JP4086265B2 - 光信号受信装置 - Google Patents

光信号受信装置 Download PDF

Info

Publication number
JP4086265B2
JP4086265B2 JP07658399A JP7658399A JP4086265B2 JP 4086265 B2 JP4086265 B2 JP 4086265B2 JP 07658399 A JP07658399 A JP 07658399A JP 7658399 A JP7658399 A JP 7658399A JP 4086265 B2 JP4086265 B2 JP 4086265B2
Authority
JP
Japan
Prior art keywords
integrated circuit
power supply
current
optical signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07658399A
Other languages
English (en)
Other versions
JP2000269541A (ja
Inventor
俊之 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07658399A priority Critical patent/JP4086265B2/ja
Priority to US09/525,485 priority patent/US6684032B1/en
Publication of JP2000269541A publication Critical patent/JP2000269541A/ja
Application granted granted Critical
Publication of JP4086265B2 publication Critical patent/JP4086265B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/695Arrangements for optimizing the decision element in the receiver, e.g. by using automatic threshold control

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として光通信に用いられる光信号受信装置に係り、特にフォトダイオードなどの光検出素子と少なくとも増幅器を有する集積回路とを別々に構成した光信号受信装置に関する。
【0002】
【従来の技術】
光通信システムにおいては、伝送されてくる光信号を受信して電気信号に変換する機能を有する光信号受信装置が必須である。高速通信に対応できる光信号受信装置では、光検出素子にPINフォトダイオードを用い、このPINフォトダイオードからの光電流(信号電流)をトランスインピーダンス増幅器により電圧信号に変換して出力する構成が用いられる。
【0003】
このような光信号受信装置では、PINフォトダイオードとトランスインピーダンス増幅器は製造プロセスが異なり、前者は素子チップとして、後者は集積回路としてそれぞれ作製される。そして、両者はボンディングワイヤにより電気的に接続される。
【0004】
図7は、従来の光信号受信装置の実装例を示している。モジュール基板100上に、PINフォトダイオード101と集積回路102が実装されるとともに、PD電源端子103、IC電源端子104、グランド端子105および信号出力端子106が金属パターンとして形成されている。フォトダイオード101のアノード端子と集積回路102は、ボンディングワイヤ107により接続される。フォトダイオード101の裏面側のカソード端子はPD電源端子103に接続され、PD電源端子103に図示しないPD電源が接続される。集積回路102とIC電源端子104、グランド端子105および信号出力端子106との接続も、ボンディングワイヤ108、109および110により行われる。グランド端子105上にグランド端子105の金属パターンを一方の電極とするキャパシタ111が形成され、キャパシタ111の他方の電極はPD電源端子103にボンディングワイヤ112により接続される。
【0005】
高速通信のために光通信システムの伝送レートが増大すると、伝送帯域を広帯域化すべく高周波伝送特性の向上が要求される。伝送帯域が数GHzもの広帯域になると、低周波領域では問題とならなかったボンディングワイヤの影響が現れるようになり、この影響により高周波伝送特性が劣化する。すなわち、高周波領域ではボンディングワイヤはインダクタンスとして見えるようになる。
【0006】
図7に示した従来の実装例では、フォトダイオード101の信号側端子であるアノード端子と集積回路102がボンディングワイヤ107を介して接続されているため、フォトダイオード101から出力される信号電流が集積回路102内のトランスインピーダンス増幅器へ伝達されにくくなる。しかし、この問題はフォトダイオード101と集積回路102をできるだけ近接して配置し、両者を接続するボンディングワイヤ107の長さを極力短くすることで解決することができる。
【0007】
一方、フォトダイオード101の電源側ラインとしては、PD電源端子103〜ボンディングワイヤ112〜キャパシタ111〜ボンディングワイヤ109〜集積回路101のグランド端子の経路が存在する。光信号の伝送レートが増大すると、このフォトダイオード101の電源側ラインの長さも伝送特性に影響を与えるようになる。具体的には、フォトダイオード101の電源側ラインの長さが伝送帯域の1/4波長より長くなると帯域が制限されてしまい、所望の伝送帯域が得られなくなる。
【0008】
ここで、図7の実装例によると、フォトダイオード101の信号側ラインは、基本的にボンディングワイヤ107のみであり、その長さを十分に短くすることはできるのに対し、フォトダイオード101の電源側ラインは、ボンディングワイヤ112、キャパシタ111、モジュール基板100に設けられたスルーホールおよびボンディングワイヤ109であり、数GHzといった伝送帯域の1/4波長に比較して遥かに長い。このため、フォトダイオード101から出力される全伝送帯域の信号電流のうち、特に高周波成分が電源側ラインにより遮断されて集積回路102にまで伝達することができなくなる。
【0009】
【発明が解決しようとする課題】
上述したように従来の光信号受信装置では、光検出素子であるフォトダイオードの電源側ラインが信号側ラインに比較して非常に長いため、光信号の伝送帯域が数GHzというように広い場合には帯域が制限されてしまい、特に高周波領域の利得が低下するという問題点があった。
【0010】
本発明の目的は、光検出素子の信号側ラインのみならず電源側ラインについてもその長さを十分に短くでき、GHz帯のような広帯域光信号を良好に受信できる光信号受信装置を提供することにある。
【0011】
さらに、本発明の他の目的は、大レベルの光信号の入力時にも安定した受信動作が実現できる光信号受信装置を提供することにある。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、本発明は光信号を光検出素子により電気信号に変換し、この電気信号を集積回路内に入力して該集積回路内の増幅器により増幅する光信号受信装置において、光検出素子に集積回路の内部を通して電源電流を供給するようにしたことを特徴とする。
【0013】
このようにな構成により、例えば光検出素子の信号側端子および電源側端子をそれぞれボンディングワイヤにより集積回路に直接接続することができ、光検出素子の集積回路内の増幅器に至る信号側ラインのみならず、光検出素子の電源側ラインも十分に短くできる。従って、広帯域の光信号を受信する際にも高周波まで帯域が遮断されることがなく、PINフォトダイオードのような光検出素子の素子特性を最大限に生かした良好な受信動作を実現することが可能となる。
【0014】
また、本発明においては光検出素子への電源電流の供給を集積回路内部を通して行うことを利用して、光検出素子への電源供給路に挿入された光検出素子に流入する電源電流を検知する電流検知回路を集積回路内に設け、この電流検知回路の検知結果を用いて種々の制御を行うことが可能である。
【0015】
例えば、電流検知回路により検知された電源電流に対応する電圧と所定の基準電圧とを比較し、電源電流に対応する電圧が基準電圧以上のとき増幅器の入力側から直流電流を吸収する電流吸収回路を設けることにより、大レベルの光信号受信時に増幅器に不要な直流電流が流入するのを防止して、増幅器の安定動作を実現することができる。
【0016】
より具体的には、電流検知回路は例えば抵抗からなり、光検出素子に流入する電源電流を最大電圧がPN接合若しくはショットキー接合の順方向電圧降下の2倍にほぼ等しい電圧に変換して出力するように構成される。
【0017】
一方、電流吸収回路は基準電圧を得る直列接続された複数のPN接合素子若しくはショットキー接合素子で構成される第1のレベルシフト回路と、電流検知回路の出力電圧をレベルシフトして電源電流に対応する電圧を得る直列接続された複数のPN接合素子若しくはショットキー接合素子で構成される第2のレベルシフト回路とを有する。そして、第1のレベルシフト回路を構成するPN接合素子若しくはショットキー接合素子の数に対し第2のレベルシフト回路を構成するPN接合素子若しくはショットキー接合素子の数を一つ少なくすることにより、光検出素子からの光電流の有無により電流検知回路により検知された電源電流に対応する電圧と基準電圧との大小関係が変化するため、光電流が流れたときに増幅器の入力側で直流電流を吸収することが可能となる。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の実施形態に係る光信号受信装置の概略的な構成を示すブロック図である。この光信号受信装置は、大きくわけて光検出素子であるフォトダイオード11と集積回路12からなる。フォトダイオード11は、伝送されてきた光信号を受光して電流信号(光電流)に変換する素子であり、好ましくはPINフォトダイオードが用いられる。
【0019】
集積回路12は、フォトダイオード11からの光電流を電圧信号に変換して増幅するトランスインピーダンス増幅器(電流−電圧変換増幅器)21と、電流検知回路22と、電流吸収回路23およびキャパシタ24を有する。集積回路12は、IC電源端子31を介してIC電源から電源の供給を受けて動作する。また、集積回路12はPD電源端子32にも接続される。
【0020】
フォトダイオード11のアノード端子はトランスインピーダンス増幅器21の入力端子に接続され、フォトダイオード11のカソード端子は電流検知回路22を介してPD電源端子32に接続される。すなわち、フォトダイオード11への電源供給は、集積回路12の内部の電流検知回路22を介して行われる。キャパシタ24は、フォトダイオード11のカソード端子とPD電源端子32との間の電源側ラインを高周波的に接地するためのもので、一端がフォトダイオード11のカソード端子に接続され、他端がグランド端子33に接続される。
【0021】
電流検知回路22は、PD電源からフォトダイオード11に流入する電源電流を検知する回路であり、その検知結果は電流吸収回路23に供給される。電流吸収回路23は、後に詳しく説明するように電流検知回路22により検知された電源電流に対応する電圧と基準電圧とを比較し、例えば電源電流に対応する電圧が基準電圧以上のとき、つまりフォトダイオード11が光信号を受光して光電流を出力するときに、トランスインピーダンス増幅器21の入力側から直流電流を吸収するように構成されている。
【0022】
次に、本実施形態の光信号受信装置の動作を説明する。
光信号受信装置には、図示しない光ファイバによって伝送されてきた光信号が入力される。光信号は2値変調されているものとする。この光信号はフォトダイオード11により受光され、フォトダイオード11から光電流が出力される。フォトダイオード11からの光電流はアノード端子から取り出され、集積回路12内のトランスインピーダンス増幅器21により電圧信号に変換されて信号出力端子34より出力される。
【0023】
フォトダイオード11から出力される光電流は、カソード端子から電流検知回路22、PD電源端子32を介してPD電源にも伝搬する。ここで、フォトダイオード11の電源電流はPD電源からPD電源端子32を介して集積回路12に供給されるため、PD電源に伝搬した光電流もPD電源端子32を介して集積回路12に入力され、電流検知回路22を通過した後、キャパシタ24を介してグランド端子33よりグランド電位に戻ることになる。従って、フォトダイオード11から出力される光電流は、フォトダイオード11の電源側ラインの回り込みの影響を受けることがないため、フォトダイオード11の素子特性を最大限生かすことができる。
【0024】
言い換えれば、本実施形態ではフォトダイオード11のアノード端子から集積回路12までの信号側ラインの長さのみでなく、カソード端子から集積回路12の内部の電流検知回路22を介してPD電源までの長さも十分に短く、光信号の伝送帯域の1/4波長より遥かに小さいため、これらの信号側ラインおよび電源側ラインによって帯域が制限されることがなく、高周波領域まで十分な利得が得られる。
【0025】
さらに、本実施形態によれば電流吸収回路23によってトランスインピーダンス増幅器21に不要な直流電流が流れ込まないようにすることができ、安定した動作を実現することが可能となる。すなわち、光信号受信装置で受信される光信号は2値変調された信号であり、振幅方向には情報を持たないため、光電流の2値的変化のみが分かればよい。光信号受信装置に大レベルの光信号が入力されたときに、トランスインピーダンス増幅器21に過大な光電流が入力されることはトランスインピーダンス増幅器21の安定動作を実現する上で妨げとなる。
【0026】
本実施形態では、フォトダイオード11に集積回路12の内部を通して電源電流を供給することを利用して、集積回路12内のフォトダイオード11への電源供給路に電流検知回路22を挿入し、この電流検知回路22の検知結果に従ってフォトダイオード11から光電流が出力されるとき、電流吸収回路23を動作させて、トランスインピーダンス増幅器21の入力側から直流電流を吸収することで、上述した問題を解決することができる。
【0027】
次に、図2を用いて集積回路12の内部構成の具体例を説明する。
図1の各部との対応を説明すると、トランジスタQ4,Q5と抵抗R5,R6,R7により図1中のトランスインピーダンス増幅器21が構成される。トランジスタQ4は抵抗R5をコレクタ負荷とするエミッタ接地増幅回路を構成し、トランジスタQ5は抵抗6をエミッタ負荷とするエミッタフォロワ回路を構成している。そして、エミッタフォロワ回路の出力であるトランジスタQ5のエミッタ電極から、帰還抵抗R7を介してエミッタ接地増幅回路の入力であるトランジスタQ4のベース電極に負帰還が施されている。負帰還量は、抵抗R6,R7の抵抗値の比で決まる。
【0028】
電流検知用抵抗R4は図1中の電流検知回路22を構成し、フォトダイオード11のカソード端子とPD電源端子32との間に接続される。キャパシタC1は高周波接地用キャパシタ24に相当する。トランジスタQ1,Q2,Q3と抵抗R1,R2,R3、ダイオードD1,D2,D3,D4および定電流源I1,I2によって、図1中の電流吸収回路23が構成される。ダイオードD1,D2,D3,D4は、この例ではコレクタ電極とベース電極が接続されたいわゆるダイオード接続のトランジスタにより構成されているが、通常のダイオードであってもよく、要はPN接合素子や、ショットキー接合素子(MOSFET等により構成することができる)等のレベルシフト素子であればよい。
【0029】
電流吸収回路23について詳しく述べると、トランジスタQ1,Q2とそのエミッタ電極間に接続された抵抗R3およびQ1,Q2の各エミッタ電極に接続された定電流源I1,I2は、リニアコンパレータと呼ばれる電圧比較器を構成している。抵抗R0は、ここでは交流遮断回路を構成している。電圧比較器のトランジスタQ1,Q2のうち、Q1が電流吸収素子として働く。PD電源端子32とグランド端子33との間に直列接続された3つのダイオードD1,D2,D3と抵抗R1は、第1のレベルシフト回路を構成し、PD電源電位VpdをPN接合3段分レベルシフトして、電圧比較器の一方の入力端子であるトランジスタQ1のベース電極に与える。
【0030】
電流検知用抵抗R4の両端にコレクタ電極とベース電極が接続されたトランジスタQ3と、Q3のエミッタ電極とグランド端子33間に直列に接続されたダイオードD4および抵抗R2は、第2のレベルシフト回路を構成し、電流検知用抵抗R4の両端電圧をPN接合2段分レベルシフトして、電圧比較器の他方の入力端子であるトランジスタQ2のベース電極に与える。
【0031】
ここで、電流検知用抵抗R4は、ここを通してフォトダイオード11に流れる電源電流を最大電圧がPN接合の順方向電圧降下(Vdとする)の2倍、つまり2Vdにほぼ等しい電圧に変換するように、その抵抗値が選定されているものとする。言い換えれば、フォトダイオード11に入射する光信号の最大強度から想定される最大電流値でPN接合2段分の電圧降下2Vdが生じるように電流検知用抵抗R4の抵抗値は選ばれる。
【0032】
次に、図2中に示した電流吸収回路23の動作を説明する。
電圧比較器を構成するトランジスタQ1,Q2のうち、トランジスタQ1のベース電位Vb1は、常にVb1=Vpd−3Vdである。一方、トランジスタQ2のベース電位Vb2は、フォトダイオード11に光信号が入射せず、光電流が流れない場合、電流検知用抵抗R4の電圧降下が0であるため、Vb2=Vpd−2Vdである。従って、Vb1<Vb2であり、トランジスタQ1はオフ、トランジスタQ2はオンであるから、電流吸収はなされない。
【0033】
フォトダイオード11に光信号が入射して光電流が流れ、その光電流が例えば最大電流値の半分になると、トランジスタQ2のベース電位Vb2もトランジスタQ1のベース電位Vb1と同じくVpd−3Vdとなる。このため、トランジスタQ1,Q2は共にオンとなり、トランジスタQ1によって最大電流値の約半分の電流が吸収される。
【0034】
さらに、フォトダイオード11に入射する光信号が最大強度に達し、光電流が最大電流値になると、電流検知用抵抗R4の電圧降下が2Vdとなり、トランジスタQ2のベース電位はVb2=Vpd−4Vdとなる。従って、Vb1>Vb2となり、トランジスタQ1がオン、トランジスタQ2がオフとなるため、最大電流値が吸収される。
【0035】
このような電流吸収回路22の動作によって、大レベルの光信号受信時にも、トランスインピーダンス増幅器21のトランジスタQ4へは不要な光電流(直流電流)が全く流入しないようにすることができ、トランスインピーダンス増幅器21の安定動作を実現することが可能となる。
【0036】
図3に、本実施形態に係る光信号受信装置の具体的な実装例を示す。モジュール基板10上にフォトダイオード11、集積回路12、IC電源端子31、PD電源端子32、グランド端子33および信号出力端子34が形成されている。フォトダイオード11には、光ファイバ13により伝送されてきた光信号が図示しないミラーなどの光学系を介して導かれる。
【0037】
フォトダイオード11の信号側端子であるアノード端子は、ボンディングワイヤ41により集積回路12の信号入力端子(トランスインピーダンス増幅器21の入力端子)に接続される。また、フォトダイオード11の電源側端子であるカソード端子は、電極パッド35に接続され、電極パッド35は同様にボンディングワイヤ42により集積回路12内の電流検知回路22に接続される。
【0038】
集積回路12とIC電源端子31、PD電源端子32、グランド端子33および信号出力端子34との接続も、ボンディングワイヤ43,44,45,46によりそれぞれ行われる。
【0039】
このような構成により、フォトダイオード11で発生した光電流によりPD電源に伝搬した信号成分も集積回路12の内部に入力されるため、モジュール基板11上のボンディングワイヤなどの配線パターンの影響を受けることなく、フォトダイオード11からの光電流をトランスインピーダンス増幅器21で電流−電圧変換して増幅することができる。
【0040】
すなわち、フォトダイオード11のアノード端子と集積回路12との間の信号側ラインは、基本的にボンディングワイヤ41のみであって十分に短く、またフォトダイオード11のカソード端子とPD電源端子32との間の電源側ラインも基本的にボンディングワイヤ42と44のみであり、図7に示した従来の構成に比較して十分に短い。従って、これらフォトダイオード11の信号側ラインおよび電源側ラインによって帯域が制限されることがなく、高周波領域まで十分な利得を得ることができる。
【0041】
以下、本発明の効果についてさらに具体的に説明する。
図4は、上述した本発明の実施形態による光信号受信装置と図7で説明した従来の光信号受信装置の変換利得の周波数特性を比較して示す図である。ここでいう変換利得とは、フォトダイオードに入射する光信号のエネルギーに対する信号出力の比である。従来の光信号受信装置では、ある周波数、例えば5GHzで急激に変換利得が低下するが、本発明の実施形態による光信号受信装置では、約2倍の周波数、つまり10GHz程度まで変換利得の平坦な良好な特性が得られることが分かる。
【0042】
図5は、本実施形態の光信号受信装置におけるフォトダイオード11への流入電流と電流吸収回路23による吸収電流の関係を示す図であり、流入電流が最大電流値(この場合は、1mA)を少し越えるまで、流入電流の増加に比例して吸収電流が増加することが分かる。従って、大レベルの光信号受信時においてトランスインピーダンス増幅器21に不要な直流電流が流入するのを防止し、安定な動作を実現できることが明らかである。
【0043】
次に、図6を用いて本発明の他の実施形態に係る光信号受信装置について説明する。
本実施形態では、集積回路12内にデータ弁別器25と弁別閾値発生回路26が新たに設けられている。データ弁別器25は、トランスインピーダンス増幅器21からの出力信号を閾値判定して、「0」,「1」の弁別を行ってデータ出力端子36へ弁別結果のデータを出力する回路であり、その閾値(弁別閾値)は弁別閾値発生回路26から与えられる。
【0044】
ここで、弁別閾値発生回路26は電流検知回路22により検知されたフォトダイオード11の電源電流の大きさに従って、発生する弁別閾値を変化させるように構成されている。受信される光信号の強度が変動すると、それに伴いフォトダイオード11に流入する電源電流も変化する。そこで、この電源電流の変化に応じて弁別閾値を最適な値に変化させることにより、光信号の強度変化によらず、常にデータ弁別器25で正しく「0」,「1」の弁別を行うことができ、データ弁別器25の後段での復号誤りも小さくすることが可能となる。
【0045】
【発明の効果】
以上説明したように、本発明の光信号受信装置によれば、光検出素子の信号側ラインのみならず電源側ラインについてもその長さを十分に短くでき、GHz帯のような広帯域光信号を良好に受信できる。
【0046】
さらに、本発明の光信号受信装置では、光検出素子の電源電流を検知して増幅器の入力側で直流電流を吸収することにより、大レベルの光信号の入力時にも安定した受信増幅動作が実現でき、光信号に対するダイナミックレンジを大きくとることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光信号受信装置の概略構成を示すブロック図
【図2】同実施形態における集積回路の詳細な回路構成を示す図
【図3】同実施形態に係る光信号受信装置の実装例を示す平面図
【図4】同実施形態に係る光信号受信装置と従来の光信号受信装置の変換利得の周波数特性を示す図
【図5】同実施形態におけるフォトダイオードに流入する電源電流と電流吸収回路による吸収電流の関係を示す図
【図6】本発明の他の実施形態に係る光信号受信装置の概略構成を示すブロック図
【図7】従来の光信号受信装置の実装例を示す平面図
【符号の説明】
11…フォトダイオード(光検出素子)
12…集積回路
13…光ファイバ
21…トランスインピーダンス増幅器
22…電流検知回路
23…電流吸収回路
24…高周波接地用キャパシタ
25…データ弁別器
26…弁別閾値発生回路
31…IC電源端子
32…PD電源端子
33…グランド端子
34…信号出力端子
35…電極パッド
36…データ出力端子
41〜46…ボンディングワイヤ

Claims (7)

  1. 光信号を電気信号に変換する光検出素子と、
    前記電気信号を増幅する増幅器を内蔵する集積回路と、
    前記光検出素子の信号側端子と前記集積回路との間を接続する第1のボンディングワイヤと、
    前記光検出素子の電源側端子と前記集積回路との間を接続する第2のボンディングワイヤと、
    前記集積回路に接続され、前記集積回路に電源を供給するための第1の電源端子と、
    前記集積回路に接続され、前記光検出素子に前記集積回路の内部及び第2のボンディングワイヤを通して電源電流を供給するための第2の電源端子とを具備する光信号受信装置。
  2. モジュール基板と、
    前記モジュール基板上に配設され、光信号を電気信号に変換する光検出素子と、
    前記モジュール基板上に配設され、前記電気信号を増幅する増幅器を内蔵する集積回路と、
    前記光検出素子の信号側端子と前記集積回路との間を接続する第1のボンディングワイヤと、
    前記光検出素子の電源側端子と前記集積回路との間を接続する第2のボンディングワイヤと、
    前記集積回路に接続され、前記集積回路に電源を供給するための第1の電源端子と、
    前記集積回路に接続され、前記光検出素子に前記集積回路の内部及び第2のボンディングワイヤを通して電源電流を供給するための第2の電源端子とを具備することを特徴とする光信号受信装置。
  3. 前記第1のボンディングワイヤ及び第2のボンディングワイヤの長さは、共に前記光信号の伝送帯域の1/4波長より小さいことを特徴とする請求項1または2に記載の光信号受信装置。
  4. 前記集積回路は、前記光検出素子への電源供給路に挿入され、前記光検出素子に流入する電源電流を検知する電流検知手段を有することを特徴とする請求項1または2に記載の光信号受信装置。
  5. 前記集積回路は、前記光検出素子への電源供給路に挿入され、前記光検出素子に流入する電源電流を検知する電流検知手段と、該電流検知手段により検知された電源電流に対応する電圧が所定の基準電圧以上のとき前記増幅器の入力側から直流電流を吸収する電流吸収手段とを有することを特徴とする請求項1または2に記載の光信号受信装置。
  6. 前記電流吸収手段は、前記基準電圧を得る直列接続された複数のPN接合素子若しくはショットキー接合素子で構成される第1のレベルシフト回路と、前記電流検知手段の出力電圧をレベルシフトして前記電源電流に対応する電圧を得る直列接続された複数のPN接合素子若しくはショットキー接合素子で構成される第2のレベルシフト回路とを有し、前記第1のレベルシフト回路を構成するPN接合素子若しくはショットキー接合素子の数に対し前記第2のレベルシフト回路を構成するPN接合素子若しくはショットキー接合素子の数が一つ少なく、
    前記電流検知手段は、前記光検出素子に流入する電源電流を電圧に変換して出力する抵抗素子を有し、
    前記抵抗素子の抵抗値は、前記電流検知手段が出力する出力電圧の最大値が前記PN接合素子若しくは前記ショットキー接合素子の順方向電圧降下の2倍にほぼ等しくなるよう に設定される
    ことを特徴とする請求項5記載の光信号受信装置。
  7. 前記集積回路は、前記増幅器からの出力信号を弁別閾値に従って判定して「0」,「1」の弁別結果データを出力するデータ弁別器と、前記光検出素子の電流の大きさに従って変化する前記弁別閾値を発生する弁別閾値発生回路とをさらに有することを特徴とする請求項1乃至6のいずれか1項記載の光信号受信装置。
JP07658399A 1999-03-19 1999-03-19 光信号受信装置 Expired - Fee Related JP4086265B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07658399A JP4086265B2 (ja) 1999-03-19 1999-03-19 光信号受信装置
US09/525,485 US6684032B1 (en) 1999-03-19 2000-03-16 Optical signal receiver apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07658399A JP4086265B2 (ja) 1999-03-19 1999-03-19 光信号受信装置

Publications (2)

Publication Number Publication Date
JP2000269541A JP2000269541A (ja) 2000-09-29
JP4086265B2 true JP4086265B2 (ja) 2008-05-14

Family

ID=13609317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07658399A Expired - Fee Related JP4086265B2 (ja) 1999-03-19 1999-03-19 光信号受信装置

Country Status (2)

Country Link
US (1) US6684032B1 (ja)
JP (1) JP4086265B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857099B2 (ja) * 2001-10-09 2006-12-13 株式会社アドバンテスト データ伝送装置、光電変換回路、及び試験装置
KR100703428B1 (ko) * 2002-04-26 2007-04-03 삼성전자주식회사 버스트모드 광 수신기 및 그의 신호 크기 검출 장치
US6760551B2 (en) * 2002-10-29 2004-07-06 Agilent Technologies, Inc. Adaptive decoder for skin effect limited signals
US20040145799A1 (en) * 2002-11-27 2004-07-29 Pavle Sedic Controlling optical receiver transimpedance amplifier and receive diode operational settings
KR101100136B1 (ko) * 2003-07-30 2011-12-29 마퍼 리쏘그라피 아이피 비.브이. 변조기 회로
TWI225734B (en) * 2003-11-04 2004-12-21 Ind Tech Res Inst Optical receiving device
JP4907914B2 (ja) * 2005-07-12 2012-04-04 浜松ホトニクス株式会社 光検出回路
JP4998478B2 (ja) * 2007-02-16 2012-08-15 富士通オプティカルコンポーネンツ株式会社 光受信装置
CN101621252B (zh) * 2009-08-07 2012-11-14 天津泛海科技有限公司 直流恢复与直流监视电路
JP2015002201A (ja) * 2013-06-13 2015-01-05 三菱電機株式会社 光受信モジュール
KR101513373B1 (ko) * 2013-12-31 2015-04-20 한양대학교 산학협력단 직류 오프셋을 보상하는 광통신 수신기
US10135545B2 (en) * 2016-06-20 2018-11-20 Oclaro Japan, Inc. Optical receiver module and optical module
JP7068005B2 (ja) * 2018-03-30 2022-05-16 日本ルメンタム株式会社 光受信モジュール、光モジュール、及び光伝送装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2019074C (en) * 1989-06-19 1993-06-01 Takayuki Masuko Photo-semiconductor module
US5122893A (en) * 1990-12-20 1992-06-16 Compaq Computer Corporation Bi-directional optical transceiver
JP3402674B2 (ja) 1992-08-19 2003-05-06 富士通株式会社 光受信用前置増幅器および光受信装置
JPH07245540A (ja) * 1994-01-12 1995-09-19 Fujitsu Ltd 光ディジタル通信用の光受信装置
JPH1140840A (ja) * 1997-07-16 1999-02-12 Sumitomo Electric Ind Ltd 光受信器
JPH11231173A (ja) * 1998-02-12 1999-08-27 Fujitsu Ltd 高速動作可能な光デバイス

Also Published As

Publication number Publication date
JP2000269541A (ja) 2000-09-29
US6684032B1 (en) 2004-01-27

Similar Documents

Publication Publication Date Title
JP4086265B2 (ja) 光信号受信装置
US6356375B1 (en) Apparatus and method for an integrated photodiode in an infrared receiver
US6788152B2 (en) Amplification circuit and optical communication apparatus provided with the amplification circuit
JP4068842B2 (ja) 光受信装置、並びに、その保持装置及び配置方法
US6556330B2 (en) Apparatus and method for an integrated photodiode in an infrared receiver
US20200145114A1 (en) Optical receiver circuit
US20200091881A1 (en) Differential trans-impedance amplifier
JP3062543B2 (ja) 光受信機
US6654215B2 (en) Photodetector circuit with avalanche photodiode
JP3668926B2 (ja) 光インタコネクション受信モジュール
US6876260B2 (en) Elevated front-end transimpedance amplifier
JP3863613B2 (ja) 変調された光波によって搬送される信号の検出装置
JP3123708B2 (ja) 光受信フロントエンドアンプ
JP2001053331A (ja) 受光装置
US7126412B2 (en) Preamplification circuit
JP3415986B2 (ja) 光受信用増幅器
JP3927336B2 (ja) 前置増幅回路
JP2003198279A (ja) モニタ回路および光受信器
KR101028246B1 (ko) 광수신기 광전집적회로
JPH10335957A (ja) 光受信用増幅器
JP2577929B2 (ja) 光信号検出回路
KR100540554B1 (ko) 이종접합 광트랜지스터를 검출소자로 하는 광수신기 광전집적회로
Nakahara et al. High-sensitivity 1-Gb/s CMOS receiver integrated with a III-V photodiode by wafer-bonding
CN217034616U (zh) 一种基于v-i转换的激光器电流控制电路
Swoboda et al. A 2.5-Gb/s receiver OEIC in 0.6-μm BiCMOS technology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4086265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees