JP4056123B2 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP4056123B2
JP4056123B2 JP08377898A JP8377898A JP4056123B2 JP 4056123 B2 JP4056123 B2 JP 4056123B2 JP 08377898 A JP08377898 A JP 08377898A JP 8377898 A JP8377898 A JP 8377898A JP 4056123 B2 JP4056123 B2 JP 4056123B2
Authority
JP
Japan
Prior art keywords
battery
thickness
negative electrode
lipf
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08377898A
Other languages
Japanese (ja)
Other versions
JPH11283668A (en
Inventor
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08377898A priority Critical patent/JP4056123B2/en
Publication of JPH11283668A publication Critical patent/JPH11283668A/en
Application granted granted Critical
Publication of JP4056123B2 publication Critical patent/JP4056123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、厚みが0.4mm以下の金属アルミニウム又はアルミニウム合金から成る外装体を有し、この外装体内に、リチウム含有複合酸化物を正極材料とする正極と、格子面(002)面におけるd値(d002 )が3.40Å以下の炭素材料を負極材料とする負極と、溶媒及び溶質から成る電解液とが収納されたリチウムイオン電池に関する。
【0002】
【従来の技術】
従来、リチウムイオン電池の外装体としては、鉄、ステンレスから成るものが用いられていたが、このような外装体を用いた電池では、鉄等の比重が大きいことに起因して、電池重量が増大するという課題を有していた。そこで、外装缶に金属アルミニウム又はアルミニウム合金(これらを総称して、アルミニウム材料という)を用いることにより、電池の軽量化を達成し、これによって電池の重量エネルギー密度の増大を図るようなリチウムイオン電池が提案されている。
【0003】
ここで、上記リチウムイオン電池の電解液の溶質(リチウム塩)としては、一般的にLiPF6 が用いられるが、このLiPF6 は負極材料である炭素材料と反応してガスが発生し易く、特に、電池の高容量化を図るべく負極材料として格子面(002)面におけるd値(d002 )が3.40Å以下の炭素材料(結晶性が高い、すなわち黒鉛化度が大きい炭素材料)を用いた場合にはガスが多量に発生する。この場合、外装体として鉄、ステンレスを用いた場合には、これら金属は強度が大きいので、電池の膨れという課題は余り生じないが、外装体として上記鉄等と同程度の厚み(0.4mm以下)を有するアルミニウム材料を用いた場合には、アルミニウム材料は強度が小さいということに起因して、電池の膨れという課題を生じる。この場合、アルミニウム材料の厚みを大きくすることにより外装缶の強度を大きくするようなことも考えられるが、これでは、電池の軽量化を達成することができない。
【0004】
【発明が解決しようとする課題】
本発明は、以上の事情に鑑みなされたものであって、電池の軽量化を図りつつ、電池内部でガスが発生するのを抑制することにより、電池の膨らみを最小限に抑えることができるリチウムイオン電池の提供を目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1記載の発明は、厚みが0.4mm以下の金属アルミニウム又はアルミニウム合金から成る外装体を有し、この外装体内に、リチウム含有複合酸化物を正極材料とする正極と、格子面(002)面におけるd値(d002 )が3.40Å以下の炭素材料を負極材料とする負極と、溶媒及び溶質から成る電解液とが収納されたリチウムイオン電池において、上記電解液の溶質として、下記化2に示すリチウム塩とLiPF6 との混合リチウム塩が用いられると共に、この混合リチウム塩におけるLiPF6 の割合が20モル%以下に規制されることを特徴とする。
【0006】
【化2】
LiN(Cn2n+1SO22 〔nは2、3または4
【0007】
上記化2に示すリチウム塩は、格子面(002)面におけるd値(d002 )が3.40Å以下の炭素材料と反応し難いので、このようなリチウム塩を用いた電池では、電池内でのガス発生が大幅に低減する。但し、上記化2に示すリチウム塩を単独で用いると電池容量が小さくなるので、LiPF6 と混合して用いる必要がある。その一方、LiPF6 の量が余り多くなると電池内でのガス発生という問題が生じるので、混合リチウム塩におけるLiPF6 の割合は20モル%以下に規制する必要がある。
【0008】
尚、上記化に示すリチウム塩中のnを2以上に規制するのは、nが1である場合には、アルミニウムの腐食という問題が生じるからである。また、外装缶にアルミニウム合金を用いる場合には、電池の軽量化という観点より、アルミニウムの含有率が90%以上(アルミニウム合金の比重が3以下)のものを用いるのが望ましい。
【0009】
また、請求項2記載の発明は請求項1記載の発明において、上記炭素材料が黒鉛であることを特徴とする。
このように、炭素材料として黒鉛を用いた場合には、黒鉛は結晶性が高いということに起因して、電池の高容量化を達成することができる。
【0011】
また、請求項記載の発明は請求項1又は2記載の発明において、上記外装缶の厚みが0.2〜0.3mmであることを特徴とする。このように、外装缶の厚みを極めて小さくすると、電池の軽量化という目的が十分達成される一方、上記の如くガス発生という課題は十分に解決されるので、外装缶の厚みを極めて小さくしても電池の膨れという問題は生じない。
【0012】
【発明の実施の形態】
本発明の実施の形態を、以下に説明する。
【0013】
本発明の角型電池は、LiCoO2 から成る正極と、黒鉛〔格子面(002)面におけるd値(d002 )が3.35Å〕から成る負極と、これら両電極を離間するセパレータとから成る発電要素を有しており、この発電要素は、有底筒状の外装缶(Al3003から成り、厚さは0.2mm)内に配置されている。この外装缶内には、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPF6 が0.1M(モル/リットル)の割合で、LiN(C2 5 SO2 2 が0.9M(モル/リットル)の割合で各々溶解された電解液が注入されている。
【0014】
また、上記正極は正極集電タブを介して正極端子に、また上記負極は負極集電タブを介して負極端子にそれぞれ接続され、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。
尚、この角型電池の大きさは、幅が30.0mm、厚みが6.0mm、高さが48.0mm、となるように構成されている。
【0015】
ここで、上記構造の電池を、以下のようにして作製した。
先ず、正極活物質としてのLiCoO2 を90重量%と、導電剤としてのカーボンブラックを5重量%と、結着剤としてのポリフッ化ビニリデンを5重量%と、溶剤としてのN−メチル−2−ピロリドン(NMP)溶液とを混合して正極用スラリーを調製した後、この正極用スラリーを正極集電体としてのアルミニウム箔(厚さ:20μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した後、所定の幅及び長さになるように切断して、正極を作成した。
【0016】
これと並行して、負極活物質としての黒鉛粉末を95重量%と、結着剤としてのポリフッ化ビニリデンを5重量%と、溶剤としてのNMP溶液とを混合して負極用スラリーを調製した後、この負極用スラリーを負極集電体としての銅箔(厚さ:16μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した後、所定の幅及び長さになるように切断して、負極を作成した。
次に、正負極をセパレータを介して配置して発電要素を作製した後、これを外装缶内に挿入し、更にこの外装缶内に、ECとMECとが体積比で30:70の割合で混合された混合溶媒に、LiPF6 が0.1M(モル/リットル)の割合で、LiN(C2 5 SO2 2 が0.9M(モル/リットル)の割合で各々溶解された電解液を注入することにより、電池を作製した。
【0017】
尚、正極材料としては上記LiCoO2 の他、例えば、LiNiO2 、LiMnO4 或いはこれらの複合体等が好適に用いられ、また負極材料としては天然黒鉛、人造黒鉛等が好適に用いられる。
【0018】
【実施例】
〔実施例1〕
実施例1としては上記発明の実施の形態に示す電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
【0019】
〔実施例2〕
電解液の溶質として、0.2MのLiPF6 と0.8MのLiN(C2 5 SO2 2 とを用いる他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
【0020】
〔実施例3〕
電解液の溶質として、0.05MのLiPF6 と0.95MのLiN(C2 5 SO2 2 とを用いる他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A3と称する。
【0021】
〔実施例4〕
電解液の溶質として、0.1MのLiPF6 と0.9MのLiN(C3 7 SO2 2 とを用いる他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A4と称する。
【0022】
〔実施例5〕
電解液の溶質として、0.1MのLiPF6 と0.9MのLiN(C4 9 SO2 2 とを用いる他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A5と称する。
【0023】
〔比較例1〕
電解液の溶質として、1MのLiPF6 を用いる他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X1と称する。
【0024】
〔比較例2〕
電解液の溶質として、0.5MのLiPF6 と0.5MのLiN(C2 5 SO2 2 とを用いる他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池X2と称する。
【0025】
〔予備実験1〕
外装缶の材料及び厚みを変化させて電池を作製し、電解液の注液後の厚みに対する電池充電後の電池厚みの増加量を調べたので、その結果を表1に示す。
尚、充電条件は、電流1Cで電池電圧4.1Vまで充電するという条件である。
【0026】
【表1】

Figure 0004056123
【0027】
上記表1から明らかなように、外装缶が鉄であれば厚みが0.2mmであっても電池厚みの増加は殆どなく、また外装缶がアルミニウム材料であっても厚みが0.5mmであれば電池厚みの増加は殆どない。これに対して、外装缶がアルミニウム材料でしかも厚みが0.4mm又は0.2mmであれば電池厚みが増加し、特に厚みが0.2mmであれば大幅に増加していることが認められる。
但し、外装缶が鉄から構成されていたり、外装缶がアルミニウム材料であっても厚みが大きければ、電池の軽量化を図ることができない。したがって、外装缶としては厚みの小さなアルミニウム材料を用いるのが望ましい。
【0028】
〔予備実験2〕
負極材料を変化させて電池を作製した後、上記予備実験1と同様の条件で充電し、電解液の注液後の厚みに対する電池充電後の電池厚みの増加量を調べたので、その結果を表2に示す。
【0029】
【表2】
Figure 0004056123
【0030】
上記表2から明らかなように、負極材料がコークス〔d値(d002 )が3.45Å〕であれば電池厚みの増加は殆どないのに対して、負極材料が黒鉛(d値(d002 )が3.35Å〕であれば電池厚みが増加していることが認められる。
但し、負極材料としてコークスを用いた場合には、電池容量が低下するので、負極材料としては黒鉛を用いるのが望ましい。
そこで、上記予備実験1及び2の結果を踏まえて、下記の本実験を行った。
【0031】
〔本実験〕
上記本発明電池A1〜A5及び比較電池X1、X2において、上記予備実験1と同様の条件で充電し、電解液の注液後の厚みに対する電池充電後の電池厚みの増加量を調べたので、その結果を表3に示す。
【0032】
【表3】
Figure 0004056123
【0033】
上記表3から明らかなように、比較電池X1、X2では電池厚みの増加量が0.25mm以上であるのに対して、本発明電池A1〜A5では電池厚みの増加量が0.05mm以下と小さくなっていることが認められる。
したがって、厚みが0.4mm以下(本発明電池A1〜A5では0.2mm)のアルミニウム材料から成る外装体を有していても、電解液の溶質として、LiN(C2 5 SO2 2 等のリチウム塩とLiPF6 との混合リチウム塩が用いられ、且つこの混合リチウム塩におけるLiPF6 の割合が20モル%以下に規制されていれば、充電後の電池厚みの増加量が少なくなることがわかる。加えて、この場合、負極に黒鉛(d002 が3.35Å)を用いているので、電池容量の低下を招くこともない。
【0034】
【発明の効果】
以上説明したように、本発明によれば、電池の軽量化を図りつつ、電池内部でガスが発生するのを抑制することにより、電池の膨らみを最小限に抑えることができるといった優れた効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention has an outer package made of metallic aluminum or aluminum alloy having a thickness of 0.4 mm or less, and a positive electrode using a lithium-containing composite oxide as a positive electrode material in the outer package, and d on the lattice plane (002) plane. The present invention relates to a lithium ion battery in which a negative electrode using a carbon material having a value (d 002 ) of 3.40% or less as a negative electrode material, and an electrolytic solution composed of a solvent and a solute.
[0002]
[Prior art]
Conventionally, as an exterior body of a lithium ion battery, one made of iron or stainless steel has been used. However, in a battery using such an exterior body, the weight of the battery is high due to the large specific gravity of iron or the like. It had the problem of increasing. Therefore, a lithium ion battery that achieves weight reduction of the battery by using metal aluminum or aluminum alloy (generically referred to as an aluminum material) for the outer can, thereby increasing the weight energy density of the battery. Has been proposed.
[0003]
Here, as the solute (lithium salt) of the electrolyte solution of the lithium ion battery, LiPF 6 is generally used. However, this LiPF 6 easily reacts with the carbon material that is the negative electrode material, and gas is easily generated. In order to increase the capacity of the battery, a carbon material having a d value (d 002 ) on the lattice plane ( 002 ) of 3.40 mm or less (a carbon material having high crystallinity, that is, a high degree of graphitization) is used as the negative electrode material. If so, a large amount of gas is generated. In this case, when iron or stainless steel is used as the exterior body, these metals have high strength, so the problem of battery swelling does not occur so much, but the exterior body has the same thickness (0.4 mm) as the above-described iron or the like. In the case of using an aluminum material having the following), the aluminum material has a problem of swelling of the battery due to its low strength. In this case, it is conceivable to increase the strength of the outer can by increasing the thickness of the aluminum material, but this makes it impossible to reduce the weight of the battery.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and is capable of minimizing battery swelling by suppressing the generation of gas inside the battery while reducing the weight of the battery. The purpose is to provide an ion battery.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention has an exterior body made of metal aluminum or an aluminum alloy having a thickness of 0.4 mm or less, and the lithium-containing composite oxidation is included in the exterior body. A positive electrode using a material as a positive electrode material, a negative electrode using a carbon material having a d value (d 002 ) of 3.40% or less on the lattice plane (002) as a negative electrode material, and an electrolyte composed of a solvent and a solute were stored. In the lithium ion battery, a mixed lithium salt of lithium salt and LiPF 6 shown in the following chemical formula 2 is used as a solute of the electrolytic solution, and the ratio of LiPF 6 in the mixed lithium salt is regulated to 20 mol% or less. It is characterized by that.
[0006]
[Chemical 2]
LiN (C n F 2n + 1 SO 2) 2 [n is 2, 3 or 4]
[0007]
The lithium salt shown in Chemical Formula 2 is difficult to react with a carbon material having a d-value (d 002 ) of 3.40% or less on the lattice plane (002) plane. Therefore, in a battery using such a lithium salt, Gas generation is greatly reduced. However, when the lithium salt shown in Chemical Formula 2 is used alone, the battery capacity becomes small, so it is necessary to mix it with LiPF 6 . On the other hand, if the amount of LiPF 6 is excessively large, there is a problem of gas generation in the battery. Therefore, the ratio of LiPF 6 in the mixed lithium salt must be regulated to 20 mol% or less.
[0008]
Incidentally, to regulate the n in the lithium salt shown by the chemical formula 2 to 2 or more, when n is 1, because the problem of aluminum corrosion occurs. When an aluminum alloy is used for the outer can, it is desirable to use an aluminum alloy having an aluminum content of 90% or more (a specific gravity of the aluminum alloy is 3 or less) from the viewpoint of reducing the weight of the battery.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the carbon material is graphite.
Thus, when graphite is used as the carbon material, the capacity of the battery can be increased due to the high crystallinity of graphite.
[0011]
The invention of claim 3, wherein, in the invention of claim 1 or 2, wherein the thickness of said outer can is 0.2 to 0.3 mm. As described above, when the thickness of the outer can is extremely small, the purpose of reducing the weight of the battery is sufficiently achieved, while the problem of gas generation is sufficiently solved as described above. However, the problem of battery swelling does not occur.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0013]
The prismatic battery of the present invention comprises a positive electrode made of LiCoO 2 , a negative electrode made of graphite (d value (d 002 ) on the lattice plane (002) plane is 3.35 Å), and a separator that separates the two electrodes. It has a power generation element, and this power generation element is arranged in a bottomed cylindrical outer can (made of Al3003, thickness is 0.2 mm). In this outer can, a ratio of 0.1 M (mol / liter) of LiPF 6 to a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:70. Then, electrolytic solutions in which LiN (C 2 F 5 SO 2 ) 2 is dissolved at a rate of 0.9 M (mol / liter) are injected.
[0014]
Further, the positive electrode is connected to the positive electrode terminal via the positive electrode current collecting tab, and the negative electrode is connected to the negative electrode terminal via the negative electrode current collecting tab so that chemical energy generated inside the battery can be taken out as electric energy to the outside. It has become.
In addition, the size of this square battery is configured such that the width is 30.0 mm, the thickness is 6.0 mm, and the height is 48.0 mm.
[0015]
Here, the battery having the above structure was produced as follows.
First, 90% by weight of LiCoO 2 as a positive electrode active material, 5% by weight of carbon black as a conductive agent, 5% by weight of polyvinylidene fluoride as a binder, and N-methyl-2- 2 as a solvent. After mixing with a pyrrolidone (NMP) solution to prepare a positive electrode slurry, this positive electrode slurry was applied to both surfaces of an aluminum foil (thickness: 20 μm) as a positive electrode current collector. Thereafter, the solvent was dried, compressed to a predetermined thickness with a roller, and then cut to have a predetermined width and length to prepare a positive electrode.
[0016]
In parallel with this, after preparing a negative electrode slurry by mixing 95% by weight of graphite powder as a negative electrode active material, 5% by weight of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. The negative electrode slurry was applied to both sides of a copper foil (thickness: 16 μm) as a negative electrode current collector. Thereafter, the solvent was dried, compressed to a predetermined thickness with a roller, and then cut to have a predetermined width and length to prepare a negative electrode.
Next, the positive and negative electrodes are arranged via a separator to produce a power generation element, which is then inserted into an outer can, and further, EC and MEC are in a volume ratio of 30:70 in the outer can. An electrolytic solution in which LiPF 6 is dissolved in the mixed solvent at a ratio of 0.1 M (mol / liter) and LiN (C 2 F 5 SO 2 ) 2 is dissolved at a ratio of 0.9 M (mol / liter). Was injected to prepare a battery.
[0017]
In addition to LiCoO 2 described above, for example, LiNiO 2 , LiMnO 4, or a composite thereof is preferably used as the positive electrode material, and natural graphite, artificial graphite, or the like is preferably used as the negative electrode material.
[0018]
【Example】
[Example 1]
As Example 1, the battery described in the embodiment of the invention was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.
[0019]
[Example 2]
A battery was fabricated in the same manner as in Example 1 except that 0.2 M LiPF 6 and 0.8 M LiN (C 2 F 5 SO 2 ) 2 were used as the solute of the electrolytic solution.
The battery thus produced is hereinafter referred to as the present invention battery A2.
[0020]
Example 3
A battery was fabricated in the same manner as in Example 1 except that 0.05 M LiPF 6 and 0.95 M LiN (C 2 F 5 SO 2 ) 2 were used as the solute of the electrolytic solution.
The battery thus produced is hereinafter referred to as the present invention battery A3.
[0021]
Example 4
A battery was fabricated in the same manner as in Example 1 except that 0.1 M LiPF 6 and 0.9 M LiN (C 3 F 7 SO 2 ) 2 were used as the solute of the electrolytic solution.
The battery thus produced is hereinafter referred to as the present invention battery A4.
[0022]
Example 5
A battery was fabricated in the same manner as in Example 1 except that 0.1 M LiPF 6 and 0.9 M LiN (C 4 F 9 SO 2 ) 2 were used as the solute of the electrolytic solution.
The battery thus produced is hereinafter referred to as the present invention battery A5.
[0023]
[Comparative Example 1]
A battery was fabricated in the same manner as in Example 1 except that 1M LiPF 6 was used as the solute of the electrolytic solution.
The battery thus produced is hereinafter referred to as comparative battery X1.
[0024]
[Comparative Example 2]
A battery was fabricated in the same manner as in Example 1 except that 0.5 M LiPF 6 and 0.5 M LiN (C 2 F 5 SO 2 ) 2 were used as the solute of the electrolytic solution.
The battery thus produced is hereinafter referred to as comparative battery X2.
[0025]
[Preliminary experiment 1]
A battery was produced by changing the material and thickness of the outer can, and the amount of increase in battery thickness after battery charging relative to the thickness after injection of the electrolyte was examined. The results are shown in Table 1.
The charging condition is that the battery voltage is charged to 4.1 V with a current of 1 C.
[0026]
[Table 1]
Figure 0004056123
[0027]
As is clear from Table 1 above, if the outer can is made of iron, the battery thickness hardly increases even if the thickness is 0.2 mm, and even if the outer can is an aluminum material, the thickness is 0.5 mm. There is almost no increase in battery thickness. On the other hand, when the outer can is made of an aluminum material and the thickness is 0.4 mm or 0.2 mm, the battery thickness is increased. In particular, when the thickness is 0.2 mm, it is recognized that the thickness is greatly increased.
However, if the outer can is made of iron, or the outer can is made of an aluminum material, the battery cannot be reduced in weight if the thickness is large. Therefore, it is desirable to use a thin aluminum material as the outer can.
[0028]
[Preliminary experiment 2]
After making the battery by changing the negative electrode material, the battery was charged under the same conditions as in Preliminary Experiment 1 above, and the amount of increase in battery thickness after battery charging relative to the thickness after electrolyte injection was investigated. It shows in Table 2.
[0029]
[Table 2]
Figure 0004056123
[0030]
As apparent from Table 2 above, when the negative electrode material is coke [d value (d 002 ) is 3.45 mm], the battery thickness hardly increases, whereas the negative electrode material is graphite (d value (d 002). ) Is 3.35 mm], it is recognized that the battery thickness has increased.
However, when coke is used as the negative electrode material, the battery capacity decreases, so it is desirable to use graphite as the negative electrode material.
Therefore, based on the results of the preliminary experiments 1 and 2, the following main experiment was performed.
[0031]
[This experiment]
In the present invention batteries A1 to A5 and comparative batteries X1 and X2, charging was performed under the same conditions as in the preliminary experiment 1, and the amount of increase in battery thickness after battery charging with respect to the thickness after injection of the electrolyte was investigated. The results are shown in Table 3.
[0032]
[Table 3]
Figure 0004056123
[0033]
As is clear from Table 3 above, the battery thickness increases in the comparative batteries X1 and X2 are 0.25 mm or more, whereas the battery thickness increases in the present invention batteries A1 to A5 are 0.05 mm or less. It is recognized that it is getting smaller.
Accordingly, LiN (C 2 F 5 SO 2 ) 2 is used as the solute of the electrolytic solution even if it has an exterior body made of an aluminum material having a thickness of 0.4 mm or less (0.2 mm in the present invention batteries A1 to A5). If a mixed lithium salt of LiPF 6 such as LiPF 6 is used and the ratio of LiPF 6 in the mixed lithium salt is regulated to 20 mol% or less, the increase in battery thickness after charging is reduced. I understand. In addition, in this case, since graphite (d 002 is 3.35%) is used for the negative electrode, the battery capacity is not reduced.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to minimize the swelling of the battery by suppressing the generation of gas inside the battery while reducing the weight of the battery. Play.

Claims (3)

厚みが0.4mm以下の金属アルミニウム又はアルミニウム合金から成る外装体を有し、この外装体内に、リチウム含有複合酸化物を正極材料とする正極と、格子面(002)面におけるd値(d002 )が3.40Å以下の炭素材料を負極材料とする負極と、溶媒及び溶質から成る電解液とが収納されたリチウムイオン電池において、
上記電解液の溶質として、下記化1に示すリチウム塩とLiPF6 との混合リチウム塩が用いられると共に、この混合リチウム塩におけるLiPF6 の割合が20モル%以下に規制されることを特徴とするリチウムイオン電池。
Figure 0004056123
It has an exterior body made of metallic aluminum or aluminum alloy having a thickness of 0.4 mm or less, and in this exterior body, a positive electrode using a lithium-containing composite oxide as a positive electrode material, and a d value (d002) on the lattice plane (002) plane In a lithium ion battery in which a negative electrode using a carbon material of 3.40% or less as a negative electrode material and an electrolyte solution composed of a solvent and a solute are housed,
As the solute of the electrolytic solution, a mixed lithium salt of lithium salt and LiPF 6 shown in the following chemical formula 1 is used, and the ratio of LiPF 6 in the mixed lithium salt is regulated to 20 mol% or less. Lithium ion battery.
Figure 0004056123
上記炭素材料が黒鉛である、請求項1記載のリチウムイオン電池。  The lithium ion battery according to claim 1, wherein the carbon material is graphite. 上記外装缶の厚みが0.2〜0.3mmである、請求項1又は2記載のリチウムイオン電池。The lithium ion battery according to claim 1 or 2, wherein the outer can has a thickness of 0.2 to 0.3 mm.
JP08377898A 1998-03-30 1998-03-30 Lithium ion battery Expired - Fee Related JP4056123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08377898A JP4056123B2 (en) 1998-03-30 1998-03-30 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08377898A JP4056123B2 (en) 1998-03-30 1998-03-30 Lithium ion battery

Publications (2)

Publication Number Publication Date
JPH11283668A JPH11283668A (en) 1999-10-15
JP4056123B2 true JP4056123B2 (en) 2008-03-05

Family

ID=13812084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08377898A Expired - Fee Related JP4056123B2 (en) 1998-03-30 1998-03-30 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP4056123B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4106644B2 (en) * 2000-04-04 2008-06-25 ソニー株式会社 Battery and manufacturing method thereof
JP4910239B2 (en) * 2000-12-25 2012-04-04 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP4599051B2 (en) * 2003-11-11 2010-12-15 株式会社東芝 Square non-aqueous electrolyte secondary battery
JP4319025B2 (en) * 2003-12-25 2009-08-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP5254825B2 (en) * 2009-01-29 2013-08-07 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP5215978B2 (en) 2009-10-28 2013-06-19 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP6865596B2 (en) * 2016-03-31 2021-04-28 マクセルホールディングス株式会社 Lithium secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177299B2 (en) * 1992-05-15 2001-06-18 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPH07235327A (en) * 1993-12-27 1995-09-05 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JP3249305B2 (en) * 1994-08-25 2002-01-21 三洋電機株式会社 Non-aqueous electrolyte battery
JPH08335465A (en) * 1995-04-01 1996-12-17 Sony Corp Nonaqueous electrolytic battery
JPH0950823A (en) * 1995-06-01 1997-02-18 Ricoh Co Ltd Secondary battery
JPH09147814A (en) * 1995-11-22 1997-06-06 Shin Kobe Electric Mach Co Ltd Organic electrolyte battery
JP3684561B2 (en) * 1996-08-20 2005-08-17 日本電池株式会社 battery
JP3349399B2 (en) * 1996-11-01 2002-11-25 三洋電機株式会社 Lithium secondary battery
JP4166295B2 (en) * 1997-03-27 2008-10-15 ソニー株式会社 Non-aqueous electrolyte battery
JP3030263B2 (en) * 1997-05-09 2000-04-10 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4056117B2 (en) * 1997-12-17 2008-03-05 三洋電機株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JPH11283668A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
JP4049506B2 (en) Lithium secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3249305B2 (en) Non-aqueous electrolyte battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5376800B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2007294433A (en) Nonaqueous electrolytic solution secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP4056123B2 (en) Lithium ion battery
JPH11283667A (en) Lithium ion battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP4636909B2 (en) Lithium secondary battery
JP2002042864A (en) Nonaqueous electrolyte secondary battery
JP4895625B2 (en) Lithium secondary battery
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH06196170A (en) Nonaqueous electrolyte secondary battery
JPH10334889A (en) Lithium secondary battery, and portable electrical apparatus and electric vehicle and motorcycle and power storage device using the lithium secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP3346739B2 (en) Non-aqueous electrolyte secondary battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JP4617702B2 (en) Lithium secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees