JP4452887B2 - Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst - Google Patents

Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst Download PDF

Info

Publication number
JP4452887B2
JP4452887B2 JP2005204029A JP2005204029A JP4452887B2 JP 4452887 B2 JP4452887 B2 JP 4452887B2 JP 2005204029 A JP2005204029 A JP 2005204029A JP 2005204029 A JP2005204029 A JP 2005204029A JP 4452887 B2 JP4452887 B2 JP 4452887B2
Authority
JP
Japan
Prior art keywords
transition metal
fuel cell
nitrogen
electrode catalyst
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005204029A
Other languages
Japanese (ja)
Other versions
JP2007026746A (en
Inventor
純一 尾崎
朝男 大谷
直文 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2005204029A priority Critical patent/JP4452887B2/en
Publication of JP2007026746A publication Critical patent/JP2007026746A/en
Application granted granted Critical
Publication of JP4452887B2 publication Critical patent/JP4452887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、白金や白金合金等の貴金属を全く担持しない燃料電池用電極触媒を製造する方法と、この方法により製造された電極触媒と、この電極触媒を用いた燃料電池に関するものである。   The present invention relates to a method for producing an electrode catalyst for a fuel cell that does not carry any precious metal such as platinum or a platinum alloy, an electrode catalyst produced by this method, and a fuel cell using this electrode catalyst.

高効率、無公害の燃料電池の実用化は、地球温暖化、環境汚染問題に対する重要な対処手段である。とくに昨今、燃料電池自動車(FCV:Fuel Cell Vehicle)や家庭用のコージェネレーション電源等に用いられる固体高分子型燃料電池は、低コスト化の可能性が大きく、広く研究、開発競争が展開されている。
こうした固体高分子型燃料電池において、その反応は多孔質ガス拡散電極内で起こる。十分な電流密度I(A/投影電極面積)を得るために、その電極としては、比表面積が大きくかつ導電性のあるカーボンブラックを多孔質構造体兼触媒担体としたものが一般に使用されている。また、その触媒としては白金(Pt)あるいは白金合金系触媒(Pt−Fe,Pt−Cr,Pt−Ru)が使用され、これら貴金属触媒が担体に高分散担持(粒径2〜数十nm)されている。
Practical application of high-efficiency, pollution-free fuel cells is an important countermeasure for global warming and environmental pollution problems. In particular, solid polymer fuel cells used for fuel cell vehicles (FCVs) and cogeneration power sources for household use have great potential for cost reduction, and research and development competition has been widely developed. Yes.
In such a polymer electrolyte fuel cell, the reaction occurs in the porous gas diffusion electrode. In order to obtain a sufficient current density I (A / projection electrode area), an electrode having a large specific surface area and conductive carbon black as a porous structure / catalyst support is generally used as the electrode. . As the catalyst, platinum (Pt) or a platinum alloy catalyst (Pt—Fe, Pt—Cr, Pt—Ru) is used, and these noble metal catalysts are supported in a highly dispersed state (particle diameter 2 to several tens of nm). Has been.

固体高分子型燃料電池では、これまで特に、カソード極で起こる酸素の還元反応が非常に起こりにくいため、標準的担体材料としてのある決まった銘柄の炭素担体に、触媒である白金が、例えば、1mg/cm2の割合で多量に投入されてきた。即ち、白金の標準的担体材料としては、(1)カーボンブラック、例えばカーボンブラック(Carbon Black)B1 Degussa−Huels社(フランクフルト)、(2)ファーネスブラック、例えばバルカン(Vulcan)XC−72 Cabot社(マサチューセッツ)、(3)アセチレンブラック、例えばシャウイニガンブラック(Shawinigan Black)Chevron Chemicals社(ヒューストン、テキサス)などが挙げられる。 In the polymer electrolyte fuel cell, since the reduction reaction of oxygen that has occurred at the cathode electrode is very unlikely to occur so far, platinum as a catalyst is, for example, a certain brand of carbon support as a standard support material. A large amount has been introduced at a rate of 1 mg / cm 2 . That is, standard support materials for platinum include: (1) carbon black, such as Carbon Black B1 Degussa-Huels (Frankfurt), (2) furnace black, such as Vulcan XC-72 Cabot ( Massachusetts), (3) acetylene black, such as Shawinigan Black Chevron Chemicals (Houston, Texas).

しかしながら、従来の標準的担体材料であるカーボンブラック、ファーネスブラック、アセチレンブラックへの白金の担持の仕方は、白金をできるだけ微分散させることに多くの努力が傾注されてきた。そこでは、カーボンブラック等の標準的担体材料は、単に白金を分散させ易くするとともに、担体自体が導電性を与える媒体に過ぎず、担持された白金の活性化を十分に図ることができなかった。   However, with respect to the manner in which platinum is supported on carbon black, furnace black, and acetylene black, which are conventional standard support materials, much effort has been devoted to finely dispersing platinum as much as possible. In this case, standard carrier materials such as carbon black merely facilitate the dispersion of platinum, and the carrier itself is merely a medium that imparts conductivity, and it was not possible to sufficiently activate the supported platinum. .

この点を改良するために、炭化水素系固体高分子電解質膜に、酸化物触媒、大環状金属錯体触媒及び遷移金属合金触媒の少なくとも一つの触媒を添加した固体高分子電解質膜が開示されている(例えば、特許文献1)。このように構成された固体高分子電解質膜では、発電時に酸化剤極で中間生成物として生成され強い酸化性を有する2個の過酸化水素分子のうち、一方の過酸化水素分子が酸化し他方の過酸化水素分子が還元する不均化反応により水になる反応の活性化エネルギが、触媒により下げられるので、固体高分子電解質膜中に侵入してきた過酸化水素を分解することができ、固体高分子電解質膜が過酸化水素により分解されるのを防止できる。また上記固体高分子電解質膜では、大環状金属錯体触媒を添加する場合、この触媒として、鉄フタロシアニン、銅フタロシアニン、亜鉛フタロシアニン及びコバルトフタロシアニンの少なくとも一つが用いられる。これにより上記不均化反応の触媒効果が特に大きくなる。   In order to improve this point, a solid polymer electrolyte membrane is disclosed in which at least one of an oxide catalyst, a macrocyclic metal complex catalyst, and a transition metal alloy catalyst is added to a hydrocarbon-based solid polymer electrolyte membrane. (For example, patent document 1). In the thus configured solid polymer electrolyte membrane, one of the two hydrogen peroxide molecules having strong oxidizability generated as an intermediate product at the oxidizer electrode during power generation is oxidized and the other The activation energy of the reaction that turns into water by the disproportionation reaction that reduces the hydrogen peroxide molecules of the catalyst is lowered by the catalyst, so that the hydrogen peroxide that has penetrated into the solid polymer electrolyte membrane can be decomposed, and the solid It is possible to prevent the polymer electrolyte membrane from being decomposed by hydrogen peroxide. In the solid polymer electrolyte membrane, when a macrocyclic metal complex catalyst is added, at least one of iron phthalocyanine, copper phthalocyanine, zinc phthalocyanine and cobalt phthalocyanine is used as the catalyst. This particularly increases the catalytic effect of the disproportionation reaction.

一方、B、N及びPよりなる群から選ばれた少なくとも1種類の元素を含有する粒子状又はファイバー状のカーボン担体に白金粒子等を含む燃料電池用触媒が開示されている。この燃料電池用触媒は、B、N及びPよりなる群から選ばれた少なくとも1種類の元素を含有する化合物をガス状態にしてカーボン担体の入っている炉に導入し、そこで600〜900℃で加熱処理するか、或いはカーボン担体が設置されている真空チャンバーで放電してプラズマを発生させ、そこにキャリアーガスとともにB、N及びPよりなる群から選ばれた少なくとも1種類の元素を含有する化合物をガス状態で導入して一定時間反応させることにより、製造される(例えば、特許文献2)。
特開2000−106203号公報([0004]、[0008]、[0010]、[0017]、[0019]) 特開2004− 79244号公報([0010]、[0019]、[0025]〜[0027])
On the other hand, a fuel cell catalyst containing platinum particles or the like on a particulate or fiber-like carbon carrier containing at least one element selected from the group consisting of B, N and P is disclosed. In this fuel cell catalyst, a compound containing at least one element selected from the group consisting of B, N, and P is introduced into a furnace containing a carbon support in a gas state, at 600 to 900 ° C. A compound containing at least one element selected from the group consisting of B, N and P together with a carrier gas by generating a plasma by heat treatment or discharging in a vacuum chamber in which a carbon carrier is installed Is introduced in a gas state and allowed to react for a certain period of time (for example, Patent Document 2).
JP 2000-106203 A ([0004], [0008], [0010], [0017], [0019]) JP 2004-79244 A ([0010], [0019], [0025] to [0027])

しかし、上記従来の特許文献1に示された固体高分子電解質膜では、触媒として、鉄フタロシアニン、銅フタロシアニン、亜鉛フタロシアニン及びコバルトフタロシアニンの少なくとも一つを用いることにより、不均化反応の触媒効果が大きくなるけれども、電流密度を増大できないという不具合があった。
また、特許文献2に示された燃料電池用触媒では、B又はNを含有する化合物をガス状態にしてカーボン担体を熱処理又はプラズマ処理しているけれども、カーボン担体の活性点であるエッジ面をカーボン担体に導入できず、もっぱら窒素及びホウ素の電子的な相互作用により白金触媒が活性化された触媒を調製するのみで、電流密度が未だ低い問題点があった。
本発明の目的は、高価な白金や白金合金等の貴金属を担持せずに、高い酸素還元活性を発現できる、燃料電池用電極触媒の製造方法及びその方法で製造された電極触媒を提供することにある。
本発明の別の目的は、高価な白金や白金合金等の貴金属を担持せずに、極めて高い電流密度を得ることができる、燃料電池を提供することにある。
However, in the solid polymer electrolyte membrane disclosed in the above-mentioned conventional patent document 1, the catalytic effect of the disproportionation reaction can be obtained by using at least one of iron phthalocyanine, copper phthalocyanine, zinc phthalocyanine and cobalt phthalocyanine as a catalyst. Although it increases, there is a problem that the current density cannot be increased.
Further, in the fuel cell catalyst disclosed in Patent Document 2, the carbon support is heat-treated or plasma-treated with a compound containing B or N in a gas state, but the edge surface, which is the active point of the carbon support, is carbon. There is a problem that the current density is still low only by preparing a catalyst in which the platinum catalyst is activated solely by electronic interaction of nitrogen and boron, which cannot be introduced into the support.
An object of the present invention is to provide a method for producing an electrode catalyst for a fuel cell and an electrode catalyst produced by the method, which can exhibit high oxygen reduction activity without supporting noble metals such as expensive platinum and platinum alloys. It is in.
Another object of the present invention is to provide a fuel cell capable of obtaining an extremely high current density without carrying an expensive noble metal such as platinum or a platinum alloy.

求項に係る発明は、図1に示すように、熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る重合工程と、この重合物を熱処理して炭素化する炭素化工程と、炭素化物を微粉砕した後にこの炭素化物に含窒素化合物を混合して熱処理することにより貴金属以外の遷移金属11及び窒素13が添加された炭素材料12を得る熱処理工程とを含む燃料電池用電極触媒の製造方法である。 The invention according to Motomeko 1, as shown in FIG. 1, the precursor of the thermosetting resin, a transition metal compound other than the precious metal by polymerizing by heating the reaction mixture-containing transition metal compound other than the noble metal A noble metal by obtaining a thermosetting resin containing, a carbonizing step of heat-treating and polymerizing the polymer, and then pulverizing the carbonized material and mixing and heat-treating the carbonized product with a nitrogen-containing compound. Ru manufacturing method der a fuel cell electrode catalyst comprising a heat treatment step of obtaining a transition metal 11 and the carbon material 12 nitrogen 13 is added other than.

求項に係る発明は、図1に示すように、熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る重合工程と、この重合物を熱処理して炭素化する炭素化工程と、炭素化物を微粉砕した後にこの炭素化物に含ホウ素化合物を混合して熱処理することにより貴金属以外の遷移金属11及びホウ素14が添加された炭素材料12を得る熱処理工程とを含む燃料電池用電極触媒の製造方法である。 The invention according to Motomeko 2, as shown in FIG. 1, the precursor of the thermosetting resin, a transition metal compound other than the precious metal by polymerizing by heating the reaction mixture-containing transition metal compound other than the noble metal A noble metal by a polymerization step for obtaining a thermosetting resin contained therein, a carbonization step for heat-treating the polymer by carbonization, and a carbon-containing product after finely pulverizing the carbonized product and heat-treating the carbon-containing product with a boron-containing compound Ru manufacturing method der a fuel cell electrode catalyst comprising a heat treatment step of transition metal 11 and boron 14 to obtain a carbon material 12 which has been added other than.

求項に係る発明は、図1に示すように、熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る重合工程と、この重合物を熱処理して炭素化する炭素化工程と、炭素化物を微粉砕した後にこの炭素化物に含窒素化合物及び含ホウ素化合物を混合して熱処理することにより貴金属以外の遷移金属11、窒素13及びホウ素14が添加された炭素材料12を得る熱処理工程とを含む燃料電池用電極触媒の製造方法である。
求項に係る発明は、請求項1ないしいずれか1項に係る発明であって、更に貴金属以外の遷移金属がCo、Fe及びCuからなる群より選ばれた1種又は2種以上の金属であることを特徴とする。
請求項に係る発明は、請求項に記載の燃料電池用電極触媒を固体高分子電解質膜の一方又は双方の面に層状に形成した電解反応層を有する燃料電池である。
The invention according to Motomeko 3, as shown in FIG. 1, the precursor of the thermosetting resin, a transition metal compound other than the precious metal by polymerizing by heating the reaction mixture-containing transition metal compound other than the noble metal A polymerization step for obtaining a thermosetting resin contained therein, a carbonization step for heat-treating the polymerized product to carbonize, and a carbonized product after finely pulverizing the carbonized product and then mixing the carbonized product with a nitrogen-containing compound and a boron-containing compound for heat treatment And a heat treatment step for obtaining a carbon material 12 to which a transition metal 11 other than a noble metal 11, nitrogen 13 and boron 14 are added, to produce a fuel cell electrode catalyst.
The invention according to Motomeko 4 is the invention according to any one of claims 1 to 3, one or more further transition metals other than precious metals selected from the group consisting of Co, Fe and Cu It is characterized by being a metal.
The invention according to claim 7 is a fuel cell having an electrolytic reaction layer in which the electrode catalyst for fuel cell according to claim 6 is formed in a layer form on one or both surfaces of the solid polymer electrolyte membrane.

求項1〜3に係る発明では、熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を作製し、この重合物を熱処理して炭素化し微粉砕した後に、この炭素化物に含窒素化合物又は含ホウ素化合物のいずれか一方又は双方を混合して熱処理したので、貴金属以外の遷移金属の作用により、熱硬化性樹脂の前駆体がシェル状構造を作りながら炭素化して、この炭素材料の表面に活性点となる六角網面のエッジが多数露出した後に、これらのエッジに窒素又はホウ素のいずれか一方又は双方が組込まれる。この結果、高価な白金や白金合金等の貴金属を担持せずに、窒素又はホウ素が、貴金属以外の遷移金属を添加することにより得られたシェル状構造の炭素材料からなる触媒担体の酸素還元活性を向上させるため、酸素還元活性を向上できる。従って、上記炭素材料からなる触媒担体は相乗的な酸素還元活性、即ち極めて高い酸素還元活性を発現できる。 In the invention according to Motomeko 1-3, the precursor of the thermosetting resin, the thermosetting containing transition metal compound other than the precious metal by polymerizing by heating the reaction mixture-containing transition metal compound other than the noble metal After the resin was prepared and the polymer was heat treated and carbonized and finely pulverized, either one or both of the nitrogen-containing compound and the boron-containing compound was mixed with the carbonized product and heat-treated. By the action, the precursor of the thermosetting resin is carbonized while forming a shell-like structure, and a large number of hexagonal network edges serving as active points are exposed on the surface of the carbon material. Either one or both are incorporated. As a result, the oxygen reduction activity of the catalyst carrier made of a carbon material having a shell-like structure obtained by adding a transition metal other than a noble metal to which nitrogen or boron does not carry an expensive noble metal such as platinum or a platinum alloy. Therefore, the oxygen reduction activity can be improved. Therefore, the catalyst carrier made of the carbon material can exhibit synergistic oxygen reduction activity, that is, extremely high oxygen reduction activity.

求項に係る発明では、高価な白金や白金合金等の貴金属を担持せずに、比較的低廉のCo、Fe及びCuからなる群より選ばれた1種又は2種以上の遷移金属を担持させたので、触媒の製造コストを低減することができる。
請求項に係る発明では、上記方法で製造された燃料電池用電極触媒を固体高分子電解質膜の一方又は双方の面に層状に形成した電解反応層を用いて燃料電池を作製したので、触媒で高い酸化還元能力が発現され、燃料電池の電流密度が極めて高く又は比較的高くなる。
In the invention according to Motomeko 4, without loading a noble metal such as expensive platinum or platinum alloy, relatively inexpensive Co, one or more transition metals selected from the group consisting of Fe and Cu Since it is supported, the manufacturing cost of the catalyst can be reduced.
In the invention according to claim 7 , since the fuel cell was produced using the electrolytic reaction layer in which the electrode catalyst for fuel cell produced by the above method was formed in a layer on one or both sides of the solid polymer electrolyte membrane, High oxidation-reduction capability is exhibited, and the current density of the fuel cell is extremely high or relatively high.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本実施の形態の燃料電池用電極触媒は、貴金属以外の遷移金属、ホウ素及び窒素を含む炭素材料により構成される。この炭素材料は、貴金属以外の遷移金属と、14族の炭素原子の両隣に位置するホウ素原子及び窒素原子と、炭素原子とのカーボンアロイ微粒子である。こうしたカーボンアロイ微粒子により、これまで触媒金属を高分散に担持させる触媒担体として用いられてきた炭素材料自身が酸素還元触媒能を有し、燃料電池用電極触媒として好適に使用することが可能となる。なお、貴金属以外の遷移金属としては、Co、Fe及びCuが挙げられる。また遷移金属を貴金属以外の遷移金属に限定したのは、貴金属以外の遷移金属が炭素原子と適度な親和性をもつため、炭素構造形成において触媒的な効果を発現することにより、炭素材料の表面に活性点となる六角網面のエッジを多数露出させることができるからである。更に貴金属以外の遷移金属の担持量は、炭素材料100重量%に対し0.1〜50重量%、好ましくは5〜20重量%に設定される。ここで、貴金属以外の遷移金属の担持量を0.1〜50重量%の範囲に限定したのは、0.1重量%未満では酸素還元活性を十分に発現できず、50重量%を越えると遷移金属の添加量を増大しても酸素還元活性が向上しないからである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The fuel cell electrode catalyst of the present embodiment is composed of a carbon material containing a transition metal other than a noble metal, boron and nitrogen. This carbon material is a carbon alloy fine particle of a transition metal other than a noble metal, a boron atom and a nitrogen atom located on both sides of a group 14 carbon atom, and a carbon atom. With such carbon alloy fine particles, the carbon material itself that has been used as a catalyst carrier for supporting a catalyst metal in a highly dispersed state has an oxygen reduction catalytic ability, and can be suitably used as an electrode catalyst for a fuel cell. . In addition, Co, Fe, and Cu are mentioned as transition metals other than a noble metal. In addition, the transition metal other than the noble metal is limited to the transition metal other than the noble metal because the transition metal other than the noble metal has a suitable affinity with the carbon atom. This is because a large number of hexagonal mesh surface edges that are active points can be exposed. Furthermore, the loading amount of the transition metal other than the noble metal is set to 0.1 to 50% by weight, preferably 5 to 20% by weight with respect to 100% by weight of the carbon material. Here, the amount of the transition metal other than the noble metal is limited to the range of 0.1 to 50% by weight. If the amount is less than 0.1% by weight, the oxygen reduction activity cannot be sufficiently exhibited. This is because even if the addition amount of the transition metal is increased, the oxygen reduction activity is not improved.

[a] 貴金属以外の遷移金属、窒素及びホウ素を含む炭素材料の第1の製造方法
先ず、熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物と含窒素化合物と含ホウ素化合物とを混合し加熱反応させて重合することにより、貴金属以外の遷移金属化合物、窒素化合物及びホウ素化合物を含有する熱硬化性樹脂を得る。熱硬化性樹脂としては、ポリフルフリルアルコール、フェノールホルムアルデヒド樹脂、メラミン樹脂などが挙げられ、貴金属以外の含遷移金属化合物(遷移金属源)としては、遷移金属フタロシアニン錯体、遷移金属ポルフィリン錯体、遷移金属アセチルアセトナト錯体、遷移金属メタロセン錯体、遷移金属塩などが挙げられる。また含窒素化合物(窒素源)としては、メラミン、フタロシアニン、アクリロニトリル、エチレンジアミン四酢酸(EDTA)などが挙げられ、含ホウ素化合物(ホウ素源)としては、BF3エーテル錯体、BF3メタノール錯体、BF3ピリジン錯体、BF3テトラヒドロフラン(THF)錯体、ホウ酸、ホウ酸塩などが挙げられる。
[A] First production method of carbon material containing transition metal other than noble metal, nitrogen and boron First, transition metal compound other than noble metal, nitrogen-containing compound and boron-containing compound are added to the precursor of thermosetting resin. A thermosetting resin containing a transition metal compound other than a noble metal, a nitrogen compound and a boron compound is obtained by mixing and heating to polymerize. Examples of thermosetting resins include polyfurfuryl alcohol, phenol formaldehyde resin, and melamine resin. Examples of transition metal-containing compounds other than noble metals (transition metal sources) include transition metal phthalocyanine complexes, transition metal porphyrin complexes, transition metal acetyls. Examples include acetonato complexes, transition metal metallocene complexes, and transition metal salts. Examples of the nitrogen-containing compound (nitrogen source) include melamine, phthalocyanine, acrylonitrile, ethylenediaminetetraacetic acid (EDTA), and examples of the boron-containing compound (boron source) include BF 3 ether complex, BF 3 methanol complex, and BF 3. Pyridine complexes, BF 3 tetrahydrofuran (THF) complexes, boric acid, borates and the like can be mentioned.

例えば、熱硬化性樹脂としてポリフルフリルアルコールを用い、貴金属以外の含遷移金属化合物としてコバルトフタロシアニン錯体を用い、含ホウ素化合物としてBF3メタノール錯体メタノール溶液(15%BF3含有)を用い、含窒素化合物としてメラミンを用いる場合には、先ずフルフリルアルコール100重量%にメタノールを700〜900重量%を混合して混合溶液を調製した後に、この混合溶液100重量%に、コバルトフタロシアニン錯体0.11〜54.3重量%、好ましくは5.43〜21.72重量%と、メラミン0.84〜36重量%、好ましくは1.2〜6.0重量%と、BF3メタノール錯体メタノール溶液(15%BF3含有)25.8〜259重量%、好ましくは38.7〜155重量%とを加えて混合する。なお、含窒素化合物としてのメラミンの混合割合は、フルフリルアルコールとメラミンとの配合比をC:Nの原子比で、1:(0.07〜3)、好ましくは1:(0.1〜0.5)になるように計算した。また含ホウ素化合物としてのBF3メタノール錯体メタノール溶液(15%BF3含有)の混合割合は、フルフリルアルコールとBF3メタノール錯体メタノール溶液(15%BF3含有)との配合比をC:Bの原子比で、1:(0.1〜1)、好ましくは1:(0.15〜0.6)になるように計算した。更に上記BF3メタノール錯体メタノール溶液(15%BF3含有)の混合割合をBF3錯体の混合割合に換算すると、5.7〜57重量%、好ましくは8.5〜34.2重量%となる。上記混合物から溶媒を揮発させて除去した後に、圧力1Pa〜101kPa及び温度50〜200℃の窒素又はヘリウム等の不活性ガス雰囲気中に1〜72時間保持して重合反応させると、コバルトフタロシアニン錯体、メラミン及びBF3錯体を含有するポリフルフリルアルコール(重合物)が得られる。ここで、フルフリルアルコール、メタノール、コバルトフタロシアニン錯体、メラミン及びBF3メタノール錯体メタノール溶液(15%BF3含有)の混合割合を上記範囲に限定したのは、この組成比で各成分の混合を十分に行うことができるという理由に基づく。またポリフルフリルアルコールを重合するときの雰囲気、圧力、温度及び時間を上記範囲に限定したのは、重合時の酸化防止、生成水の脱離促進及び適切な重合速度が得られるという理由に基づく。次に上記重合物を熱処理して炭素化する。この炭素化工程における雰囲気は窒素やヘリウム等の不活性雰囲気下であることが好ましく、炭素化のための熱処理温度は炭素化可能な温度であれば、特に制限はないが、好ましい温度は600〜1500℃、より好ましい温度は700〜1200℃である。また炭素化のための熱処理圧力は0.1〜0.5MPaであることが好ましい。更に上記炭素化物を微粉砕することにより、貴金属以外の遷移金属、ホウ素及び窒素が添加された炭素材料、即ちカーボンアロイ微粒子が得られる。上記微粉砕には、遊星型ボールミル等のボールミルを用いることが好ましい。 For example, polyfurfuryl alcohol is used as a thermosetting resin, a cobalt phthalocyanine complex is used as a transition metal compound other than a noble metal, a BF 3 methanol complex methanol solution (containing 15% BF 3 ) is used as a boron compound, and a nitrogen-containing compound In the case of using melamine as a mixture, first, 100% by weight of furfuryl alcohol is mixed with 700 to 900% by weight of methanol to prepare a mixed solution, and then 100% by weight of the mixed solution is mixed with 0.11 to 54 of cobalt phthalocyanine complex. .3% by weight, preferably 5.43 to 21.72% by weight, melamine 0.84 to 36% by weight, preferably 1.2 to 6.0% by weight, BF 3 methanol complex methanol solution (15% BF 3 containing) 25.8 to 259 wt%, preferably mixed with the 38.7 to 155 wt% In addition, the mixing ratio of melamine as a nitrogen-containing compound is 1: (0.07-3), preferably 1: (0.1-7 in terms of the mixing ratio of furfuryl alcohol and melamine in the atomic ratio of C: N. 0.5). Further, the mixing ratio of the BF 3 methanol complex methanol solution (containing 15% BF 3 ) as the boron-containing compound is the same as the mixing ratio of furfuryl alcohol and BF 3 methanol complex methanol solution (containing 15% BF 3 ) of C: B. The atomic ratio was calculated to be 1: (0.1-1), preferably 1: (0.15-0.6). Further, when the mixing ratio of the BF 3 methanol complex methanol solution (containing 15% BF 3 ) is converted to the mixing ratio of the BF 3 complex, it is 5.7 to 57% by weight, preferably 8.5 to 34.2% by weight. . After volatilizing and removing the solvent from the above mixture, a polymerization reaction is carried out by maintaining in an inert gas atmosphere such as nitrogen or helium at a pressure of 1 Pa to 101 kPa and a temperature of 50 to 200 ° C. for 1 to 72 hours, a cobalt phthalocyanine complex, Polyfurfuryl alcohol (polymer) containing melamine and BF 3 complex is obtained. Here, the mixing ratio of furfuryl alcohol, methanol, cobalt phthalocyanine complex, melamine and BF 3 methanol complex methanol solution (containing 15% BF 3 ) was limited to the above range. Based on the reason that can be done. The reason why the atmosphere, pressure, temperature, and time when polymerizing polyfurfuryl alcohol are limited to the above ranges is based on the reason that oxidation during polymerization, promotion of elimination of generated water, and an appropriate polymerization rate can be obtained. Next, the polymer is heat treated to be carbonized. The atmosphere in the carbonization step is preferably an inert atmosphere such as nitrogen or helium, and the heat treatment temperature for carbonization is not particularly limited as long as it is a carbonizable temperature. 1500 degreeC and more preferable temperature are 700-1200 degreeC. The heat treatment pressure for carbonization is preferably 0.1 to 0.5 MPa. Further, the carbonized material is finely pulverized to obtain a carbon material to which transition metal other than noble metals, boron and nitrogen are added, that is, carbon alloy fine particles. A ball mill such as a planetary ball mill is preferably used for the fine pulverization.

このように製造された燃料電池用電極触媒では、図1に示すように、貴金属以外の遷移金属11の作用により、熱硬化性樹脂の前駆体がシェル状構造を作りながら炭素化して、炭素材料12の表面に活性点となる六角網面のエッジ12aが多数露出し、同時にこれらのエッジ12aに窒素13やホウ素14が組込まれる。即ち、炭素材料12をシェル状構造に形成して炭素材料12に細孔構造を導入することにより、炭素材料12の反応表面積を増大できるとともに、この炭素材料12の広い表面のエッジ12a面に窒素13やホウ素14を効果的に導入できる。この結果、窒素13やホウ素14を添加した炭素材料12からなる触媒担体16の酸素還元活性は、この触媒担体16の広い表面積、触媒担体16に形成された活性なエッジ面及びこのエッジ面に埋め込まれた窒素及びホウ素により相乗的に向上される。従って、この触媒を固体高分子電解質膜の一方又は双方の面に層状に形成した電解反応層を有する燃料電池の電流密度は極めて高くなる。   In the fuel cell electrode catalyst manufactured in this way, as shown in FIG. 1, the precursor of the thermosetting resin is carbonized while forming a shell-like structure by the action of the transition metal 11 other than the noble metal, so that the carbon material A large number of hexagonal mesh edges 12a serving as active points are exposed on the surface 12, and nitrogen 13 and boron 14 are incorporated into these edges 12a at the same time. That is, by forming the carbon material 12 in a shell-like structure and introducing a pore structure into the carbon material 12, the reaction surface area of the carbon material 12 can be increased, and nitrogen is formed on the wide edge 12a surface of the carbon material 12. 13 and boron 14 can be effectively introduced. As a result, the oxygen reduction activity of the catalyst carrier 16 made of the carbon material 12 to which nitrogen 13 or boron 14 is added is increased in the surface area of the catalyst carrier 16, the active edge surface formed on the catalyst carrier 16, and the edge surface. Is synergistically improved by nitrogen and boron. Therefore, the current density of a fuel cell having an electrolytic reaction layer in which this catalyst is formed in a layer on one or both surfaces of the solid polymer electrolyte membrane is extremely high.

[b] 貴金属以外の遷移金属、ホウ素及び窒素を含む炭素材料の第2の製造方法
先ず、熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る。熱硬化性樹脂、貴金属以外の含遷移金属化合物、含ホウ素化合物及び含窒素化合物としては、上記第1の製造方法に挙げたものと同一のものが挙げられる。例えば、熱硬化性樹脂としてポリフルフリルアルコールを用い、貴金属以外の含遷移金属化合物としてコバルトフタロシアニン錯体を用い、含窒素化合物としてメラミンを用い、含ホウ素化合物としてBF3メタノール錯体メタノール溶液(15%BF3含有)を用いる場合には、フルフリルアルコール100重量%にメタノール700〜900重量%を混合して混合溶液を調製した後に、この混合溶液100重量%に、コバルトフタロシアニン錯体0.11〜54.3重量%、好ましくは5.43〜21.72重量%を加えて混合し、更に重合開始剤として35%塩酸を1.1〜3.4重量%添加して混合する。この混合物から溶媒を揮発させて除去した後に、圧力1Pa〜101kPa及び温度50〜200℃の窒素又はヘリウム等の不活性ガス雰囲気中に1〜72時間保持して重合反応させる。これによりコバルトフタロシアニン錯体を含有するポリフルフリルアルコール(重合物)を合成する。次にこの重合物を熱処理して炭素化した後に、炭素化物を微粉砕する。この熱処理は上記第1の製造方法の炭素化するための熱処理と同一の熱処理である。更にこの微粉砕した炭素化物100重量%に、メラミン1〜200重量%、好ましくは5〜150重量%と、BF3メタノール錯体メタノール溶液(15%BF3含有)20〜3000重量%、好ましくは80〜2500重量%とを加えて混合し含浸担持させた後に、この混合物に対して上記炭素化のための熱処理と同一の熱処理を行うことにより、貴金属以外の遷移金属、ホウ素及び窒素が添加された炭素材料、即ちカーボンアロイ微粒子が得られる。
[B] Second manufacturing method of carbon material containing transition metal other than noble metal, boron and nitrogen First, a transition metal compound other than noble metal is mixed with a precursor of a thermosetting resin and polymerized by heating reaction. Thus, a thermosetting resin containing a transition metal compound other than the noble metal is obtained. Examples of the thermosetting resin, the transition metal compound other than the noble metal, the boron-containing compound, and the nitrogen-containing compound are the same as those described in the first production method. For example, polyfurfuryl alcohol is used as the thermosetting resin, cobalt phthalocyanine complex is used as the transition metal compound other than the noble metal, melamine is used as the nitrogen compound, and BF 3 methanol complex methanol solution (15% BF 3 as the boron compound). In the case of using (containing), after preparing a mixed solution by mixing 700 to 900% by weight of methanol with 100% by weight of furfuryl alcohol, the cobalt phthalocyanine complex 0.11 to 54.3 is added to 100% by weight of the mixed solution. % By weight, preferably 5.43 to 21.72% by weight is added and mixed, and further 1.1 to 3.4% by weight of 35% hydrochloric acid as a polymerization initiator is added and mixed. After the solvent is volatilized and removed from this mixture, the polymerization reaction is carried out for 1 to 72 hours in an inert gas atmosphere such as nitrogen or helium at a pressure of 1 Pa to 101 kPa and a temperature of 50 to 200 ° C. Thereby, polyfurfuryl alcohol (polymer) containing a cobalt phthalocyanine complex is synthesized. Next, the polymerized product is heat treated and carbonized, and then the carbonized product is pulverized. This heat treatment is the same as the heat treatment for carbonization in the first manufacturing method. Furthermore, 100% by weight of the finely pulverized carbonized product, 1 to 200% by weight of melamine, preferably 5 to 150% by weight, and 20 to 3000% by weight of BF 3 methanol complex methanol solution (containing 15% BF 3 ), preferably 80%. After adding ~ 2500 wt% and mixing and impregnating and supporting the mixture, the same heat treatment as that for carbonization was performed on the mixture, whereby transition metals other than noble metals, boron and nitrogen were added. A carbon material, that is, carbon alloy fine particles can be obtained.

このように製造された燃料電池用電極触媒では、貴金属以外の遷移金属の作用により、熱硬化性樹脂の前駆体がシェル状構造を作りながら炭素化して、この炭素材料の表面に活性点となる六角網面のエッジが多数露出した構造が形成され、更にホウ素と窒素を含浸担持した状態で熱処理を行うことにより、上記エッジに窒素又はホウ素のいずれか一方又は双方が組込まれる。即ち、炭素材料にシェル状構造を形成して炭素材料に細孔構造を導入することにより、炭素材料の反応表面積を増大できるとともに、この炭素材料の広い表面のエッジ面に窒素又はホウ素を効果的に導入できる。この結果、窒素及びホウ素が、貴金属以外の遷移金属の添加により得られたシェル状構造の炭素材料からなる触媒担体の酸素還元活性を向上させるため、上記炭素材料からなる触媒担体は相乗的な酸素還元活性、即ち極めて高い酸素還元活性を発現できる。従って、この触媒を固体高分子電解質膜の一方又は双方の面に層状に形成した電解反応層を有する燃料電池の電流密度は極めて高くなる。   In the thus produced fuel cell electrode catalyst, the precursor of the thermosetting resin is carbonized while forming a shell-like structure by the action of the transition metal other than the noble metal, and becomes an active point on the surface of the carbon material. A structure in which a large number of edges of the hexagonal mesh surface are exposed is formed, and heat treatment is performed in a state where boron and nitrogen are impregnated and supported, whereby either or both of nitrogen and boron are incorporated into the edges. That is, by forming a shell-like structure in the carbon material and introducing a pore structure in the carbon material, the reaction surface area of the carbon material can be increased, and nitrogen or boron can be effectively applied to the edge surface of the wide surface of the carbon material. Can be introduced. As a result, since the nitrogen and boron improve the oxygen reduction activity of the catalyst support made of the shell-like carbon material obtained by the addition of the transition metal other than the noble metal, the catalyst support made of the carbon material has a synergistic oxygen. Reduction activity, that is, extremely high oxygen reduction activity can be expressed. Therefore, the current density of a fuel cell having an electrolytic reaction layer in which this catalyst is formed in a layer on one or both surfaces of the solid polymer electrolyte membrane is extremely high.

[c] 貴金属以外の遷移金属、ホウ素及び窒素を含む炭素材料の第3の製造方法
先ず、熱硬化性樹脂の前駆体に、含窒素化合物及び含ホウ素化合物とを混合し加熱反応させて重合することにより窒素化合物及びホウ素化合物を含有する熱硬化性樹脂を得る。熱硬化性樹脂、貴金属以外の含遷移金属化合物、含窒素化合物及び含ホウ素化合物としては、上記第1の製造方法に挙げたものと同一のものが挙げられる。例えば、熱硬化性樹脂としてポリフルフリルアルコールを用い、貴金属以外の含遷移金属化合物としてコバルトフタロシアニン錯体を用い、含ホウ素化合物としてBF3メタノール錯体メタノール溶液(15%BF3含有)を用い、含窒素化合物としてメラミンを用いる場合には、フルフリルアルコール100重量%にメタノール700〜900重量%を混合して混合溶液を調製し、この混合溶液100重量%に、メラミン0.84〜36重量%、好ましくは1.2〜6.0重量%と、BF3メタノール錯体メタノール溶液(15%BF3含有)25.8〜259重量%、好ましくは38.7〜155重量%とを加えて混合し、この混合物から溶媒を揮発させて除去した後に、圧力1Pa〜101kPa及び温度50〜200℃の窒素又はヘリウム等の不活性ガス雰囲気中に1〜72時間保持して重合反応させる。これによりメラミンお及びBF3錯体を含有するポリフルフリルアルコール(重合体)を合成する。次にこの重合物を熱処理して炭素化した後に、炭素化物を微粉砕する。この熱処理は上記第1の製造方法の炭素化するための熱処理と同一の熱処理である。更にこの微粉砕した炭素化物100重量%に、コバルトフタロシアニン錯体0.1〜50重量%、好ましくは5〜20重量%を加えて混合し含浸担持させた後に、この混合物に対して上記炭素化のための熱処理と同一の熱処理を行うことにより、貴金属以外の遷移金属、ホウ素及び窒素が添加された炭素材料、即ちカーボンアロイ微粒子が得られる。
[C] Third production method of carbon material containing transition metal other than noble metal, boron and nitrogen First, a nitrogen-containing compound and a boron-containing compound are mixed with a precursor of a thermosetting resin and polymerized by heating reaction. Thus, a thermosetting resin containing a nitrogen compound and a boron compound is obtained. Examples of the thermosetting resin, the transition metal compound other than the noble metal, the nitrogen-containing compound, and the boron-containing compound are the same as those described in the first production method. For example, polyfurfuryl alcohol is used as a thermosetting resin, a cobalt phthalocyanine complex is used as a transition metal compound other than a noble metal, a BF 3 methanol complex methanol solution (containing 15% BF 3 ) is used as a boron compound, and a nitrogen-containing compound In the case of using melamine as a mixture, a mixed solution is prepared by mixing 100% by weight of furfuryl alcohol with 700 to 900% by weight of methanol. To 100% by weight of this mixed solution, 0.84 to 36% by weight of melamine, preferably 1.2 to 6.0% by weight and BF 3 methanol complex methanol solution (containing 15% BF 3 ) 25.8 to 259% by weight, preferably 38.7 to 155% by weight, and mixed. After removing the solvent by volatilizing, the nitrogen or helicopter at a pressure of 1 Pa to 101 kPa and a temperature of 50 to 200 ° C. And it held 1 to 72 hours in an inert gas atmosphere such as beam by the polymerization reaction. Thereby, polyfurfuryl alcohol (polymer) containing melamine and a BF 3 complex is synthesized. Next, the polymerized product is heat treated and carbonized, and then the carbonized product is pulverized. This heat treatment is the same as the heat treatment for carbonization in the first manufacturing method. Further, 0.1 to 50% by weight, preferably 5 to 20% by weight of a cobalt phthalocyanine complex is added to 100% by weight of the finely pulverized carbonized material, and the mixture is impregnated and supported. By performing the same heat treatment as that for heat treatment, carbon materials to which transition metals other than noble metals, boron and nitrogen are added, that is, carbon alloy fine particles are obtained.

このように製造された燃料電池用電極触媒では、炭素材料がシェル状構造とならないけれども、この炭素材料の表面に露出するエッジに窒素又はホウ素のいずれか一方又は双方が組込まれる。即ち、炭素材料の反応表面積は増大しないけれども、この炭素材料の表面のエッジ面に窒素又はホウ素を導入できる。この結果、触媒が、窒素及びホウ素を添加した炭素材料からなる触媒担体の酸素還元活性と、貴金属以外の遷移金属の作用により形成された炭素構造がもたらす酸素還元活性とを加えた酸素還元活性、即ち比較的高い酸素還元活性を発現する。従って、この触媒を固体高分子電解質膜の一方又は双方の面に層状に形成した電解反応層を有する燃料電池の電流密度は比較的高くなる。
なお、上記実施の形態では、貴金属以外の遷移金属、ホウ素及び窒素を含む炭素材料を挙げたが、ホウ素を含まず貴金属以外の遷移金属及び窒素を含む炭素材料であってもよく、或いは窒素を含まず貴金属以外の遷移金属及びホウ素を含む炭素材料であってもよい。
In the thus produced fuel cell electrode catalyst, the carbon material does not have a shell-like structure, but either or both of nitrogen and boron are incorporated into the edge exposed on the surface of the carbon material. That is, although the reaction surface area of the carbon material does not increase, nitrogen or boron can be introduced into the edge surface of the surface of the carbon material. As a result, the catalyst has an oxygen reduction activity obtained by adding an oxygen reduction activity of a catalyst support made of a carbon material to which nitrogen and boron are added and an oxygen reduction activity brought about by a carbon structure formed by the action of a transition metal other than a noble metal, That is, it exhibits a relatively high oxygen reduction activity. Therefore, the current density of a fuel cell having an electrolytic reaction layer in which this catalyst is formed in a layer on one or both surfaces of the solid polymer electrolyte membrane is relatively high.
In the above embodiment, a carbon material containing a transition metal other than a noble metal, boron and nitrogen has been described. However, it may be a carbon material containing no transition metal other than a noble metal and nitrogen, or containing nitrogen. It may be a carbon material containing a transition metal other than a noble metal and boron.

次に本発明の実施例を参考例及び比較例とともに詳しく説明する。
参考例1
先ずフルフリルアルコール10gにメタノール100mlを混合して混合溶液を調製し、この混合溶液に、コバルトフタロシアニン錯体2.090gと、メラミン7.499gと、BF3メタノール錯体メタノール溶液(15%BF3含有)118.7gとを順次加え、常温下でマグネチックスターラを用いて1時間撹拌した。この混合物に超音波を照射しながらロータリエバポレータを用いて60℃で溶媒を除去した後にシャーレに移し、圧力0.1MPa及び温度80℃の窒素雰囲気中に24時間保持して重合反応させ、コバルトフタロシアニン錯体、メラミン及びBF3錯体を含有するポリフルフリルアルコール(重合物)を合成した。
Next, examples of the present invention will be described in detail together with reference examples and comparative examples.
< Reference Example 1 >
First, 100 g of methanol was mixed with 10 g of furfuryl alcohol to prepare a mixed solution. To this mixed solution, 2.090 g of cobalt phthalocyanine complex, 7.499 g of melamine, and methanol solution of BF 3 methanol complex (containing 15% BF 3 ) 118.7 g was sequentially added, and the mixture was stirred for 1 hour at room temperature using a magnetic stirrer. While removing the solvent at 60 ° C. using a rotary evaporator while irradiating this mixture with ultrasonic waves, the mixture was transferred to a petri dish and kept in a nitrogen atmosphere at a pressure of 0.1 MPa and a temperature of 80 ° C. for 24 hours to carry out a polymerization reaction. A polyfurfuryl alcohol (polymer) containing a complex, a melamine and a BF 3 complex was synthesized.

次に上記合成したポリフルフリルアルコールを石英ボートに適量載せ、この石英ボートを石英製反応管の中心部に設置して、この反応管内に窒素500ml/分を20分間流通させた。20分経過後、窒素を500ml/分流通させたまま、反応管内を昇温速度10℃/分で1000℃まで昇温し、この温度に1時間保持した。1時間経過後、窒素を500ml/分流通させたまま室温まで自然冷却した。これによりフラン樹脂を炭素化した。更に上記炭素化物と直径12mmの窒化ケイ素製粉砕ボールとを、遊星ボールミルの窒化ケイ素製容器に入れ、この容器を600rpmの回転速度で1時間回転させて炭素化物を粉砕した。この粉砕された炭素化物を目開き250μmの篩にかけ、粒径250μm以下の炭素化物を、直径3mmの窒化ケイ素製粉砕ボールと15mlの蒸留水とともに遊星ボールミルの窒化ケイ素製容器に入れ、800rpmの回転速度で3時間回転させて炭素化物を湿式粉砕した。この粉砕された炭素化物を目開き45μmの篩にかけ、粒径45μm以下の炭素化物のみを回収し、この炭素化物をロータリエバポレータに収容して80℃に加熱することにより水を除去した後に、減圧乾燥器に入れて80℃に一晩保持し乾燥させた。このカーボンアロイ微粒子を参考例1とした。なお、このカーボンアロイ微粒子の表面には、炭素100重量%に対して、コバルトが3重量%含まれ、ホウ素及び窒素の合計が94.8重量%含まれるように、原料の混合割合を調整したものである。 Next, an appropriate amount of the synthesized polyfurfuryl alcohol was placed on a quartz boat, and this quartz boat was placed in the center of a quartz reaction tube, and 500 ml / min of nitrogen was allowed to flow through the reaction tube for 20 minutes. After 20 minutes, the temperature in the reaction tube was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min with nitrogen flowing at 500 ml / min, and this temperature was maintained for 1 hour. After 1 hour, it was naturally cooled to room temperature with nitrogen flowing at 500 ml / min. This carbonized the furan resin. Further, the carbonized product and a silicon nitride pulverized ball having a diameter of 12 mm were placed in a silicon nitride container of a planetary ball mill, and this container was rotated at a rotational speed of 600 rpm for 1 hour to pulverize the carbonized product. The pulverized carbonized product is passed through a sieve having an opening of 250 μm, and the carbonized product having a particle size of 250 μm or less is put into a silicon nitride container of a planetary ball mill together with 3 mm diameter silicon nitride pulverized balls and 15 ml distilled water, and rotated at 800 rpm. The carbonized product was wet-ground by rotating at a speed for 3 hours. The pulverized carbonized product is passed through a sieve having an opening of 45 μm, and only the carbonized product having a particle size of 45 μm or less is recovered. The carbonized product is placed in a rotary evaporator and heated to 80 ° C., and water is removed. It put into the drier and kept at 80 degreeC overnight, and was made to dry. The carbon alloy fine particles were used as Reference Example 1 . The mixing ratio of the raw materials was adjusted so that the surface of the carbon alloy fine particles contained 3% by weight of cobalt and 94.8% by weight of the total of boron and nitrogen with respect to 100% by weight of carbon. Is.

実施例1
先ずフルフリルアルコール10gにメタノール100mlを混合して混合溶液を調製し、この混合溶液に、コバルトフタロシアニン錯体2.090gを加え、更に35%塩酸を1g添加し、常温下でマグネチックスターラを用いて1時間撹拌した。この混合物に超音波を照射しながらロータリエバポレータを用いて60℃で溶媒を除去した後にシャーレに移し、圧力0.1MPa及び温度80℃の窒素雰囲気中に24時間保持して重合反応させ、コバルトフタロシアニン錯体を含有するポリフルフリルアルコール(重合物)を合成した。
< Example 1 >
First, 100 g of methanol is mixed with 10 g of furfuryl alcohol to prepare a mixed solution. To this mixed solution, 2.090 g of cobalt phthalocyanine complex is added, and further 1 g of 35% hydrochloric acid is added, and a magnetic stirrer is used at room temperature. Stir for 1 hour. While removing the solvent at 60 ° C. using a rotary evaporator while irradiating this mixture with ultrasonic waves, the mixture was transferred to a petri dish and kept in a nitrogen atmosphere at a pressure of 0.1 MPa and a temperature of 80 ° C. for 24 hours to carry out a polymerization reaction. Polyfurfuryl alcohol (polymer) containing the complex was synthesized.

次に上記合成したポリフルフリルアルコールを石英ボートに適量載せ、この石英ボートを石英製反応管の中心部に設置して、この反応管内に窒素500ml/分を20分間流通させた。20分経過後、窒素を500ml/分流通させたまま、反応管内を昇温速度10℃/分で1000℃まで昇温し、この温度に1時間保持した。1時間経過後、窒素を500ml/分流通させたまま室温まで自然冷却した。これによりコバルトフタロシアニン錯体を含有するポリフルフリルアルコールを炭素化した。更に上記炭素化物と直径12mmの窒化ケイ素製粉砕ボールとを、遊星ボールミルの窒化ケイ素製容器に入れ、この容器を800rpmの回転速度で3時間回転させて炭素化物を粉砕した。この粉砕された炭素化物を目開き250μmの篩にかけ、粒径250μm以下の炭素化物を、直径3mmの窒化ケイ素製粉砕ボールと15mlの蒸留水とともに遊星ボールミルの窒化ケイ素製容器に入れ、800rpmの回転速度で3時間回転させて炭素化物を湿式粉砕した。この粉砕された炭素化物を目開き45μmの篩にかけ、粒径45μm以下の炭素化物のみを回収し、この炭素化物を目開き1μmの四フッ化エチレン樹脂(ポリテトラフルオロエチレン)製のフィルタにより水を除去した後に、減圧乾燥器に入れて80℃に一晩保持し乾燥させた。   Next, an appropriate amount of the synthesized polyfurfuryl alcohol was placed on a quartz boat, and this quartz boat was placed in the center of a quartz reaction tube, and 500 ml / min of nitrogen was allowed to flow through the reaction tube for 20 minutes. After the elapse of 20 minutes, the temperature in the reaction tube was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min with nitrogen flowing at 500 ml / min, and this temperature was maintained for 1 hour. After 1 hour, it was naturally cooled to room temperature with nitrogen flowing at 500 ml / min. This carbonized the polyfurfuryl alcohol containing a cobalt phthalocyanine complex. Further, the carbonized product and a silicon nitride pulverized ball having a diameter of 12 mm were placed in a silicon nitride container of a planetary ball mill, and the carbonized product was pulverized by rotating the container at a rotation speed of 800 rpm for 3 hours. The pulverized carbonized material is passed through a sieve having an opening of 250 μm, and the carbonized material having a particle size of 250 μm or less is placed in a silicon nitride container of a planetary ball mill together with 3 mm diameter silicon nitride pulverized balls and 15 ml distilled water, and rotated at 800 rpm. The carbonized product was wet-ground by rotating at a speed for 3 hours. The pulverized carbonized product is passed through a sieve having an opening of 45 μm, and only the carbonized product having a particle size of 45 μm or less is collected. The carbonized product is filtered through a filter made of tetrafluoroethylene resin (polytetrafluoroethylene) having an opening of 1 μm. Then, the mixture was placed in a vacuum dryer and kept at 80 ° C. overnight to dry.

次に上記コバルトを含むカーボンアロイ微粒子0.3gに、メタノール39.6gと、メラミン0.3621gと、BF3メタノール錯体メタノール溶液(15%BF3含有)5.84gとを加え、常温下でソニケーター(超音波破砕装置)を用いて1時間撹拌して混合した後に、ロータリエバポレータに収容し40℃に保持してメタノールを除去した。この混合物を石英ボートに適量載せ、この石英ボートを石英製反応管の中心部に設置して、この反応管内に窒素500ml/分を20分間流通させた。20分経過後、窒素を500ml/分流通させたまま、反応管内を昇温速度10℃/分で1000℃まで昇温し、この温度に1時間保持した。1時間経過後、窒素を500ml/分流通させたまま室温まで自然冷却して熱処理物を得た。このカーボンアロイ微粒子を実施例1とした。なお、このカーボンアロイ微粒子中には、炭素100重量%に対して、コバルトが3重量%含まれ、ホウ素及び窒素の合計が94.4重量%含まれるように、原料の混合割合を調整したものである。 Next, 39.6 g of methanol, 0.3621 g of melamine, and 5.84 g of BF 3 methanol complex methanol solution (containing 15% BF 3 ) are added to 0.3 g of the carbon alloy fine particles containing cobalt, and the sonicator is used at room temperature. After stirring and mixing for 1 hour using (ultrasonic crusher), it was accommodated in a rotary evaporator and kept at 40 ° C. to remove methanol. An appropriate amount of this mixture was placed on a quartz boat, this quartz boat was placed in the center of a quartz reaction tube, and 500 ml / min of nitrogen was allowed to flow through the reaction tube for 20 minutes. After 20 minutes, the temperature in the reaction tube was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min with nitrogen flowing at 500 ml / min, and this temperature was maintained for 1 hour. After 1 hour, the product was naturally cooled to room temperature while flowing nitrogen at 500 ml / min to obtain a heat-treated product. The carbon alloy fine particles were taken as Example 1 . In this carbon alloy fine particle, the mixing ratio of the raw materials was adjusted so that 3% by weight of cobalt and 100% by weight of boron and nitrogen were included with respect to 100% by weight of carbon. It is.

実施例2
実施例1と同様にしてコバルトフタロシアニン錯体を含有するポリフルフリルアルコール(重合物)を合成し、この合成したポリフルフリルアルコールを参考例1と同様にして炭素化・粉砕・乾燥してコバルトを含むカーボンアロイ微粒子を作製した。次に上記コバルトを含むカーボンアロイ微粒子0.3gに、メタノール39.6gと、メラミン0.0158gと、BF3メタノール錯体メタノール溶液(15%BF3含有)0.26gとを加え、常温下でソニケーターを用いて1時間撹拌して混合した後に、ロータリエバポレータに収容し40℃に保持してメタノールを除去した。この混合物を石英ボートに適量載せ、この石英ボートを石英製反応管の中心部に設置して、この反応管内に窒素500ml/分を20分間流通させた。20分経過後、窒素を500ml/分流通させたまま、反応管内を昇温速度10℃/分で1000℃まで昇温し、この温度に1時間保持した。1時間経過後、窒素を500ml/分流通させたまま室温まで自然冷却して熱処理物を得た。このカーボンアロイ微粒子を実施例2とした。なお、このカーボンアロイ微粒子は、炭素100重量%に対して、コバルトが12.96重量%含まれることがXPS(X線光電子分光)より判明した。これに対し参考例1と同じホウ素/コバルトの比を実現するように、ホウ素及び窒素を添加したのが実施例2である。具体的には、ホウ素及び窒素の合計が7.46重量%含まれるように、原料の混合割合を調整したものである。
< Example 2 >
In the same manner as in Example 1 polyfurfuryl alcohol (polymer) containing cobalt phthalocyanine complex was synthesized and carbon containing cobalt this synthesis was polyfurfuryl alcohol Similarly carbonized, pulverized and dried as in Reference Example 1 Alloy fine particles were prepared. Next, 39.6 g of methanol, 0.0158 g of melamine and 0.26 g of BF 3 methanol complex methanol solution (containing 15% BF 3 ) are added to 0.3 g of the carbon alloy fine particles containing cobalt, and the sonicator is used at room temperature. The mixture was stirred for 1 hour and mixed, and then stored in a rotary evaporator and kept at 40 ° C. to remove methanol. An appropriate amount of this mixture was placed on a quartz boat, this quartz boat was placed in the center of a quartz reaction tube, and 500 ml / min of nitrogen was allowed to flow through the reaction tube for 20 minutes. After 20 minutes, the temperature in the reaction tube was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min with nitrogen flowing at 500 ml / min, and this temperature was maintained for 1 hour. After 1 hour, the product was naturally cooled to room temperature while flowing nitrogen at 500 ml / min to obtain a heat-treated product. The carbon alloy fine particles were designated as Example 2 . It was found from XPS (X-ray photoelectron spectroscopy) that the carbon alloy fine particles contained 12.96% by weight of cobalt with respect to 100% by weight of carbon. In contrast, in Example 2 , boron and nitrogen were added so as to realize the same boron / cobalt ratio as in Reference Example 1 . Specifically, the mixing ratio of the raw materials is adjusted so that the total amount of boron and nitrogen is 7.46% by weight.

参考例2
先ずフルフリルアルコール10gにメタノール100mlを混合して混合溶液を調製し、この混合溶液に、メラミン7.499gと、BF3メタノール錯体メタノール溶液(15%BF3含有)118.7gとを順次加え、常温下でマグネチックスターラを用いて1時間撹拌した。この混合物に超音波を照射しながらロータリエバポレータを用いて60℃で溶媒を除去した後にシャーレに移し、圧力0.1MPa及び温度80℃の窒素雰囲気中に24時間保持して重合反応させ、メラミン及びBF3錯体を含有するポリフルフリルアルコール(重合物)を合成した。
< Reference Example 2 >
First, 100 ml of methanol was mixed with 10 g of furfuryl alcohol to prepare a mixed solution. To this mixed solution, 7.499 g of melamine and 118.7 g of BF 3 methanol complex methanol solution (containing 15% BF 3 ) were sequentially added. The mixture was stirred for 1 hour at room temperature using a magnetic stirrer. While removing the solvent at 60 ° C. using a rotary evaporator while irradiating this mixture with ultrasonic waves, the mixture was transferred to a petri dish, and kept in a nitrogen atmosphere at a pressure of 0.1 MPa and a temperature of 80 ° C. for 24 hours to cause a polymerization reaction. Polyfurfuryl alcohol (polymer) containing a BF 3 complex was synthesized.

次に上記合成したポリフルフリルアルコールを石英ボートに適量載せ、この石英ボートを石英製反応管の中心部に設置して、この反応管内に窒素500ml/分を20分間流通させた。20分経過後、窒素を500ml/分流通させたまま、反応管内を昇温速度10℃/分で1000℃まで昇温し、この温度に1時間保持した。1時間経過後、窒素を500ml/分流通させたまま室温まで自然冷却した。これによりメラミン及びBF3錯体を含有するポリフルフリルアルコールを炭素化した。更に上記炭素化物と直径12mmの窒化ケイ素製粉砕ボールとを、遊星ボールミルの窒化ケイ素製容器に入れ、この容器を600rpmの回転速度で1時間回転させて炭素化物を粉砕した。この粉砕された炭素化物を目開き250μmの篩にかけ、粒径250μm以下の炭素化物を、直径3mmの窒化ケイ素製粉砕ボールと15mlの蒸留水とともに遊星ボールミルの窒化ケイ素製容器に入れ、800rpmの回転速度で3時間回転させて炭素化物を湿式粉砕した。この粉砕された炭素化物を目開き45μmの篩にかけ、粒径45μm以下の炭素化物のみを回収し、ロータリエバポレータに収容して80℃に加熱することにより水を除去した後に、減圧乾燥器に入れて80℃に一晩保持し乾燥させた。なお、このカーボンアロイ微粒子の表面には、炭素100重量%に対して、窒素及びホウ素の合計が94.8重量%含まれるように、原料の混合割合を調整したものである。 Next, an appropriate amount of the synthesized polyfurfuryl alcohol was placed on a quartz boat, and this quartz boat was placed in the center of a quartz reaction tube, and 500 ml / min of nitrogen was allowed to flow through the reaction tube for 20 minutes. After 20 minutes, the temperature in the reaction tube was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min with nitrogen flowing at 500 ml / min, and this temperature was maintained for 1 hour. After 1 hour, it was naturally cooled to room temperature with nitrogen flowing at 500 ml / min. As a result, polyfurfuryl alcohol containing melamine and BF 3 complex was carbonized. Further, the carbonized product and a silicon nitride pulverized ball having a diameter of 12 mm were placed in a silicon nitride container of a planetary ball mill, and this container was rotated at a rotational speed of 600 rpm for 1 hour to pulverize the carbonized product. The pulverized carbonized product is passed through a sieve having an opening of 250 μm, and the carbonized product having a particle size of 250 μm or less is put into a silicon nitride container of a planetary ball mill together with 3 mm diameter silicon nitride pulverized balls and 15 ml distilled water, and rotated at 800 rpm. The carbonized product was wet-ground by rotating at a speed for 3 hours. The pulverized carbonized product is passed through a sieve having an opening of 45 μm, and only the carbonized product having a particle size of 45 μm or less is collected. After removing the water by storing it in a rotary evaporator and heating to 80 ° C., put it in a vacuum dryer. And kept at 80 ° C. overnight. In addition, the mixing ratio of the raw materials is adjusted so that the total surface of the carbon alloy fine particles contains 94.8% by weight of nitrogen and boron with respect to 100% by weight of carbon.

次に濃硫酸28.54gにコバルトフタロシアニン錯体1.21gを溶解した溶液を、上記窒素及びホウ素を含むカーボンアロイ微粒子0.3gに加え、常温下でソニケーターを用いて1時間撹拌して混合した後に、目開き1μmの四フッ化エチレン樹脂(ポリテトラフルオロエチレン)製のフィルタを用いて濃硫酸を除去した。この混合物を石英ボートに適量載せ、この石英ボートを石英製反応管の中心部に設置して、この反応管内に窒素500ml/分を20分間流通させた。20分経過後、窒素を500ml/分流通させたまま、反応管内を昇温速度10℃/分で1000℃まで昇温し、この温度に1時間保持した。1時間経過後、窒素を500ml/分流通させたまま室温まで自然冷却して熱処理物を得た。このカーボンアロイ微粒子を参考例2とした。なお、コバルトフタロシアニン担持前の微粒子の表面には、炭素100重量%に対して、窒素及びホウ素が34.2重量%含まれることがXPSより判明した。これに対し参考例1と同じホウ素/コバルトの比になるようにコバルトフタロシアニンを添加したのが参考例2である。具体的には、コバルトが79.1重量%含まれるように、原料の混合割合を調整したものである。 Next, a solution obtained by dissolving 1.21 g of cobalt phthalocyanine complex in 28.54 g of concentrated sulfuric acid was added to 0.3 g of carbon alloy fine particles containing nitrogen and boron, and the mixture was stirred for 1 hour at room temperature with a sonicator and mixed. The concentrated sulfuric acid was removed using a filter made of tetrafluoroethylene resin (polytetrafluoroethylene) having an opening of 1 μm. An appropriate amount of this mixture was placed on a quartz boat, this quartz boat was placed in the center of a quartz reaction tube, and 500 ml / min of nitrogen was allowed to flow through the reaction tube for 20 minutes. After 20 minutes, the temperature in the reaction tube was increased to 1000 ° C. at a temperature increase rate of 10 ° C./min with nitrogen flowing at 500 ml / min, and this temperature was maintained for 1 hour. After 1 hour, the product was naturally cooled to room temperature while flowing nitrogen at 500 ml / min to obtain a heat-treated product. This carbon alloy fine particle was used as Reference Example 2 . It was found from XPS that the surface of fine particles before supporting cobalt phthalocyanine contained 34.2% by weight of nitrogen and boron with respect to 100% by weight of carbon. In contrast to that added cobalt phthalocyanine to be the same ratio of boron / cobalt as in Reference Example 1 is a reference example 2. Specifically, the mixing ratio of the raw materials is adjusted so that 79.1% by weight of cobalt is contained.

<比較例1>
メラミンとBF3メタノール錯体メタノール溶液(15%BF3含有)を添加しなかったこと以外は実施例1と同様にして、カーボンアロイ微粒子を得た。このカーボンアロイ微粒子を比較例1とした。なお、このカーボンアロイ微粒子には、炭素100重量%に対して、コバルトが3重量%含まれるように、原料の混合割合を調整したものである。
<比較例2>
コバルトフタロシアニン錯体を添加しなかったこと以外は参考例2と同様にして、カーボンアロイ微粒子を得た。このカーボンアロイ微粒子を比較例2とした。なお、このカーボンアロイ微粒子には、炭素100重量%に対して、窒素及びホウ素の合計が94.8重量%含まれるように、原料の混合割合を調整したものである。
<Comparative Example 1>
Carbon alloy fine particles were obtained in the same manner as in Example 1 except that melamine and a BF 3 methanol complex methanol solution (containing 15% BF 3 ) were not added. This carbon alloy fine particle was used as Comparative Example 1. The carbon alloy fine particles are prepared by adjusting the mixing ratio of the raw materials so that 3% by weight of cobalt is contained with respect to 100% by weight of carbon.
<Comparative example 2>
Carbon alloy fine particles were obtained in the same manner as in Reference Example 2 except that no cobalt phthalocyanine complex was added. This carbon alloy fine particle was used as Comparative Example 2. The carbon alloy fine particles are prepared by adjusting the mixing ratio of the raw materials so that the total amount of nitrogen and boron is 94.8% by weight with respect to 100% by weight of carbon.

<比較試験1及び評価>
実施例1及び2と、参考例1及び2と、比較例1及び2のカーボンアロイ微粒子を用いて、これらの電極触媒について、酸化還元機能を調べるために電極活性試験を行った。
この酸素還元に関する電極活性を、図2に模式的に示す3極式電解セル1を用いて測定した。具体的には中央部の作用電極(回転電極)2は周囲が高分子絶縁体、中央部にガラス状炭素からなる電極部を持つ。この電極部にそれぞれ以下のようにして調製した触媒インクを塗布し、作用電極とした。符号3は参照電極(Ag/AgCl)であり、符号4は対極(Pt)である。
<Comparative test 1 and evaluation>
Using the carbon alloy fine particles of Examples 1 and 2, Reference Examples 1 and 2, and Comparative Examples 1 and 2, an electrode activity test was performed on these electrode catalysts in order to examine the redox function.
The electrode activity relating to this oxygen reduction was measured using a three-electrode electrolytic cell 1 schematically shown in FIG. Specifically, the central working electrode (rotating electrode) 2 has a polymer insulator on the periphery and an electrode portion made of glassy carbon in the central portion. The catalyst ink prepared as follows was applied to each electrode part to obtain a working electrode. Reference numeral 3 is a reference electrode (Ag / AgCl), and reference numeral 4 is a counter electrode (Pt).

先ず、実施例1及び2と、参考例1及び2と、比較例1及び2のカーボンアロイ微粒子を、それぞれ5mg量り取り、これにバインダー(商品名:ナフィオン、デュポン社)溶液、水、エタノールを適量加え、各触媒インクを調製した。次いで、得られた触媒インクを微量ピペットにより吸い取り、回転電極装置のガラス状炭素部分(直径5mm)に塗布し、乾燥させることにより、作用電極を作製した。
電解質溶液としては、1M硫酸水溶液に酸素を常温で溶解したものを用いた。回転速度1500rpmで電極を回転し、電位を掃引速度0.5mVs-1で掃引して、そのときの電流を電位の関数として記録した。その結果を図3に示す。なお、図3において、縦軸は反応速度を表す電流であり、縦軸の電流密度の絶対値が大きくなるほど反応速度が大きくなることを示し、また横軸は反応を進ませる力としての電圧であり、横軸の電圧が小さくなるほど反応を引き起す力が大きくなり、更にこの反応は燃料電池のプラス極の反応であるため、より電圧の高いところで大きな電流が流れるものほど触媒としての性能が高いことを意味する。
First, 5 mg of each of the carbon alloy fine particles of Examples 1 and 2, Reference Examples 1 and 2, and Comparative Examples 1 and 2 was weighed, and a binder (trade name: Nafion, DuPont) solution, water, and ethanol were added thereto. An appropriate amount was added to prepare each catalyst ink. Next, the obtained catalyst ink was sucked with a small amount of pipette, applied to the glassy carbon portion (diameter 5 mm) of the rotating electrode device, and dried to produce a working electrode.
As the electrolyte solution, a 1 M sulfuric acid aqueous solution in which oxygen was dissolved at room temperature was used. The electrode was rotated at a rotational speed of 1500 rpm, the potential was swept at a sweep speed of 0.5 mVs −1 , and the current at that time was recorded as a function of the potential. The result is shown in FIG. In FIG. 3, the vertical axis represents the current representing the reaction rate, the larger the absolute value of the current density on the vertical axis, the greater the reaction rate, and the horizontal axis represents the voltage as the force for advancing the reaction. Yes, the smaller the voltage on the horizontal axis, the greater the force that triggers the reaction, and since this reaction is a positive reaction of the fuel cell, the higher the voltage, the higher the performance as a catalyst. Means that.

図3から明らかなように、実施例1及び2と参考例1のカーボンアロイ微粒子を用いた電極触媒では、比較例1及び2のカーボンアロイ微粒子を用いた電極触媒に比べて、極めて高い電位から酸素還元電流が流れ始め、同じ電位で比較すると、極めて大きな電流密度を示すことが分かった。また参考例2のカーボンアロイ微粒子を用いた電極触媒では、比較例1及び2のカーボンアロイ微粒子を用いた電極触媒に比べて、比較的高い電位から酸素還元電流が流れ始め、同じ電位で比較すると、比較的大きな電流密度を示すことが分かった。 As is apparent from FIG. 3, the electrode catalysts using the carbon alloy fine particles of Examples 1 and 2 and Reference Example 1 have an extremely high potential as compared with the electrode catalyst using the carbon alloy fine particles of Comparative Examples 1 and 2. It was found that the oxygen reduction current began to flow and showed a very large current density when compared at the same potential. Further, in the electrode catalyst using the carbon alloy fine particles of Reference Example 2, the oxygen reduction current starts to flow from a relatively high potential as compared with the electrode catalyst using the carbon alloy fine particles of Comparative Examples 1 and 2, and compared at the same potential. It was found that a relatively large current density was exhibited.

<比較試験2及び評価>
実施例1及び2と、参考例1及び2と、比較例1及び2のカーボンアロイ微粒子について、X線回折法により結晶構造及び添加物の状態の分析を行った。その結果を図4に示す。
図4から明らかなように、比較例1及び参考例2では、2θ=25°に幅の広い回折線が現れ、比較例2と実施例1及び2と参考例1では、2θ=26°に鋭い回折線が現れた。これらの回折線は炭素の(002)面反射に対応する回折線であり、この回折線が鋭いほど、炭素構造に規則性が現れて結晶化が進んでいる。また2θ=26°は乱層構造に対応している。従来の知見より、実施例1及び2と参考例1ではシェル状構造の炭素が形成されていると考えられる。ここで、比較例1では、2θ=26°に鋭い回折線が現れ、シェル状構造の炭素の形成は認められているけれども、炭素材料に窒素やホウ素が導入されていないため、低い酸素還元活性しか得られなかったものと考えられる。また、参考例2では、2θ=25°に幅の広い回折線が現れ、シェル状構造の炭素の形成が認められなかったけれども、この炭素材料の表面に窒素やホウ素が導入されたため、比較的高い酸素還元活性が得られたものと考えられる。なお、実施例1の2θ=42°に現れた鋭い回折線はコバルトが析出したものであり、実施例1及び2では2回も熱処理しているため、コバルトが凝集し始めたものと考えられる。
<Comparative test 2 and evaluation>
The carbon alloy fine particles of Examples 1 and 2, Reference Examples 1 and 2, and Comparative Examples 1 and 2 were analyzed for crystal structure and additive state by X-ray diffraction. The result is shown in FIG.
As is clear from FIG. 4, in Comparative Example 1 and Reference Example 2 , a wide diffraction line appears at 2θ = 25 °, and in Comparative Example 2, Examples 1 and 2, and Reference Example 1 , 2θ = 26 °. Sharp diffraction lines appeared. These diffraction lines are diffraction lines corresponding to (002) plane reflection of carbon, and the sharper the diffraction lines, the more regularity appears in the carbon structure and the crystallization progresses. Further, 2θ = 26 ° corresponds to the disordered layer structure. From the conventional knowledge, in Examples 1 and 2 and Reference Example 1 , it is considered that carbon having a shell-like structure is formed. Here, in Comparative Example 1, a sharp diffraction line appears at 2θ = 26 °, and formation of shell-like carbon is recognized. However, since nitrogen or boron is not introduced into the carbon material, low oxygen reduction activity It is thought that it was only obtained. In Reference Example 2 , a wide diffraction line appeared at 2θ = 25 °, and the formation of shell-like carbon was not observed. However, since nitrogen and boron were introduced into the surface of this carbon material, It is considered that high oxygen reduction activity was obtained. In addition, the sharp diffraction line that appeared at 2θ = 42 ° in Example 1 is a precipitate of cobalt, and in Examples 1 and 2 , heat treatment was performed twice. Therefore, it is considered that cobalt began to aggregate. .

参考例3
コバルトフタロシアニン錯体に替えて鉄フタロシアニン錯体3.053gを用いたことを以外は参考例1と同様にして、カーボンアロイ微粒子を得た。このカーボンアロイ微粒子を参考例3とした。なお、このカーボンアロイ微粒子には、炭素100重量%に対して、鉄が3重量%含まれるように、原料の混合割合を調整したものである。
参考例4
コバルトフタロシアニン錯体に替えて銅フタロシアニン錯体2.720gを用いたことを以外は参考例1と同様にして、カーボンアロイ微粒子を得た。このカーボンアロイ微粒子を参考例2とした。なお、このカーボンアロイ微粒子には、炭素100重量%に対して、銅が3重量%含まれるように、原料の混合割合を調整したものである。
< Reference Example 3 >
Carbon alloy fine particles were obtained in the same manner as in Reference Example 1 except that 3.053 g of iron phthalocyanine complex was used instead of the cobalt phthalocyanine complex. This carbon alloy fine particle was used as Reference Example 3 . The carbon alloy fine particles are prepared by adjusting the mixing ratio of the raw materials so that 3% by weight of iron is contained with respect to 100% by weight of carbon.
< Reference Example 4 >
Carbon alloy fine particles were obtained in the same manner as in Reference Example 1 except that 2.720 g of a copper phthalocyanine complex was used instead of the cobalt phthalocyanine complex. This carbon alloy fine particle was used as Reference Example 2 . The carbon alloy fine particles are prepared by adjusting the mixing ratio of the raw materials so that 3% by weight of copper is contained with respect to 100% by weight of carbon.

<比較試験3及び評価>
参考例1、3及び4と、比較例2のカーボンアロイ微粒子を用いて、これらの電極触媒について、上記比較試験1と同様に、酸化還元機能を調べるために電極活性試験を行った。その結果を図5に示す。
図5から明らかなように、参考例1及び3のカーボンアロイ微粒子を用いた電極触媒では、比較例2のカーボンアロイ微粒子を用いた電極触媒に比べて、極めて高い電位から酸素還元電流が流れ始め、同じ電位で比較すると、極めて大きな電流密度を示すことが分かった。また参考例4のカーボンアロイ微粒子を用いた電極触媒では、比較例2のカーボンアロイ微粒子を用いた電極触媒に比べて、比較的高い電位から酸素還元電流が流れ始め、同じ電位で比較すると、比較的大きな電流密度を示すことが分かった。
<Comparative test 3 and evaluation>
Using the carbon alloy fine particles of Reference Examples 1, 3 and 4 and Comparative Example 2, an electrode activity test was conducted on these electrode catalysts in order to investigate the redox function in the same manner as in Comparative Test 1 above. The result is shown in FIG.
As is clear from FIG. 5, in the electrode catalyst using the carbon alloy fine particles of Reference Examples 1 and 3 , the oxygen reduction current starts to flow from an extremely high potential as compared with the electrode catalyst using the carbon alloy fine particles of Comparative Example 2. When compared at the same potential, it was found that an extremely large current density was exhibited. Moreover, in the electrode catalyst using the carbon alloy fine particles of Reference Example 4, the oxygen reduction current starts to flow from a relatively high potential compared to the electrode catalyst using the carbon alloy fine particles of Comparative Example 2, and when compared at the same potential, It was found that a large current density was exhibited.

<比較試験4及び評価>
参考例1、3及び4と、比較例2のカーボンアロイ微粒子について、X線回折法により結晶構造及び添加物の状態の分析を行った。その結果を図6に示す。
図6から明らかなように、比較例2及び実施例6では、2θ=25°に幅の広い回折線が現れ、参考例1及び3では、2θ=26°に鋭い回折線が現れた。これらの回折線は炭素の(002)面反射に対応する回折線であり、この回折線が鋭いほど、炭素構造に規則性が現れて結晶化が進んでいる。また2θ=26°は乱層構造に対応している。従来の知見より、参考例3ではシェル状構造の炭素が形成されていると考えられる。更に参考例4では、2θ=25°に幅の広い回折線が現れ、シェル状構造の炭素の形成が認められなかったけれども、炭素材料に窒素とホウ素を導入したため、比較的高い酸素還元活性が得られたものと考えられる。なお、参考例3の2θ=42°に現れた鋭い回折線は鉄及び炭化鉄が析出したものであり、参考例3では鉄フタロシアニン錯体の熱分解特性が参考例1又は参考例4のコバルト又は銅それぞれのフタロシアニン錯体の熱分解特性と異なるため、鉄が凝集し始めたものと考えられる。
<Comparative test 4 and evaluation>
Regarding the carbon alloy fine particles of Reference Examples 1, 3 and 4 and Comparative Example 2, the crystal structure and the state of the additive were analyzed by X-ray diffraction. The result is shown in FIG.
As is clear from FIG. 6, in Comparative Example 2 and Example 6, a wide diffraction line appeared at 2θ = 25 °, and in Reference Examples 1 and 3 , a sharp diffraction line appeared at 2θ = 26 °. These diffraction lines are diffraction lines corresponding to (002) plane reflection of carbon, and the sharper the diffraction lines, the more regularity appears in the carbon structure and the crystallization progresses. Further, 2θ = 26 ° corresponds to the disordered layer structure. From the conventional knowledge, it is considered that in Reference Example 3 , carbon having a shell-like structure is formed. Further, in Reference Example 4 , although a wide diffraction line appeared at 2θ = 25 ° and formation of shell-like carbon was not recognized, nitrogen and boron were introduced into the carbon material, so that a relatively high oxygen reduction activity was obtained. It is thought that it was obtained. In addition, the sharp diffraction line appearing at 2θ = 42 ° in Reference Example 3 is a precipitate of iron and iron carbide. In Reference Example 3 , the thermal decomposition characteristics of the iron phthalocyanine complex are those of cobalt of Reference Example 1 or Reference Example 4 or It is thought that iron began to agglomerate because it differs from the thermal decomposition characteristics of each copper phthalocyanine complex.

本発明実施形態の燃料電池用電極触媒のエッジを含む要部模式図である。It is a principal part schematic diagram including the edge of the electrode catalyst for fuel cells of embodiment of this invention. 3極回転電極セルの模式図である。It is a schematic diagram of a tripolar rotating electrode cell. 実施例1及び2と、参考例1及び2と、比較例1及び2の炭素材料の電位と電流密度との関係を示すグラフである。It is a graph which shows the relationship between the electric potential of Example 1 and 2, the reference examples 1 and 2, and the carbon material of the comparative examples 1 and 2, and an electric current density. 実施例1及び2と、参考例1及び2と、比較例1及び2のX線入射角と回折X線強度との関係を示すグラフである。It is a graph which shows the relationship between the X-ray incident angle and diffraction X-ray intensity of Example 1 and 2, Reference Example 1 and 2, and Comparative Examples 1 and 2. 参考例1、3及び4と、比較例2の炭素材料の電位と電流密度との関係を示すグラフである。It is a graph which shows the relationship between the electric potential of the carbon material of the reference examples 1, 3, and 4, and the comparative example 2, and current density. 参考例1、3及び4と、比較例2のX線入射角と回折X線強度との関係を示すグラフである。It is a graph which shows the relationship between the reference examples 1, 3 and 4, and the X-ray incident angle and diffraction X-ray intensity of the comparative example 2.

符号の説明Explanation of symbols

11 遷移金属
12 炭素材料
13 窒素
14 ホウ素
11 Transition metal 12 Carbon material 13 Nitrogen 14 Boron

Claims (7)

熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る重合工程と、
前記重合物を熱処理して炭素化する炭素化工程と、
前記炭素化物を微粉砕した後にこの炭素化物に含窒素化合物を混合して熱処理することにより前記貴金属以外の遷移金属(11)及び窒素(13)が添加された炭素材料(12)を得る熱処理工程と
を含む燃料電池用電極触媒の製造方法。
A polymerization step for obtaining a thermosetting resin containing a transition metal compound other than a noble metal by mixing a transition metal compound other than a noble metal with a precursor of a thermosetting resin and polymerizing by heating reaction;
A carbonization step of carbonizing the polymer by heat treatment;
A heat treatment step of obtaining a carbon material (12) to which a transition metal (11) other than the noble metal and nitrogen (13) are added by pulverizing the carbonized product and then heat-treating the carbonized product with a nitrogen-containing compound. A method for producing a fuel cell electrode catalyst comprising:
熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る重合工程と、
前記重合物を熱処理して炭素化する炭素化工程と、
前記炭素化物を微粉砕した後にこの炭素化物に含ホウ素化合物を混合して熱処理することにより前記貴金属以外の遷移金属(11)及びホウ素(14)が添加された炭素材料(12)を得る熱処理工程と
を含む燃料電池用電極触媒の製造方法。
A polymerization step for obtaining a thermosetting resin containing a transition metal compound other than a noble metal by mixing a transition metal compound other than a noble metal with a precursor of a thermosetting resin and polymerizing by heating reaction;
A carbonization step of carbonizing the polymer by heat treatment;
A heat treatment step of obtaining a carbon material (12) to which transition metal (11) and boron (14) other than the noble metal are added by pulverizing the carbonized material and then heat-treating the carbonized product with a boron-containing compound. A method for producing a fuel cell electrode catalyst comprising:
熱硬化性樹脂の前駆体に、貴金属以外の含遷移金属化合物を混合し加熱反応させて重合することにより貴金属以外の遷移金属化合物を含有する熱硬化性樹脂を得る重合工程と、
前記重合物を熱処理して炭素化する炭素化工程と、
前記炭素化物を微粉砕した後にこの炭素化物に含窒素化合物及び含ホウ素化合物を混合して熱処理することにより前記貴金属以外の遷移金属(11)、窒素(13)及びホウ素(14)が添加された炭素材料(12)を得る熱処理工程と
を含む燃料電池用電極触媒の製造方法。
A polymerization step for obtaining a thermosetting resin containing a transition metal compound other than a noble metal by mixing a transition metal compound other than a noble metal with a precursor of a thermosetting resin and polymerizing by heating reaction;
A carbonization step of carbonizing the polymer by heat treatment;
After pulverizing the carbonized product, a transition metal other than the noble metal (11), nitrogen (13), and boron (14) was added by mixing the carbonized product with a nitrogen-containing compound and a boron-containing compound and performing heat treatment. A method for producing an electrode catalyst for a fuel cell, comprising: a heat treatment step for obtaining a carbon material (12).
貴金属以外の遷移金属がCo、Fe及びCuからなる群より選ばれた1種又は2種以上の金属である請求項1ないしいずれか1項に記載の燃料電池用電極触媒の製造方法。 The method for producing an electrode catalyst for a fuel cell according to any one of claims 1 to 3 , wherein the transition metal other than the noble metal is one or more metals selected from the group consisting of Co, Fe and Cu. 熱硬化性樹脂がポリフルフリルアルコール、フェノールホルムアルデヒド樹脂又はメラミン樹脂であり、貴金属以外の含遷移金属化合物が遷移金属フタロシアニン錯体、遷移金属ポルフィリン錯体、遷移金属アセチルアセトナト錯体、遷移金属メタロセン錯体又は遷移金属塩であり、含窒素化合物がメラミン、フタロシアニン、アクリロニトリル又はエチレンジアミン四酢酸であり、含ホウ素化合物がBF3錯体、ホウ酸又はホウ酸塩である請求項1ないしいずれか1項に記載の燃料電池用電極触媒の製造方法。 Thermosetting resin is polyfurfuryl alcohol, phenol formaldehyde resin or melamine resin, transition metal compound other than noble metal is transition metal phthalocyanine complex, transition metal porphyrin complex, transition metal acetylacetonato complex, transition metal metallocene complex or transition metal The fuel cell according to any one of claims 1 to 3 , wherein the fuel cell is a salt, the nitrogen-containing compound is melamine, phthalocyanine, acrylonitrile, or ethylenediaminetetraacetic acid, and the boron-containing compound is a BF 3 complex, boric acid, or borate. For producing an electrode catalyst. 請求項1ないしいずれか1項に記載の方法で製造された燃料電池用電極触媒。 An electrode catalyst for a fuel cell produced by the method according to any one of claims 1 to 5 . 請求項に記載の燃料電池用電極触媒を固体高分子電解質膜の一方又は双方の面に層状に形成した電解反応層を有する燃料電池。 A fuel cell having an electrolytic reaction layer in which the electrode catalyst for a fuel cell according to claim 6 is formed in a layer on one or both surfaces of a solid polymer electrolyte membrane.
JP2005204029A 2005-07-13 2005-07-13 Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst Active JP4452887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204029A JP4452887B2 (en) 2005-07-13 2005-07-13 Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204029A JP4452887B2 (en) 2005-07-13 2005-07-13 Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst

Publications (2)

Publication Number Publication Date
JP2007026746A JP2007026746A (en) 2007-02-01
JP4452887B2 true JP4452887B2 (en) 2010-04-21

Family

ID=37787282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204029A Active JP4452887B2 (en) 2005-07-13 2005-07-13 Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst

Country Status (1)

Country Link
JP (1) JP4452887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247869A (en) * 2011-06-10 2011-11-23 广州大学 Spherical nitrogen-doped carbon-supported non-noble metal oxygen reduction catalyst and preparation method thereof
WO2014020915A1 (en) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 Cell catalyst composition, production method therefor, electrode material, and fuel cell
JP2014207220A (en) * 2013-01-30 2014-10-30 東洋インキScホールディングス株式会社 Carbon catalyst and manufacturing method thereof, and catalyst ink and fuel battery arranged by use of carbon catalyst

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232999B2 (en) * 2007-05-11 2013-07-10 国立大学法人群馬大学 Method for producing electrode catalyst for carbon-based fuel cell
JP2009208061A (en) * 2008-02-06 2009-09-17 Gunma Univ Carbon catalyst, slurry containing the carbon catalyst, manufacturing method of carbon catalyst, fuel cell using carbon catalyst, electric storage device and environmental catalyst
WO2010064556A1 (en) 2008-12-02 2010-06-10 日清紡ホールディングス株式会社 Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst
US9059471B2 (en) 2008-12-02 2015-06-16 Nisshinbo Holdings Inc. Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst
JP5403601B2 (en) * 2009-05-26 2014-01-29 帝人株式会社 Carbon material and manufacturing method thereof
JP5414104B2 (en) * 2009-05-26 2014-02-12 帝人株式会社 Carbon material and manufacturing method thereof
JP2011006281A (en) * 2009-06-25 2011-01-13 Teijin Ltd Carbon material and method for producing the same
JP5403798B2 (en) * 2009-06-26 2014-01-29 帝人株式会社 Fuel cell electrode catalyst comprising carbon material and method for producing the same
JP5403799B2 (en) * 2009-06-26 2014-01-29 帝人株式会社 Carbon material and manufacturing method thereof
JP5538760B2 (en) * 2009-07-03 2014-07-02 清蔵 宮田 Oxidation catalyst, reduction catalyst and exhaust gas purification catalyst
JP5538761B2 (en) * 2009-07-03 2014-07-02 清蔵 宮田 Oxidation catalyst, adsorbent and toxic substance purification material
EP2497573A4 (en) 2009-11-05 2014-12-31 Univ Gunma Nat Univ Corp Carbon catalyst, process for production of same, and electrode and battery each utilizing same
JP4964292B2 (en) * 2009-12-07 2012-06-27 日清紡ホールディングス株式会社 Electrode and battery
JP5550397B2 (en) * 2010-03-18 2014-07-16 帝人株式会社 Fuel cell electrode catalyst made of carbon material
JP2011213586A (en) * 2010-03-18 2011-10-27 Teijin Ltd Carbon material and method for producing the same
JP5608595B2 (en) * 2010-03-30 2014-10-15 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
CN102859766B (en) * 2010-04-20 2015-09-30 日清纺控股株式会社 For the C catalyst of the negative electrode of direct-type fuel cell and the negative electrode of the direct-type fuel cell of the described catalyst of use and direct-type fuel cell
JP5108168B2 (en) * 2011-01-14 2012-12-26 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
US9118083B2 (en) 2011-01-14 2015-08-25 Showa Denko K.K Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
CN103547367A (en) 2011-05-23 2014-01-29 帝人株式会社 Particulate carbon catalyst and method for producing same
JP5689379B2 (en) * 2011-07-19 2015-03-25 日清紡ホールディングス株式会社 Catalyst support carrier, catalyst support, electrode and battery
JP5931069B2 (en) * 2011-08-08 2016-06-08 昭和電工株式会社 Method for producing oxygen reduction catalyst and use thereof
JP2013178981A (en) * 2012-02-29 2013-09-09 Hitachi Ltd Electrode catalyst for fuel cell, membrane electrode assembly and fuel cell system
JP5958139B2 (en) * 2012-07-20 2016-07-27 Dic株式会社 Method for producing carbon-iron-based crystal composite nanosheet
US10170770B2 (en) * 2013-09-19 2019-01-01 Council Of Scientific & Industrial Research N-doped porous carbon electrocatalyst and process for preparation thereof
JP5732667B2 (en) * 2013-11-26 2015-06-10 宮田 清蔵 Method for producing carbon catalyst
EP3132845B1 (en) 2014-03-11 2018-11-21 Asahi Kasei Kabushiki Kaisha Nitrogen-containing carbon material and method for manufacturing same, and slurry, ink, and electrode for fuel cell
JP7281158B2 (en) * 2018-07-31 2023-05-25 グローバル・リンク株式会社 Polymer electrolyte fuel cell and electrode manufacturing method
JP7193111B2 (en) * 2018-07-31 2022-12-20 グローバル・リンク株式会社 Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method
CN113285083A (en) * 2021-04-08 2021-08-20 上海应用技术大学 Non-noble metal oxygen reduction electrocatalyst of iron-nitrogen co-doped mesoporous carbon and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247869A (en) * 2011-06-10 2011-11-23 广州大学 Spherical nitrogen-doped carbon-supported non-noble metal oxygen reduction catalyst and preparation method thereof
WO2014020915A1 (en) 2012-08-01 2014-02-06 東洋インキScホールディングス株式会社 Cell catalyst composition, production method therefor, electrode material, and fuel cell
JP2014207220A (en) * 2013-01-30 2014-10-30 東洋インキScホールディングス株式会社 Carbon catalyst and manufacturing method thereof, and catalyst ink and fuel battery arranged by use of carbon catalyst

Also Published As

Publication number Publication date
JP2007026746A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4452887B2 (en) Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst
JP4452889B2 (en) ELECTRODE CATALYST FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING THE CATALYST
Mahmood et al. Fe2N/S/N codecorated hierarchical porous carbon nanosheets for trifunctional electrocatalysis
Wong et al. Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications
Nabae et al. RETRACTED: The role of Fe species in the pyrolysis of Fe phthalocyanine and phenolic resin for preparation of carbon-based cathode catalysts
JP5149364B2 (en) Carbon catalyst, method for producing the same, electrode and battery using the same
CA2782719C (en) Support for catalyst supporting, carrier with supported catalyst, electrode, and battery
JP4452885B2 (en) Catalyst for carbon-based fuel cell, method for producing the same, and fuel cell using the catalyst
JP5348658B2 (en) Method for producing platinum-based alloy catalyst for fuel cell electrode material
Zhu et al. The construction of nitrogen-doped graphitized carbon–TiO2 composite to improve the electrocatalyst for methanol oxidation
Qin et al. Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support
JP4799897B2 (en) Fuel cell
Ipadeola et al. Bimetallic Pd/SnO 2 nanoparticles on metal organic framework (MOF)-derived carbon as electrocatalysts for ethanol oxidation
JP4041429B2 (en) Fuel cell electrode and manufacturing method thereof
WO2006003831A1 (en) Electrode catalyst for fuel cell, process for producing the same and fuel cell utilizing the catalyst
Guo et al. A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
Xu et al. Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction catalyst
Chen et al. Highly active Fe, N co-doped graphene nanoribbon/carbon nanotube composite catalyst for oxygen reduction reaction
WO2012071709A1 (en) Ag/mnyox/c catalyst, preparation and application thereof
Wang et al. Pt nanoparticles supported on N-doped porous carbon derived from metal–organic frameworks for oxygen reduction
Kuroki et al. Oxygen reduction activity of pyrolyzed polypyrroles studied by 15N solid-state NMR and XPS with principal component analysis
Deng et al. Metal–nitrogen (Co-gC 3 N 4) doping of surface-modified single-walled carbon nanohorns for use as an oxygen reduction electrocatalyst
Qiao et al. Pyrolytic Carbon‐coated Cu‐Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction
Wang et al. Mesoporous non-noble metal electrocatalyst derived from ZIF-67 and cobalt porphyrin for the oxygen reduction in alkaline solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150