JP4103891B2 - チューブ容器及びその製造方法 - Google Patents

チューブ容器及びその製造方法 Download PDF

Info

Publication number
JP4103891B2
JP4103891B2 JP2004507064A JP2004507064A JP4103891B2 JP 4103891 B2 JP4103891 B2 JP 4103891B2 JP 2004507064 A JP2004507064 A JP 2004507064A JP 2004507064 A JP2004507064 A JP 2004507064A JP 4103891 B2 JP4103891 B2 JP 4103891B2
Authority
JP
Japan
Prior art keywords
layer
resin layer
resin
laminated
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004507064A
Other languages
English (en)
Other versions
JPWO2003099557A1 (ja
Inventor
賢治 栄
守広 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Publication of JPWO2003099557A1 publication Critical patent/JPWO2003099557A1/ja
Application granted granted Critical
Publication of JP4103891B2 publication Critical patent/JP4103891B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Landscapes

  • Tubes (AREA)
  • Wrappers (AREA)

Description

本発明は、超音波シール方式に好適なチューブ容器及びその製造方法に関する。
従来、ラミネートチューブ容器(以下、チューブ容器という)は、通常、少なくとも、表面樹脂層からなる外層、中間層、及び内面樹脂層からなる内層を順次に積層してなる積層材が使用される。該積層材の両端部の表面樹脂層と内面樹脂層とを重ね合わせ、対向面をシールして筒状胴部が製造される。さらに、該筒状胴部の一方の開口部に肩部、口部を形成し、口部にキャップを螺合させてチューブ容器の半製品が製造される。
このようなチューブ容器の半製品は、他方の開口部から、練りわさび等の食品、化粧品、糊、軟膏、練歯磨き、クリーム等の内容物が充填される。しかる後、該開口部を偏平に押しつぶし、対向内面同士を密閉シールして底部シール部が形成される。これにより、半製品からチューブ容器が製造される。
ここで、筒状胴部を製造する際のシール方法は、ヒートシール、高周波シール等が慣用されており、中でもヒートシールが一般的である。
また、底部シール部のシール方法は、食品用途のラミネートチューブの場合、超音波シール、ホットエアシール、高周波シールが多用されている。中でも、小ロット対応が可能な超音波シールが主流となっている。
ラミネートチューブ用積層フィルムのシール層としての内層は、一般に単層の場合が多い。但し、内層は、種々の要求品質に対応するために単層である必要はなく、複数の樹脂層を積層した構成であってよい。
超音波シール装置を用いる場合、ホーンと受け具が底部シール部を両側から加圧状態で挟み、超音波振動エネルギーを与えて内部加熱方式で発熱させて内層を熱融着する。ここで、超音波振動エネルギーの振動の方向は、シール面同士を擦りあわせる方向(以下、水平方向と呼ぶ)又はシール面同士を叩き付け合う方向(以下、垂直方向と呼ぶ)が用いられる。
このため、シール層としての積層材質は、両方向の超音波振動エネルギーに対応して設計する必要がある。
しかしながら、ラミネートチューブ用積層フィルムは、超音波シールの際に、層構成によっては振動エネルギーがシール層の途中の層で吸収されてしまう。このとき、振動エネルギーが最内面のシール層のシーラントまで伝搬せず、チューブ容器はシール不良になってしまう。
本発明の目的は、超音波シールの際に、シール層を確実に熱融着してシールし得るチューブ容器及びその製造方法を提供することである。
本発明の第1の局面は、少なくとも内層、中間層及び外層の順の積層構造を備えたラミネートチューブ用積層フィルム(1)から超音波シールにより製造されたチューブ容器において、前記内層が第1の樹脂層と第2の樹脂層との積層構造からなり、前記第1の樹脂層が最内面に位置するシール層であり、前記第1の樹脂層は50〜100μmの範囲の厚みをもつ線状(直鎖状)低密度ポリエチレン(L−LDPE)樹脂からなり、前記第2の樹脂層は100μm以上140μm以下の厚みをもつ中密度ポリエチレン(MDPE)樹脂からなり、前記超音波シールの際に、前記中間層及び前記第2の樹脂層が超音波振動エネルギーを前記第1の樹脂層に伝え、前記第1の樹脂層が前記第2の樹脂層及び中間層よりも先に溶け出すように、前記第1の樹脂層の融点A[℃]、密度C[g/cm3]及びメルトフローレートEが下記(1)〜(3)の関係を満たしている。
(1)前記第2の樹脂層及び中間層を構成する樹脂の融点B[℃]に対する、105℃≦A<Bの関係。
(2)前記第2の樹脂層及び中間層を構成する樹脂の密度D[g/cm3]に対する、0.9g/cm3≦CDの関係。
(3)前記第2の樹脂層を構成する樹脂のメルトフローレートFに対する、E>F≧0.5の関係。
本発明の第の局面は、第1の局面において、前記外層と前記中間層との間にバリヤー性基材層を備えている。
本発明の第の局面は、第1又は第2の局面のチューブ容器を製造するためのチューブ容器の製造方法において、前記ラミネートチューブ用積層フィルムを筒状に形成する工程と、前記筒状に形成されたラミネートチューブ用積層フィルムのシール部を両外側からシールバーと受け具とにより加圧状態で挟む工程と、前記挟まれた偏平形状のシール部に前記シールバーから超音波振動エネルギーを与える工程と、前記超音波振動エネルギーにより、前記偏平形状のシール部を振動させ、前記第1の樹脂層よりも高密度の第2の樹脂層を介して当該第1の樹脂層に伝搬された超音波振動エネルギーにより、当該シール部の第1の樹脂層を熱融着する工程と、を備えている。
本発明によれば、超音波シールの際に、シール層を確実に熱融着してシールし得るチューブ容器及びその製造方法を提供できる。
以下、本発明の各実施形態について図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係るラミネートチューブ用積層フィルムの構成を示す概略断面図である。ラミネートチューブ用積層フィルム1は、図1に示すように、外層2、中間層7、内層8が順次積層されている。外層2は、ポリエチレン系樹脂層からなる。中間層7は、第1の中間層としてのナイロン(Ny)樹脂層4と、第2の中間層としてのポリエチレンテレフタレート(PET)樹脂層3との2層構成からなる。内層8は、第1の樹脂層としての第1のポリエチレン系樹脂層6と、第2の樹脂層としての第2のポリエチレン系樹脂層5との2層構成からなる。
換言すると、ラミネートチューブ用積層フィルム1は、外層2、ポリエチレンテレフタレート(PET)樹脂層3、ナイロン(Ny)樹脂層4、第2のポリエチレン系樹脂層5及び第1のポリエチレン系樹脂層6の順の積層構造を備えている。
なお、外層2は、超音波シール装置のシールバーが適度に食い込む柔らかさをもっている。途中の層3〜5は、超音波振動エネルギーを伝搬する役割をもっている。最内面のシール層6は、柔らかく速やかに溶け出す低温シール性をもっている。
ここで、内層8の第1のポリエチレン系樹脂層6は、ラミネートチューブ用積層フィルムのシール層として最内層に設けられ、線状(直鎖状)低密度ポリエチレン(L−LDPE)樹脂が好ましく使用できる。樹脂層6の厚みは50〜100μmの範囲が好ましく使用できる。
この線状低密度ポリエチレン(L−LDPE)樹脂は、最内層が常時内容物に接触することから、耐環境ストレスクラッキング性の劣化を防止するためにも有効である。線状低密度ポリエチレンは、ヒートシール性を有する樹脂として具体的には、メタロセン触媒を用いて重合したエチレン−α・オレフィン共重合体が使用できる。ここで、メタロセン触媒としては、例えば、二塩化ジルコノセンとメチルアルモキサンの組み合わせによる触媒等のメタロセン錯体とアルモキサンとの組み合わせによる触媒が使用できる。
メタロセン触媒は、現行の触媒が活性点が不均一でマルチサイト触媒と呼ばれるのに対し、活性点が均一であることからシングルサイト触媒とも呼ばれる。具体的には、三菱化学株式会社製の商品名「カーネル」、三井石油化学工業株式会社製の商品名「エボリュー」等のメタロセン触媒を用いることができる。本発明において、上記のメタロセン触媒を用いて重合したエチレン−α・オレフィン共重合体を線状低密度ポリエチレンとして使用する場合、低温ヒートシール性が良好である利点を有する。
内層8の第2のポリエチレン系樹脂層5は、チューブ容器としての剛性を高める観点から、中密度ポリエチレン(MDPE)樹脂が好ましく使用できる。樹脂層5の厚みは100μm以上が好ましく、120μm程度の厚さがさらに好ましい。
ここで、MDPE樹脂が好ましい理由を補足的に説明する。ラミネートチューブ容器は、要求品質に応じ、ある程度の剛性を必要とする。但し、通常、150μm以上の厚いフィルムは、特別注文となり、入手コストを増大させる。また、積層構造の厚みは、チューブ成形機の金型寸法等に伴って制約される。係る厚み制約の中で、従来よりも高い剛性及び耐熱性を有し、且つ後述するように超音波振動エネルギーを良好に伝搬させてシール性を向上させる観点から、MDPE樹脂が好ましい。
外層2のポリエチレン系樹脂としては、低密度ポリエチレン(LDPE)樹脂、エチレン共重合体樹脂が好ましく使用できる。外層2の厚みは100μm以上が好ましく、130μm程度の厚さがさらに好ましい。
中間層7の基材としては、一例として、ポリエチレンテレフタレート(PET)樹脂フィルム、ナイロン(Ny)樹脂フィルム、バリヤーフィルム、もしくはこれらのフィルムを積層してなるフィルム等を挙げることができる。例えば、PET/Ny積層フィルムなどが好ましく用いられる。
中間層7のナイロン(Ny)樹脂層4は、例えば、ナイロン6、ナイロン66、ナイロン12、ナイロンMXD−6等のナイロン樹脂を使用できる。樹脂層4の厚みは15μm程度が好ましい。
中間層7のポリエチレンテレフタレート(PET)樹脂層3は、テレフタル酸又はそのエステル誘導体を含む芳香族ジカルボン酸と、エチレングリコール又はそのエステル誘導体を含むジオールとから得られるポリエチレンテレフタレート(PET)樹脂が使用される。樹脂層3の厚みは12μm程度が好ましい。
さらに、後述する図2のように、中間層7と外層2との間に、バリヤー性基材層10や印刷基材層11等を設けることもできる。
上記ラミネートチューブ用積層フィルム1の材質構成において、内層8の第1のポリエチレン系樹脂層6の融点A[℃]、密度C[g/cm3]及びメルトフローレート(MFR)Eは、下記(1)〜(3)の関係を満たしている。
(1)最内層のシール層を除く他の層を構成する樹脂の融点B[℃]に対する、105℃≦A<Bの関係。
ここで、融点Bをもつ「他の層」は、少なくとも内層8に形成された第2の樹脂層としてのポリエチレン系樹脂層5及び中間層7を含んでいる。
(2)最内層のシール層を除く他の層を構成する樹脂の密度D[g/cm3]に対する、0.9g/cm3≦C≦Dの関係。
ここで、密度Dをもつ「他の層」は、少なくとも内層8に形成された第2の樹脂層としてのポリエチレン系樹脂層5及び中間層7を含んでいる。
(3)最内層のシール層を除く他の層を構成する樹脂のメルトフローレートFに対する、E>F≧0.5の関係。
ここで、メルトフローレートFをもつ「他の層」は、少なくとも内層8に形成された第2の樹脂層としてのポリエチレン系樹脂層5を含んでいる。
なお、メルトフローレート(MFR)は、熱可塑性プラスチックの流れ試験方法としてJIS−K720に規定されており、各樹脂に試験条件(JIS−K720表1,2の温度と荷重)が決められている。
具体的にはメルトフローレートは、この試験条件の下で、溶融したプラスチックを長さ8mm、内径2mmのダイを通して押し出したときの押出速度を、10分間に押し出された試料の質量gとして次式で算出した値である。
MFR=600×(m/t)
但し、mは切り取り試料の重量の平均値(g)。tは試料採取時間(s)。
なお、上記(1)〜(3)の関係は、後述する図2のように、材質構成中に延伸フィルム、アルミニウム箔等の層10〜12がある場合、それより内側の積層構成に適用される。
また、上記(1)〜(3)の関係は、概略的には、最内面のシール層が他の層よりも、低い融点、低い密度、高いメルトフローレート(高い流動性)を有することを意味している。
詳しくは、後述する図3に示す如き、超音波シールの際に、上記(2)の関係により、高い密度の他の層3〜5が振動エネルギーをシール層6に効率良く伝える。また、上記(1)及び(3)の関係により、低い融点及び高いメルトフローレートのシール層6が効率良く先に溶け出して確実にシールされる。これにより、後述する図4に示す如き、チューブ容器20が製造される。なお、超音波振動エネルギーは、水平方向又は垂直方向のいずれの振動方向でも構わない。
上記作用効果を以下に従来構成と比較しながら説明する。
従来のラミネートチューブ用積層フィルム14は、図5に示すように、外層2、中間層7、内層8が順次積層されている。
外層2は、ポリエチレン系樹脂層としての低密度ポリエチレン(LDPE)樹脂からなる。
中間層7は、ポリエチレンテレフタレート(PET)樹脂層3/ポリエチレンテレフタレート(PET)樹脂層3からなる2層構成である。
内層8は、シール層となる第1のポリエチレン系樹脂層としての線状低密度ポリエチレン樹脂(L−LDPE)6と、第2のポリエチレン系樹脂層として外層2と同じ低密度ポリエチレン(LDPE)樹脂2とからなる2層構成である。
換言すると、従来のラミネートチューブ用積層フィルム14は、外層2、ポリエチレンテレフタレート(PET)樹脂層3、ポリエチレンテレフタレート(PET)樹脂層3、LDPE樹脂層2及びL−LDPE樹脂層6の順の積層構造(以下、従来構成ともいう)を備えている。なお、従来の内層8の第2のポリエチレン樹脂層2としてのLDPE樹脂は、本実施形態のMDPE樹脂とは異なり、厚みの増加だけのために用いられている。
図6〜図8は、チューブ容器の一般的な製造方法を部分的に示す模式図である。従来のラミネートチューブ用積層フィルム14は、図6に示すように、両端部を重ね合わせ、対向面をシールして筒状胴部21が製造される。なお、筒状胴部21のシールは、ヒートシール又は高周波シール等が適宜使用可能である。さらに、図7に示すように、該筒状胴部21の一方の開口部に肩部22、口部23を形成し、口部23にキャップ24を螺合させ、図8に示す如き、チューブ容器の半製品が製造される。
このようなチューブ容器の半製品は、他方の開口部からジャム又はハチミツ等の内容物が充填される。しかる後、以下のように、超音波シールが施される。
図9は、従来のラミネートチューブ用積層フィルム14の底部シール部25を超音波シール装置を用いてシールする工程を説明するための模式断面図である。シールする工程は、次の工程(s1)〜(s3)からなる。
(s1)ラミネートチューブ用積層フィルム14の底部シール部25を両側からホーン(シールバー)13Aと受け具13Bで加圧状態で挟む工程。
(s2)挟まれた偏平形状の底部シール部25にホーン13Aから超音波振動エネルギーを与える工程。なお、超音波振動エネルギーの振動方向は、水平方向又は垂直方向のいずれでもよい。また、超音波振動エネルギーの発振時間は例えば0.3秒であり、ホールド時間は例えば0.7秒である。
(s3)超音波振動エネルギーにより、偏平形状の底部シール部25を振動させ、内部加熱方式で当該シール部25の第1の樹脂層(シール層)6を発熱させて熱融着させる工程。
この熱融着により、図10に示すように、従来構成のチューブ容器20’が製造される。
ここで、従来のラミネートチューブ用積層フィルム14は、工程(s2)において、2層のPET樹脂層3からなる中間層7よりも内側のLDPE樹脂層2/L−LDPE樹脂層6からなる内層8全体が超音波振動エネルギーを受ける。
しかしながら、従来のラミネートチューブ用積層フィルム14は、融点、密度及びメルトフローレートの上記(1)〜(3)の関係を満たしていない。
このため、従来構成の内層8においては、シール層としてのL−LDPE樹脂層6よりもLDPE樹脂層2が先に発熱して流れ出してしまう。換言すると、従来構成の内層8は、上記(1)〜(3)を満たさず、超音波振動エネルギーが途中の層2に吸収され易い構成となっている。
従って、従来のラミネートチューブ用積層フィルム14は、シール層としてのL−LDPE樹脂層6に超音波振動エネルギーが伝搬せず、シール層が熱融着せずにシール不良となることがある。すなわち、従来のラミネートチューブ用積層フィルム14を用いた場合、前述した工程(s3)を底部シール部25の一部にしか実行できない。よって、図10に示す従来のチューブ容器20’は、底部シール部25にシール不良が生じていることがある。
これに対し、本発明のラミネートチューブ用積層フィルム1は、図1に示すように、外層2、中間層7、内層8が順次積層されている。外層2は、LDPE樹脂層からなる。中間層7は、(Ny樹脂層4/PET3樹脂層)の2層構成である。内層8は、シール層となるL−LDPE樹脂層6とMDPE樹脂層5との2層構成である。
このラミネートチューブ用積層フィルム1は、前述同様に、図6〜図8に示すように、チューブ容器の半製品に成形される。チューブ容器の半製品は内容物が充填され、以下のように、超音波シールが施される。
図3は、上記本発明のラミネートチューブ用積層フィルム1のシール部を超音波シール装置を用いてシールする工程を説明するための模式断面図である。図3に示すシールする工程は、前述した工程(s1)〜(s3)において、図9の従来のラミネートチューブ用積層フィルム14に代えて、本実施形態のラミネートチューブ用積層フィルム1を用いている。なお、超音波振動エネルギーの振動方向、発振時間及びホールド時間は、前述同様に任意である。
本実施形態では、前述同様に工程(s2)において、Ny樹脂層4/PET樹脂層3からなる中間層7よりも内側のMDPE樹脂層5/L−LDPE樹脂層6からなる内層8全体が超音波振動エネルギーを受ける。
しかしながら、本実施形態のラミネートチューブ用積層フィルム1は、従来とは異なり、融点、密度及びメルトフローレートの上記(1)〜(3)の関係を満たしている。
このため、内層8において、MDPE樹脂層5の方がL−LDPE樹脂層6よりも密度が高く、硬いために、超音波振動エネルギーがL−LDPE層6に効率よく伝搬する。
その結果、本実施形態では、シール層のL−LDPE層6が効率よく発熱して熱融着され、確実にシールされる。すなわち、本実施形態では、前述した工程(s3)を底部シール部25全体に実行できる。これにより、図4に示すように、本実施形態のチューブ容器20が製造される。このチューブ容器20は、従来とは異なり、底部シール部25が確実にシールされている。
次に、本発明のラミネートチューブ用積層フィルムを製造する方法について説明する。ラミネートチューブ用積層フィルム1は、通常の積層包装材料をラミネートする方法、例えば、ウエットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、Tダイ押し出し成形法、Tダイ共押し出し成形法、押し出しラミネーション法、共押し出しラミネーション法、インフレーション法、多層インフレーション法等で製造することができる。
本発明においては、上記のラミネートを行う際に、必要により、例えば、コロナ処理、オゾン処理等の前処理をフィルムに施すことができる。また、ラミネートの際に、必要により、例えばイソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジエン系、有機チタン系等のアンカーコーティング剤、あるいはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系等のラミネート用接着剤等の公知のアンカーコート剤、接着剤等を使用できる。
ところで、上記のような積層材の製造法において、押し出しラミネートする際の接着性樹脂層を構成する押し出し樹脂について述べる。この押し出し樹脂としては、例えば、ポリエチレン、エチレン−α・オレフィン共重合体、ポリプロピレン、ポリブテン、ポリイソブテン、ポリブタジエン、ポリイソプレン、エチレン−メタクリル酸共重合体、あるいはエチレン−アクリル酸共重合体等のエチレンと不飽和カルボン酸との共重合体、あるいは酸変性ポリオレフィン系樹脂、エチレン−アクリル酸エチル共重合体、アイオノマー樹脂、エチレン−酢酸ビニル共重合体、その他等を使用できる。
また、本発明において、ドライラミネートする際の接着剤層を構成する接着剤について述べる。この接着剤としては、具体的には、ドライラミネート等にて使用される2液硬化型ウレタン系接着剤、ポリエステルウレタン系接着剤、ポリエーテルウレタン系接着剤等を使用できる。
さらに、図2は、本発明のラミネートチューブ用積層フィルムの別の実施形態としての構成を示す概略断面図である。図2に示すように、本発明のラミネートチューブ用積層フィルム9は、外層2と中間層7の間に、必要に応じて、バリヤー性基材層10や印刷基材層11を設けることができる。
バリヤー性基材層10の材料としては、例えば、種々のバリア性を有する基材等を使用できる。例えば、バリア性を有する基材としては、水蒸気、水、ガス等を透過しない性質等を有する材料を使用できる。バリア性を有する基材は、単体の基材でもよく、あるいは2種以上の基材を組み合わせてなる複合基材等でもよい。具体的には例えば、次の(i)〜(iv)の如き、樹脂のフィルム等が使用可能である。
(i)酸素あるいは水蒸気等に対しバリア性を有するアルミニウム箔又はその蒸着膜を有する樹脂のフィルム。
(ii)酸素あるいは水蒸気等に対するバリア性を有する酸化珪素、酸化アルミニウム等の無機酸化物の蒸着膜を有する樹脂のフィルム。
(iii)水蒸気、水等に対するバリア性を有する低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等の樹脂のフィルム。
(iv)酸素等のガスに対するバリア性を有するポリ塩化ビニリデン、ポリビニルアルコール、エチレン−酢酸ビニル共重合体ケン化物等の樹脂のフィルム。
これらの材料は、1種乃至それ以上を組み合わせて使用できる。上記バリア性を有するフィルムの厚さは、任意であるが、通常、5μm乃至300μm程度が使用でき、10μm乃至100μm位が望ましい。また、アルミニウム箔としては、5μm乃至30μm位の厚さのものが使用できる。アルミニウム又は無機酸化物の蒸着膜としては、厚さ10nm乃至300nm位のものを使用できる。
上記の蒸着膜を支持する樹脂のフィルムとしては、例えば、剛性、耐熱性に優れた2軸延伸フィルムが好適に用いられる。係る2軸延伸フィルムとしては、例えば、ポリエステルフィルム、ポリアミドフィルム、ポリオレフィンフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン−酢酸ビニル共重合体ケン化物フィルム、などがある。
上記無機酸化物の蒸着膜層を構成する無機酸化物としては、例えばケイ素酸化物(SiOx)、酸化アルミニウム、酸化マグネシウム、酸化インジウム、酸化スズ、酸化ジルコニウム等を使用できる。
係る無機酸化物としては、一酸化ケイ素と二酸化ケイ素との混合物、あるいはケイ素酸化物と酸化アルミニウムとの混合物であってもよい。このような無機酸化物の薄膜層を形成する方法としては、イオンビーム法、電子ビーム法等の真空蒸着法、スパッタリング法、化学蒸着(CVD)法等がある。
無機酸化物の薄膜層の厚さは、十分なバリア性を得るために、通常、15nm〜200nm位の範囲にあることが好ましい。無機酸化物の薄膜層の厚さが15nm以下であると、バリア効果を期待することが困難である。無機酸化物の薄膜層の厚さが200nmを超えると、クラック等が入り易くなってバリア性の信頼性を低下させると共に、材料コストが高くなるため、好ましくない。
印刷基材層11を構成する樹脂層としては、ポリエチレンテレフタレート(PET)、2軸延伸ポリプロピレン(OPP)、2軸延伸ナイロン(ONy)、未延伸ポリプロピレン(CPP)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)等のフィルムを使用できる。このフィルムには、通常、印刷層12が設けられる。そして、印刷基材層11のフィルムは、上記したバリヤー基材フィルムと同種のフィルムを用いることが好ましい。
各層10〜12は、以下のように配置できる。例えば図2に示すように、外層2の内側にバリヤー性基材10、印刷層12、印刷基材層11の順に配置しても良い。あるいは、外層2の内側に、印刷層12、印刷基材層11、バリヤー性基材10の順に配置しても良い。
次に、本発明のラミネートチューブ用積層フィルム9の積層方法は、例えば、以下のように行われる。
先ず、印刷層12を設けた印刷基材層11と、バリヤー性基材10とを準備する。また、中間層7を共押出し多層フィルム製造法により作製しておく。
次に、印刷基材層11とバリヤー性基材10とを、印刷層12を内側にして、例えば二液反応型ポリエステル樹脂系接着剤を用いてドライラミネーション法により貼り合わせる。
得られた積層フィルムの印刷基材層11面と、中間層7のポリエチレンテレフタレート樹脂層3面とを、例えば前述同様の二液反応型ポリエステル樹脂系接着剤を用いてドライラミネーション法により貼り合わせる。
得られた積層フィルムのバリヤー性基材10面と外層2の低密度ポリエチレン(LDPE)樹脂からなるポリエチレンフィルムとを溶融ポリエチレンを接着層として押出しラミネーション法により貼り合わせる。
得られたフィルムの中間層7のナイロン樹脂層4面に溶融ポリエチレン樹脂を共押出しラミネーション法により塗布、積層して内層8を形成させ、本発明のラミネートチューブ用積層フィルム9を製造する。
上述したように本実施形態によれば、上記(1)〜(3)の関係を満たす積層構成により、超音波シールの際に、シール層を確実に熱融着してシールできるラミネートチューブ用積層フィルム、チューブ容器及びその製造方法を提供できる。
また、これにより、シール不良等の不具合を解消でき、品質及び生産性を向上させることができる。
さらに、内層8の第2の樹脂層にMDPE樹脂を用いたため、チューブ容器20の剛性とシール性とを共に向上させることができる。
また、超音波シールに関し、効率良く確実にシールできるラミネートチューブ用積層フィルムを設計することができる。
[実施例]
以下、本発明について実施例を挙げて、さらに、具体的に説明する。
<実施例1>
中間層7として、ポリエチレンテレフタレート(PET)フィルム/ナイロン(Ny)フィルムからなる積層フィルムを準備した。
ここで、ポリエチレンテレフタレート(PET)フィルムは、厚み12μm、密度1.4g/cm3、融点260℃、のものである。
ナイロン(Ny)フィルムは、厚み15μm、密度1.4g/cm3、融点260℃、のものである。
次に、この中間層7の積層フィルムに、押し出しラミネーション法により、内層8及び外層2を形成し、図1に示す構成のラミネートチューブ用積層フィルム1を作製した。
すなわち、実施例1のラミネートチューブ用積層フィルム1は、容器外側から順に、低密度ポリエチレン(LDPE)樹脂層2、ポリエチレンテレフタレート(PET)フィルム樹脂層3、ナイロン(Ny)フィルム層4、中密度ポリエチレン(MDPE)樹脂層5、線状低密度ポリエチレン(L−LDPE)樹脂層6を備えている。
ここで、低密度ポリエチレン(LDPE)樹脂層2は、厚み130μm、密度0.915g/cm3、融点115℃、のものである。
ポリエチレンテレフタレート(PET)フィルム樹脂層3は、厚み12μm、密度1.4g/cm3、融点260℃、のものである。
ナイロン(Ny)フィルム層4は、厚み15μm、密度1.4g/cm3、融点260℃、のものである。
中密度ポリエチレン(MDPE)樹脂層は、厚み120μm、密度0.935g/cm3、融点126℃、MFR“2”、のものである。
線状低密度ポリエチレン(L−LDPE)樹脂層6は、厚み100μm、密度0.92g/cm3、融点120℃、MFR“4”(50μm厚)、のものである。
<実施例2>
実施例2のラミネートチューブ用積層フィルム1は、別の構成例として、実施例1と同様の方法により作製された。
すなわち、実施例2のラミネートチューブ用積層フィルム1は、容器外側から順に、低密度ポリエチレン(LDPE)樹脂層2、ポリエチレンテレフタレート(PET)フィルム層3、ナイロン(Ny)フィルム層4、中密度ポリエチレン(MDPE)樹脂層5、線状低密度ポリエチレン(L−LDPE)樹脂層6を備えている。
ここで、低密度ポリエチレン(LDPE)樹脂層2は、厚み160μm、密度0.915g/cm3、融点115℃、のものである。
ポリエチレンテレフタレート(PET)フィルム層3は、実施例1と同じ厚み、密度、融点のものである。
ナイロン(Ny)フィルム層4は、厚み15μm、密度1.15g/cm3、融点220℃、のものである。
中密度ポリエチレン(MDPE)樹脂層5は、厚み140μm、密度0.935g/cm3、融点126℃、MFR“2”、のものである。
線状低密度ポリエチレン(L−LDPE)樹脂層6は、厚み50μm、密度0.906g/cm3、融点105℃、MFR“6”、のものである。
<比較例1>
比較例1のラミネートチューブ用積層フィルム14は、前述した(1)〜(3)の関係を満たさない例として、実施例1と同様の方法により作製された。
ここで、比較例1は、容器外側から順に、低密度ポリエチレン(LDPE)樹脂層2、外側のポリエチレンテレフタレート(PET)フィルム層3、内側のポリエチレンテレフタレート(PET)フィルム層3、低密度ポリエチレン(LDPE)樹脂層5、線状低密度ポリエチレン(L−LDPE)樹脂層6を備えている。
ここで、低密度ポリエチレン(LDPE)樹脂層2は、厚み90μm、密度0.915g/cm3、融点115℃、のものである。
外側及び内側のポリエチレンテレフタレート(PET)フィルム層3は、それぞれ厚み12μm、密度1.4g/cm3、融点260℃、のものである。
低密度ポリエチレン(LDPE)樹脂層5は、厚み170μm、密度0.915g/cm3、融点115℃、MFR“3”、のものである。
線状低密度ポリエチレン(L−LDPE)樹脂層6は、厚み110μm、密度0.915g/cm3、融点120℃、MFR“2”、のものである。
次に、実施例1,2と、比較例1との合計3種類のラミネートチューブ用積層フィルムを規定の寸法にカットし、口部、肩部、一端が開口したチューブ容器の半製品を作成した。その後、チューブ容器の半製品に内容物としてハチミツを充填し、底部シール部を超音波シール装置を用いてシールし、チューブ容器を作製した。
次に、3種類のチューブ容器に関し、下記に示す評価方法に基づいてシール性と耐圧強度について評価した。
[シール性]
シール部の断面観察により、溶着面、溶着部が均一に溶けているか目視判定した。
[耐圧強度]
内容物を充填したチューブ容器に80〜100gの荷重を1分間加えて破損等について目視観察した。
その結果を、優れている(○)、やや劣る(△)、劣る(×)の3段階で評価した。その結果を表1に示す。
Figure 0004103891
この結果から、実施例1,2のラミネートチューブ用積層フィルム1は、水平振動方向と垂直振動方向のいずれでも、優れた超音波シール性を持つことを確認できた。また、実施例1,2のチューブ容器は、優れた耐圧強度を持つことを確認できた。
本発明によれば、特に、食品用途に好適なラミネートチューブ用積層フィルム、チューブ容器及びその製造方法を提供できる。なお、本発明は、当然に食品用途に限らず、化粧品、医薬品用途にも用いられる。
図1は本発明の一実施形態に係るラミネートチューブ用積層フィルムの構成を示す概略断面図である。 図2は本発明の別の実施形態に係るラミネートチューブ用積層フィルムの構成を示す概略断面図である。 図3は本発明の各実施形態に係るラミネートチューブ用積層フィルムを超音波シール装置を用いてシール部をシールする工程を説明するための模式断面図である。 図4は本発明の各実施形態に係るチューブ容器の構成を示す外観図である。 図5は従来のラミネートチューブ用積層フィルムの構成の一例を示す概略断面図である。 図6はチューブ容器の一般的な製造方法を部分的に示す模式図である。 図7はチューブ容器の一般的な製造方法を部分的に示す模式図である。 図8はチューブ容器の一般的な製造方法を部分的に示す模式図である。 図9は従来のラミネートチューブ用積層フィルムを超音波シール装置を用いてシール部をシールする工程を説明するための模式断面図である。 図10は従来のチューブ容器の構成を示す外観図である。
符号の説明
1,9…ラミネートチューブ用積層フィルム、2…外層、3…ポリエチレンテレフタレート(PET)樹脂層、4…ナイロン(Ny)樹脂層、5…第2のポリエチレン系樹脂層、6…第1のポリエチレン系樹脂層6、7…中間層、8…内層、10…バリヤー性基材層、11…印刷基材層、12…印刷層。

Claims (3)

  1. 少なくとも内層(8)、中間層(7)及び外層(2)の順の積層構造を備えたラミネートチューブ用積層フィルム(1)から超音波シールにより製造されたチューブ容器において、
    前記内層は、第1の樹脂層(6)と第2の樹脂層(5)との積層構造からなり、
    前記第1の樹脂層は、最内面に位置するシール層であり、
    前記第1の樹脂層は50〜100μmの範囲の厚みをもつ線状(直鎖状)低密度ポリエチレン(L−LDPE)樹脂からなり、
    前記第2の樹脂層は100μm以上140μm以下の厚みをもつ中密度ポリエチレン(MDPE)樹脂からなり、
    前記超音波シールの際に、前記中間層及び前記第2の樹脂層が超音波振動エネルギーを前記第1の樹脂層に伝え、前記第1の樹脂層が前記第2の樹脂層及び中間層よりも先に溶け出すように、前記第1の樹脂層の融点A[℃]、密度C[g/cm3]及びメルトフローレートEは、下記(1)〜(3)の関係を満たすことを特徴とするチューブ容器
    (1)前記第2の樹脂層及び中間層を構成する樹脂の融点B[℃]に対する、105℃≦A<Bの関係。
    (2)前記第2の樹脂層及び中間層を構成する樹脂の密度D[g/cm3]に対する、0.9g/cm3≦CDの関係。
    (3)前記第2の樹脂層を構成する樹脂のメルトフローレートFに対する、E>F≧0.5の関係。
  2. 請求項1記載のチューブ容器において、
    前記外層(2)と前記中間層(7)との間にバリヤー性基材層(10)を備えたことを特徴とするチューブ容器
  3. 請求項1又は請求項2に記載のチューブ容器(20)を製造するためのチューブ容器の製造方法において、
    前記ラミネートチューブ用積層フィルム(1)を筒状にシールして筒状胴部(21)を形成する工程と、
    前記筒状胴部の一方の開口部に肩部(22)及び口部(23)を形成する工程と、
    前記筒状胴部の他方の開口部におけるシール部(25)を両外側からシールバー(13A)と受け具(13B)とにより加圧状態で挟む工程と、
    前記挟まれた偏平形状のシール部(25)に前記シールバー(13A)から超音波振動エネルギーを与える工程と、
    前記超音波振動エネルギーにより、前記偏平形状のシール部(25)を振動させ、前記第1の樹脂層よりも高密度の第2の樹脂層を介して当該第1の樹脂層に伝搬された超音波振動エネルギーにより、当該シール部(25)の第1の樹脂層(6)を熱融着する工程と、
    を備えたことを特徴とするチューブ容器の製造方法。
JP2004507064A 2002-05-29 2003-05-27 チューブ容器及びその製造方法 Expired - Fee Related JP4103891B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002155432 2002-05-29
JP2002155432 2002-05-29
PCT/JP2003/006610 WO2003099557A1 (fr) 2002-05-29 2003-05-27 Film lamine pour tube lamine, recipient tubulaire et procede de production dudit recipient tubulaire

Publications (2)

Publication Number Publication Date
JPWO2003099557A1 JPWO2003099557A1 (ja) 2005-09-22
JP4103891B2 true JP4103891B2 (ja) 2008-06-18

Family

ID=29561417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004507064A Expired - Fee Related JP4103891B2 (ja) 2002-05-29 2003-05-27 チューブ容器及びその製造方法

Country Status (3)

Country Link
JP (1) JP4103891B2 (ja)
AU (1) AU2003241806A1 (ja)
WO (1) WO2003099557A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187657B2 (ja) * 2016-08-26 2017-08-30 大日本印刷株式会社 ポリオレフィン樹脂フィルム
JPWO2021177323A1 (ja) * 2020-03-06 2021-09-10

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436266Y2 (ja) * 1987-03-11 1992-08-27
JP3329580B2 (ja) * 1994-05-16 2002-09-30 大日本印刷株式会社 チューブ容器胴部用積層シート
JP3312563B2 (ja) * 1996-08-19 2002-08-12 凸版印刷株式会社 液体包装用紙製包材
JP4140989B2 (ja) * 1997-04-09 2008-08-27 ダイセル化学工業株式会社 複合フィルムおよびその製造方法
JP4722263B2 (ja) * 2000-08-07 2011-07-13 日本ポリオレフィン株式会社 パウチ

Also Published As

Publication number Publication date
AU2003241806A1 (en) 2003-12-12
JPWO2003099557A1 (ja) 2005-09-22
WO2003099557A1 (fr) 2003-12-04

Similar Documents

Publication Publication Date Title
US5888648A (en) Multi-layer hermetically sealable film and method of making same
WO2021049385A1 (ja) シート材容器
US6896754B2 (en) Dustfree filling and sealing apparatus, dustfree container and wrapping clean film producing method
WO2017002753A1 (ja) 積層体、包装袋、口栓付包装袋および水素水入り口栓付包装袋
JP3737600B2 (ja) 包装体製造装置
JP4103891B2 (ja) チューブ容器及びその製造方法
JP2017121707A (ja) 多層フィルム
JPH09300561A (ja) 積層材およびそれを使用した包装用容器
JP3813296B2 (ja) 易開封性包装用袋
JP4627038B2 (ja) 無菌充填用紙容器内縦シールテープ及び縦シールテープ付き無菌充填用紙容器
JP3734331B2 (ja) 包装体、その製造方法および製造装置
JP4288098B2 (ja) 紙容器用積層体及びその製造方法
JPH11198289A (ja) 多層積層ヒ−トシ−ル材、それを使用した積層体および包装用容器
JP3734332B2 (ja) 包装体製造装置
JP2000355067A (ja) 包装用クリ−ンフィルムおよびそれを使用した包装用袋
JP3938219B2 (ja) 積層体およびそれを使用した包装用容器
JPH08151069A (ja) 包装体
JP4850420B2 (ja) 注出ノズルを有する包装袋
JP4521807B2 (ja) ヒートシール性複合フィルム
JP2002225175A (ja) 蓋 材
JPH0976402A (ja) 包装用材料およびそれを使用した押し出しチュ−ブ
JP3737601B2 (ja) 包装体製造装置
JPH061368A (ja) プラスチック製蓋材
JP3841874B2 (ja) ラミネ−トチュ−ブ容器
JP3953618B2 (ja) ラミネ−トチュ−ブ容器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees