JP4073315B2 - 副室式エンジン - Google Patents

副室式エンジン Download PDF

Info

Publication number
JP4073315B2
JP4073315B2 JP2003001205A JP2003001205A JP4073315B2 JP 4073315 B2 JP4073315 B2 JP 4073315B2 JP 2003001205 A JP2003001205 A JP 2003001205A JP 2003001205 A JP2003001205 A JP 2003001205A JP 4073315 B2 JP4073315 B2 JP 4073315B2
Authority
JP
Japan
Prior art keywords
chamber
sub
air
ignition
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003001205A
Other languages
English (en)
Other versions
JP2004211633A (ja
Inventor
俊作 中井
誠一 伊藤
浩二 守家
裕紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003001205A priority Critical patent/JP4073315B2/ja
Publication of JP2004211633A publication Critical patent/JP2004211633A/ja
Application granted granted Critical
Publication of JP4073315B2 publication Critical patent/JP4073315B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主室に吸気された新気をピストンの上昇により圧縮して、前記圧縮された新気を連通路を介して副室に流入させ、前記副室に流入した新気と前記副室に供給された燃料との混合気を、前記副室に設けられた点火手段により点火し、前記連通路を介して前記主室に火炎ジェットを噴射する副室点火運転を実行可能な副室式エンジンに関する。
【0002】
【従来の技術】
従来エンジンは、火花点火エンジン(オットーサイクルエンジン)と、圧縮空気中に液体燃料を噴射するディーゼルエンジンに大きく分けられる。
【0003】
火花点火エンジンは、燃焼室において吸気された空気と燃料との混合気を圧縮した後に、点火プラグにより点火して燃焼させるように構成され、その理想的なサイクルはオットーサイクル(定容加熱サイクル)と考えられており、圧縮比を高くして燃料を希薄状態で燃焼させることによって熱効率を向上させることができる。
【0004】
特に部分負荷時の燃焼温度の低下、サイクル効率の向上、ポンピング損失の低下などを実現することができ、排ガス性状及び燃費の改善に有効である火花点火エンジンの希薄燃焼方式としては、層状吸気方式がある。
【0005】
層状吸気方式とは、燃焼室において、点火プラグの点火部の周辺には、火花点火可能な当量比の混合気が存在する点火領域を形成し、その点火領域の周辺には、点火領域の混合気よりも当量比が低く希薄状態である混合気が存在する希薄領域を形成して、先ず、上記点火領域に存在する混合気を点火プラグにより点火して燃焼させ、その火炎により上記希薄領域に存在する混合気を燃焼させて、全体として燃料を希薄状態で燃焼させる燃焼方式であり、層状吸気方式の燃焼室形状は、単室式と副室式とに大別される。
【0006】
単室式は、ピストン頂部に形成した凹部を燃焼室として利用し、燃焼室における吸気の流れを利用して、点火プラグの点火部周辺に火花点火可能な混合気を形成するものである。
【0007】
一方、副室式は、ピストン頂部に接する主室とその主室と連通路を介して連通する副室とを燃焼室として備えたエンジンにおいて、主室に吸気された希薄混合気をピストンの上昇により圧縮して、その圧縮された新気を連通路を介して副室に流入させ、副室に流入した希薄混合気と副室に直接供給された燃料とから、点火プラグが設けられた副室に火花点火可能な当量比の混合気を形成し、その混合気を点火プラグにより点火して燃焼させ、連通路を介して主室に噴射される火炎ジェットにより、主室の希薄混合気を燃焼させる所謂副室点火運転を行うものである(例えば、特許文献1−3参照。)。
そして、火花点火エンジンの層状吸気方式として、上記副室式を採用することにより、吸気行程の後期又は圧縮行程の前期等の燃焼室の圧力が比較的低い時期に、副室に燃料を供給しておいても、その燃料を副室に良好に保持することができ、簡単に、点火時期において火花点火可能な当量比の混合気を副室に形成することができる。よって、上記副室式においては、燃料噴射弁の簡素化が可能であり、例えば燃料として高圧縮が困難な天然ガス等の気体燃料を容易に利用することができる。
【0008】
【特許文献1】
特開2002−276474号公報
【特許文献2】
特開2001−303958号公報
【特許文献3】
特開2001−263069号公報
【0009】
【発明が解決しようとする課題】
火花点火エンジンにおいて、単室式又は副室式の層状吸気方式を採用しても、点火プラグ周辺の点火領域においては、混合気は火炎伝播により急激に燃焼するので、燃焼時の急激な圧力上昇により末端ガスが自己着火してしまう所謂ノッキングを回避するという制約条件下において、圧縮比を設定する必要があったため、ディーゼルエンジン並みの圧縮比に設定して、一層の高効率化を図ることはできなかった。
【0010】
したがって、本発明は、上記の事情に鑑みて、ディーゼルエンジン並みの高圧縮比化を実現して、極めて高い効率で運転可能な副室式エンジンを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明に係る副室式エンジンの特徴構成は、主室に吸気された新気をピストンの上昇により圧縮して、前記圧縮された新気を連通路を介して副室に流入させ、前記副室に流入した新気と前記副室に供給された燃料との混合気を、前記副室に設けられた点火手段により点火し、前記連通路を介して前記主室に火炎ジェットを噴射する副室点火運転を実行可能な副室式エンジンであって、
前記副室に備えられた点火手段が、前記副室に燃料を供給する燃料供給手段よりも前記連通路に近接する前記連通路側に偏設されており、
前記主室の前記圧縮による最高到達圧力が、前記副室におけるノッキング回避圧力範囲の上限界値より高く設定され、且つ、前記副室の圧縮による最高到達圧力が前記副室におけるノッキング回避範囲内となるように、前記連通路におけるガスの流通に対して付与される背圧が前記連通路の流路断面積により設定されている点にある。
【0012】
即ち、燃焼室として、ピストン頂部に接する主室と、この主室に連通路を介して連通する副室とを備えた副室式エンジンにおいて、上記特徴構成によれば、主室に吸気された新気が圧縮行程において連通路を通過して副室に流入する際に、連通路が所定の流路断面積に設定されていることで、新気の流通を阻止する方向に上記背圧を受けるので、非燃焼時の圧縮のみによる副室の最高到達圧力(以下、「副室最高到達圧力」と呼ぶ。)は、同じく非燃焼時の圧縮のみによる主室の最高到達圧力(以下、「主室最高到達圧力」と呼ぶ。)よりも低くなり、更に、副室の圧力が副室最高到達圧力となる時期が、主室の圧力が主室最高到達圧力となる時期に対して、遅延側にずれることになる。
【0013】
よって、圧縮比(最大燃焼室容積/最小燃焼室容積)を、上記連通路において新気に付与される背圧が非常に小さい従来の副室式エンジンの圧縮比(例えば、10程度)よりも高く設定して、主室最高到達圧力を副室におけるノッキング回避圧力範囲(即ち、副室で混合気を燃焼させた場合にノッキングを回避することができる副室の圧力範囲)の上限値よりも大きくなるように設定しても、主室から副室への方向に連通路を流通する新気に対して付加される背圧を、上記連通路の流路断面積の設定等により適切に設定することにより、副室最高到達圧力を上記主室最高到達圧力よりも小さい副室におけるノッキング回避圧力範囲内とすることができる。
よって、副室に形成された火花点火可能範囲内の当量比の混合気を、適切なノッキング回避圧力範囲内で点火して、副室において安定燃焼させることができる。
【0014】
更に、副室において混合気を燃焼させて、副室の圧力が主室の圧力を上回ると、連通路を介して主室に火炎ジェットが噴射され、その火炎ジェットを着火源として、主室の上記点火可能範囲よりも低い当量比の希薄混合気を、ディーゼルエンジン並みの高圧縮状態で安定して燃焼させることができ、極めて高い効率を達成することができる。
【0015】
また、本発明に係る副室式エンジンにおいて、前記点火手段の点火領域が、前記副室に燃料を供給する燃料供給手段よりも前記連通路に近接する前記連通路側に偏って配置されていることで、主室から連通路を介して流入した新気が点火手段の点火領域に到達しやすくなり、上記点火領域に火花点火可能範囲の当量比の混合気を容易に形成することができ、さらに、連通路に近い上記点火領域の混合気を火花点火して燃焼させて、積極的に、主室に火炎ジェットを噴出させることができる。
【0016】
また、このように副室において点火領域を燃料供給手段よりも前記連通路に近接する連通路側に偏って配置することで、副室に比較的多くの燃料を供給しても、上記点火領域に、上記火花点火可能範囲の当量比の混合気を形成することができ、更に、その点火領域の周辺には、上記火花点火可能範囲よりも高い当量比の過濃混合気が形成されることになる。そして、上記副室において、上記点火領域の混合気を火花点火して燃焼させると、上記過濃混合気は、上記火炎ジェットにより主室に噴出され、更に、膨張行程の進行に伴って主室の圧力が副室よりも低下してから、主室に流入して新気と混合され拡散燃焼することになり、ディーゼルサイクル的な独特なサイクルを実現して、一層の高効率化及び低NOx化を図ることができる。
【0017】
また、前記副室の少なくとも前記点火手段の点火領域に形成される混合気が、当量比が火花点火可能範囲内である混合気であることで、混合気を安定し燃焼させることができ、前記主室に形成される混合気が、当量比が前記火花点火可能範囲内よりも低い希薄混合気であることで、低NOx化等の排ガス性状の改善を図ることができる。
【0018】
また、本発明に係る副室式エンジンにおいて、連通路に制御弁を備えた場合には、前記制御弁を閉状態として、前記主室に形成された混合気を前記主室において圧縮して自己着火させる予混合圧縮着火運転を実行可能に構成することができる。
即ち、上記制御弁を閉状態とすることで、主室から副室への新気の流入を阻止して、主室の圧力を主室の希薄混合気が自己着火する程度に上昇させることができるので、主室に形成された混合気を主室において圧縮して自己着火させる予混合圧縮着火運転を行うことができる。
【0019】
一方、本発明に係る副室式エンジンにおいて、燃料が供給された副室に酸素含有ガスを供給して、前記点火手段の点火領域を火花点火可能範囲内の当量比の混合気が存在するものとすると共に、前記点火領域よりも前記連通路側に偏った領域を燃焼上限界以上の当量比の過濃混合気が存在する過濃領域とする酸素含有ガス供給手段を備えることもでできる。
【0020】
即ち、互いに連通路により連通状態である主室と副室とを備えた副室式エンジンにおいて、副室に燃料を供給することで、副室に前述の過濃混合気を形成し、更に、上記酸素含有ガス供給手段により、例えば圧縮行程初期において、副室に空気等の酸素含有ガスを供給して、副室に上記火花点火過濃範囲内の点火領域と上記過濃領域とを形成することができる。
【0021】
そして、上記点火手段を働かせて、前記副室の点火領域の混合気を火花点火して燃焼させると、副室の点火領域における燃焼による圧力波が、連通路側に形成された過濃領域に伝播され、その過濃領域の燃焼上限界以上の当量比である過濃混合気が、着火することなく、連通路を介して主室に高圧噴射され、後に、上記点火領域の混合気の燃焼による火炎ジェットが連通路を介して主室に噴射されて、上記主室において混合気を燃焼させるのである。
【0022】
従って、上記のような独特な副室式エンジンによって、従来のディーゼルエンジンのような複雑で高価な燃料噴射装置や、燃料を燃焼室に直接噴射する層状給気方式における燃料噴射装置などを必要とせずに、副室の点火領域における燃焼による圧力上昇を利用して、副室に形成した過濃混合気を主室に高圧で噴射し、続いて主室に噴射された火炎ジェットにより、燃焼させるという独特な運転方法を行うことができ、主室においてノッキングが発生せずに所謂層状燃焼が進むことになる。
したがって、その燃料がたとえ気体燃料であっても、主室に高圧で混合気を噴射して自己着火させるディーゼルエンジン、又は、主室に設けられた点火プラグ付近に混合気を噴射し、その混合気を点火して周囲の希薄混合気を燃焼させる層状給気方式のSIエンジンとして構成することができ、高効率化且つ低NOx化を図ることができる。
【0023】
【発明の実施の形態】
本発明に係る副室式エンジンについて、図1−6に基づいて説明する。
【0024】
図1に示す副室式エンジン100は、本発明の権利対象ではないが、本発明の理解を容易にするため、図1に係る副室式エンジン100から説明する。
図1に示す副室式エンジン100は、ピストン2と、ピストン2を収容してピストン2の頂面と共に主室1を形成するシリンダ3を備え、ピストン2をシリンダ3内で往復運動させると共に、吸気弁4および排気弁(図示せず)を開閉動作させて、新気を主室1に取り込み、主室1において吸気、圧縮、燃焼・膨張、排気の諸行程を行い、ピストン2の往復道を連結棒(図示せず)によってクランク軸(図示せず)の回転運動として出力されるものであり、このような構成は、通常の4ストローク内燃機関と変わるところはない。
【0025】
、副室式エンジン100に於いて、シリンダ3のボア径は110mmであり、ピストン2のストローク長は106mmであり、ピストン2の位置が上死点位置であるときの燃焼室容積に対する、ピストン2の位置が下死点位置である時の燃焼室容積比である圧縮比は17である。また、副室式エンジン100は、ディーゼルエンジンとしてはクランク軸の回転数が1200rpmで運転されて15kW程度の出力が得られるものである。
【0026】
また、副室式エンジン100は、都市ガス(13A)を燃料Gとして利用するものであり、吸気行程において吸気弁4を開状態として、主室1に空気と少量の燃料Gとの希薄混合気である新気Iを吸入し、圧縮行程においてこの吸入した新気Iを圧縮して燃料Gを燃焼させるものである。
【0027】
副室式エンジン100のシリンダヘッド9には、主室1と共に燃焼室として設けられ、主室1に連通路20を介して連通する副室11が設けられており、この副室11を有する副室機構10の構造について以下に説明する。
尚、副室11の容積は、ピストン2の位置が上死点であるときの主室1と副室11との容積の和である総燃焼室容積の1/10程度である。
【0028】
また、副室11と主室1とを連通する連通路20は、主室1の略中央部に開口する4つの主室孔21と、副室11に開口する1つの副室孔22と、上記主室孔21と上記副室孔22とを接続する流路23とからなる。
流路23は、ピストン2の動作方向(図1における上下方向)に対して20°程度傾斜した軸心に沿って延びる流路として形成され、その流路径は3mmである。
上記4つの主室孔21は、図2(a),(b)にも示すように、上記流路23の軸心を中心に周方向に等間隔で配置され、更に、上記シリンダ3軸心に対して75/2°傾斜した噴孔角を有する。
【0029】
また、ピストン2の頂面の中央部には、いわゆる深皿型の凹部2aが形成されている。上記のような凹部2aを形成することで、圧縮行程に於いてピストン2が上昇するときに、ピストン2の頂面外周部から凹部2aの中心部に流れるスキッシュが発生することになる。
【0030】
副室11の上方には、燃料Gを0.2MPa(Gauge)の供給圧力で副室11に供給可能な燃料供給弁30が設けられている。
さらにまた、副室11の上方には、副室11の混合気を火花点火可能な点火プラグ32(点火手段の一例)が設けられている。
【0031】
このような副室式エンジン100において、図4(a),(b)に示すように、連通路20において最も小さい流路断面積である4つの主室孔21の開口面積の和Spのシリンダ3の横断面積Smに対する比(以下、断面積比と呼ぶ。)Srは、0.0013以下に設定すると、主室1に吸気された新気Iが圧縮行程において連通路20を通過して副室11に流入する際に受ける背圧を大きくして、非燃焼時の圧縮のみによる副室最高到達圧力P2を、同じく非燃焼時の圧縮のみによる主室最高到達圧力P1よりも低くすることができ、更に、図4(c)に示すように、副室11の圧力が副室最高到達圧力P2となる時期を、主室1の圧力が主室最高到達圧力P1となる時期に対して、遅延側にずらすことができる。
【0032】
そして、本副室式エンジン100においては、上記断面積比Srが、上記のように副室最高到達圧力P2を主室最高到達圧力P1よりも低くすることができるように、0.0013以下、好適には、0.0005以下、さらに好適には、0.0003程度となるように、上記連通路20の最小流路断面積が設定されている。
【0033】
上記のように、上記連通路20の流路断面積を小さくする設定して、主室1から副室11への方向に連通路20を流通する新気Iに対して付加される背圧を大きくすることで、圧縮比を17程度と高く設定しても、副室最高到達圧力P2を、上記主室最高到達圧力P1よりも小さく、副室11で混合気を燃焼させた場合にノッキングを回避することができる副室11のノッキング回避圧力範囲内とすることができる。
【0034】
次に、副室式エンジン100における、1サイクルにおける吸気弁4、排気弁、燃料供給弁30、点火プラグ32の動作状態を説明する。
【0035】
図3に示すように、副室式エンジン100は、先ず、吸気弁4が開状態となり、ピストン2のTDC(上死点)からの下降により、主室1に希薄混合気である新気Iが吸入される吸気行程が行われる。
このとき副室11に設置された燃料供給弁30が吸気弁4の開時期に対して若干遅れた時期に開状態となり、副室11への燃料Gの供給を開始される。
【0036】
後に、吸気弁4および燃料供給弁30が同時期に閉状態となり、ピストン2の上昇により、主室1に吸気された新気Iを圧縮する、いわゆる圧縮行程が行われる。
【0037】
なお、圧縮行程初期の副室11がまだ定圧状態のときに、燃料供給弁30を開状態として燃料Gを副室11に供給しても良い。
【0038】
このように副室11に燃料を供給することにより、副室11に供給された燃料Gの一部は、連通路20を介して主室1に流出するのであるが、上記の連通路20の断面積比が例えば0.0003程度と非常に小さく設定されているため、その流出量は、副室11に供給された全副室燃料供給量の5%程度となる。
【0039】
そして、次の圧縮行程では、ピストン2の上昇により、主室1の容積減少によって、主室1の新気Iが連通路20介して副室11に流入し、副室11には、連通路22から上方に向かう新気流が発生し、その新気流が点火プラグ32の点火領域に到達する。
【0040】
よって、副室11の上記点火プラグ32の点火領域では、その新気Iと燃料Gとが混合されて、火花点火可能範囲内の当量比の混合気が形成される。
【0041】
この圧縮行程では、連通路20の主室孔21が所謂絞り弁のように働き、主室1の圧力はほぼ圧縮比どおりの圧力になるが、副室最高到達圧力P2は、主室最高到達圧力P1の圧力よりも、図4(a)に示すように、約2MPa低下したものになる。
よって、上記圧縮行程終了時にて、副室11には、約25MPaの圧力場で当量比が1.0−1.6程度、好適には当量比が1.3−1.5程度の混合気が存在し、主室1には、約45MPaの圧力場で当量比が0.4−0.55、好適には当量比が0.45−0.50程度の混合気が存在することになる。尚、副室11に形成する混合気の当量比を理論当量比よりも増加させるほど、副室11におけるNOx生成量を低減することができると共に、主室1への燃料供給量に対する副室11への燃料供給量の割合を増加させることで、主室1において燃焼する混合気を希薄化して、一層の低NOx化を図ることができる。
【0042】
そして、副室式エンジン100は、10°BTDC付近において、点火プラグ32を働かせて、上記副室11に形成された混合気を火花点火して燃焼させる。
【0043】
すると副室11では、その圧力が通常のSIエンジンなみであるため、急激な圧力上昇を伴わず、燃焼が進み、副室11の燃焼しなかった燃料Gと共に、火炎ジェットが連通路20を介して主室1に噴出される。
【0044】
一方、主室1においては、高圧力場で、連通路20から噴出された高エネルギの火炎ジェットにより希薄混合気を燃焼させるので、副室11と同様に急激な圧力上昇を伴わず、高効率且つ低NOxな燃焼が行われる。
【0045】
このような主室1における燃焼状態は、通常のSIエンジンに近い状態であるが、圧縮比を高く設定した場合においてもノッキングが発生しないため、例えば、図5に示すように、連通路20の断面積比を0.0013より大きくした副室エンジンに比べて、正味熱効率ηeを向上することができ、例えば、連通路20の断面積比を0.0005程度とすることで、正味熱効率ηeを2.5ポイント程度向上することができ、連通路20の断面積比を0.0003程度とすることで、正味熱効率ηeを3.0ポイント程度向上することができる。また、主室11に吸気される新気Iの空気比(当量比の逆数)を小さくして、出力を増加させた場合でも、良好にノッキングを回避することができるため、図6に示すように、ノッキング限界における空気比λを低くすることができ、広い出力調整範囲を確保することができる。
また、副室11内を当量比を濃い側に、主室1内の混合気を希薄側に設定しているためNOXも抑制することができる。
【0046】
発明に係る副室式エンジン200の実施形態について、図7に基づいて説明する。
図7に示す副室式エンジン200は、点火プラグ32の点火領域の位置が連通路20の副室孔22に偏った位置に配置されており、それ以外は、前述した副室式エンジン100と同様の構成である。
【0047】
本エンジン200は、前述の副室式エンジン100と同様な運転方法で運転されるのであるが、副室11及び主室1に供給される燃料割合が異なる。
【0048】
即ち、副室11には、圧縮行程後期に当量比が1.5−2.0程度と比較的高い混合気が形成され、主室1には当量比が0.4−0.55程度の混合気が形成されている。副室11に形成された混合気は、上記当量比が比較的高いため、そのままでは点火プラグ32により火花点火することは困難であるが、副室式エンジン200の点火領域が、連通路20の副室孔22に非常に近く、連通路20からの新気流の通り道であることから、新気がその点火領域に多く供給されて、点火領域の混合気は、火花点火可能な当量比にまで希釈されることになる。
【0049】
そして、副室式エンジン200は、10°BTDC付近において、点火プラグ32を働かせて、上記副室11に形成された混合気を火花点火して燃焼させる。
【0050】
すると、副室11では、点火領域に存在する火花点火可能な混合気のみが燃焼し、副室11の圧力が主室1の圧力よりも高くなった時点で、その点火領域の火炎が連通路20から主室1に火炎ジェットとして噴出される。
【0051】
主室1においては、連通路20から噴出された高エネルギの火炎ジェットにより希薄混合気が燃焼すると、再度、主室1の圧力が副室11の圧力より高くなる。その際、副室11から主室1へのガスの噴出が停止され、副室11において燃焼しなかった比較的高当量比の混合気が残存することになる。
【0052】
燃焼・膨張行程が進行するにつれて、主室1の圧力が副室11の圧力よりも低くなると、副室11に残存していた混合気が連通路20を介して主室1へ噴出され、主室1において緩やかに燃焼することになる。
【0053】
このように構成された副室式エンジン200は、点火プラグ32の位置を変更すると共に、副室11へ比較的高い当量比の混合気を形成するように燃料を供給することで、主室1の燃焼状態は所謂ディーゼルサイクルに近い状態となり、効率は高いまま、初期の燃焼を抑えて、低NOX化を図ることができる。また、副室11に供給する燃料量を増加させることで、燃焼後期に燃焼する燃料の割合が増加するため、過給機や触媒システムに有利な高温の排気ガスを排出させることもできる。
【0054】
先に説明した図1に示す副室式エンジン100において、副室11に空気供給弁31(酸素含有ガス供給手段の一例)を有する副室式エンジン300の構成を、図8、図9に基づいて説明する。そして、この空気供給弁31を有する構成は、先に説明した図7に示した副室式エンジン200でも採用することが可能である。
図8に示す副室式エンジン300は、副室機構20に、空気流路40に供給された空気Aを所定の時期に0.7MPa(Gauge)の供給圧力で副室11の上方の点火プラグ32の点火領域付近に供給可能な空気供給弁31(酸素含有ガス供給手段の一例)が設けられており、それ以外は、前述の副室式エンジン100と同様の構成である。
【0055】
次に、本実施形態の副室式エンジン300において、1サイクルにおける吸気弁4、排気弁、燃料供給弁30、点火プラグ32と、上記空気供給弁31の動作状態を説明する。
【0056】
図9に示すように、副室式エンジン300は、上記吸気弁4、排気弁、燃料供給弁30、点火プラグ32の動作時期は、前述の副室式エンジン100と同様であるので、説明を割愛するが、圧縮行程中期の、例えばクランク角度が60−50°BTDCである期間において、空気供給弁31が開状態とされて、空気Aが副室11の点火プラグ32の点火領域付近に向けて供給される。
【0057】
よって、副室11の上記点火プラグ32の点火領域では、主室1から流入した新気Iと上記空気供給弁31から供給された空気Aと、燃料Gとが混合されて、火花点火可能範囲内の当量比の混合気が形成され、一方、上記点火領域よりも連通路20側に偏った過濃領域では、燃焼上限界以上の当量比の過濃混合気が形成される。
【0058】
この圧縮行程では、これまで説明してきたように、連通路20の主室孔21が所謂絞り弁のように働き、主室1の圧力はほぼ圧縮比どおりの圧力になるが、副室最高到達圧力P2は、主室最高到達圧力P1の圧力よりも、図4(a)に示すように、約2MPa低下したものになる。
【0059】
そして、副室式エンジン100は、10°BTDC付近において、点火プラグ32を働かせて、上記副室11に形成された混合気を火花点火して燃焼させる。
【0060】
すると、副室11では、点火領域における燃焼による圧力波が、連通路側に形成された過濃領域に伝播され、その過濃領域の燃焼上限界以上の当量比である過濃混合気が、着火することなく、連通路20を介して主室1に高圧噴射され、後に、上記点火領域の混合気の燃焼による火炎ジェットが連通路20を介して主室1に噴射され、上記主室1において混合気を燃焼させる。
【0061】
即ち、副室式エンジン300は、燃料Gが高圧噴射が困難な気体燃料であっても、副室11の点火領域における燃焼による圧力上昇を利用して、副室11に形成した過濃混合気を主室1に高圧で噴射し、続いて主室1に噴射された火炎ジェットにより、主室1の混合気を燃焼させるディーゼルエンジンのような運転を行うことができ、主室1においてノッキングが発生せずに所謂層状燃焼を進めることができ、高効率化且つ低NOx化を図ることができる。
【0062】
尚、本副室エンジン300において、副室11への燃料供給量及び空気供給量、主室1への燃料供給量等を一定としたが、別に、それらの供給量を調整して、主室1及副室11に形成される混合気の分布を調整することもできる。例えば、起動時には、副室11への燃料供給量の割合を低下させて、副室11全域に火花点火可能範囲内の当量比の混合気を形成し、副室11から連通路20を介して主室1へ、過濃混合気を殆ど噴出させずに、火炎ジェットのみを噴出させて、主室1の混合気を安定して燃焼させることもできる。また、例えば、高負荷時には、上記のように、副室11から主室1へ火炎ジェットのみを噴出させる運転を行い、低負荷時には、副室11への燃料供給量の割合を増加させて、副室11から主室1に過濃混合気を噴出するディーゼルエンジンのような運転を行うことができる。
【0063】
〔別実施形態〕
(1) 本発明に係る副室式エンジンは、前述の実施形態で説明したように、都市ガス等の気体燃料を利用する場合に優れた効果を発揮するものであり、このような気体燃料としては、上記都市ガス以外に水素やプロパン等のCOやH2を主成分とする炭化水素以外の気体燃料がある。また、本発明に係る副室式エンジンは、もちろん気体燃料以外の燃料を利用することもでき、たとえば、ガソリン、アルコール、メタノール、エタノール、任意の燃料を使用することができる
【図面の簡単な説明】
【図1】 室式エンジンの概略構成図
【図2】 室式エンジンの部分拡大図
【図3】 室式エンジンの動作状態を示すタイムチャート図
【図4】 副室式エンジンの連通路の断面積比と最高到達圧力に関連する状態との関係を示すグラフ図
【図5】 副室式エンジンの連通路の断面積比と正味熱効率との関係を示すグラフ図
【図6】 副室式エンジンの連通路の断面積比とノッキング限界における空気比との関係を示すグラフ図
【図7】 本発明に係る副室式エンジンの概略構成図
【図8】 副室式エンジンの概略構成図
【図9】 副室式エンジンの動作状態を示すタイムチャート図
【符号の説明】
1:主室
2:ピストン
2a:凹部
3:シリンダ
4:吸気弁
9:シリンダヘッド
10:副室機構
20:連通路
21:主室孔
22:副室孔
23:流路
30:燃料供給弁
31:空気供給弁(酸素含有ガス供給手段)
32:点火プラグ
100,200:副室式エンジン

Claims (4)

  1. 主室に吸気された新気をピストンの上昇により圧縮して、前記圧縮された新気を連通路を介して副室に流入させ、前記副室に流入した新気と前記副室に供給された燃料との混合気を、前記副室に設けられた点火手段により点火し、前記連通路を介して前記主室に火炎ジェットを噴射する副室点火運転を実行可能な副室式エンジンであって、
    前記副室に備えられた点火手段が、前記副室に燃料を供給する燃料供給手段よりも前記連通路に近接する前記連通路側に偏設されており、
    前記主室の前記圧縮による最高到達圧力が、前記副室におけるノッキング回避圧力範囲の上限界値より高く設定され、且つ、前記副室の圧縮による最高到達圧力が前記副室におけるノッキング回避範囲内となるように、前記連通路におけるガスの流通に対して付与される背圧が前記連通路の流路断面積により設定されている副室式エンジン。
  2. 前記連通路に制御弁を設けると共に、前記制御弁を閉状態として、前記主室に形成された混合気を前記主室において圧縮して自己着火させる予混合圧縮着火運転を実行可能に構成されている請求項1に記載の副室式エンジン。
  3. 前記副室の少なくとも前記点火手段の点火領域に形成される混合気が、当量比が火花点火可能範囲内である混合気であり、前記主室に形成される混合気が、当量比が前記火花点火可能範囲内よりも低い希薄混合気である請求項1又は2に記載の副室式エンジン。
  4. 燃料が供給された副室に酸素含有ガスを供給して、前記点火手段の点火領域を火花点火可能範囲内の当量比の混合気が存在するものとすると共に、前記点火領域よりも前記連通路側に偏った領域を燃焼上限界以上の当量比の過濃混合気が存在する過濃領域とする酸素含有ガス供給手段を備えた請求項に記載の副室式エンジン。
JP2003001205A 2003-01-07 2003-01-07 副室式エンジン Expired - Fee Related JP4073315B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001205A JP4073315B2 (ja) 2003-01-07 2003-01-07 副室式エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001205A JP4073315B2 (ja) 2003-01-07 2003-01-07 副室式エンジン

Publications (2)

Publication Number Publication Date
JP2004211633A JP2004211633A (ja) 2004-07-29
JP4073315B2 true JP4073315B2 (ja) 2008-04-09

Family

ID=32819290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001205A Expired - Fee Related JP4073315B2 (ja) 2003-01-07 2003-01-07 副室式エンジン

Country Status (1)

Country Link
JP (1) JP4073315B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969112B (zh) 2004-06-10 2011-04-20 上村一郎 独立燃烧室式内燃机
JP2007085181A (ja) * 2005-09-20 2007-04-05 Nissan Motor Co Ltd 副室式内燃機関
JP2007205236A (ja) * 2006-02-01 2007-08-16 Nissan Motor Co Ltd 副室式内燃機関
JP5140836B2 (ja) * 2007-05-18 2013-02-13 一般社団法人日本ガス協会 副室式ガスエンジン
KR101734583B1 (ko) 2011-12-13 2017-05-12 현대자동차주식회사 내연기관의 연소발생장치
KR101926861B1 (ko) * 2012-02-29 2019-03-08 현대자동차주식회사 프리챔버 제트점화기 및 이를 적용한 연소실을 갖춘 엔진
CN106194395A (zh) * 2014-09-25 2016-12-07 马勒动力总成有限公司 火花点火发动机的湍流射流点火预燃室燃烧***
DE102019208930A1 (de) * 2019-06-19 2020-12-24 Hitachi Automotive Systems, Ltd. Vorrichtung und verfahren zum steuern einer temperatur einer in einer zündvorrichtung einer brennkraftmaschine enthaltenen vorkammer

Also Published As

Publication number Publication date
JP2004211633A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
JP3920526B2 (ja) 火花点火式成層燃焼内燃機関
US20080257304A1 (en) Internal combustion engine and combustion method of the same
RU2005109391A (ru) Способ и устройство управления двигателем внутреннего сгорания на газообразном топливе
JP2002161780A (ja) 自己点火可能な燃料で運転される内燃機関の運転方式
JP5922830B1 (ja) ガスエンジン
KR20220047528A (ko) 수소 연료 내연기관의 작동 방법
JP4073315B2 (ja) 副室式エンジン
JP2002266645A (ja) エンジン及びその運転方法及び副室機構
JP2003254105A (ja) ディーゼルエンジン及びその運転方法
JP2005232988A (ja) 副室式エンジン
JP4086440B2 (ja) エンジン
JP2007255313A (ja) 副室式エンジン
JP2009500560A (ja) 内燃機関運転方法
JP2002266643A (ja) エンジン及びその運転方法及び副室機構
JP4145177B2 (ja) エンジン及びその運転方法
JP4386781B2 (ja) エンジン
JPH0763076A (ja) 内燃機関
JP2005232987A (ja) 副室式エンジン
JP3969915B2 (ja) 予混合圧縮自着火エンジン及びその運転方法
JP4023434B2 (ja) 2種類の燃料を用いる予混合圧縮自着火運転可能な内燃機関
JPH11324805A (ja) 予燃焼室方式ガスエンジン
JP4007729B2 (ja) エンジン及びその運転方法
JP2004278428A (ja) ディーゼルエンジン及びその運転方法
JPH07332140A (ja) 圧縮着火式内燃機関
JP2003247444A (ja) 火花点火式2サイクルエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees