JP4041429B2 - Fuel cell electrode and manufacturing method thereof - Google Patents

Fuel cell electrode and manufacturing method thereof Download PDF

Info

Publication number
JP4041429B2
JP4041429B2 JP2003156528A JP2003156528A JP4041429B2 JP 4041429 B2 JP4041429 B2 JP 4041429B2 JP 2003156528 A JP2003156528 A JP 2003156528A JP 2003156528 A JP2003156528 A JP 2003156528A JP 4041429 B2 JP4041429 B2 JP 4041429B2
Authority
JP
Japan
Prior art keywords
electrode
fine particles
nitrogen
fuel cell
carbon alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003156528A
Other languages
Japanese (ja)
Other versions
JP2004362802A (en
Inventor
純一 尾崎
朝男 大谷
知典 穴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003156528A priority Critical patent/JP4041429B2/en
Publication of JP2004362802A publication Critical patent/JP2004362802A/en
Application granted granted Critical
Publication of JP4041429B2 publication Critical patent/JP4041429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用電極およびその製造方法に関し、詳しくは、貴金属触媒を用いないか、もしくはその使用量を低下させ、触媒担体自体に高活性な酸素還元触媒能を持たせた燃料電池用電極およびその製造方法に関する。
【0002】
【従来の技術】
高効率、無公害の燃料電池の実用化は、地球温暖化、環境汚染問題に対する重要な対処手段である。とくに昨今、電気自動車(FCEV)や定置用電熱併供システム(CG−FC)に用いられる固体高分子型燃料電池は、低コスト化の可能性が大きく、広く研究、開発競争が展開されている。
【0003】
かかる固体高分子型燃料電池において、その反応は多孔質ガス拡散電極内で起こる。十分な電流密度I(A/投影電極面積)を得るために、その電極としては、比表面積が大きくかつ導電性のあるカーボンブラックを多孔質構造体兼触媒担体としたものが一般に使用されている。また、その触媒としては白金(Pt)あるいは白金合金系触媒(Pt−Fe、Pt−Cr、Pt−Ru)が使用され、これら貴金属触媒が担体に高分散担持(粒径2〜数十nm)されている。
【0004】
固体高分子型燃料電池では、これまで特に、カソード極で起こる酸素の還元反応が非常に起こりにくいため、触媒である白金が多量に投入されてきた(例えば、1mg/cm2)。このため、固体高分子型燃料電池のコストに占める電極触媒のコストが高くなっていた。よって、固体高分子型燃料電池の実用化のためには、白金のような貴金属触媒を用いないか、もしくはその使用量を低下させることが重要な課題となっている。これを克服するために、超少量白金触媒担持法の開発や、有機金属化合物を用いる方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、固体高分子型燃料電池の電極触媒製造のコストは依然として高いものであり、低価格でかつ高活性な電極触媒の開発が強く望まれている。
【0006】
そこで本発明の目的は、安価で、かつカソード極で起こる酸素の還元反応を促進し得るカソード触媒を実現し、これにより固体高分子型燃料電池の実用化を促すことにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、従来白金を高分散に担持させる触媒担体として用いられてきた炭素材料自身に所定の条件下で酸素還元触媒能を持たせることにより、上記目的を達成し得ることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明は、含窒素化合物と熱硬化性樹脂の前駆体とを加熱反応させて窒素化合物含有熱硬化性樹脂を得る重合工程と、
得られた窒素化合物含有熱硬化性樹脂を400〜1500℃の温度で熱処理する炭素化工程と、
炭素化された窒素化合物含有熱硬化性樹脂を微粉砕して、窒素原子がドープされたカーボンアロイ微粒子を得る粉砕工程と、
得られたカーボンアロイ微粒子を燃料電池用電極としてそのまま、あるいは白金、白金合金系触媒またはN錯体触媒を担持させて電極とする工程と、
を包含し、
前記含窒素化合物としてフタロシアニンを用い、前記熱硬化性樹脂としてフラン樹脂を用いることを特徴とする燃料電池用電極の製造方法に関する。
【0012】
さらに、本発明は、フルフリルアルコールまたはレゾール型フェノール樹脂のメタノール溶液に、含窒素化合物と、含ホウ素化合物とを溶解させ、メタノール亜臨界又は超臨界条件下で重合反応を行う重合工程と、
得られた重合物微粒子を400〜1500℃の温度で熱処理して、窒素原子およびホウ素原子がドープされたカーボンアロイ微粒子を得る炭素化工程と、
得られたカーボンアロイ微粒子を燃料電池用電極としてそのまま、あるいは白金、白金合金系触媒またはN錯体触媒を担持させて電極とする工程と、
を包含することを特徴とする燃料電池用電極の製造方法に関する。
【0013】
本発明の上記製造方法においては、前記含ホウ素化合物としてBF3メタノール錯体を用いることが好ましい。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について具体的に説明する。
本発明に係るカーボンアロイ微粒子は、14族の炭素原子の両隣に位置するホウ素原子および窒素原子と炭素原子のいずれか一方、又は双方とのカーボンアロイ微粒子である。
【0015】
かかるカーボンアロイ微粒子により、これまで白金を高分散に担持させる触媒担体として用いられてきた炭素材料自身が酸素還元触媒能を有し、燃料電池用電極として好適に使用することが可能となる。
【0016】
本発明に係るカーボンアロイ微粒子においては、窒素原子またはホウ素原子のドープ量が0.5〜20原子%であるときに、酸素還元に関して良好な電極活性を示す。また、窒素原子とホウ素原子とを同時にドープしたときには、両者の相互作用により、より一層高い電極活性を示す。また、窒素原子(N)とホウ素(B)原子の双方をドープする場合には、原子比(B/N)は、好ましくは0.2〜0.4であり、また原子比((B+N)/C)は、好ましくは0.05〜0.3である。これら原子比の範囲内において両原子は良好に相互作用し、活性の高いカーボンアロイ粒子を得ることができる。
【0017】
窒素原子がドープされたカーボンアロイ微粒子は、以下のようにして製造することができる。まず、窒素源としての、フタロシアニン、アクリロニトリル、EDTA、メラミンなどの含窒素化合物と、フラン樹脂やフェノール樹脂などの熱硬化性樹脂の前駆体とを混合し、加熱反応させて、窒素化合物含有熱硬化性樹脂を得る。例えば、含窒素化合物としてフタロシアンを用い、熱硬化性樹脂としてフラン樹脂を用いる場合には、これらの混合物にトリフルオロ酢酸等の酸を添加し、好ましくは80〜200℃の範囲内の温度で加熱して、重合反応させることで、フタロシアニン含有フラン樹脂を得ることができる。
【0018】
得られたフタロシアニン含有フラン樹脂を、窒素やヘリウム等の不活性雰囲気下、400〜1500℃、好ましくは500〜1200℃の温度で熱処理して炭素化する。次いで、好ましくは遊星型ボールミル等のボールミルで、微粉砕することにより、窒素原子がドープされたカーボンアロイ微粒子を得ることができる。このようにして得られた微粒子は燃料電池用電極としてそのまま、あるいは少量の白金、白金合金系触媒、N4錯体触媒などを担持させて使用することができる。
【0019】
また、窒素原子およびホウ素原子がドープされたカーボンアロイ微粒子は、以下のようにして製造することができる。まず、フルフリルアルコールまたはレゾール型フェノール樹脂のメタノール溶液に、上記と同様の含窒素化合物と、ホウ素源としての、BF3メタノール錯体またはBF3テトラヒドロフラン(THF)錯体等の含ホウ素化合物とを溶解して、重合反応を行う。例えば、フルフリルアルコールのメタノール溶液、含窒素化合物としてのメラミン、および含ホウ素化合物としてのBF3メタノール錯体を用いた場合には、200〜350℃のメタノール亜臨界または超臨界条件下で、フルフリルアルコールの重合反応を行うことができる。
【0020】
得られた重合物微粒子を窒素やヘリウム等の不活性雰囲気下、400〜1500℃、好ましくは500〜1200℃の温度で熱処理して炭素化することにより、窒素原子およびホウ素原子がドープされたカーボンアロイ微粒子を得ることができる。このようにして得た微粒子は燃料電池用電極としてそのまま、あるは少量の白金、白金合金系触媒、N4錯体触媒などを担持させて使用することができる。
【0021】
【実施例】
以下、本発明を実施例に基づき説明する。
(実施例1)
窒素原子がドープされたカーボンアロイ微粒子の製造例
含窒素化合物であるフタロシアニンをフラン樹脂の前駆体に混合し、トリフルオロ酢酸を添加し、この混合物をオーブン中80℃で加熱することによりフタロシアニン含有フラン樹脂を得た。これを、窒素雰囲気下、600〜1500℃までの温度で熱処理し、次いで、遊星型ボールミルで数ミクロンに粉砕して、窒素原子がドープされたカーボンアロイ微粒子(以下「N−カーボンアロイ微粒子」と称する)を得た。
【0022】
(比較例1)
フタロシアニンを添加しなかった以外は実施例1と同様にして比較カーボン微粒子1を得た。
【0023】
(実施例2)
窒素原子およびホウ素原子がドープされたカーボンアロイ微粒子の製造例
フルフリルアルコールのメタノール溶液に、窒素源としてのメラミンと、ホウ素源としてのBF3メタノール錯体とを溶解させ、10分間程度撹拌した。次いで、これをテフロン(登録商標)ライナーつきのステンレス製耐圧容器に入れ、200℃から350℃に保持したオーブンに容器を静置することにより、亜臨界もしくは超臨界メタノール中でフルフリルアルコールの重合を行った。
【0024】
得られた内容物を開口径1μmのメンブレンフィルター上でろ過し、その通過物より溶媒を留去して、開口径0.45μmのメンブレンフィルター上で洗浄することにより、微粒子を得た。得られた重合体微粒子を、窒素雰囲気下、10℃/minの昇温速度、1000℃の温度で1時間炭素化を行い、窒素原子およびホウ素原子がドープされたカーボンアロイ微粒子((以下「N,B−カーボンアロイ微粒子A」と称する))を得た。
【0025】
(実施例3〜9)
窒素源としてのメラミンとホウ素源としてのBF3メタノール錯体との仕込み比を変えた以外は実施例2と同様にしてN,B−カーボンアロイ微粒子B〜Gを得た。元素分析およびX線光電子分光測定(XPS)の結果、得られたN,B−カーボンアロイ微粒子は窒素原子を最大で10原子%程度含む組成であることが示された。
【0026】
(比較例2)
窒素源としてのメラミンとホウ素源としてのBF3メタノール錯体とを添加せず、代わりに塩酸を適量添加した以外は実施例2と同様にして比較カーボン微粒子2を得た。
【0027】
N,B−カーボンアロイ微粒子A〜Gおよび比較カーボン微粒子2のXPSより求めた元素比および炭素化収率を下記の表1に示す。
【0028】
【表1】

Figure 0004041429
【0029】
酸素還元に関する電極活性試験
酸素還元に関する電極活性を、図1に模式的に示す3極回転電極セル1を用いて測定した。具体的には中央部の作用電極(回転電極)2は周囲が高分子絶縁体、中央部にガラス状炭素からなる電極部を持つ。この電極部に夫々以下のようにして調製した触媒インクを塗布し、作用電極とした。符号3は参照電極(Ag/AgCl)であり、符号4は対極(Pt)である。
【0030】
即ち、N−カーボンアロイ微粒子、N,B−カーボンアロイ微粒子A〜Gおよび比較カーボン微粒子1、2を、それぞれ5mg量り取り、これにバインダー(商品名:ナフィオン)溶液、水、エタノールを適量加え、各触媒インクを調製した。次いで、得られた触媒インクを微量ピペットにより吸い取り、回転電極装置のガラス状炭素部分(直径5mm)に塗布し、乾燥させることにより、作用電極を調製した。
【0031】
電解質溶液としては、1M硫酸水溶液に酸素を常温で溶解したものを用いた。回転速度1500rpmで電極を回転し、電位を、N−カーボンアロイ微粒子については掃引速度0.5mVs-1で、N,B−カーボンアロイ微粒子G、Eについては掃引速度20mVs-1で、夫々掃引して、そのときの電流を電位の関数として記録した。その結果を図2および図3に示す。図2はN−カーボンアロイ微粒子、図3はN,B−カーボンアロイ微粒子G、E、それぞれの結果である。なお、図2および図3には、夫々カーボン微粒子1、2による電流−電位曲線を比較のため、示してある。
【0032】
図2および図3に示す結果より、いずれのカーボンアロイ微粒子の場合も比較カーボン微粒子1、2に比べてより高い電位より酸素還元電流が流れはじめ、同じ電位で比較すると大きな電流密度を示すことが分かる。
【0033】
図4に、N,B−カーボンアロイ微粒子A〜GについてXPSより求めた元素比と酸素還元の開始電位との関係を示す。図4に示す結果より、窒素原子およびホウ素原子のドープ量(B+N)/Cの増加に従い、酸素還元活性が高くなっていることが分かる。また、N/CおよびB/Cとの比較により、窒素原子とホウ素原子のいずれが酸素還元にかかわっているのかを検討したところ、同図(b)および(c)に示すように両元素に対して同じ傾向が見られ、窒素およびホウ素が相互作用して活性をもたらすことが分かった。
【0034】
得られたN,B−カーボンアロイ微粒子A〜GのN1sX線光電子スペクトルおよびB1sX線光電子スペクトルを図5〜6に夫々示す。図5より、各N,B−カーボンアロイ微粒子は二つの存在状態を持っており、ホウ素原子および窒素原子のドープ量が少ないときには高結合エネルギー側のピークが優勢であるが、ドープ量が増加するとともにN1sの低エネルギー側のピークが優勢になってくることが分かる。これに対し、図6では、いずれのN,B−カーボンアロイ微粒子も単一のスペクトルを示すが、ホウ素原子および窒素原子のドープ量が増えるに従い結合エネルギーが高い側にシフトする傾向を示している。即ち、窒素原子では電子が増え、ホウ素原子では電子が減少していることが分かる。このことから、炭素原子中で窒素原子とホウ素原子は相互作用することにより電気的に陰性な窒素原子と電気的に陽性なホウ素原子を生成することにより、活性な炭素材料を与えているといえる。
【0035】
【発明の効果】
以上説明してきたように、本発明によれば、炭素自身の酸素還元に対する電極活性を向上させることができる。よって、これを用いることにより非白金系触媒および低白金量触媒を実現することができ、安価な固体高分子型燃料電池の開発が可能になる。
【図面の簡単な説明】
【図1】3極回転電極セルの模式図である。
【図2】N−カーボンアロイ微粒子の電位と電流との関係を示すグラフである。
【図3】N,B−カーボンアロイ微粒子G、Eの電位と電流との関係を示すグラフである。
【図4】(a)〜(c)は、夫々N,B−カーボンアロイ微粒子の酸素還元開始電位と、ホウ素原子および窒素原子の含有量との関係を示すグラフである。
【図5】N,B−カーボンアロイ微粒子A〜GのN1sX線光電子スペクトルを示すグラフである。
【図6】N,B−カーボンアロイ微粒子A〜GのB1sX線光電子スペクトルを示すグラフである。
【符号の説明】
1 3極回転電極セル
2 作用電極(炭素試料)
3 参照電極(Ag/AgCl)
4 対極(Pt)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for a fuel cell and a method for producing the same, and more specifically, for a fuel cell in which a noble metal catalyst is not used or the amount used is reduced and the catalyst carrier itself has a highly active oxygen reduction catalytic ability. The present invention relates to an electrode and a manufacturing method thereof.
[0002]
[Prior art]
Practical application of high-efficiency, pollution-free fuel cells is an important countermeasure for global warming and environmental pollution problems. In particular, recently, polymer electrolyte fuel cells used in electric vehicles (FCEV) and stationary combined heat and power systems (CG-FC) have a great potential for cost reduction, and research and development competition are widely deployed. .
[0003]
In such a polymer electrolyte fuel cell, the reaction occurs in the porous gas diffusion electrode. In order to obtain a sufficient current density I (A / projection electrode area), an electrode having a large specific surface area and conductive carbon black as a porous structure / catalyst support is generally used as the electrode. . As the catalyst, platinum (Pt) or a platinum alloy catalyst (Pt—Fe, Pt—Cr, Pt—Ru) is used, and these noble metal catalysts are supported in a highly dispersed state (particle diameter 2 to several tens of nm). Has been.
[0004]
In the polymer electrolyte fuel cell, in particular, since the oxygen reduction reaction that occurs at the cathode electrode is very difficult to occur, a large amount of platinum as a catalyst has been introduced (for example, 1 mg / cm 2 ). For this reason, the cost of the electrode catalyst which occupies the cost of the polymer electrolyte fuel cell is high. Therefore, in order to put the polymer electrolyte fuel cell into practical use, it is an important issue not to use a noble metal catalyst such as platinum or to reduce its use amount. In order to overcome this, development of a method for supporting an ultra-small amount of platinum catalyst and a method using an organometallic compound have been proposed.
[0005]
[Problems to be solved by the invention]
However, the cost of producing an electrode catalyst for a polymer electrolyte fuel cell is still high, and development of a low-cost and highly active electrode catalyst is strongly desired.
[0006]
Accordingly, an object of the present invention is to realize a cathode catalyst that is inexpensive and can promote a reduction reaction of oxygen occurring at the cathode electrode, thereby promoting the practical application of a polymer electrolyte fuel cell.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have made the carbon material itself, which has been used as a catalyst carrier for supporting platinum in a highly dispersed state, to have an oxygen reduction catalytic ability under predetermined conditions. The inventors have found that the above object can be achieved and have completed the present invention.
[0010]
That is, the present invention comprises a polymerization step in which a nitrogen compound and a thermosetting resin precursor are reacted by heating to obtain a nitrogen compound-containing thermosetting resin;
A carbonization step of heat-treating the obtained nitrogen compound-containing thermosetting resin at a temperature of 400 to 1500 ° C .;
Pulverizing a carbonized nitrogen compound-containing thermosetting resin to obtain carbon alloy fine particles doped with nitrogen atoms; and
A step of using the obtained carbon alloy fine particles as an electrode for a fuel cell as it is, or carrying platinum, a platinum alloy catalyst or an N 4 complex catalyst as an electrode;
Including
The present invention relates to a method for producing a fuel cell electrode, wherein phthalocyanine is used as the nitrogen-containing compound and furan resin is used as the thermosetting resin.
[0012]
Furthermore, the present invention includes a polymerization step of dissolving a nitrogen-containing compound and a boron-containing compound in a methanol solution of furfuryl alcohol or a resol type phenol resin, and performing a polymerization reaction under methanol subcritical or supercritical conditions;
A carbonization step of heat-treating the obtained polymer fine particles at a temperature of 400 to 1500 ° C. to obtain carbon alloy fine particles doped with nitrogen atoms and boron atoms;
A step of using the obtained carbon alloy fine particles as an electrode for a fuel cell as it is, or carrying platinum, a platinum alloy catalyst or an N 4 complex catalyst as an electrode;
It is related with the manufacturing method of the electrode for fuel cells characterized by including these.
[0013]
In the production method of the present invention, a BF 3 methanol complex is preferably used as the boron-containing compound.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
The carbon alloy fine particles according to the present invention are carbon alloy fine particles of boron atoms and nitrogen atoms and / or carbon atoms located on both sides of the group 14 carbon atoms.
[0015]
With such carbon alloy fine particles, the carbon material itself that has been used as a catalyst carrier for carrying platinum in a highly dispersed state has an oxygen reduction catalytic ability and can be suitably used as a fuel cell electrode.
[0016]
The carbon alloy fine particles according to the present invention exhibit good electrode activity with respect to oxygen reduction when the doping amount of nitrogen atoms or boron atoms is 0.5 to 20 atomic%. Further, when nitrogen atoms and boron atoms are simultaneously doped, a higher electrode activity is exhibited due to the interaction between the two. In addition, when both nitrogen atoms (N) and boron (B) atoms are doped, the atomic ratio (B / N) is preferably 0.2 to 0.4, and the atomic ratio ((B + N) / C) is preferably 0.05 to 0.3. Within the range of these atomic ratios, both atoms interact well, and highly active carbon alloy particles can be obtained.
[0017]
The carbon alloy fine particles doped with nitrogen atoms can be produced as follows. First, nitrogen-containing compounds such as phthalocyanine, acrylonitrile, EDTA, and melamine as nitrogen sources are mixed with precursors of thermosetting resins such as furan resins and phenol resins, and heat-reacted. A functional resin is obtained. For example, when phthalocyanine is used as the nitrogen-containing compound and furan resin is used as the thermosetting resin, an acid such as trifluoroacetic acid is added to these mixtures, preferably at a temperature in the range of 80 to 200 ° C. A phthalocyanine-containing furan resin can be obtained by heating and causing a polymerization reaction.
[0018]
The obtained phthalocyanine-containing furan resin is carbonized by heat treatment at a temperature of 400 to 1500 ° C., preferably 500 to 1200 ° C., under an inert atmosphere such as nitrogen or helium. Subsequently, carbon alloy fine particles doped with nitrogen atoms can be obtained by pulverizing preferably with a ball mill such as a planetary ball mill. The fine particles thus obtained can be used as a fuel cell electrode as it is or with a small amount of platinum, a platinum alloy-based catalyst, an N 4 complex catalyst or the like supported thereon.
[0019]
Further, carbon alloy fine particles doped with nitrogen atoms and boron atoms can be produced as follows. First, a nitrogen-containing compound similar to the above and a boron-containing compound such as BF 3 methanol complex or BF 3 tetrahydrofuran (THF) complex as a boron source are dissolved in a methanol solution of furfuryl alcohol or resol type phenol resin. The polymerization reaction is performed. For example, in the case of using a methanol solution of furfuryl alcohol, melamine as a nitrogen-containing compound, and BF 3 methanol complex as a boron-containing compound, furfuryl under a methanol subcritical or supercritical condition at 200 to 350 ° C. A polymerization reaction of alcohol can be performed.
[0020]
The obtained polymer fine particles are carbonized by heat treatment at a temperature of 400 to 1500 ° C., preferably 500 to 1200 ° C. in an inert atmosphere such as nitrogen or helium, so that carbon doped with nitrogen atoms and boron atoms is obtained. Alloy fine particles can be obtained. The fine particles obtained in this manner can be used as a fuel cell electrode as it is or with a small amount of platinum, a platinum alloy catalyst, an N 4 complex catalyst or the like supported thereon.
[0021]
【Example】
Hereinafter, the present invention will be described based on examples.
Example 1
Example of producing carbon alloy fine particles doped with nitrogen atoms Mixing phthalocyanine, a nitrogen-containing compound, with a furan resin precursor, adding trifluoroacetic acid, and heating the mixture at 80C in an oven. Thus, a phthalocyanine-containing furan resin was obtained. This was heat-treated at a temperature of 600 to 1500 ° C. in a nitrogen atmosphere, and then pulverized to a few microns with a planetary ball mill to form carbon alloy fine particles doped with nitrogen atoms (hereinafter referred to as “N-carbon alloy fine particles”). Obtained).
[0022]
(Comparative Example 1)
Comparative carbon fine particles 1 were obtained in the same manner as in Example 1 except that phthalocyanine was not added.
[0023]
(Example 2)
Example of production of carbon alloy fine particles doped with nitrogen atom and boron atom Melamine as a nitrogen source and BF 3 methanol complex as a boron source are dissolved in a methanol solution of furfuryl alcohol for about 10 minutes. Stir. Next, this is placed in a stainless steel pressure vessel with a Teflon (registered trademark) liner, and the vessel is left in an oven maintained at 200 ° C. to 350 ° C. to polymerize furfuryl alcohol in subcritical or supercritical methanol. went.
[0024]
The obtained contents were filtered on a membrane filter having an opening diameter of 1 μm, the solvent was distilled off from the passing material, and the fine particles were obtained by washing on a membrane filter having an opening diameter of 0.45 μm. The obtained polymer fine particles were carbonized in a nitrogen atmosphere at a heating rate of 10 ° C./min and a temperature of 1000 ° C. for 1 hour, and carbon alloy fine particles doped with nitrogen atoms and boron atoms (hereinafter referred to as “N , B-carbon alloy fine particles A ”))).
[0025]
(Examples 3 to 9)
N, B-carbon alloy fine particles B to G were obtained in the same manner as in Example 2 except that the charging ratio of melamine as a nitrogen source and BF 3 methanol complex as a boron source was changed. As a result of elemental analysis and X-ray photoelectron spectroscopy (XPS), it was shown that the obtained N, B-carbon alloy fine particles had a composition containing about 10 atom% of nitrogen atoms at the maximum.
[0026]
(Comparative Example 2)
Comparative carbon fine particles 2 were obtained in the same manner as in Example 2 except that melamine as a nitrogen source and BF 3 methanol complex as a boron source were not added, but an appropriate amount of hydrochloric acid was added instead.
[0027]
Table 1 below shows the element ratios and carbonization yields obtained from XPS of the N, B-carbon alloy fine particles A to G and the comparative carbon fine particles 2.
[0028]
[Table 1]
Figure 0004041429
[0029]
Electrode activity test for oxygen reduction The electrode activity for oxygen reduction was measured using a triode rotating electrode cell 1 schematically shown in FIG. Specifically, the central working electrode (rotating electrode) 2 has a polymer insulator on the periphery and an electrode portion made of glassy carbon in the central portion. A catalyst ink prepared as follows was applied to each of the electrode portions to form a working electrode. Reference numeral 3 is a reference electrode (Ag / AgCl), and reference numeral 4 is a counter electrode (Pt).
[0030]
Specifically, 5 mg of each of N-carbon alloy fine particles, N, B-carbon alloy fine particles A to G and comparative carbon fine particles 1 and 2 was weighed, and an appropriate amount of a binder (trade name: Nafion) solution, water and ethanol were added thereto. Each catalyst ink was prepared. Next, the obtained catalyst ink was sucked up by a small amount of pipette, applied to the glassy carbon portion (diameter 5 mm) of the rotating electrode device, and dried to prepare a working electrode.
[0031]
As the electrolyte solution, a 1 M sulfuric acid aqueous solution in which oxygen was dissolved at room temperature was used. The electrode was rotated at a rotational speed 1500 rpm, the potential, N- for carbon alloy particles at a sweep rate 0.5mVs -1, N, B- carbon alloy particles G, at a sweep rate 20MVs -1 for E, and each sweep The current at that time was recorded as a function of potential. The results are shown in FIG. 2 and FIG. FIG. 2 shows the results of N-carbon alloy fine particles, and FIG. 3 shows the results of N, B-carbon alloy fine particles G and E, respectively. 2 and 3 show current-potential curves for the carbon fine particles 1 and 2, respectively, for comparison.
[0032]
From the results shown in FIG. 2 and FIG. 3, it can be seen that the oxygen reduction current starts to flow from a higher potential than the comparative carbon fine particles 1 and 2 in any of the carbon alloy fine particles, and shows a large current density when compared at the same potential. I understand.
[0033]
FIG. 4 shows the relationship between the element ratio determined by XPS and the starting potential of oxygen reduction for N, B-carbon alloy fine particles A to G. From the results shown in FIG. 4, it can be seen that the oxygen reduction activity increases as the doping amount of nitrogen and boron atoms (B + N) / C increases. Also, by comparing N / C and B / C, which nitrogen atom or boron atom is involved in oxygen reduction was examined, both elements were found as shown in FIGS. (B) and (c). The same trend was seen for nitrogen and boron interacting to produce activity.
[0034]
The N1sX-ray photoelectron spectrum and B1sX-ray photoelectron spectrum of the obtained N, B-carbon alloy fine particles A to G are shown in FIGS. From FIG. 5, each N, B-carbon alloy fine particle has two existing states, and when the doping amount of boron atoms and nitrogen atoms is small, the peak on the high binding energy side is dominant, but the doping amount increases. It can be seen that the peak on the low energy side of N1s becomes dominant. On the other hand, in FIG. 6, although all N, B-carbon alloy fine particles show a single spectrum, the binding energy tends to shift to a higher side as the doping amount of boron atoms and nitrogen atoms increases. . That is, it can be seen that electrons increase in the nitrogen atom and decrease in the boron atom. From this, it can be said that an active carbon material is given by generating an electrically negative nitrogen atom and an electrically positive boron atom by interaction of a nitrogen atom and a boron atom in a carbon atom. .
[0035]
【The invention's effect】
As described above, according to the present invention, the electrode activity of carbon itself against oxygen reduction can be improved. Therefore, by using this, a non-platinum catalyst and a low platinum amount catalyst can be realized, and an inexpensive solid polymer fuel cell can be developed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a three-pole rotating electrode cell.
FIG. 2 is a graph showing the relationship between potential and current of N-carbon alloy fine particles.
FIG. 3 is a graph showing the relationship between potential and current of N, B-carbon alloy fine particles G and E.
FIGS. 4A to 4C are graphs showing the relationship between the oxygen reduction initiation potential of N, B-carbon alloy fine particles and the contents of boron atoms and nitrogen atoms, respectively.
FIG. 5 is a graph showing N1s X-ray photoelectron spectra of N, B-carbon alloy fine particles A to G;
6 is a graph showing B1s X-ray photoelectron spectra of N, B-carbon alloy fine particles A to G. FIG.
[Explanation of symbols]
1 Tripolar rotating electrode cell 2 Working electrode (carbon sample)
3 Reference electrode (Ag / AgCl)
4 Counter electrode (Pt)

Claims (3)

含窒素化合物と熱硬化性樹脂の前駆体とを加熱反応させて窒素化合物含有熱硬化性樹脂を得る重合工程と、
得られた窒素化合物含有熱硬化性樹脂を400〜1500℃の温度で熱処理する炭素化工程と、
炭素化された窒素化合物含有熱硬化性樹脂を微粉砕して、窒素原子がドープされたカーボンアロイ微粒子を得る粉砕工程と、
得られたカーボンアロイ微粒子を燃料電池用電極としてそのまま、あるいは白金、白金合金系触媒またはN 錯体触媒を担持させて電極とする工程と、
を包含し、
前記含窒素化合物としてフタロシアニンを用い、前記熱硬化性樹脂としてフラン樹脂を用いることを特徴とする燃料電池用電極の製造方法。
A polymerization step in which a nitrogen-containing compound and a thermosetting resin precursor are reacted by heating to obtain a nitrogen compound-containing thermosetting resin;
A carbonization step of heat-treating the obtained nitrogen compound-containing thermosetting resin at a temperature of 400 to 1500 ° C .;
Pulverizing a carbonized nitrogen compound-containing thermosetting resin to obtain carbon alloy fine particles doped with nitrogen atoms; and
A step of using the obtained carbon alloy fine particles as an electrode for a fuel cell as it is, or carrying platinum, a platinum alloy catalyst or an N 4 complex catalyst as an electrode;
Including
A method for producing an electrode for a fuel cell , wherein phthalocyanine is used as the nitrogen-containing compound and furan resin is used as the thermosetting resin .
フルフリルアルコールまたはレゾール型フェノール樹脂のメタノール溶液に、含窒素化合物と、含ホウ素化合物とを溶解させ、メタノール亜臨界又は超臨界条件下で重合反応を行う重合工程と、
得られた重合物微粒子を400〜1500℃の温度で熱処理して、窒素原子およびホウ素原子がドープされたカーボンアロイ微粒子を得る炭素化工程と、
得られたカーボンアロイ微粒子を燃料電池用電極としてそのまま、あるいは白金、白金合金系触媒またはN 錯体触媒を担持させて電極とする工程と、
を包含することを特徴とする燃料電池用電極の製造方法。
A polymerization step in which a nitrogen-containing compound and a boron-containing compound are dissolved in a methanol solution of furfuryl alcohol or a resol type phenol resin, and a polymerization reaction is performed under methanol subcritical or supercritical conditions;
A carbonization step of heat-treating the obtained polymer fine particles at a temperature of 400 to 1500 ° C. to obtain carbon alloy fine particles doped with nitrogen atoms and boron atoms;
A step of using the obtained carbon alloy fine particles as an electrode for a fuel cell as it is, or carrying platinum, a platinum alloy catalyst or an N 4 complex catalyst as an electrode;
A method for producing a fuel cell electrode, comprising:
前記含ホウ素化合物としてBFメタノール錯体を用いる請求項記載の燃料電池用電極の製造方法。The method for producing an electrode for a fuel cell according to claim 2, wherein a BF 3 methanol complex is used as the boron-containing compound.
JP2003156528A 2003-06-02 2003-06-02 Fuel cell electrode and manufacturing method thereof Expired - Fee Related JP4041429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156528A JP4041429B2 (en) 2003-06-02 2003-06-02 Fuel cell electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156528A JP4041429B2 (en) 2003-06-02 2003-06-02 Fuel cell electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004362802A JP2004362802A (en) 2004-12-24
JP4041429B2 true JP4041429B2 (en) 2008-01-30

Family

ID=34050585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156528A Expired - Fee Related JP4041429B2 (en) 2003-06-02 2003-06-02 Fuel cell electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4041429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362790B (en) * 2008-09-24 2010-12-15 中国人民解放军第四军医大学 Starfish saponins antineoplastic compounds

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331846A (en) * 2005-05-26 2006-12-07 Asahi Kasei Corp Electrode catalyst for fuel cell
CN101277900B (en) 2005-09-30 2013-01-23 旭化成化学株式会社 Nitrogenous carbon material and process for producing the same
WO2008111570A1 (en) 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly and fuel cell using the membrane-electrode assembly
CN101641810B (en) 2007-03-28 2012-01-25 旭化成化学株式会社 Electrode, lithium ion secondary battery using the same, electric double layer capacitor and fuel cell
EP2128083B1 (en) 2007-03-28 2018-10-17 Asahi Kasei Kabushiki Kaisha Nitrogenous carbon material and process for producing the same
JP5232999B2 (en) * 2007-05-11 2013-07-10 国立大学法人群馬大学 Method for producing electrode catalyst for carbon-based fuel cell
JP2009277360A (en) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The Catalyst carrier, catalyst body, and manufacturing method for them
JP5481646B2 (en) * 2008-06-04 2014-04-23 清蔵 宮田 Carbon catalyst, fuel cell, power storage device
JP5320579B2 (en) * 2008-06-05 2013-10-23 清蔵 宮田 Gas diffusion electrode and manufacturing method thereof, membrane electrode assembly and manufacturing method thereof, fuel cell member and manufacturing method thereof, fuel cell, power storage device and electrode material
JP5538760B2 (en) 2009-07-03 2014-07-02 清蔵 宮田 Oxidation catalyst, reduction catalyst and exhaust gas purification catalyst
JP5538761B2 (en) 2009-07-03 2014-07-02 清蔵 宮田 Oxidation catalyst, adsorbent and toxic substance purification material
JP4964292B2 (en) 2009-12-07 2012-06-27 日清紡ホールディングス株式会社 Electrode and battery
JP2011213586A (en) * 2010-03-18 2011-10-27 Teijin Ltd Carbon material and method for producing the same
JP5608595B2 (en) 2010-03-30 2014-10-15 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
CN101949879A (en) * 2010-09-14 2011-01-19 东南大学 Electrochemical electrolytic pool with stirring function
JP5638433B2 (en) 2011-03-24 2014-12-10 株式会社東芝 Electrolyzer and refrigerator
JP5443656B2 (en) * 2011-05-23 2014-03-19 帝人株式会社 Particulate carbon catalyst and method for producing the same
JP2013008650A (en) * 2011-06-23 2013-01-10 Nagasaki Institute Of Applied Science Fuel cell catalyst carrier and fuel cell
CN114938687A (en) * 2019-12-27 2022-08-23 Agc株式会社 Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362790B (en) * 2008-09-24 2010-12-15 中国人民解放军第四军医大学 Starfish saponins antineoplastic compounds

Also Published As

Publication number Publication date
JP2004362802A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4041429B2 (en) Fuel cell electrode and manufacturing method thereof
JP4452887B2 (en) Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst
JP4452889B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
Chetty et al. Effect of reduction temperature on the preparation and characterization of Pt− Ru nanoparticles on multiwalled carbon nanotubes
KR100953545B1 (en) Supported catalyst and method of preparing the same
JP4799897B2 (en) Fuel cell
WO2006003831A1 (en) Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst
US20070078052A1 (en) Methanol tolerant catalyst material
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
Ma et al. Cobalt based non-precious electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells
JP2004532734A (en) Platinum-free chelate catalyst material for selective oxygen reduction and method for producing the same
Maruyama et al. Formation of platinum-free fuel cell cathode catalyst with highly developed nanospace by carbonizing catalase
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
JP2006253147A (en) Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
Kuroki et al. Oxygen reduction activity of pyrolyzed polypyrroles studied by 15N solid-state NMR and XPS with principal component analysis
CN102078816A (en) Selenium/carbon compound material, preparation of selenium/carbon compound material and application of selenium/carbon compound material in fuel-cell catalyst preparation
KR20200001064A (en) The platinum-transition metal composite supported on carbon and method for preparing the same
JP2010201416A (en) Method for manufacturing electrode catalyst for fuel cell
CN109731599B (en) 2D oxygen reduction catalyst Fe3O4Preparation method of @ FeNC nanosheet
CN109546166B (en) Pt/metallic carbide/carbon nano material catalyst and preparation method thereof
JP2008173524A (en) Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby
CN111729680B (en) High-efficiency difunctional oxygen electrocatalyst with heterostructure and preparation and application thereof
CA2896623C (en) Non-pgm catalysts for orr based on charge transfer organic complexes
CN110600752B (en) H2Method for preparing carbon-supported Pt alloy catalyst by gas-phase thermal reduction
Zhong et al. Encapsulated iron-based oxygen reduction electrocatalysts by high pressure pyrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees