. 34 and 34 are electrically insulating layers, 43a is a lower punch mounting plate, and 43b is an upper punch mounting plate. The material of the upper and lower punches 33 and 31 is preferably cemented carbide, and the route of the lower punch 31, the powder material W, and the upper punch 33 serves as a current path.
[0013]
Further, the press machine 40 is a hydraulic press machine that operates the cylinder 39 by the hydraulic pressure generating unit 44, but what is schematically shown in FIG. 1 is a mechanical press machine called a mechanical press, and the press machine 40 is a special type, It does not prescribe the structure. Further, the lower punch 31 may be moved up and down similarly to the upper punch 33.
Reference numeral 41 denotes a spring that elastically supports the die 32, and enables the die 32 to descend as the green compact contracts. However, the die 32 may be supported on the stand 36 side by another means.
[0014]
Next, a method for manufacturing a sintered molded product, which is performed using the manufacturing apparatus 10 having the above configuration, will be described.
FIG. 3 is a production flow diagram of the first embodiment of the sintered molded product according to the present invention. STxx indicates a step number.
ST01: First, a plurality of types of powder materials are blended and mixed thoroughly. At this time, the lubricant may be mixed, but a smaller amount (preferably zero) is better. This is because the lubricant becomes an insulating material and hinders a discharge phenomenon occurring between the powder materials.
ST02: The mixed powder material is put into a mold.
ST03: The powder material is compressed with a press. At the same time, electricity is applied to discharge between the powder materials.
ST04: Remove the obtained green compact from the mold.
ST05: The green compact is sintered in a sintering furnace.
ST06: The sintered molded product is adjusted to a desired shape and size.
That is, ST01 is a mixing process, ST02 to 04 are a sintering pretreatment process, and ST05 is a sintering process.
[0015]
FIG. 4 is a graph showing pressure and energization in the sintering pretreatment process of the sintered molded product according to the present invention, where the horizontal axis is time (seconds), and the vertical axis is current (A) and pressure (t / cm 2 ). That is, the pressure and energization timing in step number ST03 of FIG. 3 are shown. (A) shows a comparative example, (b) shows an example, and (c) shows another example.
Common condition powder material: metal powder (mixture of iron powder 97.9%, copper powder 1.5%, carbon powder 0.6%), where% is% by weight.
Die: Ceramic (Si 3 N 4 )
Punch: Carbide maximum set pressure: 5t / cm 2
Maximum set current value: 8000A
[0016]
In (a), the pressure in the sintering pretreatment process is gradually increased to the maximum set pressure over a certain time from the start of pressurization, and the energization in the sintering pretreatment process is performed after the pressure reaches the maximum set pressure. It was gradually raised up to the maximum set current value, and a green compact having a density of 7.6 g / cm 3 was obtained by taking 60 seconds for the sintering pretreatment step.
[0017]
In (b), the pressure in the sintering pretreatment process is rapidly increased to the vicinity of the maximum set pressure from the start of pressurization to a certain time, and then increased to the maximum set pressure. At the same time as the start of pressing, the maximum current setting was instantaneously started, and a compacted body having a density of 7.6 g / cm 3 was obtained by taking 10 seconds for the sintering pretreatment step.
In (c), since the initial pressure is increased more rapidly to the vicinity of the maximum set pressure (5 t / cm 2 ) than in (b) during energization, the molding time can be further shortened.
[0018]
Specifically, the pressurization applies an initial pressure of 1 to 2 t / cm 2 simultaneously with the start of molding. This is because the powder material is hardened to a certain degree when a large current is applied, and between the lower punch 31 and the lower punch mounting plate 43a or between the upper punch 33 and the upper punch mounting plate 43b shown in FIG. This is a measure for preventing discharge from occurring and joining between the lower punch 31 and the lower punch mounting plate 43a or between the upper punch 33 and the upper punch mounting plate 43b. Thereafter, the pressure is increased to the maximum set pressure. This is because, by increasing the pressure, it is considered that the interaction between the movement of the powder material and the discharge phenomenon works to increase the densification effect of the green compact. In addition, energization is instantly started up to the maximum set current value at the start of molding, maximum energy is applied in a short time, and it is stopped at the end of molding, in order to shorten the molding time. It is a treatment.
[0019]
That is, in the example shown in (b), the working time of the sintering pretreatment process is significantly shortened compared to the comparative example shown in (a). At the same time, up to the maximum set current value was instantaneously started, so the working time of the sintering pretreatment process could be shortened.
[0020]
FIG. 5 is a schematic diagram showing a state of movement of the powder material in the sintering pretreatment process of the sintered molded product according to the present invention, and shows a logical reason why the working time of the sintering pretreatment process can be shortened. In addition, (a) shows a comparative example and (b) shows an example.
In (a), it is considered that the effect of densification is small because the particles of the powder material themselves cannot move if energized after being pressurized to the maximum set pressure (5 t / cm 2 ). In (b), if the pressure is increased from the initial applied pressure (1 to 2 t / cm 2 ) to the maximum set pressure (5 t / cm 2 ) during energization, the particles of the powder material itself move, so that the effect of densification is great. I think. That is, the pressure in the sintering pretreatment process was rapidly increased to the vicinity of the maximum set pressure from the start of pressurization to a certain time, and then increased to the maximum set pressure, thereby effectively moving the particles of the powder material. Therefore, the green compact can be made dense.
[0021]
【Example】
Next, experimental examples according to the present invention will be described.
FIG. 6 is a graph showing the influence of the clearance between the die and the punch of the sintered molded product manufacturing apparatus according to the present invention on the density of the green compact, and the horizontal axis represents the clearance (μ) between the die and the punch, The vertical axis represents the density (g / cm 3 ) of the green compact.
Common conditions:
Powder material: Metal powder (mixture of iron powder 97.9%, copper powder 1.5%, carbon powder 0.6%) where% is% by weight.
Die: Ceramic (Si 3 N 4 )
Punch: Carbide maximum set pressure: 5t / cm 2
[0022]
In (a), when the maximum set current value is 0 A, that is, when only energization is performed without energization, the density is 7.08 g / cm 3 in the range of clearance 5 μ to 60 μ and is constant regardless of the clearance. is there.
In (b), when the maximum set current value is 2000 A and the energization time is 20 seconds, the density tends to increase in the range of clearance 5 μ to 15 μ, and above 15 μ, the density is 7.15 g / cm 3. Regardless.
In (c), when the maximum set current value is 4000 A and the energization time is 20 seconds, the density tends to increase constantly in the clearance range of 5 μ to 40 μ, and the density gradually decreases in the range of 40 μ to 60 μ. become.
That is, when the maximum set current value is large, the influence of the clearance on the density is large.
[0023]
FIG. 7 is a graph showing the effect of the clearance between the die and the punch on the density of the green compact when the material of the die of the sintered molded product manufacturing apparatus according to the present invention is changed. The clearance (μ) from the punch, and the vertical axis represents the density (g / cm 3 ) of the green compact. In addition, (a) shows a comparative example and (b) shows an example.
Common conditions:
Powder material: Metal powder (mixture of iron powder 97.9%, copper powder 1.5%, carbon powder 0.6%) where% is% by weight.
Punch: Carbide maximum set pressure: 5t / cm 2
Maximum set current value: 4000A
Energizing time: 20 seconds (a) Condition die: Carbide (b) condition die: Ceramic (Si 3 N 4 )
[0024]
(A), the case material of the die is tungsten carbide, the density of the green compact in the range of 50μ from the clearance 5μ increases from 7.08 g / cm 3 to 7.15 g / cm 3. Clearance has little effect on density.
In (b), when the material of the die is ceramic, it is the same curve as when the maximum set current value shown in FIG. 6 is set to 4000 A, and the density of the green compact is 7 in the clearance range of 5 μ to 50 μ. Increased from 10 g / cm 3 to 7.30 g / cm 3 .
[0025]
When (a) and (b) are compared, in the comparative example shown in (a), since the material of the die 101 is cemented carbide, current wraps around the die 101 as indicated by arrows (1) and (1). . Therefore, the current efficiency is poor and it cannot be effectively passed through the green compact. In the embodiment shown in (b), since the material of the die 32 is ceramic, current flows between the upper punch 33 and the lower punch 31 as indicated by arrows (2) and (2). Therefore, current efficiency is good and it can be effectively passed through the green compact.
[0026]
FIGS. 8A to 8C are explanatory views of a modification of the mold of the sintered molded product manufacturing apparatus according to the present invention. The same parts as those of the mold 35 shown in FIG.
In (a), the die 71 is composed of upper and lower punches 33 and 31, and a die 72, and the die 72 is an inner member 73 covered with an outer member 74, and the inner is in contact with the upper and lower punches 33 and 31. The member 73 is made of ceramic, and the outer member 74 is made of carbide. That is, the inner member 73 is made of ceramic and the outer member 74 is made of carbide, so that the current efficiency can be maintained well and the die 72 can be manufactured at low cost.
[0027]
In (b), a mold 75 as a mold is a mold for producing a gear material W1 as a green compact or a sintered compact as shown in (c), and the upper and lower punches 33, 31 and the die 76 are used. The die 76 is formed by attaching an outer member 78 to an inner member 77 through an insulating layer 79, and restricts the wrapping of current as indicated by arrows (3) and (3). The inner member 77 and the outer member 78 are made of cemented carbide or die steel to improve the workability of the die 76. As a result, a mold having a complicated shape can be easily processed. The insulating layer 79 is preferably made of an insulating material such as ceramic.
[0028]
FIG. 9 is a manufacturing flowchart of the second embodiment of the sintered molded product according to the present invention. STxx indicates a step number.
ST01: First, a plurality of types of powder materials are blended and mixed thoroughly. At this time, the lubricant may be mixed, but a smaller amount (preferably zero) is better. This is because the lubricant becomes an insulating material and hinders a discharge phenomenon occurring between the powder materials.
ST02: The mixed powder material is put into a mold.
ST03: The powder material is compressed with a press. At the same time, electricity is applied to discharge between the powder materials. That is, the pressure in the sintering process is rapidly increased to near the maximum set pressure from the start of pressurization until a certain time, and then increased to the maximum set pressure. It is an instant startup up to the value.
ST04: The obtained sintered compact is removed from the mold.
ST05: The sintered molded product is adjusted to a desired shape and size.
That is, ST01 is a mixing step, and ST02 to ST04 are sintering steps.
[0029]
FIG. 3 shows a method for producing a sintered molded product in which a green compact is formed and this green compact is sintered in a separate sintering furnace. FIG. Although the manufacturing method of the molded article was shown, at this time, the sintering pretreatment apparatus shown in FIG. 2 may be used and used as the sintering apparatus.
[0030]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
In claim 1, powder materials are mixed at a predetermined ratio, the mixed powder materials are put into a mold, a current is applied while applying pressure to form a dense powder compact, and the powder compact obtained is used as a mold. Was sintered in a separate sintering furnace to obtain a sintered product with high density and high strength. At this time, the pressurization in the sintering pretreatment process applied an initial pressurization pressure lower than the maximum set pressure simultaneously with the start of pressurization, and then increased the pressure to the maximum set pressure. It can be moved and a compacting body can be made dense. Also, energization of the pre-sintering treatment step, since the power supply of the maximum set current value at the same time as the start pressure, it is possible to shorten the working time of pre-sintering process.
[0031]
According to the second aspect of the present invention, the powder materials are mixed at a predetermined ratio, and the mixed powder materials are put into a mold and energized while applying pressure to obtain a dense sintered molded product. At this time, the pressurization in the sintering process applied an initial pressurization pressure lower than the maximum set pressure simultaneously with the start of pressurization, and then increased to the maximum set pressure, thereby effectively moving the particles of the powder material. The sintered compact can be made dense. Also, energization of the sintering process, since the power supply of the maximum set current value at the same time as the start pressure, it is possible to shorten the working time required for sintering.
[Brief description of the drawings]
FIG. 1 is a layout diagram of a sintered molded product manufacturing apparatus according to the present invention. FIG. 2 is a principle diagram of a sintering pretreatment apparatus according to the present invention. FIG. 3 is a first embodiment of a sintered molded product according to the present invention. Production flow diagram of an example [FIG. 4] A graph showing pressure and energization in a sintering pretreatment process of a sintered molded product according to the present invention. [FIG. 5] Powder in a sintering pretreatment process of a sintered molded product according to the present invention. FIG. 6 is a graph showing the influence of the clearance between the punch and the die of the sintered molded product manufacturing apparatus according to the present invention on the density of the green compact. FIG. The graph which shows the influence which the clearance of a punch and die | dyes changes when the material of the die | dye of the manufacturing apparatus of the sintered molded product which concerns on the density of a compacting body is shown. Explanatory drawing of the modification of the type | mold of a manufacturing apparatus. FIG. 9: 2nd Example of the sintered molded product which concerns on this invention Production flow diagram DESCRIPTION OF SYMBOLS
DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus of a sintered metal molded product, 20 ... Mixer, 30 ... Pre-sintering processing apparatus, 35 ... Mold, 31 ... Lower punch, 35 ... Upper punch, 40 ... Press machine, 42 ... Feeding equipment, 50 ... Sintering furnace, 75 ... mold (mold), 76 ... die, 77 ... inner member, 78 ... outer member, 79 ... insulating layer, W ... powder material. W1 ... Green compact or sintered compact (gear material)

Claims (2)

粉末材料を所定の割合で混合する混合工程と、混合した粉末材料を型に入れ、圧力を加えつつ通電して緻密な圧粉成形体を得る焼結前処理工程と、得られた圧粉成形体を前記型とは別の焼結炉で焼結処理する焼結工程とからなる焼結成形品の製造方法において、
前記焼結前処理工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧するとともに
前記焼結前処理工程における通電は、前記加圧開始と同時に最大設定電流値を給電することを特徴とした焼結成形品の製造方法。
Mixing step of mixing powder material at a predetermined ratio, pre-sintering step of putting the mixed powder material into a mold and applying a current while applying pressure to obtain a dense green compact, and the green compact obtained In the method for producing a sintered molded article comprising a sintering step of sintering the body in a sintering furnace different from the mold,
Pressure in the sintering pretreatment step imparts an initial pressure less than the pressure started simultaneously with the maximum set pressure, while the pressure increase thereafter until a maximum set pressure,
Energization method of sintered molded article which is characterized that you feed the maximum set current value at the same time as the pressure starts in the sintering pretreatment step.
粉末材料を所定の割合で混合する混合工程と、混合した粉末材料を型に入れ、圧力を加えつつ通電して焼結させる焼結工程とからなる焼結成形品の製造方法において、
前記焼結工程における加圧は、加圧開始と同時に最大設定圧力よりも低い初期加圧力を付与し、その後最大設定圧力まで増圧するとともに
前記焼結工程における通電は、前記加圧開始と同時に最大設定電流値を給電することを特徴とした焼結成形品の製造方法。
In a method for producing a sintered molded article comprising a mixing step of mixing a powder material at a predetermined ratio, and a sintering step of putting the mixed powder material into a mold and applying current and sintering while applying pressure,
Pressure in the sintering step imparts an initial pressure less than the pressure started simultaneously with the maximum set pressure, while the pressure increase thereafter until a maximum set pressure,
Energization method of sintered molded article said features that you feed the maximum set current value pressure simultaneously with the start of the sintering process.
JP32598799A 1999-11-16 1999-11-16 Manufacturing method of sintered molded products Expired - Fee Related JP4217852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32598799A JP4217852B2 (en) 1999-11-16 1999-11-16 Manufacturing method of sintered molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32598799A JP4217852B2 (en) 1999-11-16 1999-11-16 Manufacturing method of sintered molded products

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008014635A Division JP2008111198A (en) 2008-01-25 2008-01-25 Compacting die

Publications (2)

Publication Number Publication Date
JP2001140003A JP2001140003A (en) 2001-05-22
JP4217852B2 true JP4217852B2 (en) 2009-02-04

Family

ID=18182838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32598799A Expired - Fee Related JP4217852B2 (en) 1999-11-16 1999-11-16 Manufacturing method of sintered molded products

Country Status (1)

Country Link
JP (1) JP4217852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390079A (en) * 2011-09-26 2012-03-28 西安交通大学 High-pressure sintering combined die and high-pressure rapid sintering method for preparing nanometer ceramic thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198993B1 (en) * 2008-12-19 2012-09-26 EPoS S.r.L. Sintering process and corresponding sintering system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390079A (en) * 2011-09-26 2012-03-28 西安交通大学 High-pressure sintering combined die and high-pressure rapid sintering method for preparing nanometer ceramic thereof

Also Published As

Publication number Publication date
JP2001140003A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
CN106498205B (en) A kind of manufacture method of the CuCr alloys of large scale high-compactness high uniformity
US6371746B1 (en) Method of electronic sintering method and mold for use in the method
JP5539539B2 (en) Manufacturing method and manufacturing apparatus for high-strength sintered compact
CN105132736B (en) Disperse carbon/carbon-copper composite material and preparation method thereof
WO2004076100A1 (en) Sintering method and device
CN102325615A (en) Sintering process and corresponding sintering system
CN109127752B (en) Hot extrusion device and method for molybdenum and molybdenum alloy
CN108754272A (en) A kind of preparation method of big L/D ratio fine grain tungsten copper bar
EP2399696B1 (en) Electrode manufacturing method and electric discharge surface treatment used therein
JP4217852B2 (en) Manufacturing method of sintered molded products
JP4449847B2 (en) Method of manufacturing discharge surface treatment electrode and apparatus for manufacturing the same
KR100873467B1 (en) Method and apparatus of pressure-assisted electric-current sintering
JPH06287076A (en) Production of functionally gradient material
JP3609429B2 (en) Compressed powder electrode for discharge surface treatment and method for producing the same, discharge surface treatment method and apparatus, and method for recycling powder electrode for discharge surface treatment
JP2008111198A (en) Compacting die
CN107502776A (en) A kind of batch fabrication method of the CuCr alloys of high-compactness high uniformity
JP4083273B2 (en) Method of joining ceramics and metal
TW202206202A (en) Electric current sintering apparatus and electric current sintering method
JP4355431B2 (en) Piston manufacturing method
JP3730055B2 (en) Method for producing sintered metal molded product
JP4117923B2 (en) Powder metal sintering method and apparatus
CN116511504B (en) Equipment and method for coupling precision casting of continuous pressed powder metallurgy electrode
RU2704777C2 (en) Method of making ceramic articles from powder
JPH04198402A (en) Production and apparatus for magnet element
JP4083272B2 (en) Method of joining ceramic and metal and joined body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19991117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060628

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees