JP2006331846A - Electrode catalyst for fuel cell - Google Patents

Electrode catalyst for fuel cell Download PDF

Info

Publication number
JP2006331846A
JP2006331846A JP2005153643A JP2005153643A JP2006331846A JP 2006331846 A JP2006331846 A JP 2006331846A JP 2005153643 A JP2005153643 A JP 2005153643A JP 2005153643 A JP2005153643 A JP 2005153643A JP 2006331846 A JP2006331846 A JP 2006331846A
Authority
JP
Japan
Prior art keywords
fuel cell
heterodiamond
hydrogen
electrode catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153643A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005153643A priority Critical patent/JP2006331846A/en
Publication of JP2006331846A publication Critical patent/JP2006331846A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new nonmetallic compound as an electrode catalyst for a fuel cell. <P>SOLUTION: This electrode catalyst for the fuel cell contains B-C-N hetero diamond comprising carbon, nitrogen and boron as a main catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は非金属系の燃料電池用電極触媒に関するものであり、詳しくは炭素、窒素、及びホウ素から構成されるダイヤモンド構造物質(以下、B−C−Nヘテロダイヤモンドという)からなる燃料電池用電極触媒に関するものである。   TECHNICAL FIELD The present invention relates to a nonmetallic fuel cell electrode catalyst, and more specifically, a fuel cell electrode comprising a diamond structural material (hereinafter referred to as BCN heterodiamond) composed of carbon, nitrogen, and boron. It relates to a catalyst.

従来、固体高分子型燃料電池、ダイレクトメタノール燃料電池、ジメチルエーテル燃料電池等の燃料電池用電極触媒として白金、パラジウム、ロジウム、ルテニウム、イリジウム等の白金族元素が使用されている。しかし、これらの白金族元素は希少資源であることから、上記燃料電池の普及が危ぶまれている。   Conventionally, platinum group elements such as platinum, palladium, rhodium, ruthenium, and iridium have been used as electrode catalysts for fuel cells such as polymer electrolyte fuel cells, direct methanol fuel cells, and dimethyl ether fuel cells. However, since these platinum group elements are rare resources, the spread of the fuel cell is in danger.

また、白金族触媒は水素、酸素、メタノール、ジメチルエーテル等の小分子に対する特異的な極めて優れた活性化能を有することから、従来、白金族触媒に代替可能な非白金族触媒に関する報告は非常に少なく、上記燃料電池用電極触媒としての遷移金属系触媒が非特許文献及び特許文献において数例報告されているにすぎない。例えば、非特許文献1では、カーボンに坦持したポルフィリン遷移金属錯体の熱処理物が酸性溶液中で高い酸素還元能を示すことが報告されている。非特許文献2では、μ-hydroxy遷移金属錯体の熱処理物がメタノール中で高い酸素還元能を示すことが報告されている。特許文献1では、カーボンに坦持したN,N’-bis(salicylidene)ethylenediamine、N,N’-mono-8-quinolyl-o-phenylenediamine等の遷移金属錯体と白金化合物の混合物の熱処理物を白金の補助触媒として用いることが開示されている。   In addition, since platinum group catalysts have extremely excellent activation ability specific to small molecules such as hydrogen, oxygen, methanol, and dimethyl ether, there have been very few reports on non-platinum group catalysts that can be substituted for platinum group catalysts. Only a few examples of transition metal catalysts as fuel cell electrode catalysts have been reported in non-patent and patent documents. For example, Non-Patent Document 1 reports that a heat-treated product of a porphyrin transition metal complex supported on carbon exhibits a high oxygen reducing ability in an acidic solution. Non-Patent Document 2 reports that a heat-treated product of a μ-hydroxy transition metal complex exhibits high oxygen reducing ability in methanol. In Patent Document 1, a heat-treated product of a mixture of a transition metal complex such as N, N′-bis (salicylidene) ethylenediamine, N, N′-mono-8-quinolyl-o-phenylenediamine and a platinum compound supported on carbon is platinum. For use as an auxiliary catalyst.

特許文献2では、dithiooxamideの複核銅錯体を水素極として用いることが開示されている。これらの遷移金属系触媒の発見は、希少資源である白金族元素に代わる豊富で安価な電極触媒材料の開発を行う上で価値ある知見を与えている。しかしながら、従来の燃料電池用電極触媒はすべて金属又は金属化合物であるので、資源上の問題だけでなく、溶解性、耐水性、耐酸性、耐酸化性、水素燃料中の一酸化炭素による触媒被毒、及び耐腐食性における問題、環境汚染の問題、等のいろいろな問題を抱えている。一方、炭素、窒素、ホウ素等の非金属材料は、資源が豊富であり、上記の問題が起きるようなことは少ないが、通常、金属系触媒に見られるような触媒活性はないので、従来、これらの非金属系材料を燃料電池用電極触媒に応用するという考えは皆無であったように思われる。   Patent Document 2 discloses the use of a dithiooxamide dinuclear copper complex as a hydrogen electrode. The discovery of these transition metal-based catalysts has provided valuable knowledge for the development of abundant and inexpensive electrocatalyst materials that can replace platinum group elements, which are rare resources. However, since all conventional fuel cell electrode catalysts are metals or metal compounds, not only are there problems in terms of resources, but also solubility, water resistance, acid resistance, oxidation resistance, and catalyst coverage by carbon monoxide in hydrogen fuel. It has various problems such as poison and corrosion resistance problems and environmental pollution problems. On the other hand, non-metallic materials such as carbon, nitrogen, and boron are abundant in resources and rarely cause the above problems, but usually have no catalytic activity as seen in metallic catalysts, There seems to be no idea of applying these non-metallic materials to electrode catalysts for fuel cells.

E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984).E. Yeager, Electrochim. Acta, 29, 1527-1537 (1984). T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, Chemical Communications, 23, 2492-2493 (2001).T. Okada, Y. Suzuki, T. hirose, T. Toda, and T. Ozawa, Chemical Communications, 23, 2492-2493 (2001). 特開2002‐329500号公報JP 2002-329500 A 特開2004−31174号公報JP 2004-31174 A

本発明の目的は、上記の事情に鑑み、燃料電池用電極触媒として非金属系の電極触媒材料を提供することである。具体的には、炭素、窒素、ホウ素から成るB−C−Nヘテロダイヤモンドを触媒活性種とする新規の燃料電池用電極触媒を提供することである。   In view of the above circumstances, an object of the present invention is to provide a nonmetallic electrode catalyst material as an electrode catalyst for a fuel cell. Specifically, it is to provide a novel fuel cell electrode catalyst using a B—C—N heterodiamond made of carbon, nitrogen and boron as a catalytically active species.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、B−C−Nヘテロダイヤモンドが電極表面での酸化還元反応に有効であることを見いだし、この知見に基づ
いて本発明を完成させるに至った。
すなわち、本発明は、炭素、窒素、及びホウ素から構成されるB−C−Nヘテロダイヤモンドを主触媒として含有することを特徴とする燃料電池用電極触媒である。
As a result of intensive studies to achieve the above object, the present inventors have found that B—C—N heterodiamond is effective for the oxidation-reduction reaction on the electrode surface. The invention has been completed.
That is, the present invention is a fuel cell electrode catalyst characterized by containing, as a main catalyst, a B—C—N heterodiamond composed of carbon, nitrogen, and boron.

本発明の触媒活性種であるB−C−Nヘテロダイヤモンドは、従来非白金系の金属触媒では困難であった水素の解離吸着とプロトン捕捉の両方を行うことができる。例えば、ホウ素:炭素:窒素のモル組成比が1:2:1であるBC2Nヘテロダイヤモンドは室温で水素を解離吸着し、電子とプロトンにすることができる。 The B—C—N heterodiamond, which is a catalytically active species of the present invention, can perform both hydrogen dissociation adsorption and proton trapping, which has been difficult with conventional non-platinum metal catalysts. For example, a BC 2 N heterodiamond having a molar composition ratio of boron: carbon: nitrogen of 1: 2: 1 can dissociate and adsorb hydrogen at room temperature to form electrons and protons.

以下、本発明を詳細に説明する。
本発明で用いるB−C−Nヘテロダイヤモンドは、ダイヤモンドの炭素原子の一部が窒素原子、ホウ素原子と置換した構造を有するので、ホウ素原子及び窒素原子の性質も有する。結合に関与しているホウ素原子は電子不足であり、窒素原子は非結合電子対をもつ。また、炭素は原子価が4であり、ホウ素は3、窒素は3及び5であるので、B−C−Nヘテロダイヤモンドは原子欠損化合物であり、原子欠損由来の触媒サイトを有する。これらのことから、B−C−Nヘテロダイヤモンドを水素燃料電池用の水素極触媒として考えた場合、該ヘテロダイヤモンドのホウ素原子は水素分子に対して親和性があり水素分子を吸着することができ、窒素原子はプロトンに対して親和性がありプロトンを吸着することができる。吸着水素は、ヘテロダイヤモンドの触媒サイト上でラジカル解裂を経てプロトン化する。吸着プロトンは、加湿または加熱によって容易に脱着する。また、B−C−Nヘテロダイヤモンドはホウ素をドープしたダイヤモンドと同様に半導体的性質を有する。したがって、加熱、光照射、等によってフェルミレベルへの電子励起が起こり、導電性が現れる。
Hereinafter, the present invention will be described in detail.
Since the B—C—N heterodiamond used in the present invention has a structure in which a part of diamond carbon atoms is substituted with nitrogen atoms and boron atoms, it also has properties of boron atoms and nitrogen atoms. The boron atom participating in the bond is deficient in electrons, and the nitrogen atom has an unbonded electron pair. Further, since carbon has a valence of 4, boron is 3, and nitrogen is 3 and 5, B—C—N heterodiamond is an atom-deficient compound and has a catalytic site derived from atom deficiency. From these facts, when BCN heterodiamond is considered as a hydrogen electrode catalyst for hydrogen fuel cells, the boron atom of the heterodiamond has affinity for hydrogen molecules and can adsorb hydrogen molecules. The nitrogen atom has an affinity for protons and can adsorb protons. The adsorbed hydrogen is protonated through radical cleavage on the catalytic site of the hetero diamond. Adsorbed protons are easily desorbed by humidification or heating. In addition, B—C—N heterodiamond has semiconducting properties similar to boron-doped diamond. Therefore, electron excitation to the Fermi level occurs by heating, light irradiation, etc., and conductivity appears.

本発明では、B−C−Nヘテロダイヤモンドのこのような性質を燃料電池用電極触媒、特に、水素を燃料とする燃料電池の水素極用触媒に応用したものである。さらに、ヘテロダイヤモンドを上記の水素極触媒として用いることの利点は、水素ガスに通常含有される一酸化炭素による被毒がほとんどないこと、生成するプロトン酸による溶出がないこと、耐水性、耐酸化性が高いこと、化学物質、熱、圧力、等による構造変化がほとんどないこと、などである。また、ヘテロダイヤモンドを水素燃料電池用の空気極用触媒として考えた場合には、水素極から運ばれたプロトンを吸着した後、吸着プロトンを空気中の酸素によって1電子還元し、水に戻すことができる。この時、従来の白金触媒では空気極において水和プロトンから過酸化水素及びヒドロキシラジカルを発生するという問題があるが、ヘテロダイヤモンドではこのような問題がみられないので、水素燃料電池用の空気極用触媒としても好ましい。   In the present invention, such a property of B—C—N heterodiamond is applied to an electrode catalyst for a fuel cell, particularly a hydrogen electrode catalyst for a fuel cell using hydrogen as a fuel. Furthermore, the advantages of using heterodiamond as the above-mentioned hydrogen electrode catalyst are that there is almost no poisoning by carbon monoxide normally contained in hydrogen gas, there is no elution by the generated proton acid, water resistance, oxidation resistance High structural properties, almost no structural changes due to chemical substances, heat, pressure, etc. In addition, when heterodiamond is considered as an air electrode catalyst for hydrogen fuel cells, after adsorbing protons carried from the hydrogen electrode, the adsorbed protons are reduced by one electron with oxygen in the air and returned to water. Can do. At this time, the conventional platinum catalyst has a problem of generating hydrogen peroxide and hydroxy radicals from hydrated protons in the air electrode, but such problems are not seen in the hetero diamond, so the air electrode for hydrogen fuel cell is not used. It is also preferred as a catalyst for use.

本発明で用いるB−C−Nヘテロダイヤモンドの元素組成であるB:C:Nの比率は、特に制限されるものではなく任意であるが、通常、原子対である〔BN〕に対してCのモル比率が1〜10であるのが好ましい。また、B:Nの比率は通常1:1であるが、非量論比であってもよい。該ヘテロダイヤモンドの合成法は特に限定するものではなく公知の方法でよいが、例えば、特開平6-316411号公報に記載の方法が好ましい。
上記方法は、炭素、窒素、ホウ素から成るヘテロカーボン材料を爆薬の衝撃波によって衝撃圧縮することにより合成する方法である。該方法では、B−C−Nヘテロダイヤモンドが平均粒径10nm以下の一次粒子からなる多結晶体の微粉末として得られるので、高比表面積化が必要な電極用触媒材料として好ましいからである。
The ratio of B: C: N, which is the elemental composition of the B—C—N heterodiamond used in the present invention, is not particularly limited and is arbitrary, but is usually C with respect to [BN] which is an atomic pair. The molar ratio is preferably 1 to 10. Further, the ratio of B: N is usually 1: 1, but may be a non-stoichiometric ratio. The method for synthesizing the hetero diamond is not particularly limited and may be a known method, but for example, the method described in JP-A-6-316411 is preferable.
The above-mentioned method is a method of synthesizing a heterocarbon material composed of carbon, nitrogen, and boron by shock compression using an explosive shock wave. In this method, B—C—N heterodiamond is obtained as a polycrystalline fine powder composed of primary particles having an average particle size of 10 nm or less, which is preferable as a catalyst material for an electrode that requires a high specific surface area.

本発明では、B−C−Nヘテロダイヤモンドを通常、導電性炭素材料と混合した混合物として用いる。従来の燃料電池用電極触媒は、通常、白金を導電性の炭素材料に担持した
ものであり、該炭素材料の役割は、主として、触媒である白金を均一高分散するための担体としての機能、電子伝導体としての機能、及びプロトンの捕捉剤としての機能である。導電性炭素材料としては、通常、グラファイト構造の活性炭が使用されており、特に問題は生じていない。したがって、本発明においても上記の目的のために導電性炭素材料を用いる。導電性炭素材料は、特に限定するものではない。例えば、グラファイト構造の活性炭、導電性アセチレンブラック、等が好ましい。B−C−Nヘテロダイヤモンドと導電性炭素材料の混合比率は任意であり目的に応じて適宜きめればよい。通常、ヘテロダイヤモンドの含有率は、1〜10質量%である。これらの材料の混合方法としては、例えば、粉末状での直接的な混合方法、ヘテロダイヤモンドをコロイド状に分散した分散液を導電性炭素材料に吸収させた後に乾燥する方法、等を用いることができる。
In the present invention, B—C—N heterodiamond is usually used as a mixture mixed with a conductive carbon material. Conventional fuel cell electrode catalysts are usually those in which platinum is supported on a conductive carbon material, and the role of the carbon material is mainly a function as a carrier for uniformly and highly dispersing platinum as a catalyst, The function as an electron conductor and the function as a proton scavenger. As the conductive carbon material, activated carbon having a graphite structure is usually used, and there is no particular problem. Therefore, also in the present invention, a conductive carbon material is used for the above purpose. The conductive carbon material is not particularly limited. For example, activated carbon having a graphite structure, conductive acetylene black, and the like are preferable. The mixing ratio of the B—C—N heterodiamond and the conductive carbon material is arbitrary and may be appropriately determined according to the purpose. Usually, the content of hetero diamond is 1 to 10% by mass. As a method for mixing these materials, for example, a direct mixing method in a powder form, a method of drying a colloidal dispersion of a hetero diamond absorbed in a conductive carbon material, or the like may be used. it can.

前記に述べたように、本発明のB−C−Nヘテロダイヤモンドと導電性炭素材料の混合物は、水素の解離吸着を行いそれによって生成したプロトンと電子を効率的に捕捉することができるので、燃料電池用の電極触媒として、特に水素極の電極触媒として、有効に用いることができる。本発明の水素極触媒は、通常、従来の方法、すなわち、B−C−Nヘテロダイヤモンドと導電性炭素材料の混合物を集電材料に塗布する(集電材料の片面には固体高分子電解質膜を塗布している)ことによって作成し、加湿下で用いることができる。   As described above, since the mixture of the B—C—N heterodiamond of the present invention and the conductive carbon material can dissociate and adsorb hydrogen to efficiently capture protons and electrons generated thereby, It can be effectively used as an electrode catalyst for a fuel cell, particularly as an electrode catalyst for a hydrogen electrode. The hydrogen electrode catalyst of the present invention is usually applied to a current collecting material by a conventional method, that is, a mixture of B—C—N heterodiamond and a conductive carbon material (a solid polymer electrolyte membrane on one side of the current collecting material). Can be used under humidification.

以下に実施例などを挙げて本発明を具体的に説明する。
「実施例1」
特開平6−316411号公報に記載の方法に従ってBC2 Nを合成した。即ち、次の通りである。
The present invention will be specifically described below with reference to examples.
"Example 1"
BC 2 N was synthesized according to the method described in JP-A-6-316411. That is, it is as follows.

三塩化ホウ素、アセチレン、アンモニアの三成分を高温処理して黒鉛状物質の粉末を得た。このものは、元素分析の結果B:C:Nの比が1.0:2.0:1.0の比であり、水素を約1%含有していた。粉末X線回折法による結果、黒鉛構造特有の強い回折ピーク(0,0,2面からのピーク)がみられた。前記粉末と平均粒径が約0.05mmの隣片状銅粉を重量比で10:90の割合で混合攪拌し、混合物を金型に入れ、プレス成型することにより、直径20mm、厚さ約5mmの円板状成形体を得た。成形体は理論値の70%の密度を有している。この成形体を試料として図1に示す方法で衝撃処理を行った。   Three components of boron trichloride, acetylene and ammonia were treated at a high temperature to obtain a graphite-like substance powder. As a result of elemental analysis, the ratio of B: C: N was 1.0: 2.0: 1.0, and this contained about 1% of hydrogen. As a result of the powder X-ray diffraction method, a strong diffraction peak (peak from 0, 0, 2 plane) peculiar to the graphite structure was observed. The powder and the adjacent flaky copper powder having an average particle diameter of about 0.05 mm are mixed and stirred at a weight ratio of 10:90, and the mixture is put into a mold and press-molded to obtain a diameter of about 20 mm and a thickness of about A 5 mm disk-shaped molded body was obtained. The shaped body has a density of 70% of theory. Using this molded body as a sample, impact treatment was performed by the method shown in FIG.

図1において***1を爆発させることにより平面状爆轟波発生装置2を起爆させ、主爆薬3の上端平面部を同時起爆させる。平面状の爆轟波は下方向に進行し、金属板4を高速度でプラスチック筒5をガイドにして空隙6中を下方向に飛翔させる。金属板4が試料保持容器8に衝突すると、衝突面から保持容器8中を下方向に衝撃波が伝播し、この衝撃波は試料容器9を透過し試料10を圧縮する。7、7’はリング状のスチール製の管で、また、11は鉛のような重い物質でできた肉厚状のリングである。7、7’、11は運動量捕獲材(モーメンタムトラップ)と呼ばれるもので、衝撃圧縮の際に生じた運動量を自分自身が周囲へ飛散破壊し持ち去ることにより、試料容器9の破壊を防止するのに用いられる。金属飛翔板4は、主爆薬3の爆轟圧力が十分大きい場合省略し、主爆薬3の下面と容器8の上面を接触させて使用することもできる。   In FIG. 1, the detonator 1 is exploded to cause the planar detonation wave generator 2 to detonate, and the upper end plane portion of the main explosive 3 is simultaneously detonated. The planar detonation wave travels downward and causes the metal plate 4 to fly downward in the gap 6 with the plastic cylinder 5 as a guide at a high speed. When the metal plate 4 collides with the sample holding container 8, a shock wave propagates downward from the collision surface through the holding container 8, and the shock wave passes through the sample container 9 and compresses the sample 10. 7 and 7 'are ring-shaped steel tubes, and 11 is a thick ring made of a heavy substance such as lead. 7, 7 ′ and 11 are called momentum traps (momentum traps), and the momentum generated during impact compression is scattered to the surroundings and taken away to prevent the sample container 9 from being destroyed. Used. The metal flying plate 4 can be omitted when the detonation pressure of the main explosive 3 is sufficiently large, and the lower surface of the main explosive 3 and the upper surface of the container 8 can be used in contact with each other.

主爆薬はシクロテトラメチレンテトラニトラミンと過塩素酸ナトリウムの66%水溶液を重量比で85:15に混合して得られるスラリー状の爆薬を重量にして約200g用いた。金属飛翔板は径および肉厚が76mm、3mmの銅板を用いた。試料容器は内径20mm、外径30mm、高さ20mmのステンレススチール製で、これを包む保護容器は内径、外径、高さがそれぞれ30mm、50mm、40mmのしんちゅう製であり、さらにその外側をスチール製の運動量捕獲材および鉛で取り巻いた。
試料内に発生する衝撃波は約27GPaと推定された。爆発処理後、試料容器を回収し、機械加工によって試料を取り出し、硝酸と塩酸を用いて金属分を溶解させ、不溶物の分離・乾燥操作を行い最終的に黒色のBC2 N微粉末を得た。
As the main explosive, about 200 g of slurry explosive obtained by mixing a 66% aqueous solution of cyclotetramethylenetetranitramine and sodium perchlorate at a weight ratio of 85:15 was used. As the metal flying plate, a copper plate having a diameter and a thickness of 76 mm and 3 mm was used. The sample container is made of stainless steel with an inner diameter of 20 mm, an outer diameter of 30 mm, and a height of 20 mm. The protective container that encloses the sample container is made of brass with an inner diameter, an outer diameter, and a height of 30 mm, 50 mm, and 40 mm, respectively. Surrounded by steel momentum capture material and lead.
The shock wave generated in the sample was estimated to be about 27 GPa. After the explosion treatment, collect the sample container, take out the sample by machining, dissolve the metal with nitric acid and hydrochloric acid, separate and dry the insoluble matter, and finally obtain a black BC 2 N fine powder It was.

合成したBC2Nヘテロダイヤモンドの微粉末を300℃で1時間真空乾燥した後、室温に放冷し、これを赤外拡散反射スペクトル測定用セルの試料台に設置し、水素ガスを導入、排気後、赤外スペクトル測定装置(JASCO FT-IR 460)によって、サンプルに吸着した水素の吸着状態を調べた。その結果、アミンに帰属される吸収ピークが3400cm-1付近、及び1600cm-1付近に観測された。これらの吸収ピークは水素吸着処理を行わないBC2Nヘテロダイヤモンドには観測されないことから、水素吸着処理後のヘテロダイヤモンド上に吸着した水素は、水素分子に留まらずにプロトン化することを示している。また、試料台を毎分10℃の昇温速度で加熱して脱着挙動を調べると、約60℃からプロトンの脱離が開始することがわかった。これらの結果から、水素分子はB−C−Nヘテロダイヤモンドに解離吸着し、生成したプロトンは該ヘテロダイヤモンドに効率よく捕捉され、捕捉されたプロトンは温和な加熱によって脱離することがわかった。
このBC2 Nヘテロダイヤモンドの微粉末を導電性炭素材料と混合して水素極の電極触媒とし、常法通りに燃料電池を組立てて運転評価したところ、電力の発生を確認した。
The synthesized BC 2 N heterodiamond fine powder is vacuum-dried at 300 ° C. for 1 hour and then allowed to cool to room temperature. This is placed on the sample stage of the infrared diffuse reflectance spectrum measurement cell, and hydrogen gas is introduced and exhausted. Thereafter, the adsorption state of hydrogen adsorbed on the sample was examined by an infrared spectrum measuring apparatus (JASCO FT-IR 460). As a result, the absorption peak attributable to the amine was observed near 3400 cm -1, and around 1600 cm -1. These absorption peaks are not observed in BC 2 N heterodiamond without hydrogen adsorption treatment, indicating that hydrogen adsorbed on heterodiamond after hydrogen adsorption treatment is protonated without staying in hydrogen molecules. Yes. Further, when the desorption behavior was examined by heating the sample stage at a temperature rising rate of 10 ° C. per minute, it was found that proton desorption started from about 60 ° C. From these results, it was found that the hydrogen molecules were dissociated and adsorbed on the B—C—N hetero diamond, the generated protons were efficiently captured by the hetero diamond, and the captured protons were desorbed by mild heating.
This fine powder of BC 2 N heterodiamond was mixed with a conductive carbon material to form an electrode catalyst for a hydrogen electrode, and a fuel cell was assembled and evaluated in the usual manner. As a result, generation of electric power was confirmed.

本発明のB−C−Nヘテロダイヤモンドは燃料電池用電極触媒として有用である。 The B—C—N heterodiamond of the present invention is useful as a fuel cell electrode catalyst.

平面型衝撃圧縮処理装置の縦断面図を示す。The longitudinal cross-sectional view of a planar impact compression processing apparatus is shown.

符号の説明Explanation of symbols

1.***
2.平面状爆轟波発生装置
3.主爆薬
4.金属板
5.プラスチック筒
6.空隙
7,7’.管(スチール製)
8.保持容器
9.試料容器
10.試料
11.リング

1. Detonator 2. Planar detonation wave generator 3. Main explosive 4. Metal plate 5. Plastic cylinder 6. Gap 7, 7 '. Tube (steel)
8). Holding container 9. Sample container 10. Sample 11. ring

Claims (1)

炭素、窒素、及びホウ素から構成されるB−C−Nヘテロダイヤモンドを主触媒として含有することを特徴とする燃料電池用電極触媒。
A fuel cell electrode catalyst comprising a BCN heterodiamond composed of carbon, nitrogen, and boron as a main catalyst.
JP2005153643A 2005-05-26 2005-05-26 Electrode catalyst for fuel cell Pending JP2006331846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153643A JP2006331846A (en) 2005-05-26 2005-05-26 Electrode catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153643A JP2006331846A (en) 2005-05-26 2005-05-26 Electrode catalyst for fuel cell

Publications (1)

Publication Number Publication Date
JP2006331846A true JP2006331846A (en) 2006-12-07

Family

ID=37553327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153643A Pending JP2006331846A (en) 2005-05-26 2005-05-26 Electrode catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP2006331846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148115A1 (en) 2008-06-04 2009-12-10 国立大学法人群馬大学 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
WO2012161335A1 (en) 2011-05-23 2012-11-29 帝人株式会社 Particulate carbon catalyst and method for producing same
WO2015079956A1 (en) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing carbon catalyst, as well as electrode for alkaline fuel cell, and alkaline fuel cell
WO2015137377A1 (en) * 2014-03-11 2015-09-17 旭化成ケミカルズ株式会社 Nitrogen-containing carbon material and method for manufacturing same, and slurry, ink, and electrode for fuel cell
CN114497595A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Nitrogen-boron doped carbon material, platinum-carbon catalyst, and preparation methods and applications thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348296A (en) * 2000-04-05 2001-12-18 Kobe Steel Ltd Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
WO2003066930A1 (en) * 2002-02-05 2003-08-14 Element Six (Pty) Ltd Diamond electrode
JP2004083625A (en) * 2002-08-22 2004-03-18 Asahi Kasei Corp Abrasive material
JP2004142958A (en) * 2002-10-21 2004-05-20 National Institute For Materials Science Three-component based nanotube consisting of boron-carbon-nitrogen atoms, and production method therefor
JP2004210562A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
WO2004111310A2 (en) * 2003-06-19 2004-12-23 Akzo Nobel N.V. Electrode
JP2004362802A (en) * 2003-06-02 2004-12-24 Japan Science & Technology Agency Electrode for fuel cell, and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348296A (en) * 2000-04-05 2001-12-18 Kobe Steel Ltd Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
WO2003066930A1 (en) * 2002-02-05 2003-08-14 Element Six (Pty) Ltd Diamond electrode
JP2004083625A (en) * 2002-08-22 2004-03-18 Asahi Kasei Corp Abrasive material
JP2004142958A (en) * 2002-10-21 2004-05-20 National Institute For Materials Science Three-component based nanotube consisting of boron-carbon-nitrogen atoms, and production method therefor
JP2004210562A (en) * 2002-12-27 2004-07-29 National Institute For Materials Science Silicon carbide nanowire or silicon nitride nanowire coated with boron nitride, and production method therefor
JP2004362802A (en) * 2003-06-02 2004-12-24 Japan Science & Technology Agency Electrode for fuel cell, and its manufacturing method
WO2004111310A2 (en) * 2003-06-19 2004-12-23 Akzo Nobel N.V. Electrode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148115A1 (en) 2008-06-04 2009-12-10 国立大学法人群馬大学 Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
US9373849B2 (en) 2008-06-04 2016-06-21 National University Corporation Gunma University Carbon catalyst, method for producing carbon catalyst, fuel cell, electricity storage device, and use of carbon catalyst
WO2012161335A1 (en) 2011-05-23 2012-11-29 帝人株式会社 Particulate carbon catalyst and method for producing same
KR20140032445A (en) 2011-05-23 2014-03-14 데이진 가부시키가이샤 Particulate carbon catalyst and method for producing same
US9692060B2 (en) 2011-05-23 2017-06-27 Teijin Limited Particulate carbon catalyst including nitrogen and metal and method for producing the same
WO2015079956A1 (en) * 2013-11-29 2015-06-04 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing carbon catalyst, as well as electrode for alkaline fuel cell, and alkaline fuel cell
JP2015106512A (en) * 2013-11-29 2015-06-08 日清紡ホールディングス株式会社 Carbon catalyst for alkaline fuel cell and method for producing the same, electrode for alkaline fuel cell, and alkaline fuel cell
WO2015137377A1 (en) * 2014-03-11 2015-09-17 旭化成ケミカルズ株式会社 Nitrogen-containing carbon material and method for manufacturing same, and slurry, ink, and electrode for fuel cell
JPWO2015137377A1 (en) * 2014-03-11 2017-04-06 旭化成株式会社 Nitrogen-containing carbon material, production method thereof, slurry, ink, and fuel cell electrode
US10727495B2 (en) 2014-03-11 2020-07-28 Asahi Kasei Kabushiki Kaisha Nitrogen-containing carbon material and process for producing nitrogen-containing carbon material, and slurry, ink, and electrode for fuel cell
CN114497595A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Nitrogen-boron doped carbon material, platinum-carbon catalyst, and preparation methods and applications thereof

Similar Documents

Publication Publication Date Title
Pang et al. Electrochemical oxygen reduction for H 2 O 2 production: catalysts, pH effects and mechanisms
CN111420691B (en) Metal monoatomic catalyst and preparation method thereof
Yang et al. Pt–Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities
Giorgi et al. H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt–Ru/C electrocatalysts
Silva et al. AuPd/C core–shell and alloy nanoparticles with enhanced catalytic activity toward the electro-oxidation of ethanol in alkaline media
Wong et al. Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications
Liu et al. Ambient Electrosynthesis of Ammonia on a Core–Shell‐Structured Au@ CeO2 Catalyst: Contribution of Oxygen Vacancies in CeO2
Gabe et al. Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes
Rees et al. Carbon-free energy: a review of ammonia-and hydrazine-based electrochemical fuel cells
Wang et al. Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3
Zhai et al. Energetic carbon-based hybrids: green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR
Ghosh et al. Palladium-nitrogen coordinated cobalt alloy towards hydrogen oxidation and oxygen reduction reactions with high catalytic activity in renewable energy generations of proton exchange membrane fuel cell
Seo et al. Toward new fuel cell support materials: a theoretical and experimental study of nitrogen‐doped graphene
Yu et al. Enhancing the Catalytic Activity of Zeolitic Imidazolate Framework‐8‐Derived N‐Doped Carbon with Incorporated CeO2 Nanoparticles in the Oxygen Reduction Reaction
Daniel et al. Platinum-free electrocatalysts for oxygen reduction reaction: Fe-Nx modified mesoporous carbon prepared from biosources
Fang et al. Unusual photocatalytic materials with UV-VIS-NIR spectral response: deciphering the photothermocatalytic synergetic effect of Pt/LaVO 4/TiO 2
Ralbag et al. Composite materials with combined electronic and ionic properties
Du et al. NiPt nanocatalysts supported on boron and nitrogen Co‐doped graphene for superior hydrazine dehydrogenation and methanol oxidation
Jena et al. Curtailing the Overpotential of Li–CO2 Batteries with Shape‐Controlled Cu2O as Cathode: Effect of Illuminating the Cathode
JP2006331846A (en) Electrode catalyst for fuel cell
Huang et al. Facile Self‐Assembly Synthesis of PdPt Bimetallic Nanotubes with Good Performance for Ethanol Oxidation in an Alkaline Medium
Li et al. High Performance 3D Self‐Supporting Cu− Bi Aerogels for Electrocatalytic Reduction of CO2 to Formate
Bai et al. A facile one-step preparation of a Pd–Co bimetallic hollow nanosphere electrocatalyst for ethanol oxidation
CN106268795A (en) The preparation method of metal-oxide cerium catalyst and the application in carbon dioxide electro-catalysis is reduced thereof
Ejikeme et al. Promotional Effects of Nanodiamond‐Derived Onion‐Like Carbons on the Electrocatalytic Properties of Pd‐MnO2 for the Oxidation of Glycerol in Alkaline Medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329