JP4119978B2 - Sintering apparatus and sintering method - Google Patents

Sintering apparatus and sintering method Download PDF

Info

Publication number
JP4119978B2
JP4119978B2 JP2003046690A JP2003046690A JP4119978B2 JP 4119978 B2 JP4119978 B2 JP 4119978B2 JP 2003046690 A JP2003046690 A JP 2003046690A JP 2003046690 A JP2003046690 A JP 2003046690A JP 4119978 B2 JP4119978 B2 JP 4119978B2
Authority
JP
Japan
Prior art keywords
mold
sintered
sintering
electrode
ram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003046690A
Other languages
Japanese (ja)
Other versions
JP2004256845A (en
Inventor
周二 多田
正明 孫
等 橋本
利彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003046690A priority Critical patent/JP4119978B2/en
Priority to PCT/JP2003/016155 priority patent/WO2004076100A1/en
Priority to US10/541,641 priority patent/US20060104849A1/en
Priority to AU2003289384A priority patent/AU2003289384A1/en
Publication of JP2004256845A publication Critical patent/JP2004256845A/en
Application granted granted Critical
Publication of JP4119978B2 publication Critical patent/JP4119978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属、セラミックス等の被焼結材料の加熱部位を特定位置に限定しながら、被焼結材料と加熱部位とを相対的に移動させることにより直接加圧通電し、短時間で材料を焼結する装置及び焼結方法に関する。本発明は、長尺の棒材や断面が一様とならない焼結体を得るのに好適な製造装置及び焼結方法を提供するものである。
【0002】
【従来の技術】
直接通電による加圧焼結法によれば、被焼結材をきわめて高速に昇温できるため、雰囲気加熱による従来の焼結手法と比較して製造時間の大幅な短縮が可能である。
一般に、従来の直接通電による加熱焼結法は、被焼結体の軸方向の両端に通電加熱用の電極を配置して加圧すると同時に加熱する手法が取られている(例えば、特許文献1参照)。
しかしながら、このような直接通電による加熱では、通電経路における両者の接触部分での発熱量が、他の被焼結粉末の部位に比べて特に大きくなるため、電極接触面から焼結材料中央部(電極から離れた位置)へ向かって、温度勾配が発生する。
したがって、棒材のように通電経路が長い焼結製品を製造する場合には材料全体を均一な温度で焼結することがきわめて難しいという問題がある。
【0003】
また、通電経路に対して焼結体の断面が長さ方向に一様とならない部材(すなわち断面積が変化する部材)では、通電経路に垂直な断面の面積差によって電気抵抗が変わるため、発熱量が変化して均一な焼結体が得られないという問題がある。
したがって、従来の直接通電による加圧焼結法では、ある長さ以上を有する棒材ならびに段付の部材など断面が一様でない焼結体を、均一な材質をもつ製品に製造することが難しいという問題があった。
【0004】
このようなことから、従来の被焼結体の軸方向の両端に通電加熱用の電極を配置して加圧する替わりに、被焼結体の側面に電極を配置し加熱する方法が提案されている(例えば、特許文献2参照)。しかし、この場合電極と焼結体が固定された位置で行われているので、長尺のものを連続的に焼結することはできない。また、連続的に焼結するという観点からみると、被焼結粉末をロールに挟んで薄板をロール状の電極で通電加熱する提案もある(例えば、特許文献3参照)。しかし、この場合薄板を製造することだけに限定され、他の形状の部品を焼結できないという問題がある。
【0005】
【特許文献1】
特開2000−239707号公報
【特許文献2】
特開平10−259405号公報
【特許文献3】
特開平9−268302号公報
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、長尺の棒材又は断面が一様でない焼結体であっても、焼結体の品質が均一であり、焼結性に優れた焼結装置及び焼結方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、棒状又は断面が一様でない焼結体を得るために研究を重ねた結果、被焼結材料の加熱する部分(位置)を制限(限定)し、被焼結材料と通電部とを相対的に順次移動させながら焼結を行うことにより、この目的を達成し得ることを見いだした。
【0008】
すなわち、本発明は、上記知見に基づき
1.長尺の棒状の成形空間を有する型と、該型の側壁に、型の特定の場所を加熱することができる通電用の電極と、原料粉末を軸方向に位置制御可能に移動させる昇降ラムを備えていることを特徴とする焼結装置
2.筒状の型内に配置した焼結粉末材料を型の一端部から加圧する荷重制御可能な加圧ラムを備えていることを特徴とする上記1記載の焼結装置
3.型の周囲に配置した通電用電極を押圧するか又は通電板を介して押圧する電極ラムを備えることを特徴とする上記1又は2記載の焼結装置
を提供する。
【0009】
【発明の実施の形態】
本発明においては、公知の通電加圧焼結法を基に、従来は被焼結材料と焼結空間を備えた型とを一体として全体的に加熱していたものを、通電部分を型の特定位置に限定し、被焼結部位と加熱部分とを相対的に移動させながら一方向へ連続的に焼結していくことによって、焼結品質が良好な棒状又は断面が一様でない焼結部材を製造する。
図1に示すように、被焼結粉末9を充填する筒状の成形空間を有する型3を有し、該型3の成形空間の内径と同寸法の外形を有するパンチ4、5が型3の両端部(上下端部)に配置されている。このパンチ4により型内の被焼結粉末9を押圧する。
【0010】
下パンチ5は通常固定式であり、上パンチ4によってより型内の被焼結粉末9を押圧する(負荷を与える)構造であるが、下パンチ5を移動する構造とすることもできる。上パンチ4は加圧用ラム1により加圧する。図1に示すように、加圧盤13を介して加圧用ラム1により加圧する構造とすることもできる。
下パンチ5は移動可能な昇降ステージ14を介して昇降用ラム2に支持されている。昇降ステージ14は筒状の成形空間を有する型3を支持する構造とし、その昇降によって成形空間を有する型3の高さを調節する。
【0011】
型3内の被焼結粉末に通電加熱する電極8は、水平方向に移動できるように設計されている。これは電源からの通電装置の機構を複雑にしないために必要である。
さらに、電極8の通電部を型に押圧する電極加圧ラム10を備える。図1に示すように、左右に一対の電極加圧ラム10を有する。電極8は型3に対して通電板6を介して押圧する構造とすることができる。
この通電板6は、焼結用原料粉末9の加熱領域7に相応する幅を有している。通電板6を持たずに直接電極8を使用して通電する場合は、電極8そのものが同様の幅を持つように設計する。
図1において、通電板6は左右から型を挟む構造となっているが、これに替えて、型3の長手方向に自由に移動でき、かつ型3に密着するリング通電リングを用いることもできる。この場合も、同様に焼結用原料粉末9の加熱領域に相応する幅を有している。
【0012】
上記の装置において、筒状の成形空間を有する型3内に粉末9を装填し、さらに昇降ステージ14を一旦固定して高さ位置を調節した後、型3の上端部から加圧する上パンチ4により原料焼結粉末9を押圧する。
一方、通電用電極8の位置を原料焼結粉末9の焼結部分に位置合わせして上下の位置を設定すると共に通電を開始する。通電焼結は短時間で実施される。
長尺の棒状材を焼結する場合、ステージ位置の調整は段階的に又は連続的に行うこともできる。また通電を行いながら又は通電を断続させてステージ位置を調整するもできる。
すなわち、ステージ位置を段階的に又は連続的に任意に調節し、また同時に通電を行いながら又は通電を断続させて、型3の一端部から加圧するパンチ4により原料焼結粉末9を押圧し焼結を行うことができる。
【0013】
これによって、長尺の棒材であっても、型3の上端部から被焼結部位を順次移動させながら、段階的に順次(連続的に)焼結することができる。
また、自由に設定可能なステージ昇降ラム2の位置に連動させながら、電極8に通電する電流及び加圧ラム1による負荷を調節することにより、長尺材の任意の位置を任意の温度に、加圧力を制御しながら焼結することができる。
また、被焼結材料における断面形状(電気抵抗)が変化しても、加熱領域を小さくすれば形状変化に伴う各位置での発熱量の差の絶対値は小さくなる。したがって、焼結の良否に影響を及ぼさない程度まで加熱領域を決定する通電板6の厚みtを十分薄くすれば、断面が一様でない部材でも良好に焼結することができる。
以上のように、焼結粉末原料9の部分ごとに、電気抵抗に合わせたきめ細かく電流値の制御が可能である。
【0014】
本焼結方法は、焼結粉末材料9を一方向に焼結することが可能であり、上記のように、長尺の焼結粉末材料9を焼結することも容易にできる特徴を有する。また、加熱部位を設定しながら断面が一様でない材料を焼結すること、例えば小径部と大径部を有する棒状体、即ち段差のある棒状体も容易の焼結することができる。
すなわち本発明は、比較的簡単な装置構造により、長尺又は異形の棒状材を容易に焼結することができる著しい特徴を有している。
【0015】
【実施例】
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。すなわち、本発明の技術思想の範囲で、本実施例以外の態様あるいは変形を全て包含するものである。
【0016】
図2に示すように、直径φ15mmの穴をあけた外寸40mm角、長さL=100mmのグラファイト製シリンダ型3に対し、長さ10mmのパンチ5をシリンダ3の下端からはみ出さないように差し込み、平均粒径20μmのアルミニウム粉末9を26.0g充てんして焼結試験用のサンプルを準備した。
このサンプルをシリンダ3の下端から電極8の中心までの距離が80mmとなるよう高さを調整してステージ上に立て、電極8の中央に取り付けた高さ30mm×幅40mmの通電板6で挟んだ。
【0017】
シリンダ3上部に長さ40mmのパンチ4を取り付け、900kgfの荷重で圧粉した。この状態で電極8間に通電し650°Cまで加熱した。なお、温度制御に際し、シリンダの下端から80mmの高さにある側面中央にあけた深さ12.0mmの穴に差し込んだ熱電対により温度測定を行った。
続いて、ステージ上に厚さ10mmのスペーサを2枚おき、シリンダの位置を20mm上げると同時に、熱電対の位置を20mm下げ(電極の中心線上)、上記と同様の手順により2回目の加熱を行った。これを続いて2回繰り返し、合計4回の加熱を行って棒状焼結品とした。
なお、4回目の加熱については、図5に示すように、使用した装置におけるチャンバ寸法の関係で、ステージ上に60mm分のスペーサを挿入することができなかったためシリンダを上下反転させて行った。
この実施例により、長さ約55mmのアルミニウム焼結品を得ることができた。この焼結品の密度について調べたところ、相対密度で99.7%という値が得られた。この結果は、焼結品の密度として十分な数値を示すものであり、本発明によって良好な棒状の焼結品が得られることが確認できた。
【0018】
装置のスケールアップを図り、型(シリンダ)3をより長く動かせるようにすれば、加熱の回数を増やすことによってさらに長い焼結品を製造することができる。また、加熱領域を小さくとり、部分ごとの電気抵抗にあわせた電流値の制御を行えば、断面形状が変化しても一定の温度で焼結することが可能である。したがって、本発明により良好な長尺物ならびに断面形状が一様でない部材の焼結による製造が可能である。
なお、実施例ではアルミニウムについてのみ行ったが、アルミニウム材料に制限されるものではない。他の金属やセラミックスなどの粉末にも十分適用できる。
【0019】
【発明の効果】
本発明は、原料と電極とを相対的に移動させながら焼結することができ、製品全体を一度に焼結する必要がないため加熱する領域を小さくすることができるという効果がある。
また、型に取り付けた電極接続端子板を通して通電するので、電極接続端子板の厚さに相当する部分にだけ発熱が生ずる。したがって、電極接続端子板の厚みを被焼結材料の断面が一様である範囲にまで薄くすれば、その位置における被焼結材料の発熱は均一となる。
これにより、焼結時の温度むらが抑制され、品質に優れた長尺焼結体又は断面形状が一様でない部材の焼結体の製造が可能となる著しい効果を有する。
【図面の簡単な説明】
【図1】本発明の、長尺の焼結体を製造するために使用する装置の一例を示す概略説明図である。
【図2】本発明の、静止ステージとスペーサを使用して長尺の焼結体を製造するために使用する装置の一例を示す概略説明図である。
【図3】図2において、スペーサを2枚使用して長尺の焼結体を製造する様子を示した概略説明図である。
【図4】図3において、スペーサを4枚追加使用して長尺の焼結体を製造する様子を示した概略説明図である。
【図5】図4後の焼結後、部分的に焼結した型を反転させて最後の焼結を行う長尺の焼結体を製造する様子を示した概略説明図である。
【符号の説明】
1:加圧用ラム
2:昇降用ラム
3:型(シリンダ)
4:上パンチ
5:下パンチ
6:通電板
7:加熱領域
8:電極
9:原料粉末
10:電極ラム
11:静止ステージ
12:スペーサ
13:加圧盤
14:昇降ステージ
15:大径部分
16:小径部分
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the material to be heated is directly energized by moving the material to be sintered and the heated part relatively while the heating part of the material to be sintered such as metal and ceramics is limited to a specific position. The present invention relates to an apparatus and a sintering method . The present invention is to provide a suitable manufacturing equipment and sintering method to obtain a sintered body bars and the cross section of the elongated is not uniform.
[0002]
[Prior art]
According to the pressure sintering method by direct energization, the material to be sintered can be heated at a very high speed, so that the manufacturing time can be greatly reduced as compared with the conventional sintering method by atmospheric heating.
Generally, the conventional heating and sintering method by direct energization employs a technique in which electrodes for energization heating are disposed at both ends in the axial direction of a sintered body and simultaneously heated (for example, Patent Document 1). reference).
However, in such heating by direct energization, the calorific value at the contact portion of both in the energization path is particularly large as compared to other parts of the powder to be sintered. A temperature gradient is generated toward a position away from the electrode.
Therefore, when manufacturing a sintered product having a long energization path such as a bar, it is very difficult to sinter the entire material at a uniform temperature.
[0003]
In addition, in a member where the cross section of the sintered body is not uniform in the length direction with respect to the energization path (that is, a member whose cross-sectional area changes), the electric resistance changes due to the area difference of the cross section perpendicular to the energization path. There is a problem that a uniform sintered body cannot be obtained due to a change in the amount.
Therefore, in the conventional pressure sintering method by direct current application, it is difficult to produce a sintered body having a non-uniform cross section such as a rod having a certain length or more and a stepped member into a product having a uniform material. There was a problem.
[0004]
For this reason, instead of placing and heating the electrodes for current heating at both ends in the axial direction of the conventional sintered body, a method of arranging and heating the electrodes on the side surfaces of the sintered body has been proposed. (For example, refer to Patent Document 2). However, in this case, since the process is performed at a position where the electrode and the sintered body are fixed, it is not possible to continuously sinter long objects. From the viewpoint of continuous sintering, there is also a proposal of energizing and heating a thin plate with a roll-shaped electrode with the powder to be sintered sandwiched between rolls (see, for example, Patent Document 3). However, in this case, it is limited to manufacturing a thin plate, and there is a problem that parts of other shapes cannot be sintered.
[0005]
[Patent Document 1]
JP 2000-239707 A [Patent Document 2]
JP-A-10-259405 [Patent Document 3]
Japanese Patent Laid-Open No. 9-268302
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a sintered apparatus and a sintered body having a uniform quality and excellent sinterability even if the bar is a long bar or a sintered body having a non-uniform cross section. A method is provided.
[0007]
[Means for Solving the Problems]
In the present invention, as a result of repeated research to obtain a sintered body having a rod-like shape or a non-uniform cross section, the portion (position) to be heated of the material to be sintered is limited (limited), It has been found that this object can be achieved by carrying out the sintering while sequentially moving the materials.
[0008]
That is, the present invention is based on the above findings. A mold having a long rod-shaped molding space, an electrode for energization that can heat a specific location of the mold on the side wall of the mold, and a lifting ram that moves the raw material powder in an axially controllable manner 1. A sintering apparatus comprising: 2. A sintering apparatus according to the above item 1, further comprising a pressure-controllable ram that pressurizes the sintered powder material disposed in the cylindrical mold from one end of the mold. 3. The sintering apparatus according to 1 or 2 above, comprising an electrode ram that presses an energizing electrode arranged around a mold or presses it through an energizing plate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, on the basis of a known energization pressure sintering method, conventionally, the material to be sintered and the mold provided with the sintering space are heated as a whole, and the energized portion is replaced with the mold. Sintered in a single direction with limited movement to the sintered part and heated part relative to each other. A member is manufactured.
As shown in FIG. 1, a punch 3 having a die 3 having a cylindrical molding space filled with a powder 9 to be sintered and having an outer shape of the same dimension as the inner diameter of the molding space of the die 3 is a die 3. It arrange | positions at the both ends (upper and lower end part). The punch 4 presses the sintered powder 9 in the mold.
[0010]
The lower punch 5 is normally fixed and has a structure in which the sintered powder 9 in the mold is pressed (applied with a load) by the upper punch 4, but the lower punch 5 may be moved. The upper punch 4 is pressurized by the pressure ram 1. As shown in FIG. 1, a structure in which pressure is applied by a pressurization ram 1 via a pressurizing plate 13 may be employed.
The lower punch 5 is supported by the lifting ram 2 via a movable lifting stage 14. The elevating stage 14 is configured to support the mold 3 having a cylindrical molding space, and the height of the mold 3 having the molding space is adjusted by the elevation.
[0011]
The electrode 8 for energizing and heating the powder to be sintered in the mold 3 is designed so as to be movable in the horizontal direction. This is necessary so as not to complicate the mechanism of the power supply device from the power source.
Furthermore, the electrode pressurization ram 10 which presses the electricity supply part of the electrode 8 to a type | mold is provided. As shown in FIG. 1, it has a pair of electrode pressurization ram 10 on either side. The electrode 8 can be configured to be pressed against the mold 3 via the energizing plate 6.
The energization plate 6 has a width corresponding to the heating region 7 of the sintering raw material powder 9. When the electrode 8 is directly energized without the energization plate 6, the electrode 8 itself is designed to have the same width.
In FIG. 1, the energization plate 6 has a structure in which the mold is sandwiched from the left and right. Alternatively, a ring energization ring that can freely move in the longitudinal direction of the mold 3 and is in close contact with the mold 3 can be used. . In this case as well, it has a width corresponding to the heating region of the sintering raw material powder 9.
[0012]
In the above apparatus, the powder 9 is loaded into the mold 3 having a cylindrical molding space, and the height stage 14 is once fixed and the height position is adjusted, and then the upper punch 4 is pressurized from the upper end of the mold 3. The raw material sintered powder 9 is pressed.
On the other hand, the position of the energizing electrode 8 is aligned with the sintered portion of the raw material sintered powder 9 to set the upper and lower positions and energization is started. The electric current sintering is performed in a short time.
When a long rod-shaped material is sintered, the stage position can be adjusted stepwise or continuously. In addition, the stage position can be adjusted while energizing or intermittently energizing.
That is, the stage position is arbitrarily adjusted stepwise or continuously, and the raw material sintered powder 9 is pressed and baked by the punch 4 that pressurizes from one end of the mold 3 while energizing at the same time or intermittently energizing. Can conclude.
[0013]
As a result, even a long bar can be sintered sequentially (continuously) step by step while sequentially moving the portion to be sintered from the upper end of the mold 3.
Further, by adjusting the current applied to the electrode 8 and the load applied by the pressure ram 1 while interlocking with the position of the stage elevating ram 2 that can be freely set, any position of the long material can be set to an arbitrary temperature. Sintering can be performed while controlling the applied pressure.
Even if the cross-sectional shape (electric resistance) of the material to be sintered changes, if the heating region is reduced, the absolute value of the difference in the amount of heat generated at each position accompanying the shape change becomes small. Therefore, if the thickness t of the current-carrying plate 6 that determines the heating region to a level that does not affect the quality of sintering is sufficiently reduced, even a member having a non-uniform cross section can be satisfactorily sintered.
As described above, the current value can be finely controlled in accordance with the electric resistance for each portion of the sintered powder raw material 9.
[0014]
This sintering method is characterized in that the sintered powder material 9 can be sintered in one direction, and as described above, the long sintered powder material 9 can be easily sintered. Further, by sintering a material having a non-uniform cross section while setting a heating portion, for example, a rod-shaped body having a small diameter portion and a large diameter portion, that is, a rod body having a step can be easily sintered.
That is, the present invention has a remarkable feature that a long or irregular bar-shaped material can be easily sintered by a relatively simple device structure.
[0015]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. That is, all aspects or modifications other than the embodiment are included within the scope of the technical idea of the present invention.
[0016]
As shown in FIG. 2, the punch 5 having a length of 10 mm is not protruded from the lower end of the cylinder 3 with respect to the graphite cylinder mold 3 having an outer dimension of 40 mm square having a diameter of 15 mm and a length L = 100 mm. A sample for a sintering test was prepared by filling 26.0 g of aluminum powder 9 having an average particle diameter of 20 μm.
The sample was placed on the stage with the height adjusted so that the distance from the lower end of the cylinder 3 to the center of the electrode 8 was 80 mm, and sandwiched between a current plate 6 having a height of 30 mm and a width of 40 mm attached to the center of the electrode 8. It is.
[0017]
A punch 4 having a length of 40 mm was attached to the top of the cylinder 3 and compacted with a load of 900 kgf. In this state, the electrode 8 was energized and heated to 650 ° C. In controlling the temperature, the temperature was measured by a thermocouple inserted into a hole having a depth of 12.0 mm opened in the center of the side surface at a height of 80 mm from the lower end of the cylinder.
Subsequently, two spacers with a thickness of 10 mm are placed on the stage, the cylinder position is raised by 20 mm, and the thermocouple position is lowered by 20 mm (on the center line of the electrode). went. This was repeated twice, and heating was performed a total of 4 times to obtain a rod-shaped sintered product.
As shown in FIG. 5, the fourth heating was performed by inverting the cylinder upside down because 60 mm of spacers could not be inserted on the stage due to the chamber dimensions in the apparatus used.
According to this example, an aluminum sintered product having a length of about 55 mm could be obtained. When the density of the sintered product was examined, a value of 99.7% in relative density was obtained. This result shows a sufficient numerical value as the density of the sintered product, and it was confirmed that a good rod-shaped sintered product can be obtained by the present invention.
[0018]
If the scale of the apparatus is increased so that the mold (cylinder) 3 can be moved longer, a longer sintered product can be manufactured by increasing the number of times of heating. Further, if the heating area is made small and the current value is controlled in accordance with the electric resistance of each part, it is possible to sinter at a constant temperature even if the cross-sectional shape changes. Therefore, according to the present invention, it is possible to produce a good long object and a member having a non-uniform cross-sectional shape by sintering.
In addition, although it performed only about aluminum in the Example, it is not restrict | limited to an aluminum material. It can be applied to powders of other metals and ceramics.
[0019]
【The invention's effect】
The present invention can be sintered while relatively moving the raw material and the electrode, and since there is no need to sinter the entire product at once, there is an effect that the region to be heated can be reduced.
Further, since current is passed through the electrode connection terminal plate attached to the mold, heat is generated only in a portion corresponding to the thickness of the electrode connection terminal plate. Therefore, if the thickness of the electrode connection terminal plate is reduced to a range where the cross section of the material to be sintered is uniform, the heat generation of the material to be sintered at that position becomes uniform.
Thereby, the temperature unevenness at the time of sintering is suppressed, and a long sintered body excellent in quality or a sintered body having a non-uniform cross-sectional shape can be produced.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of an apparatus used for producing a long sintered body of the present invention.
FIG. 2 is a schematic explanatory view showing an example of an apparatus used for producing a long sintered body using a stationary stage and a spacer according to the present invention.
FIG. 3 is a schematic explanatory view showing a state in which a long sintered body is manufactured using two spacers in FIG. 2;
FIG. 4 is a schematic explanatory view showing a state in which a long sintered body is manufactured by using four additional spacers in FIG. 3;
FIG. 5 is a schematic explanatory view showing a state in which a long sintered body is manufactured after the sintering shown in FIG. 4 by inverting the partially sintered mold and performing the final sintering.
[Explanation of symbols]
1: Pressurization ram 2: Lifting ram 3: Mold (cylinder)
4: Upper punch 5: Lower punch 6: Current plate 7: Heating region 8: Electrode 9: Raw material powder 10: Electrode ram 11: Stationary stage 12: Spacer 13: Pressing plate 14: Lifting stage 15: Large diameter portion 16: Small diameter portion

Claims (3)

長尺の棒状の成形空間を有する型と、該型の側壁に、型の特定の場所を加熱することができる通電用の電極と、原料粉末を軸方向に位置制御可能に移動させる昇降ラムを備えていることを特徴とする焼結装置。  A mold having a long rod-shaped molding space, an electrode for energization that can heat a specific place of the mold on the side wall of the mold, and a lifting ram that moves the raw material powder in an axially controllable manner A sintering apparatus comprising: 筒状の型内に配置した焼結粉末材料を型の一端部から加圧する荷重制御可能な加圧ラムを備えていることを特徴とする請求項1記載の焼結装置。  2. The sintering apparatus according to claim 1, further comprising a pressurizing ram capable of controlling a load for pressing a sintered powder material disposed in a cylindrical mold from one end of the mold. 型の周囲に配置した通電用電極を押圧するか又は通電板を介して押圧する電極ラムを備えることを特徴とする請求項1又は2記載の焼結装置。  The sintering apparatus according to claim 1, further comprising an electrode ram that presses an energizing electrode disposed around the mold or presses it through an energizing plate.
JP2003046690A 2003-02-25 2003-02-25 Sintering apparatus and sintering method Expired - Lifetime JP4119978B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003046690A JP4119978B2 (en) 2003-02-25 2003-02-25 Sintering apparatus and sintering method
PCT/JP2003/016155 WO2004076100A1 (en) 2003-02-25 2003-12-17 Sintering method and device
US10/541,641 US20060104849A1 (en) 2003-02-25 2003-12-17 Sintering method and device
AU2003289384A AU2003289384A1 (en) 2003-02-25 2003-12-17 Sintering method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046690A JP4119978B2 (en) 2003-02-25 2003-02-25 Sintering apparatus and sintering method

Publications (2)

Publication Number Publication Date
JP2004256845A JP2004256845A (en) 2004-09-16
JP4119978B2 true JP4119978B2 (en) 2008-07-16

Family

ID=33113129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046690A Expired - Lifetime JP4119978B2 (en) 2003-02-25 2003-02-25 Sintering apparatus and sintering method

Country Status (1)

Country Link
JP (1) JP4119978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701402B2 (en) * 2006-09-15 2011-06-15 独立行政法人産業技術総合研究所 Functionally gradient material and manufacturing method thereof
JP6370595B2 (en) * 2013-04-30 2018-08-08 地方独立行政法人東京都立産業技術研究センター Method for producing magnesium powder metallurgy sintered body, magnesium powder metallurgy sintered body and magnesium powder metallurgy material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857482B2 (en) * 1977-03-30 1983-12-20 株式会社井上ジャパックス研究所 sintering equipment
JPS62248553A (en) * 1986-04-19 1987-10-29 Kubota Ltd Production of two layer hollow cylindrical body
JP2517928B2 (en) * 1986-10-27 1996-07-24 石川島播磨重工業株式会社 Hot press machine
JP4226674B2 (en) * 1997-01-20 2009-02-18 株式会社アカネ Sintering method and sintering apparatus
JP4119977B2 (en) * 2003-02-25 2008-07-16 独立行政法人産業技術総合研究所 Sintering method

Also Published As

Publication number Publication date
JP2004256845A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
WO2004076100A1 (en) Sintering method and device
Cavaliere et al. Spark plasma sintering: process fundamentals
KR20000057987A (en) Method of electric sintering method and mold for use in the method
CN202571280U (en) Mould for discharge plasma sintering equipment
JP6403421B2 (en) Sintering apparatus and sintering method
JP2008095196A (en) Electric sintering device
Matsugi et al. A case study for production of perfectly sintered complex compacts in rapid consolidation by spark sintering
JP4119978B2 (en) Sintering apparatus and sintering method
JP4449847B2 (en) Method of manufacturing discharge surface treatment electrode and apparatus for manufacturing the same
CN110649150B (en) Sintering mold for controlling consistency of heights of thermoelectric elements and sintering method thereof
JP2009513922A (en) Uniaxial pressurizing and heating device
JP4119977B2 (en) Sintering method
RU185572U1 (en) Device for producing products such as hollow cylindrical shells from composite powders by spark plasma sintering
JP5048704B2 (en) Sintering mold of electric pressure sintering apparatus and sintering method by electric pressure sintering apparatus
JP2011011927A (en) Method for producing hafnium carbide sintered compact
JP2008012540A (en) Hot press
JP4859041B2 (en) Mold equipment
JP6699016B2 (en) High speed die set type electrothermal processing apparatus and method
Tada et al. Fabrication of a dense long rod through pulse discharge sintering assisted by traveling zone heating
JP3681993B2 (en) Sintering die of the current pressure sintering equipment
JP6549515B2 (en) Device for manufacturing molded body and method for manufacturing molded body
Burchenia et al. Application of a Differential Method for Determining the Quasi-Hydrostatic Pressures in the Cells of Six-Punch Presses
JP4065363B2 (en) Sintered body manufacturing equipment by pulse current pressure sintering method
KR101003559B1 (en) Hybrid hot press apparatus
RU2422245C1 (en) Unit for magnetic-pulse compaction of nano-sized powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

R150 Certificate of patent or registration of utility model

Ref document number: 4119978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term