JP4085824B2 - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
JP4085824B2
JP4085824B2 JP2003020770A JP2003020770A JP4085824B2 JP 4085824 B2 JP4085824 B2 JP 4085824B2 JP 2003020770 A JP2003020770 A JP 2003020770A JP 2003020770 A JP2003020770 A JP 2003020770A JP 4085824 B2 JP4085824 B2 JP 4085824B2
Authority
JP
Japan
Prior art keywords
resistance
cylinder
protrusion
inner cylinder
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020770A
Other languages
Japanese (ja)
Other versions
JP2004231008A (en
Inventor
道明 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003020770A priority Critical patent/JP4085824B2/en
Publication of JP2004231008A publication Critical patent/JP2004231008A/en
Application granted granted Critical
Publication of JP4085824B2 publication Critical patent/JP4085824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Controls (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の衝突時にコラム軸に加えられる二次衝突の衝撃エネルギを、該コラム軸を支持する筒形のコラムハウジングが軸長方向に短縮することにより吸収する構成としてあるステアリング装置に関する。
【0002】
【従来の技術】
車両の操舵は、車室の内部に配されたステアリングホイールに加えられる回転トルクを、操舵用の車輪(一般的には前輪)の舵取りのために車室の外部に配された舵取機構に伝えて行われる。このような操舵を行わせるためのステアリング装置は、車室の内部に軸回りでの回転自在に支持されたコラム軸の上端部に、運転者に対面するようにステアリングホイールを取付け、また前記コラム軸の下端部を舵取機構に連結して構成されている。
【0003】
このようなステアリング装置においては、近年、車両の前面衝突に伴って車両の進行方向への慣性の作用によりステアリングホイールに衝突(二次衝突)する運転者に加わるダメージを軽減すべく、前記二次衝突の衝撃エネルギを吸収する衝撃吸収式のステアリング装置として構成されたものが実用化されている。
【0004】
前記衝撃エネルギの吸収は、一般的に、前記コラム軸を回転自在に支持するコラムハウジングを利用して実現されており、該コラムハウジングを、適長に亘って内外に嵌め合わされ、二次衝突時の衝撃の作用によりテレスコピックに短縮する内筒及び外筒を備えて構成し、前記衝撃のエネルギを、前記内筒及び外筒の短縮時に両者の嵌合部に加わる摺動抵抗により吸収せしめるようになしてある(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2002−293249号公報
【0006】
【発明が解決しようとする課題】
さて、以上の如く構成された衝撃吸収式のステアリング装置においては、ステアリングホイールに衝突する運転者に、内筒及び外筒間の摺動抵抗の反力が加わることから、前記運転者のダメージを軽減するという初期の目的を達成するために、前記摺動抵抗の値を予め設定された全長に亘って略一定の摺動抵抗下にて摺動せしめることが重要である。
【0007】
前記特許文献1に記載されたステアリング装置は、外筒の周壁を、軸長方向に適長離れた2位置にてかしめ、夫々の位置の内周面に内向きに突出する抵抗突起を各複数(4つ)並設し、これらの抵抗突起を内側に対向する内筒の外周面に圧接させて、この圧接部において衝撃吸収のための摺動抵抗を付与するという簡易な構成の衝撃吸収構造を備えており、製品コストの低減を図っている。
【0008】
しかしながらこの構成においては、内筒及び外筒間の摺動抵抗が、かしめにより形成される前記抵抗突起の突出量に依存するため、内筒及び外筒の組み付け後に実際に得られる摺動抵抗にばらつきが生じることが避けられず、所望の衝撃吸収性能を精度良く実現することが難しいという不具合があり、製品歩留りの低下により満足すべきコストの低減効果が得られないという問題があった。
【0009】
外筒に形成される抵抗突起の突出量を高精度に実現するには、例えば、外筒の周壁に周方向に適宜の幅を隔てて一対のスリットを並設し、これらのスリット間をかしめて抵抗突起を形成することが有効である。このようにすれば、かしめ荷重とかしめ量(突出量)とを正確に対応させることができる。
【0010】
しかしながら前記抵抗突起は、内筒及び外筒の同心性を保つための保持突起を兼ねており、前述の如くスリット間をかしめて形成された抵抗突起を保持突起に兼用した場合、通常操舵時におけるコラム軸の支持剛性が不足し、操舵感の悪化を引き起こす虞れがある。また通常操舵時に加わる種々の外力の作用により抵抗突起が変形し、初期に設定された衝撃吸収性能が得られなくなる虞れがある。
【0011】
また前記特許文献1には、内筒及び外筒の同心性を保つための保持突起を、外筒又は内筒の周壁のかしめにより前記抵抗突起と別体に設ける構成が開示されている。しかしながらこの構成においては、二次衝突時の衝撃吸収のために生じる内筒及び外筒間の摺動が、抵抗突起による抵抗と共に、前記保持突起による抵抗が加えられた状態で生じるため、実際の摺動抵抗のばらつきがより大きくなり、所望の衝撃吸収性能を精度良く実現することが一層難しくなる。
【0012】
本発明は斯かる事情に鑑みてなされたものであり、コラムハウジングを構成する内筒と外筒との間に衝撃吸収のために生じる摺動を、外筒の内周面に設けた抵抗突起と内筒の外周面との間の抵抗下にて行わせる構成において、摺動抵抗のばらつきを抑え、所望の衝撃吸収性能を高精度に実現し得るステアリング装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の第1発明に係るステアリング装置は、ステアリングホイールの回転トルクを舵取機構に伝達するコラム軸を、適長に亘って内外に嵌合された内筒及び外筒を備えるコラムハウジングの内部に支持し、前記外筒の内周面に突設された抵抗突起を前記内筒の外周面に圧接させて、車両の衝突時に前記ステアリングホイールを介して前記コラム軸に加わる二次衝突の衝撃エネルギを、前記抵抗突起による付与抵抗下にて生じる前記内筒及び外筒の軸長方向の摺動により吸収するステアリング装置において、前記外筒の内周面の前記抵抗突起よりも前記ステアリングホイールの側に、前記抵抗突起よりも小さく前記内筒の外周面に接触しない突出量を有して突設された外保持突起と、前記内筒の外周面に突設され、前記外保持突起に当接する内保持突起と、前記内筒の外周面に凹設され、前記外保持突起及び内保持突起の当接下にて前記抵抗突起を受容する凹部とを備えることを特徴とする。
【0014】
本発明においては、外筒の内周面に抵抗突起及び外保持突起を軸長方向に並べて設け、これらの外保持突起及び抵抗突起と対応するように、内筒の内周面に内保持突起及び凹部を軸長方向に並べて設け、内筒と外筒とを嵌合し、内保持突起と外保持突起とを当接させて、これらにより同心性を確保して組み付ける。この組み付け状態において、外筒に設けた抵抗突起は、内筒に設けた凹部内に、非接触状態、又はわずかに接触した状態で受容されており、二次衝突時の衝撃の作用により内筒と外筒とが摺動を開始した後に凹部から外れ、内筒の外周面に摺接して摺動抵抗を発生する。このとき外保持突起は、内保持突起との当接を解除し、該内保持突起が突設された内筒の外周面に接触することなく移動し、二次衝突による衝撃は、抵抗突起による摺動抵抗のみが加わった状態での内筒と外筒との摺動により吸収され、所望の衝撃吸収性能が精度良く実現される。
【0015】
本発明の第2発明に係るステアリング装置は、第1発明における抵抗突起、外保持突起、内保持突起及び凹部は、前記内筒及び外筒の軸長方向に離隔した位置に、周方向位置を異ならせて複数組設けてあることを特徴とする。
【0016】
この発明においては、抵抗突起、外保持突起、内保持突起及び凹部の組を、内筒及び外筒の軸長方向に離隔した複数位置に設け、二次衝突時に軸長方向以外から加わる分力の作用による内筒及び外筒のこじれに対抗させると共に、夫々の位置における抵抗突起、外保持突起、内保持突起及び凹部の組の周方向位置を異ならせて設け、衝撃吸収のために夫々の周方向位置にて摺動する抵抗突起の干渉を排除して、衝撃吸収のための内筒及び外筒の摺動阻害を防止して、所望の衝撃吸収性能を精度良く実現する。
【0017】
更に本発明の第3発明に係るステアリング装置は、第1又は第2発明における抵抗突起が、前記外筒の周壁を、周方向に離隔して並設された一対のスリット間にて外側からかしめて形成してあることを特徴とする。
【0018】
本発明においては、外筒の周壁に周方向に並設された一対のスリット間のかしめにより、内側への突出量が高精度に設定された抵抗突起を設け、この抵抗突起による抵抗下での摺動により、所望の衝撃吸収性能を精度良く実現する。
【0019】
【発明の実施の形態】
以下本発明をその実施の形態を示す図面に基づいて詳述する。図1は、本発明に係るステアリング装置の全体構成を示す模式図である。
【0020】
図中1は、コラム軸であり、該コラム軸1は、円筒形をなすコラムハウジング2の内部に同軸的に支承され、該コラムハウジング2の中途部に固設されたアッパブラケット3とコラムハウジング2の一端部に固設されたロアブラケット4とにより、ロアブラケット4の側を前下方(図における左下方)に向けた傾斜姿勢にて車室の内部に支持されている。
【0021】
コラムハウジング2の上部に突出するコラム軸1の上端部には、車室内部の運転者に対面するようにステアリングホイール10が嵌着固定され、同じく下部に突出するコラム軸1の下端部は、両端にユニバーサルジョイント50,50を備える中間軸5を介して舵取機構6の入力軸60に連結されている。以上の構成により、運転者により操舵のためにステアリングホイール10に加えられる回転トルクは、コラム軸1及び中間軸5を介して舵取機構6の入力軸60に伝達され、該舵取機構6の動作により操舵が実行される。
【0022】
なお、図1に示すステアリング装置は、コラムハウジング2の下端部近傍に取付けられた操舵補助用のモータ20を備え、また該モータ20よりも上位置のコラムハウジング2の内部にトルクセンサ21を備え、ステアリングホイール10に加えられる回転トルク(操舵トルク)をトルクセンサ21により検出し、この検出トルクに基づいて駆動されるモータ20の回転力をコラムハウジング2内部のコラム軸1に伝えて、前述の如く行われる操舵を補助する電動パワーステアリング装置として構成されているが、本発明に係るステアリング装置は、運転者によりステアリングホイール10に加えられる回転トルクのみによって操舵を行わせるマニュアル式のステアリング装置であってもよく、また舵取機構6に付設された油圧シリンダの発生力により操舵を補助する油圧パワーステアリング装置であってもよい。
【0023】
本発明に係るステアリング装置において、トルクセンサ21の内蔵部分の上位置に連続するコラムハウジング2の上半部は、適長に亘って内外に嵌合され、軸長方向への相対移動可能に組み合わされた内筒22及び外筒23を備えている。コラムハウジング2の上部を車体に支持するアッパブラケット3は、外筒23の中途部に固設されており、コラムハウジング2に下向きに加わる所定限度を超える力の作用により、車体にカプセル30を残して下方に離脱する公知のブレークアウエイブラケットとして構成されている。
【0024】
図2は、内筒22及び外筒23の嵌合部の一部破断側面図である。内筒22及び外筒23は、共に薄肉の円筒体であり、上側に位置する外筒23には、抵抗突起24及び外保持突起25が、内筒22の嵌め込みがなされる下端開口部の近傍に、前者を下位置として軸長方向に並設されている。これらの抵抗突起24及び外保持突起25は、外筒23の周壁を外側からかしめ、外筒23の内周面を円弧状の側断面を有して内向きに突出させて形成されており、外保持突起25の突出量は、抵抗突起24の突出量Δ(図4参照)よりも小さくしてある。
【0025】
同様の抵抗突起24及び外保持突起25は、外筒23の下端開口部の近傍に周方向に等配をなして各複数(図においては各4つ)並設されている。また、これらの並設位置から軸長方向に適長離れた位置にも各同数の抵抗突起24,24…及び外保持突起25,25…が並設されており、これらの抵抗突起24,24…及び外保持突起25,25…は、下端開口部近傍の抵抗突起24,24…及び外保持突起25,25…の間に夫々位置するように、周方向位置を異ならせて配設されている。
【0026】
一方、下側に位置する内筒22には、内保持突起26及び凹部27が、外筒23に嵌め込まれる上端開口部の近傍に、前者を上位置として軸長方向に並設されている。内保持突起26は、内筒22の周壁を内側からかしめ、内筒22の外周面を台形状の側断面を有して外向きに突出させて形成されており、凹部27は、内筒22の周壁を外側からかしめ、内筒22の外周面を台形状の側断面を有して凹ませて形成されている。
【0027】
同様の内保持突起26及び凹部27は、外筒23の抵抗突起24及び外保持突起25と同様に、内筒22の上端開口部近傍に周方向に等配をなして各4つ並設されており、更に、これらの並設位置から軸長方向に適長離れた位置にも各同数の内保持突起26,26…及び凹部27,27…が、周方向位置を異ならせて形成されている。
【0028】
図3は、抵抗突起24、外保持突起25、内保持突起26及び凹部27の形成態様を示す斜視図である。図3(a)には、抵抗突起24及び外保持突起25の形成態様が示されている。これらは、前述の如く、外筒23の軸長方向に相隣するように配設されているが、外保持突起25は、外筒23の周壁の単純なかしめにより形成されているのに対し、抵抗突起24の形成位置には、外筒23の周壁に周方向に離隔して長孔形をなす一対のスリット28,28が並設されており、抵抗突起24は、これらのスリット28,28間をかしめることにより、外筒23の内周面に所定の突出量を有して形成されている。なお前記スリット28,28は、図2にも示されている。
【0029】
図3(b)には、内保持突起26及び凹部27の形成態様が示されている。内保持突起26及び凹部27は、内筒22の周壁を内側及び外側から夫々かしめて、図示の如く、内筒23の軸長方向に連続するように形成されている。
【0030】
以上の如く構成された内筒22及び外筒23は、前述の如く、適長に亘って内外に嵌合されてコラムハウジング2の上半部を構成する。このとき、外筒23に突設された外保持突起25,25…は、図2に示す如く、内筒22の対応部位に突設された内保持突起26,26…の夫々に圧接せしめられ、内筒22と外筒23とを同心性を確保して一体化せしめる作用をなす。またこのとき、外筒23に突設された抵抗突起24,24…は、内筒22の対応部位に凹設された凹部27,27…の外側に夫々位置し、これらの凹部27,27…内に、非接触状態又はわずかな接触状態にて受容される。
【0031】
以上の如き内筒22及び外筒23を備えるコラムハウジング2には、車両の前面衝突時に、前方への慣性の作用によりステアリングホイール10に運転者が衝突(二次衝突)したとき、軸長方向の下向きに衝撃力が加わる。
【0032】
このとき、前述の如くブレークアウエイブラケットとして構成されたアッパブラケット3が車体から離脱し、該アッパブラケット3による拘束が解除された外筒23は、前記押圧力の作用により内筒22に対して摺動しつつ、図1中にSとして示す摺動ストローク間にて下方に相対移動し、この相対移動によるコラムハウジング2の短縮により二次衝突に伴う衝撃のエネルギが吸収される。
【0033】
図4は、内筒22と外筒23との摺動を伴って生じるコラムハウジング2の短縮動作の説明図であり、図4(a)は、短縮開始時の状態が、図4(b)は、短縮動作中の状態が夫々示されている。
【0034】
前述の如く組み付けられた内筒22と外筒23とは、図4(a)に示す如く、外保持突起25と内保持突起26との当接により同心性を保って一体化されており、この状態は、外筒23に固設されたアッパブラケット3(図1参照)により維持されている。この状態で二次衝突が発生した場合、アッパブラケット3の離脱により、図中に白抜矢符により示す如く外筒23の側から衝撃力が加わり、外筒23は、外保持突起25及び内保持突起26の当接部における抵抗に抗して摺動を開始する。
【0035】
このとき、外筒23に突設された抵抗突起24は、内筒22に凹設された凹部27内において何らの抵抗も生ぜずに移動し、図4(a)中に2点鎖線により示す如く、凹部27の端部に達し、該端部に連続する内筒22の外周面に乗り上げ、この後は、図4(b)に示す如く、内筒22の外周面との間に抵抗を生じるようになる。
【0036】
一方、外筒23に突設された外保持突起25は、図4(a)中に2点鎖線により示す如く、抵抗突起24が凹部の端部に達すると共に内筒22に突設された内保持突起26から外れ、この後は、図4(b)に示す如く、内保持突起26よりも低位置にある内筒22の外周面に接触することなく移動する。
【0037】
このように二次衝突時の衝撃の作用によるコラムハウジング2の短縮は、外保持突起25と内保持突起26との間に生じる摺動抵抗に抗して開始され、両保持突起25,26の当接が解除された後、抵抗突起24と内筒22の外周面との間に生じる摺動抵抗に抗して継続されることとなり、前記衝撃のエネルギは、実質的に、抵抗突起24による抵抗のみが加わった状態での内筒22と外筒23との摺動により吸収される。
【0038】
抵抗突起24は、前述の如く、外筒23の周壁を一対のスリット28,28間にてかしめて形成されており、外筒23の内周面からの突出量Δ、及び内筒22の外周面との間のオーバラップ量δを、かしめ荷重の管理により正確に設定することが可能であり、内筒22の外周面との間の摺動抵抗を、ばらつきなく高精度に設定することができる。また抵抗突起24は、組み付け状態において内筒22に設けた凹部27内に受容させてあるから、通常操舵時における種々の外力を受けることがなく、初期設定された突出量Δが変化せず、所望の衝撃吸収性能を確実に実現することができる。
【0039】
一方、通常操舵時において内筒22と外筒23との同心性は、外保持突起25と内保持突起26との当接により保たれるが、これらの突起25,26は、外筒23及び内筒22の周壁の単純なかしめにより大なる剛性を有して形成されており、コラムハウジング2の内部でのコラム軸1の支持剛性剛性が不足する虞れはない。また外保持突起25は、二次衝突に伴う衝撃力の作用により内保持突起26から速やかに外れ、その後は内筒22と接触することがないから、外保持突起25による摺動抵抗が衝撃吸収性能に影響を及ぼす虞れは小さく、所望の衝撃吸収性能を高精度に実現することができる。
【0040】
また、外筒23における抵抗突起24及び外保持突起25、並びに内筒22における内保持突起26及び凹部27は、軸長方向に離隔した2位置に夫々設けてあるから、二次衝突時に軸長方向以外から加わる分力の作用により内筒22及び外筒23にこじれが発生し、衝撃吸収作用が損なわれる虞れがなく、また、前述した2位置に設けられた抵抗突起24、外保持突起25、内保持突起26及び凹部27の組は、周方向位置を相互に異ならせてあるから、衝撃吸収時における一方の組の外保持突起25の摺動が、他方の組の内保持突起26及び凹部27の存在により損なわれる虞れがなく、前記摺動ストロークSの全長に亘って略一定の摺動抵抗が得られ、この摺動抵抗の反力をステアリングホイール10との衝突により体感する運転者は、大なるダメージを受けることなく保護される。
【0041】
なお、外筒23における抵抗突起24及び外保持突起25、並びに内筒22における内保持突起26及び凹部27は、軸長方向の複数位置に設けてあればよく、内筒22と外筒23との摺動ストロークSの不足を引き起こさない範囲であれば、軸長方向に離隔した3位置以上に設けてもよい。また各位置における抵抗突起24、外保持突起25、内保持突起26及び凹部27の組は、以上の実施の形態に示す4組に限らず適宜に選定することができる。但し、外保持突起25と内保持突起26とによる内筒22及び外筒23の同心性の保持作用をなすためには、3組以上とする必要がある。更に抵抗突起24、外保持突起25、内保持突起26及び凹部27の形状は、図3に示す形状に限らず、適宜の形状となし得ることは言うまでもない。
【0042】
【発明の効果】
以上詳述した如く本発明に係るステアリング装置においては、コラムハウジングを構成する内筒と外筒との間に衝撃吸収のために生じる摺動時に抵抗突起により加えられる摺動抵抗のばらつきを、簡素な構成により、コラム軸の支持剛性を低下させること抑えることができ、所望の衝撃吸収性能を確実に実現することが可能となり、運転者の安全確保に有用である等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係るステアリング装置の全体構成を示す模式図である。
【図2】内筒及び外筒の嵌合部の一部破断側面図である。
【図3】抵抗突起、外保持突起、内保持突起及び凹部の形成態様を示す斜視図である。
【図4】コラムハウジングの短縮動作の説明図である。
【符号の説明】
1 コラム軸
2 コラムハウジング
6 舵取機構
10 ステアリングホイール
22 内筒
23 外筒
24 抵抗突起
25 外保持突起
26 内保持突起
27 凹部
28 スリット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steering apparatus configured to absorb impact energy of a secondary collision applied to a column shaft at the time of a vehicle collision by shortening a cylindrical column housing supporting the column shaft in the axial length direction.
[0002]
[Prior art]
When steering a vehicle, the rotational torque applied to the steering wheel arranged inside the passenger compartment is transferred to a steering mechanism arranged outside the passenger compartment for steering the steering wheel (generally the front wheels). Done. A steering device for performing such steering is provided with a steering wheel attached to an upper end portion of a column shaft that is rotatably supported around a shaft inside a passenger compartment so as to face a driver. The lower end portion of the shaft is connected to the steering mechanism.
[0003]
In such a steering device, in recent years, in order to reduce damage to a driver who collides with the steering wheel (secondary collision) due to the inertial effect in the traveling direction of the vehicle due to the frontal collision of the vehicle, What is configured as an impact absorption type steering device that absorbs impact energy of a collision has been put into practical use.
[0004]
The absorption of the impact energy is generally realized by using a column housing that rotatably supports the column shaft, and the column housing is fitted inside and outside for an appropriate length so that a secondary collision can occur. The inner cylinder and the outer cylinder that are shortened telescopically by the action of the impact are configured so that the energy of the impact is absorbed by the sliding resistance applied to the fitting portion of both when the inner cylinder and the outer cylinder are shortened. (For example, refer patent document 1).
[0005]
[Patent Document 1]
JP-A-2002-293249 [0006]
[Problems to be solved by the invention]
Now, in the shock absorbing type steering apparatus configured as described above, a reaction force of the sliding resistance between the inner cylinder and the outer cylinder is applied to the driver colliding with the steering wheel. In order to achieve the initial purpose of reducing, it is important that the value of the sliding resistance is slid under a substantially constant sliding resistance over a preset full length.
[0007]
In the steering apparatus described in Patent Document 1, the outer wall of the outer cylinder is caulked at two positions separated by an appropriate length in the axial length direction, and a plurality of resistance protrusions projecting inwardly on the inner peripheral surface of each position are provided. (4) A shock absorbing structure having a simple configuration in which these resistance protrusions are arranged in parallel and are brought into pressure contact with the outer peripheral surface of the inner cylinder facing inward to provide sliding resistance for absorbing shock at the pressure contact portion. The product cost is reduced.
[0008]
However, in this configuration, since the sliding resistance between the inner cylinder and the outer cylinder depends on the protruding amount of the resistance protrusion formed by caulking, the sliding resistance actually obtained after the assembly of the inner cylinder and the outer cylinder is reduced. There is a problem that it is unavoidable that variations occur, and it is difficult to achieve a desired shock absorbing performance with high accuracy, and a satisfactory cost reduction effect cannot be obtained due to a decrease in product yield.
[0009]
In order to realize the protruding amount of the resistance projection formed on the outer cylinder with high accuracy, for example, a pair of slits are arranged in parallel on the peripheral wall of the outer cylinder with an appropriate width in the circumferential direction, and the gaps between these slits are increased. It is effective to form resistance protrusions at least. In this way, the caulking load and the caulking amount (projection amount) can be made to correspond accurately.
[0010]
However, the resistance projection also serves as a holding projection for maintaining the concentricity of the inner cylinder and the outer cylinder. When the resistance projection formed by caulking the slits as described above is also used as the holding projection, the resistance projection is normally used during steering. The support rigidity of the column shaft is insufficient, and the steering feeling may be deteriorated. In addition, the resistance projections may be deformed by the action of various external forces applied during normal steering, and the initially set shock absorbing performance may not be obtained.
[0011]
Patent Document 1 discloses a configuration in which holding protrusions for maintaining the concentricity of the inner cylinder and the outer cylinder are provided separately from the resistance protrusions by caulking the peripheral wall of the outer cylinder or the inner cylinder. However, in this configuration, the sliding between the inner cylinder and the outer cylinder that occurs due to the impact absorption at the time of the secondary collision occurs in a state in which the resistance by the holding projection is added together with the resistance by the resistance projection. The variation in sliding resistance becomes larger, and it becomes more difficult to achieve the desired shock absorption performance with high accuracy.
[0012]
The present invention has been made in view of such circumstances, and a resistance protrusion provided on the inner peripheral surface of the outer cylinder with a slide generated for absorbing shock between the inner cylinder and the outer cylinder constituting the column housing. An object of the present invention is to provide a steering device capable of suppressing a variation in sliding resistance and realizing a desired shock absorbing performance with high accuracy in a configuration in which the resistance is reduced between the outer cylinder and the outer peripheral surface of the inner cylinder.
[0013]
[Means for Solving the Problems]
A steering apparatus according to a first aspect of the present invention is an interior of a column housing having an inner cylinder and an outer cylinder fitted with a column shaft for transmitting a rotational torque of a steering wheel to a steering mechanism. The impact of the secondary collision applied to the column shaft via the steering wheel at the time of a vehicle collision is made by pressing a resistance protrusion protruding from the inner peripheral surface of the outer cylinder to the outer peripheral surface of the inner cylinder. In the steering device that absorbs energy by sliding in the axial length direction of the inner cylinder and the outer cylinder generated under the resistance applied by the resistance protrusion , the steering wheel has a larger capacity than the resistance protrusion on the inner peripheral surface of the outer cylinder . on the side, and an outer retaining projections which protrude with a projection amount not in contact with the outer peripheral surface of the small rather the inner cylinder than the resistance projection, projecting from the outer peripheral surface of the inner cylinder, the outer holding projection Abut And holding projections, is recessed on the outer peripheral surface of the inner cylinder, characterized in that it comprises a recess for receiving the resistance protrusion in contact under the outer holding projection and an inner retaining projections.
[0014]
In the present invention, the resistance projection and the outer holding projection are arranged in the axial length direction on the inner circumferential surface of the outer cylinder, and the inner holding projection is arranged on the inner circumferential surface of the inner cylinder so as to correspond to the outer holding projection and the resistance projection. The inner cylinder and the outer cylinder are fitted, the inner holding protrusion and the outer holding protrusion are brought into contact with each other, and concentricity is secured and assembled. In this assembled state, the resistance protrusion provided on the outer cylinder is received in the recess provided on the inner cylinder in a non-contact state or slightly in contact with the inner cylinder due to the impact of the secondary collision. And the outer cylinder start to slide and then come out of the recess and slide against the outer peripheral surface of the inner cylinder to generate sliding resistance. At this time, the outer holding projection is released from contact with the inner holding projection and moves without contacting the outer peripheral surface of the inner cylinder on which the inner holding projection is provided, and the impact caused by the secondary collision is caused by the resistance projection. It is absorbed by sliding between the inner cylinder and the outer cylinder in a state where only sliding resistance is applied, and a desired shock absorbing performance is realized with high accuracy.
[0015]
Steering apparatus according to the second aspect of the present invention, the resistance protrusion in the first invention, the outer holding projection, the inner holding projections and recesses, the spaced position in the axial direction of the inner cylinder and the outer cylinder, the circumferential direction A plurality of sets are provided at different positions.
[0016]
In the present invention, resistance projection, the outer holding projection, a set of inner retaining projections and recesses, provided at a plurality of locations spaced in the axial direction of the inner cylinder and the outer cylinder, component force exerted from outside axial direction at the time of a secondary collision husband with to counter the twisting of the inner cylinder and the outer cylinder by the action of, definitive resistance projection in the position of the respective outer retaining projections, with different sets of circumferential positions of the inner retaining projections and recesses provided for the shock absorbing s The interference of the resistance projection sliding at the circumferential position is eliminated, the hindrance to the sliding of the inner cylinder and the outer cylinder for absorbing the shock is prevented, and the desired shock absorbing performance is realized with high accuracy.
[0017]
The steering device according to a third aspect of the present invention is the steering device according to the first or second aspect, wherein the resistance protrusion is formed from the outside between a pair of slits arranged in parallel with the circumferential wall of the outer cylinder spaced apart in the circumferential direction. It is characterized by being formed.
[0018]
In the present invention, there is provided a resistance protrusion whose amount of protrusion to the inside is set with high accuracy by caulking between a pair of slits arranged in parallel in the circumferential direction on the peripheral wall of the outer cylinder, The desired shock absorbing performance is realized with high accuracy by sliding.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a schematic diagram showing an overall configuration of a steering apparatus according to the present invention.
[0020]
In the figure, reference numeral 1 denotes a column shaft. The column shaft 1 is coaxially supported inside a cylindrical column housing 2 and is fixed to the middle portion of the column housing 2 and a column housing. The lower bracket 4 fixed to one end of the vehicle 2 is supported in the interior of the passenger compartment in an inclined posture with the lower bracket 4 side facing forward and downward (lower left in the figure).
[0021]
A steering wheel 10 is fitted and fixed to the upper end portion of the column shaft 1 projecting from the upper portion of the column housing 2 so as to face the driver in the vehicle interior. Similarly, the lower end portion of the column shaft 1 projecting to the lower portion is It is connected to the input shaft 60 of the steering mechanism 6 via an intermediate shaft 5 having universal joints 50, 50 at both ends. With the above configuration, the rotational torque applied to the steering wheel 10 by the driver for steering is transmitted to the input shaft 60 of the steering mechanism 6 via the column shaft 1 and the intermediate shaft 5. Steering is executed by the operation.
[0022]
The steering apparatus shown in FIG. 1 includes a steering assist motor 20 attached in the vicinity of the lower end portion of the column housing 2, and a torque sensor 21 in the column housing 2 located above the motor 20. , The rotational torque (steering torque) applied to the steering wheel 10 is detected by the torque sensor 21, and the rotational force of the motor 20 driven based on the detected torque is transmitted to the column shaft 1 inside the column housing 2 so as to be described above. The steering device according to the present invention is a manual type steering device that performs steering only by the rotational torque applied to the steering wheel 10 by the driver. The steering may be supplemented by the force generated by the hydraulic cylinder attached to the steering mechanism 6. It may be a hydraulic power steering apparatus.
[0023]
In the steering device according to the present invention, the upper half of the column housing 2 that is continuous with the upper position of the built-in portion of the torque sensor 21 is fitted inside and outside over an appropriate length, and is combined so as to be capable of relative movement in the axial direction. The inner cylinder 22 and the outer cylinder 23 are provided. The upper bracket 3 that supports the upper portion of the column housing 2 to the vehicle body is fixed in the middle of the outer cylinder 23, and the capsule 30 is left on the vehicle body by the action of a force exceeding a predetermined limit applied downward to the column housing 2. It is configured as a well-known breakaway bracket that is released downward.
[0024]
FIG. 2 is a partially cutaway side view of the fitting portion of the inner cylinder 22 and the outer cylinder 23. The inner cylinder 22 and the outer cylinder 23 are both thin cylindrical bodies, and the resistance projection 24 and the outer holding projection 25 are provided in the vicinity of the lower end opening where the inner cylinder 22 is fitted in the upper outer cylinder 23. In the axial length direction, the former is located at the lower position. These resistance projections 24 and outer holding projections 25 are formed by caulking the peripheral wall of the outer cylinder 23 from the outside and projecting the inner peripheral surface of the outer cylinder 23 inward with an arc-shaped side cross section, The amount of protrusion of the outer holding protrusion 25 is smaller than the amount of protrusion Δ of the resistance protrusion 24 (see FIG. 4).
[0025]
A plurality of similar resistance protrusions 24 and outer holding protrusions 25 are arranged in parallel in the circumferential direction in the vicinity of the lower end opening of the outer cylinder 23 (four in the drawing). In addition, the same number of resistance protrusions 24, 24... And outer holding protrusions 25, 25... Are arranged in parallel at positions separated from these parallel positions in the axial length direction. ... and the outer holding projections 25, 25 ... are arranged at different circumferential positions so as to be positioned between the resistance projections 24, 24 ... and the outer holding projections 25, 25 ... in the vicinity of the lower end opening, respectively. Yes.
[0026]
On the other hand, in the inner cylinder 22 positioned on the lower side, an inner holding projection 26 and a recess 27 are arranged in the axial direction in the vicinity of the upper end opening fitted into the outer cylinder 23 with the former as the upper position. The inner holding projection 26 is formed by caulking the peripheral wall of the inner cylinder 22 from the inside, the outer peripheral surface of the inner cylinder 22 having a trapezoidal side cross section and projecting outward, and the recess 27 is formed by the inner cylinder 22. The inner wall 22 is caulked from the outside, and the outer peripheral surface of the inner cylinder 22 is recessed with a trapezoidal side section.
[0027]
Similar inner holding protrusions 26 and recesses 27 are arranged in parallel in the circumferential direction in the same manner as the resistance protrusions 24 and outer holding protrusions 25 of the outer cylinder 23, and are arranged in parallel in the circumferential direction. In addition, the same number of inner holding projections 26, 26... And recesses 27, 27... Are formed at different positions in the circumferential direction at positions separated from these juxtaposed positions by an appropriate length in the axial length direction. Yes.
[0028]
FIG. 3 is a perspective view showing how the resistance protrusion 24, the outer holding protrusion 25, the inner holding protrusion 26, and the recess 27 are formed. FIG. 3A shows how the resistance protrusion 24 and the outer holding protrusion 25 are formed. As described above, these are arranged so as to be adjacent to each other in the axial length direction of the outer cylinder 23, whereas the outer holding projection 25 is formed by simple caulking of the peripheral wall of the outer cylinder 23. In addition, a pair of slits 28 and 28 having a long hole shape are provided on the peripheral wall of the outer cylinder 23 in the circumferential direction at the formation position of the resistance protrusion 24, and the resistance protrusion 24 includes the slit 28, By caulking 28, it is formed on the inner peripheral surface of the outer cylinder 23 with a predetermined amount of protrusion. The slits 28, 28 are also shown in FIG.
[0029]
FIG. 3B shows how the inner holding projections 26 and the recesses 27 are formed. The inner holding projections 26 and the recesses 27 are formed so that the peripheral wall of the inner cylinder 22 is caulked from the inner side and the outer side so as to be continuous in the axial direction of the inner cylinder 23 as shown in the figure.
[0030]
As described above, the inner cylinder 22 and the outer cylinder 23 configured as described above are fitted inside and outside over an appropriate length to constitute the upper half of the column housing 2. At this time, the outer holding projections 25, 25... Projecting from the outer cylinder 23 are pressed into contact with the inner holding projections 26, 26. The inner cylinder 22 and the outer cylinder 23 have an action of securing the concentricity and integrating them. Further, at this time, the resistance protrusions 24, 24... Projecting from the outer cylinder 23 are positioned outside the recesses 27, 27. In a non-contact state or a slight contact state.
[0031]
In the column housing 2 having the inner cylinder 22 and the outer cylinder 23 as described above, when the driver collides with the steering wheel 10 (secondary collision) due to the inertia of the front in the frontal collision of the vehicle, the axial direction Impact force is applied downward.
[0032]
At this time, the upper bracket 3 configured as a breakaway bracket as described above is detached from the vehicle body, and the outer cylinder 23 released from the restraint by the upper bracket 3 slides against the inner cylinder 22 by the action of the pressing force. While moving, it relatively moves downward between the sliding strokes shown as S in FIG. 1, and the energy of the impact caused by the secondary collision is absorbed by shortening the column housing 2 by this relative movement.
[0033]
FIG. 4 is an explanatory view of the shortening operation of the column housing 2 caused by the sliding of the inner cylinder 22 and the outer cylinder 23. FIG. 4 (a) shows the state at the start of the shortening in FIG. 4 (b). Indicates the state during the shortening operation.
[0034]
As shown in FIG. 4A, the inner cylinder 22 and the outer cylinder 23 assembled as described above are integrated while maintaining concentricity by the contact between the outer holding protrusion 25 and the inner holding protrusion 26. This state is maintained by the upper bracket 3 (see FIG. 1) fixed to the outer cylinder 23. When a secondary collision occurs in this state, the upper bracket 3 is detached, and an impact force is applied from the side of the outer cylinder 23 as shown by white arrows in the drawing. The sliding starts against the resistance at the contact portion of the holding projection 26.
[0035]
At this time, the resistance protrusion 24 projecting from the outer cylinder 23 moves without causing any resistance in the recess 27 recessed from the inner cylinder 22, and is indicated by a two-dot chain line in FIG. As shown in FIG. 4B, after reaching the end of the recess 27 and riding on the outer peripheral surface of the inner cylinder 22 that continues to the end, resistance is generated between the inner cylinder 22 and the outer peripheral surface. It comes to occur.
[0036]
On the other hand, the outer holding projection 25 projecting from the outer cylinder 23 has an inner projection 22 projecting from the inner cylinder 22 while the resistance projection 24 reaches the end of the recess as shown by a two-dot chain line in FIG. After moving away from the holding projection 26, as shown in FIG. 4 (b), the holding projection 26 moves without contacting the outer peripheral surface of the inner cylinder 22 located lower than the inner holding projection 26.
[0037]
Thus, the shortening of the column housing 2 due to the impact of the secondary collision is started against the sliding resistance generated between the outer holding projection 25 and the inner holding projection 26, After the contact is released, the resistance is continued against the sliding resistance generated between the resistance protrusion 24 and the outer peripheral surface of the inner cylinder 22, and the energy of the impact is substantially caused by the resistance protrusion 24. It is absorbed by sliding between the inner cylinder 22 and the outer cylinder 23 in a state where only resistance is applied.
[0038]
As described above, the resistance protrusion 24 is formed by caulking the peripheral wall of the outer cylinder 23 between the pair of slits 28 and 28, and the protrusion amount Δ from the inner peripheral surface of the outer cylinder 23 and the outer periphery of the inner cylinder 22. The amount of overlap δ with the surface can be set accurately by managing the caulking load, and the sliding resistance with the outer peripheral surface of the inner cylinder 22 can be set with high accuracy without variation. it can. Further, since the resistance protrusion 24 is received in the recess 27 provided in the inner cylinder 22 in the assembled state, it does not receive various external forces during normal steering, and the initially set protrusion amount Δ does not change. The desired shock absorbing performance can be reliably realized.
[0039]
On the other hand, the concentricity between the inner cylinder 22 and the outer cylinder 23 during normal steering is maintained by the contact between the outer holding projection 25 and the inner holding projection 26. Since the peripheral wall of the inner cylinder 22 is formed by simple caulking, the rigidity of the column shaft 1 inside the column housing 2 is not likely to be insufficient. In addition, the outer holding projection 25 quickly disengages from the inner holding projection 26 due to the impact force caused by the secondary collision and does not contact the inner cylinder 22 thereafter. The possibility of affecting the performance is small, and the desired shock absorption performance can be realized with high accuracy.
[0040]
Further, the resistance projection 24 and the outer holding projection 25 in the outer cylinder 23 and the inner holding projection 26 and the recess 27 in the inner cylinder 22 are provided at two positions separated in the axial length direction, respectively. There is no possibility that the inner cylinder 22 and the outer cylinder 23 will be twisted by the action of the component force applied from other than the direction, and the shock absorbing action may not be damaged. Also, the resistance protrusion 24 and the outer holding protrusion provided at the two positions described above 25, since the set of the inner holding projection 26 and the concave portion 27 has different positions in the circumferential direction, the sliding of one set of the outer holding projections 25 at the time of shock absorption causes the other set of inner holding projections 26 to In addition, there is no risk of damage due to the presence of the recess 27, and a substantially constant sliding resistance is obtained over the entire length of the sliding stroke S, and the reaction force of this sliding resistance is experienced by a collision with the steering wheel 10. Drivers are protected without much damage
[0041]
The resistance protrusion 24 and the outer holding protrusion 25 in the outer cylinder 23, and the inner holding protrusion 26 and the recess 27 in the inner cylinder 22 may be provided at a plurality of positions in the axial length direction. As long as it does not cause the shortage of the sliding stroke S, it may be provided at three or more positions separated in the axial direction. In addition, the combination of the resistance protrusion 24, the outer holding protrusion 25, the inner holding protrusion 26, and the recess 27 at each position is not limited to the four sets shown in the above embodiments, and can be appropriately selected. However, in order to achieve the concentric holding action of the inner cylinder 22 and the outer cylinder 23 by the outer holding protrusion 25 and the inner holding protrusion 26, it is necessary to have three or more sets. Furthermore, it is needless to say that the shapes of the resistance protrusion 24, the outer holding protrusion 25, the inner holding protrusion 26, and the recess 27 are not limited to the shapes shown in FIG.
[0042]
【The invention's effect】
As described above in detail, in the steering device according to the present invention, the variation in the sliding resistance applied by the resistance protrusion during sliding caused by the impact absorption between the inner cylinder and the outer cylinder constituting the column housing is simplified. With such a configuration, it is possible to suppress a decrease in the column shaft support rigidity, it is possible to surely realize a desired shock absorption performance, and it is useful for ensuring the safety of the driver. Play.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a steering apparatus according to the present invention.
FIG. 2 is a partially cutaway side view of a fitting portion of an inner cylinder and an outer cylinder.
FIG. 3 is a perspective view showing a form of forming a resistance protrusion, an outer holding protrusion, an inner holding protrusion, and a recess.
FIG. 4 is an explanatory view of a shortening operation of the column housing.
[Explanation of symbols]
1 Column shaft 2 Column housing 6 Steering mechanism
10 Steering wheel
22 inner cylinder
23 outer cylinder
24 Resistance protrusion
25 Outer holding protrusion
26 Internal holding projection
27 Recess
28 slits

Claims (3)

ステアリングホイールの回転トルクを舵取機構に伝達するコラム軸を、適長に亘って内外に嵌合された内筒及び外筒を備えるコラムハウジングの内部に支持し、前記外筒の内周面に突設された抵抗突起を前記内筒の外周面に圧接させて、車両の衝突時に前記ステアリングホイールを介して前記コラム軸に加わる二次衝突の衝撃エネルギを、前記抵抗突起による付与抵抗下にて生じる前記内筒及び外筒の軸長方向の摺動により吸収するステアリング装置において、
前記外筒の内周面の前記抵抗突起よりも前記ステアリングホイールの側に、前記抵抗突起よりも小さく前記内筒の外周面に接触しない突出量を有して突設された外保持突起と、 前記内筒の外周面に突設され、前記外保持突起に当接する内保持突起と、
前記内筒の外周面に凹設され、前記外保持突起及び内保持突起の当接下にて前記抵抗突起を受容する凹部と
を備えることを特徴とするステアリング装置。
A column shaft that transmits the rotational torque of the steering wheel to the steering mechanism is supported inside a column housing having an inner cylinder and an outer cylinder fitted inside and outside for an appropriate length, and is attached to the inner peripheral surface of the outer cylinder. The protruding resistance protrusion is brought into pressure contact with the outer peripheral surface of the inner cylinder, and the impact energy of the secondary collision applied to the column shaft via the steering wheel during a vehicle collision is applied under the resistance applied by the resistance protrusion. In the steering device that absorbs by sliding in the axial length direction of the inner cylinder and the outer cylinder,
On the side of the steering wheel than the resistance protrusion of the inner peripheral surface of the outer cylinder, an outer retaining projections which protrude with a projection amount not in contact with the outer peripheral surface of the inner tube rather smaller than the resistance projection An inner holding protrusion protruding from the outer peripheral surface of the inner cylinder and contacting the outer holding protrusion;
A steering device comprising: a concave portion provided on an outer peripheral surface of the inner cylinder, and a concave portion that receives the resistance projection under contact of the outer holding projection and the inner holding projection.
前記抵抗突起、外保持突起、内保持突起及び凹部は、前記内筒及び外筒の軸長方向に離隔した位置に、周方向位置を異ならせて複数組設けてある請求項1記載のステアリング装置。The resistance protrusions, the outer holding projection, the inner holding projections and recesses, the spaced position in the axial direction of the inner cylinder and the outer cylinder, at different circumferential positions of the plurality of sets provided Aru claim 1, wherein Steering device. 前記抵抗突起は、前記外筒の周壁を、周方向に離隔して並設された一対のスリット間にて外側からかしめて形成してある請求項1記載のステアリング装置。The steering device according to claim 1, wherein the resistance protrusion is formed by caulking the peripheral wall of the outer cylinder from the outside between a pair of slits arranged in parallel in a circumferential direction.
JP2003020770A 2003-01-29 2003-01-29 Steering device Expired - Fee Related JP4085824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020770A JP4085824B2 (en) 2003-01-29 2003-01-29 Steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020770A JP4085824B2 (en) 2003-01-29 2003-01-29 Steering device

Publications (2)

Publication Number Publication Date
JP2004231008A JP2004231008A (en) 2004-08-19
JP4085824B2 true JP4085824B2 (en) 2008-05-14

Family

ID=32950309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020770A Expired - Fee Related JP4085824B2 (en) 2003-01-29 2003-01-29 Steering device

Country Status (1)

Country Link
JP (1) JP4085824B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060035867A (en) * 2004-10-21 2006-04-27 주식회사 만도 A shock absorbing structure of steering column for an automobile
JP4868213B2 (en) * 2005-12-21 2012-02-01 アイシン精機株式会社 Energy absorbing steering column
JP4425227B2 (en) 2006-02-28 2010-03-03 Hoya株式会社 Endoscopic high-frequency treatment instrument
JP5120159B2 (en) * 2008-09-03 2013-01-16 日本精工株式会社 Shock absorbing electric power steering system
JP6402922B2 (en) * 2014-12-12 2018-10-10 株式会社ジェイテクト Steering device
JP2017140976A (en) * 2016-02-12 2017-08-17 株式会社ジェイテクト Steering column device

Also Published As

Publication number Publication date
JP2004231008A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
KR101065895B1 (en) Steering Column for Motor Vehicle Having Collision Energy Absorbing Apparatus
JP2004175298A (en) Steering device
JP4085824B2 (en) Steering device
JP3659033B2 (en) Shock absorbing electric power steering system
EP2666700A1 (en) Steering device
KR101138160B1 (en) Impact Asorption Steering Apparatus
JP2749125B2 (en) Car steering column tube
JP4158596B2 (en) Steering device
JP2004136749A (en) Steering column of steering device
JP4158595B2 (en) Steering shaft
JP2008024170A (en) Steering device
JP3881859B2 (en) Shock absorbing steering device
JP4085829B2 (en) Steering device
JP4211511B2 (en) Steering device
JP2004230953A (en) Steering device
JP2003146225A (en) Shock absorbing steering device
KR101503105B1 (en) Collapse Energy Absorbable Steering Apparatus for Vehicle
JP3944399B2 (en) Shock absorbing steering device
KR101230093B1 (en) Collision Energy Absorbable Steering Column for Vehicle
KR101131283B1 (en) Collision energy absorbing steering column for motor vehicle
JP3865630B2 (en) Shock absorbing steering device
KR100569463B1 (en) Impact Absorbing Device of Steering Column for Vehicle
JPS6023246Y2 (en) steering shaft
JPH08217Y2 (en) Shock energy absorption type steering device
KR100923231B1 (en) An Impact Absorption Structure of a Rake Tilt Steering Column for a Vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Effective date: 20080211

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees