JP4023146B2 - 内燃機関のアイドル回転速度制御装置 - Google Patents

内燃機関のアイドル回転速度制御装置 Download PDF

Info

Publication number
JP4023146B2
JP4023146B2 JP2001373281A JP2001373281A JP4023146B2 JP 4023146 B2 JP4023146 B2 JP 4023146B2 JP 2001373281 A JP2001373281 A JP 2001373281A JP 2001373281 A JP2001373281 A JP 2001373281A JP 4023146 B2 JP4023146 B2 JP 4023146B2
Authority
JP
Japan
Prior art keywords
engine
pressure
refrigerant
compressor
predetermined amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001373281A
Other languages
English (en)
Other versions
JP2003172166A (ja
Inventor
浩八 田中
隆行 出村
弘和 此原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001373281A priority Critical patent/JP4023146B2/ja
Publication of JP2003172166A publication Critical patent/JP2003172166A/ja
Application granted granted Critical
Publication of JP4023146B2 publication Critical patent/JP4023146B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可変容量型コンプレッサを駆動する内燃機関のアイドル回転速度を制御する装置に関するものである。
【0002】
【従来の技術】
一般に、車両用空調装置(エアコン)の冷媒循環回路では、ガス状の冷媒ガスがコンプレッサで圧縮されて高温・高圧となった後、コンデンサで冷却され、液化する。液化された冷媒はレシーバで清浄化された後、エキスパンジョンバルブで急激に膨張させられ、低温・低圧の霧状の冷媒となる。この霧状の冷媒はエバポレータの周囲の空気から熱を奪って蒸発し、さらに加熱されガス状の冷媒になってコンプレッサに吸入される。
【0003】
前記コンプレッサの一形態として、流量制御弁によって吐出容量(コンプレッサ容量)を変化させるようにした可変容量型コンプレッサが知られている。流量制御弁としては、例えば感圧機構と電磁アクチュエータとを備えたものがある。感圧機構は、冷媒循環回路における所定箇所での冷媒の圧力変動に基づいて変形する感圧部材を備えている。電磁アクチュエータへの通電は、エバポレータの目標温度と実温度との偏差に基づきデューティ制御される。そして、流量制御弁では、感圧部材の変形にともない弁体に作用する力と、電磁アクチュエータへの通電にともない発生して前記弁体に作用する力とが釣合う位置へ弁体が変位する。この変位にともない流量制御弁の弁開度が変化し、吐出容量が最適な値に調整される。
【0004】
例えば、車両に搭載されたエンジンのアイドル時に、エバポレータの目標温度と実温度との偏差が第1判定値を越えると、100%のデューティ比で通電が行われて弁体が全閉となり、コンプレッサの吐出容量が最大(100%)となる。また、偏差が第2判定値(<第1判定値)を下回ると、電磁アクチュエータへの通電が停止(デューティ比0%)されて弁体が全開となり、吐出容量が最小(0%)となる。
【0005】
一方、エンジンでは、アイドル時に、そのエンジンにかかる負荷の状態に応じてエンジン回転速度を制御することが一般的に行われる。このアイドル回転速度制御では、実エンジン回転速度を目標回転速度に一致させるための制御量が決定され、その制御量に基づきスロットル用アクチュエータが駆動される。この駆動によりスロットル弁の開度が調整され、前記制御量に対応する量の空気がエンジンに吸入される。そして、この空気量に応じた量の燃料がエンジンに供給され、実エンジン回転速度が目標回転速度に収束する。
【0006】
ここで、前述したコンプレッサはエンジンを駆動源としているため、アイドル時にコンプレッサが駆動されると、その駆動力分(コンプレッサのトルク)が負荷としてエンジンに加わり、アイドル回転速度が目標回転速度よりも低下するおそれがある。そこで、吐出容量を最大にするための指令が出されると、実エンジン回転速度がこの指令に応じた目標回転速度(例えば680回転/分)となるように、スロットル用アクチュエータが制御される。スロットル弁が所定開度開弁され、吸入空気量が増加する。それにともないエンジンへの燃料供給量が増加し、前記コンプレッサのトルクによる実エンジン回転速度の低下が抑制される。
【0007】
また、吐出容量を最大から最小に切替えるための指令が出されると、一定のディレイ時間が経過した後、スロットル用アクチュエータの駆動によりスロットル弁が元の開度に戻され、実エンジン回転速度が切替え指令に応じた目標回転速度(例えば575回転/分)に収束する。このように一定のディレイ時間を設けたのは、吐出容量を最大から最小に切替えるための指令が出された場合、エンジンにかかるコンプレッサのトルクがゆっくりと低下するためである。このコンプレッサのトルクに見合うトルクをエンジンで発生させるために、切替え指令が出された後も一定時間が経過するまでは、元の開度に所定値を上乗せした開度でスロットル弁を開弁させて吸入空気量を増量させている。
【0008】
このように、アイドル時には、エンジンの目標回転速度は、コンプレッサの吐出容量を最大にするための指令に応じた値か、同吐出容量を最小にするための指令に応じた値のいずれかに設定される。従って、車両の振動と共振するエンジン回転速度が、たとえこれら2つの目標回転速度の中間に存在しても、実エンジン回転速度がその共振回転速度に収束されることがなく、不要な振動の発生を回避できる。
【0009】
【発明が解決しようとする課題】
ところで、コンプレッサの吐出容量を最大から最小に切替える指令が出されてから、エンジンにかかるコンプレッサのトルクが十分小さくなるまでの時間は、切替え指令が出されたときに流量制御弁の弁体に作用している力によって異なる。この力としては、前述したように、感圧部材の変形にともなう力と電磁アクチュエータの電磁力とが挙げられる。具体的には、感圧部材による力に関与する冷媒圧力については、前記時間は、冷媒圧力が高いときには長く、低いときには短くなる傾向にある。これは、アイドル時のようなエンジン低回転域では、吐出容量が100%から0%に変化する場合、コンプレッサから吐出される冷媒の流量が限られる。このため、冷媒圧力が高いと弁体が全開位置へ変位する時間が長くなるものと考えられる。
【0010】
また、電磁アクチュエータの電磁力に関与する通電の際の制御電流については、前記時間は、制御電流が多いときには長く、少ないときには短い傾向にある。これは、デューティ比を変化させているものでは、電源電圧(バッテリ電圧)が高い場合、同じデューティ比でも電流値が大きくなる。このため、冷媒の流量が多め(コンプレッサ容量大)に制御され、デューティ比を100%から0%に小さくする場合、弁体が全開位置へ変位する時間が長くなるものと考えられる。
【0011】
ところが、前述したように従来はディレイ時間が一定値に設定されている。このため、冷媒圧力が低い場合や制御電流が少ない場合に前記切替え指令が出されると、エンジンにかかるコンプレッサのトルクが速く減少する。このトルクが十分小さくなっているにもかかわらず、元の開度に所定値を上乗せした開度でスロットル弁が開弁されると、スロットル弁開弁にともなう燃料増量により発生するトルクが、コンプレッサのトルクを上回る。その結果、低下すべき実エンジン回転速度が高くなる現象(回転の吹上がり)が起るおそれがある。
【0012】
前記とは逆に、冷媒圧力が高い場合や制御電流が多い場合に、前記切替え指令が出されると、エンジンにかかるコンプレッサのトルクがゆっくり減少する。このトルクが十分減少する前に、スロットル弁が元の開度に戻されると、コンプレッサのトルクを、スロットル弁開弁にともなう燃料増量により発生するトルクで補いきれない。その結果、実エンジン回転速度が切替え指令に応じた目標回転速度よりも低くなる現象(回転の落込み)が起るおそれがある。
【0013】
本発明はこのような実情に鑑みてなされたものであって、その目的は、内燃機関の回転の吹上がりや落込みを抑制することのできる内燃機関のアイドル回転速度制御装置を提供することにある。
【0014】
【課題を解決するための手段】
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1又はに記載の発明に係るアイドル回転速度制御装置は、冷媒循環回路における所定箇所での冷媒の圧力変動に応じて変形する感圧部材と電磁アクチュエータとを備え、前記感圧部材の変形にともなう力と前記電磁アクチュエータの電磁力とにより、流量制御弁の弁体を変位させて吐出容量を変更するとともに、機関アイドル時には、前記冷媒循環回路におけるエバポレータの目標温度と実温度との偏差に基づき前記電磁アクチュエータへの電力供給を制御することにより、前記吐出容量を第1所定量又はそれよりも少ない第2所定量に変化させるようにした可変容量型コンプレッサを駆動する内燃機関に用いられる。そして、アイドル回転速度制御装置は、前記可変容量型コンプレッサに対し、前記吐出容量を前記第1所定量にするための指令が出されると機関回転速度が同指令に応じた目標回転速度となり、前記吐出容量を前記第1所定量から前記第2所定量に切替えるための指令が出されると、所定のディレイ時間が経過した後、前記機関回転速度が前記切替え指令に応じた目標回転速度となるように調整用アクチュエータを制御する制御手段を備えている。
【0015】
上記の構成によれば、可変容量型コンプレッサの流量制御弁では、感圧部材が、冷媒循環回路における所定箇所での冷媒の圧力変動に応じて変形し、この変形にともなう力が弁体に作用する。また、弁体には電磁アクチュエータの電磁力も作用する。この電磁力は、電磁アクチュエータに供給される電力に応じて変化する。そして、これらの感圧部材の変形にともなう力と電磁力とが釣合う位置に弁体が変位し、コンプレッサの吐出容量が変更される。特に、内燃機関のアイドル時には、コンプレッサでは、冷媒循環回路でのエバポレータの目標温度と実温度との偏差に基づき電磁アクチュエータへの電力供給が制御される。この制御により、流量制御弁の弁体に作用する電磁アクチュエータの電磁力が変化して弁体の位置が変わり、コンプレッサの吐出容量が第1所定量(例えば最大)又はそれよりも少ない第2所定量(例えば最小)に変化する。ここで、コンプレッサは内燃機関を駆動源としているため、コンプレッサの駆動状況に応じたトルクが負荷として内燃機関に加わる。このトルクは、コンプレッサの吐出容量に応じて異なる。
【0016】
一方、内燃機関では、アイドル回転速度制御装置によって以下のような機関回転速度の制御が行われる。可変容量型コンプレッサに対し、吐出容量を第1所定量にするための指令が出されると、制御手段では、機関回転速度が同指令に応じた目標回転速度となるように調整用アクチュエータが制御される。また、吐出容量を第1所定量から第2所定量に切替えるための切替え指令が出されると、所定のディレイ時間が経過した後、機関回転速度が切替え指令に応じた目標回転速度となるように調整用アクチュエータが制御される。すなわち、切替え指令が出された後もディレイ時間が経過するまでは調整用アクチュエータが駆動される。このように、アイドル回転速度制御装置では、コンプレッサの吐出容量の切替えに応じて目標回転速度が切替えられ、実回転速度がその目標回転速度に収束するように調整用アクチュエータが制御される。この制御により、機関回転速度が、内燃機関にかかるコンプレッサのトルクから影響を受けにくくなる。
【0017】
ここで、吐出容量の切替え指令が出されてから、内燃機関にかかるコンプレッサのトルクが十分小さくなるまでの時間は、切替え指令が出されたときに流量制御弁の弁体に作用している力によって異なる。この力としては、感圧部材の変形にともなう力と電磁アクチュエータの電磁力とが挙げられる。感圧部材による力には冷媒圧力が大きく関与しており、前記時間は、冷媒圧力が高いときには長く、低いときには短くなる傾向にある。また、電磁アクチュエータの電磁力には、その電磁アクチュエータに供給される電力が大きく関与しており、前記時間は、電力が多いときには長く、少ないときには短くなる傾向にある。
【0018】
これに対し、請求項1に記載の発明では、上記の制御手段に加え、前記ディレイ時間を前記所定箇所での冷媒の圧力に応じて変更する変更手段を備えるとともに、前記変更手段は前記冷媒圧力が高いとき、前記ディレイ時間を、前記冷媒圧力が低いときよりも長く設定するものであるとしている。
上記の構成によれば、変更手段により、制御手段におけるディレイ時間が冷媒圧力に応じて変更される。すなわち、冷媒圧力が高いとき、低いときよりもディレイ時間が長く設定される。このため、そのときの冷媒圧力に応じてディレイ時間を適切な値に設定することにより、吐出容量について第1所定量から第2所定量への切替え指令が出された後、調整用アクチュエータにより発生するトルクが十分小さくなる時期を、内燃機関にかかるコンプレッサのトルクが十分小さくなる時期に一致させることが可能となる。その結果、調整用アクチュエータの駆動にともなうトルクがコンプレッサのトルクを上回り、低下すべき実機関回転速度が上昇する現象(回転の吹上がり)を抑制することができる。また、調整用アクチュエータの駆動にともなうトルクがコンプレッサのトルクを補いきれず、実機関回転速度が切替え指令に応じた目標回転速度よりも低くなる現象(回転の落込み)を抑制することができる。
【0021】
また、請求項に記載の発明では、前述した制御手段に加え、前記ディレイ時間を前記電磁アクチュエータに供給される電力に応じて変更する変更手段を備えるとともに、前記電力が多いとき、前記ディレイ時間を、前記電力が少ないときよりも長く設定するものであるとしている。
【0022】
上記の構成によれば、変更手段により、制御手段におけるディレイ時間が電磁アクチュエータに供給される電力に応じて変更される。すなわち、ディレイ時間の変更に際しては、電力(電流、電圧)が多いとき、少ないときよりもディレイ時間が長く設定される。このため、そのときの電磁アクチュエータへの電力に応じてディレイ時間を適切な値に設定することにより、吐出容量について第1所定量から第2所定量への切替え指令が出された後、調整用アクチュエータにより発生するトルクが十分小さくなる時期を、内燃機関にかかるコンプレッサのトルクが十分小さくなる時期に一致させることが可能となる。その結果、調整用アクチュエータの駆動にともなうトルクがコンプレッサのトルクを上回り、低下すべき実機関回転速度が上昇する現象(回転の吹上がり)を抑制することができる。また、調整用アクチュエータの駆動にともなうトルクがコンプレッサのトルクを補いきれず、実機関回転速度が切替え指令に応じた目標回転速度よりも低くなる現象(回転の落込み)を抑制することができる。
【0025】
【発明の実施の形態】
以下、本発明を具体化した一実施形態について図面に従って説明する。
図1に示すように、車両には、内燃機関としてガソリンエンジン(以下、単にエンジンという)11が搭載されている。エンジン11のシリンダ12内には、ピストン13が往復動可能に収容されている。ピストン13は、コネクティングロッド14を介し、エンジン11の出力軸であるクランク軸15に連結されている。各ピストン13の往復運動は、コネクティングロッド14によって回転運動に変換された後、クランク軸15に伝達される。クランク軸15は、変速機(図示略)等を介して車両の車輪に連結されている。
【0026】
シリンダ12内においてピストン13よりも上側には燃焼室16が形成されている。燃焼室16には吸気通路17が接続され、エンジン11外部の空気が吸気通路17を通じて燃焼室16に取込まれる。エンジン11には吸気通路17を開閉するための吸気弁18が設けられている。また、吸気通路17にはスロットル弁19が回動可能に支持されている。スロットル弁19には、調整用アクチュエータとしてスロットル用アクチュエータ21が駆動連結されている。スロットル用アクチュエータ21は、運転者によるアクセルペダル(図示略)の踏込み操作等に基づき、後述するエンジンECU91によって制御され、スロットル弁19を回動させる。吸気通路17を流れる空気の量である吸入空気量は、スロットル弁19の回動角度であるスロットル開度に応じて変化する。さらに、吸気通路17には燃焼室16に燃料を供給するための燃料噴射弁22が取付けられている。燃料噴射弁22から噴射された燃料と吸入空気とからなる混合気は、吸気弁18が開かれる際に燃焼室16内へ導入される。
【0027】
エンジン11には点火プラグ23が取付けられている。そして、前記混合気は点火プラグ23の電気火花によって着火され、爆発・燃焼する。このときに生じた高温高圧の燃焼ガスによりピストン13が往復動され、クランク軸15が回転されて、エンジン11の駆動力(トルク)が得られる。
【0028】
前記燃焼室16には排気通路24が接続されている。エンジン11には排気通路24を開閉するための排気弁25が設けられている。前記混合気の燃焼によって生じた燃焼室16内のガスは、排気弁25が開かれる際に燃焼室16から排気通路24に排出される。
【0029】
また、車両には空調装置(エアコン)26が搭載されている。エアコン26の冷媒循環回路(冷凍サイクル)は、可変容量型コンプレッサ(圧縮機、以下単に「コンプレッサ」という)27、コンデンサ(凝縮器)28、レシーバ29、エキスパンジョンバルブ(膨張弁)31、エバポレータ(蒸発器)32等によって構成されている。この冷媒循環回路では、冷媒が次のように変化しながら流れる。
【0030】
ガス状の冷媒はコンプレッサ27で圧縮されて高温・高圧となる。コンプレッサ27から吐出されたガス状の冷媒はコンデンサ28で冷却されて液化した後、レシーバ29で清浄化される。レシーバ29を出た高圧の液状の冷媒は、エキスパンジョンバルブ31で急激に膨張させられ、低温・低圧の霧状の冷媒になる。この霧状の冷媒はエバポレータ32を通過する際、そのエバポレータ32の周囲の空気から熱を奪って蒸発(気化)し、その後、コンプレッサ27に吸込まれる。
【0031】
このように、冷媒循環回路では、エバポレータ32において冷媒が気化する際に熱が奪われる。このエバポレータ32の周りに車室内の空気が循環されることによって、車室内が冷却される。この際、空気が冷却されることにより空気中の水蒸気が水滴になり除湿される。また、エバポレータ32において冷媒によって奪われた熱は、コンデンサ28において冷媒が液化するときに車室外へ放出される。
【0032】
次に、コンプレッサ27の構造について説明する。図2に示すように、コンプレッサ27のケーシング35内にはクランク室36が形成されるとともに、駆動軸37が回転可能に支持されている。ケーシング35から露出する駆動軸37の一方(図2の左方)の端部にはプーリ38が取付けられている。プーリ38は、ベルト(図示略)を介してエンジン11のクランク軸15に駆動連結されている。そのため、エンジン11の運転にともなうクランク軸15の回転がベルト、プーリ38等を介して駆動軸37に伝達され、コンプレッサ27が駆動される。
【0033】
駆動軸37上には、ラグプレート39が一体回転可能に取付けられている。また、駆動軸37には、斜板41が軸方向へのスライド可能かつ傾動可能に支持されている。斜板41は、ヒンジ機構42を介してラグプレート39に連結されている。この連結により斜板41は、ラグプレート39及び駆動軸37と一体回転可能であり、また駆動軸37に対して傾動可能である。
【0034】
ケーシング35内には複数のシリンダ43が形成され、各シリンダ43内にピストン44が往復動可能に収容されている。各ピストン44は、シュー45を介して斜板41に係留されている。このため、各ピストン44は、駆動軸37に対して傾斜した斜板41の回転によってシリンダ43内を往復動する。このとき、斜板41の傾斜角度(斜板角度θ)に応じてピストン44のストロークが変化する。ここで、斜板角度θは、駆動軸37に直交する面に対し斜板41が交わる角度である。
【0035】
ケーシング35内において、シリンダ43のプーリ38とは反対側には、吸入ポート、吸入弁、吐出ポート及び吐出弁(いずれも図示略)を有する弁・ポート形成体46が配置されている。さらに、弁・ポート形成体46のプーリ38とは反対側には、吸入室47及び吐出室53がそれぞれ設けられている。吐出室53は、吐出絞り48を有する壁49によって第1吐出室51と第2吐出室52とに仕切られている。第1吐出室51は壁49よりもシリンダ43側に形成され、第2吐出室52は第1吐出室51及び壁49を挟んでシリンダ43とは反対側に形成されている。そして、吸入室47内の冷媒ガスは、各ピストン44が上死点から下死点(図2の右から左)へ向けて移動する際、弁・ポート形成体46の吸入ポート及び吸入弁を介してシリンダ43内へ吸入される。また、シリンダ43内の冷媒ガスは、ピストン44が下死点から上死点(図2の左から右)へ向けて移動する際に所定の圧力まで圧縮され、弁・ポート形成体46の吐出ポート及び吐出弁を介して吐出室53に吐出される。
【0036】
ケーシング35内には、クランク室36と吸入室47とを連通させる抽気通路54が設けられている。また、ケーシング35内には、吐出室53とクランク室36とを連通させる給気通路55が設けられ、その給気通路55の途中に流量制御弁56が配置されている。そして、流量制御弁56の開度を調整することにより、給気通路55を通じてクランク室36に導入される高圧の吐出ガスの流量と、抽気通路54を介してクランク室36から導出されるガスの流量とのバランスが制御され、クランク室36の内圧Pcが変更される。この内圧Pcの変更に応じて、ピストン44両側の圧力差、すなわち内圧Pcとシリンダ43の内圧との差圧が変化し斜板角度θが変化する。
【0037】
その結果、ピストン44のストローク、ひいてはコンプレッサ27の吐出容量が調節される。例えば、クランク室36の内圧Pcが低下すると、斜板角度θが大きくなってピストン44のストロークが大きくなり、吐出容量が増加する。これとは逆に内圧Pcが上昇すると、斜板角度θが小さくなり、ピストン44のストロークが小さくなり、吐出容量が減少する。
【0038】
次に、流量制御弁56の構造について説明する。図3に示すように、流量制御弁56のハウジング57内には、その一方(図3の上方)の端部から他方(図3の下方)の端部に向けて、感圧室58、連通路59及び弁室61が順に設けられている。連通路59及び弁室61は給気通路55の一部を構成している。連通路59は、給気通路55の上流部を介して第1吐出室51に連通され、弁室61は給気通路55の下流部を介してクランク室36に連通されている。従って、第1吐出室51から給気通路55へ吐出された冷媒ガスは、流量制御弁56を通過する過程で連通路59及び弁室61を順に流れる。そして、弁室61から流量制御弁56外へ出た冷媒ガスは、再び給気通路55を通ってクランク室36に導かれる。
【0039】
ハウジング57内には、弁体として、作動ロッド62が軸方向(図3の上下方向)へ往復動可能に配置されている。この作動ロッド62の一方(図3の上方)の端部によって、連通路59と感圧室58とが遮断されている。弁室61と連通路59との境界部分は弁座をなしている。一方、作動ロッド62には弁体部63が形成されており、作動ロッド62の往復動にともない弁体部63が弁座に接近及び離間することによって、給気通路55の開度が調整される。弁体部63が弁座に着座したとき給気通路55が閉鎖される。
【0040】
感圧室58内には、ベローズ等からなる感圧部材64が収容されている。感圧部材64は、ロッド受け65を介して作動ロッド62に連結されている。ロッド受け65と感圧室58の底部との間にはばね66が配置されており、ロッド受け65は、感圧部材64が伸長しようとする力と、ばね66の付勢力とが釣合う位置で静止している。感圧室58内は、感圧部材64により、その感圧部材64の内側の空間と外側の空間とに仕切られている。内側の空間には、第1吐出室51内の圧力PdHが導かれ、外側の空間には第2吐出室52内の圧力PdLが導かれている。圧力PdHは冷媒が吐出絞り48を通過する前の圧力である。また、圧力PdLは冷媒が吐出絞り48を通過した後の圧力であり、前記圧力PdHよりも低い。そして、感圧室58、感圧部材64、ロッド受け65、ばね66等によって感圧機構67が構成されている。
【0041】
感圧機構67は、冷媒循環回路における2箇所(第1吐出室51、第2吐出室52)での差圧ΔPd(PdH−PdL)の変動に基づいて感圧部材64が伸縮することで、その差圧ΔPdの変動を打消す側にコンプレッサ27の吐出容量が変更されるように弁体部63を変位させる。
【0042】
一方、流量制御弁56には電磁アクチュエータ68が組込まれている。電磁アクチュエータ68は磁性材からなる固定子69を備え、前述した作動ロッド62がこの固定子69に往復動可能に挿通されている。固定子69から露出する作動ロッド62の他方(図3の下方)の端部には、磁性材からなる可動子71が固定されている。可動子71は、ばね72により常に弁室61から遠ざかる方向(図3の下方)、すなわち開弁方向へ付勢されている。固定子69及び可動子71の周りにはコイル73が巻回配置されている。電磁アクチュエータ68では、コイル73への通電により、その通電量に応じた大きさの電磁力が、開弁方向の力に対向する力(閉弁方向の力)として、可動子71と固定子69との間に発生する。開弁方向の力としては、(a)感圧室58においてロッド受け65を介して作動ロッド62に作用するもの、(b)連通路59において弁体部63に作用するもの、(c)ばね72の付勢力によるもの等が挙げられる。
【0043】
流量制御弁56では、後述するエアコンECU92によりコイル73への通電時間がデューティ制御される。この制御に応じて、閉弁方向の力としての電磁力が変化する。弁体部63の位置が変更され、給気通路55の開度が調整される。
【0044】
例えば、コイル73に通電されない場合、すなわち、デューティ比が0%の場合には、可動子71に閉弁方向への電磁力が発生しない。前述したばね72の付勢力等による開弁方向の力が支配的となり、弁体部63が弁座から離れて給気通路55が全開状態となる。このため、クランク室36の内圧Pcは、そのときおかれた状況下において取り得る最大値となり、同内圧Pcとシリンダ43の内圧との差圧が大きい。従って、斜板角度θが最少となり、コンプレッサ27の吐出容量が最小となる。
【0045】
また、コイル73への通電(デューティ比が0%よりも大)にともない発生する閉弁方向の電磁力が、ばね72、感圧部材64等による開弁方向の付勢力に打勝つと、作動ロッド62が閉弁方向への移動を開始する。この状態では、電磁力が、感圧部材64、ばね72等の付勢力によって加勢された前記差圧ΔPdに基づく開弁方向への押圧力に対抗する。そして、これら開弁方向及び閉弁方向に作用する力が均衡する位置に、作動ロッド62の弁体部63が弁座に対して位置決めされる。
【0046】
例えば、実エンジン回転速度NEが低下して冷媒循環回路の冷媒流量が減少すると、差圧ΔPdに基づく開弁方向の力が減少し、その時点での電磁力では、作動ロッド62に対し、開弁方向及び閉弁方向の両方向から作用する力の均衡が図れなくなる。従って、作動ロッド62が閉弁方向へ移動して給気通路55の開度が減少し、クランク室36の内圧Pcが低下する。斜板角度θが大きくなって、ピストン44のストロークが大きくなり、コンプレッサ27の吐出容量が増大する。これにともない冷媒循環回路における冷媒流量が増加し、差圧ΔPdが増加する。
【0047】
前記とは逆に、実エンジン回転速度NEが上昇して冷媒循環回路の冷媒流量が増大すると、差圧ΔPdに基づく開弁方向の力が増大して、その時点での電磁力では作動ロッド62に作用する付勢力の均衡が図れなくなる。従って、作動ロッド62(弁体部63)が開弁方向へ移動して給気通路55の開度が増加し、クランク室36の内圧Pcが上昇する。斜板角度θが小さくなって、ピストン44のストロークが小さくなり、コンプレッサ27の吐出容量が減少する。これにともない冷媒循環回路における冷媒流量が減少し、差圧ΔPdが減少する。
【0048】
また、コイル73に対する通電のデューティ比を大きくして電磁力を大きくすると、その時点での差圧ΔPdに基づく力では、開弁方向及び閉弁方向の両方向から作用する力の均衡が図れなくなる。このため、作動ロッド62(弁体部63)が閉弁方向へ移動して給気通路55の開度が減少し、コンプレッサ27の吐出容量が増大される。その結果、冷媒循環回路における冷媒流量が増大し、差圧ΔPdも増大する。
【0049】
逆に、コイル73に対する通電のデューティ比を小さくして電磁力を小さくすると、その時点での差圧ΔPdに基づく力では、開弁方向及び閉弁方向の両方向から作用する力の均衡が図れなくなる。このため、作動ロッド62(弁体部63)が開弁方向へ移動して給気通路55の開度が増加し、コンプレッサ27の吐出容量が減少する。その結果、冷媒循環回路における冷媒流量が減少し、差圧ΔPdも減少する。
【0050】
このように、流量制御弁56では、コイル73に対する通電のデューティ比によって決定された差圧ΔPdの制御目標(設定差圧)を維持するように、この差圧ΔPdの変動に応じて自律的に作動ロッド62(弁体部63)が位置決めされる。また、この設定差圧は、コイル73に対する通電のデューティ比を調節することで変更可能である。このため、エバポレータ32での熱負荷の状況にほとんど影響されることなく、応答性及び制御性の高い吐出容量の制御を行うことができる。
【0051】
図1に示すように、車両には、エンジン11の運転状態を検出するセンサとして、運転者によるアクセルペダルの踏込み量であるアクセル開度を検出するアクセルセンサ81、車両の走行速度を検出する車速センサ82等が設けられている。また、車両には、その周囲の雰囲気(環境状況)等を検出するための各種センサが設けられている。これらのセンサとしては、車室内の温度を検出する内気センサ83、外気温度を検出する外気センサ84、日射量を検出する日射センサ85、エバポレータ32を通過した直後の冷気の温度(実エバポレータ温度T)を検出するエバポレータ後温度センサ86等が挙げられる。そのほかにも、エアコン26を作動(オン)及び停止(オフ)させるために乗員によって操作されるエアコンスイッチ87が設けられている。さらに、本実施形態では、コンプレッサ27から吐出された冷媒の圧力を検出する圧力センサ88が用いられている。ここでは、圧力センサ88は、冷媒循環回路においてコンデンサ28とレシーバ29との間に配置されているが、この位置に限られない。
【0052】
前記各種センサ81〜88の検出値等に基づき、スロットル用アクチュエータ21、流量制御弁56等を制御する手段として、車両にはエンジン電子制御ユニット(以下「エンジンECU」という)91及びエアコン電子制御ユニット(以下「エアコンECU」という)92が設けられている。アクセルセンサ81、車速センサ82等はエンジンECU91に接続されている。また、内気センサ83、外気センサ84、日射センサ85、エバポレータ後温度センサ86、エアコンスイッチ87等はエアコンECU92に接続されている。両ECU91,92は、電源として車両に搭載されたバッテリ89に接続され、このバッテリ89から電力の供給を受けている。
【0053】
各ECU91,92はマイクロコンピュータを中心として構成されている。ECU91,92では中央処理装置(CPU)が、前記各種センサ81〜88の検出値等に基づき、読出し専用メモリ(ROM)に記憶されている制御プログラムや初期データに従って演算処理を行い、その演算結果に基づいて各種制御を実行する。CPUによる演算結果は、ランダムアクセスメモリ(RAM)において一時的に記憶される。両ECU91,92は相互に接続されており、両ECU91,92間において、前記演算結果等のデータが通信可能となっている。
【0054】
次に、前記のように構成された本実施形態の作用について説明する。図4のフローチャートは、エアコンECU92によって実行される処理のうち、アイドル時にエアコン26をオン・オフさせるための「エアコン制御ルーチン」を示している。この制御ルーチンは所定のタイミング、例えば所定時間毎に繰返し実行される。
【0055】
エアコンECU92は、まずステップ110において、制御実行条件が成立しているか否かを判定する。ここでの制御実行条件は、以下の(1)〜(3)の3つの要件が全て満たされた場合に成立するものとしている。
(1)アクセルセンサ81によるアクセル開度が「0」であること。すなわち、運転者によりアクセルペダルが踏込み操作されていないこと。
(2)車速センサ82による車速が所定値、例えば4km/h以下であること。
(3)エアコンスイッチ87からオン信号が出力されていること。すなわち、エアコン26の作動のために、乗員によりエアコンスイッチ87がオン操作されていること。
【0056】
前記ステップ110の判定条件が満たされていないと、エアコン制御ルーチンを一旦終了する。これに対し、ステップ110の判定条件が満たされていると、次のステップ120へ進み、エバポレータ後温度センサ86による実際のエバポレータ温度(実エバポレータ温度T)が、エアコンオン温度Ton以上であるか否かを判定する。ここで、エアコンオン温度Tonは、エアコン26をオンさせるかどうかを決定する際の判定値(第1判定値)であり、目標エバポレータ温度に所定値α(例えば4℃)を加算した値である。目標エバポレータ温度は、内気センサ83による室内温度、外気センサ84による外気温度、日射センサ85による日射量、圧力センサ88による冷媒圧力等に基づき、別途算出されたものである。
【0057】
前記ステップ120の判定条件が満たされている(Ton≦T)と、ステップ130へ移行し、コンプレッサ27の吐出容量を第1所定量(本実施形態では最大)にするための指令を流量制御弁56に出力する。具体的には、エアコン26をオンさせるための信号を流量制御弁56に出力する。この信号に応じ、流量制御弁56では、100%のデューティ比でコイル73に通電される。この通電により流量制御弁56が閉弁され(給気通路55が全閉状態となり)、クランク室36の内圧Pcが低下して斜板角度θが大きくなる。ピストン44のストロークが大きくなり、コンプレッサ27の吐出容量が第1所定量(最大)となり、エンジン11にかかるコンプレッサ27のトルクが増大する。
【0058】
なお、前記ステップ120の各判定条件が満たされていない(Ton>T)と、エアコン制御ルーチンを一旦終了する。この場合、エアコン26はそれ以前の状態、すなわちオフ状態が継続されることとなる。
【0059】
次に、ステップ140において、エバポレータ後温度センサ86による実エバポレータ温度Tが、エアコンオフ温度Toff よりも低いか否かを判定する。ここで、エアコンオフ温度Toff は、エアコン26をオフさせるかどうかを決定する際の判定値(第2判定値)であり、目標エバポレータ温度に所定値β(ただし、β<αを満たす値であり、例えば3℃)を加算した値である。
【0060】
前記ステップ140の判定条件が満たされている(Toff >T)と、ステップ150へ移行し、コンプレッサ27の吐出容量を前記第1所定量(最大)よりも少ない第2所定量(本実施形態では最小)にするための指令を流量制御弁56に出力する。具体的には、エアコン26をオフさせるための信号を流量制御弁56に出力する。この信号に応じ、流量制御弁56では、0%のデューティ比でデューティ制御が行われる。すなわち、コイル73への通電が停止される。その結果、流量制御弁56が開弁され(給気通路55が全開状態となり)、クランク室36の内圧Pcが上昇し、斜板角度θが小さくなる。ピストン44のストロークが小さくなり、コンプレッサ27の吐出容量が減少して第2所定量(最小)となり、エンジン11にかかるコンプレッサ27のトルクが減少する。
【0061】
ステップ150の処理を実行した後、エアコン制御ルーチンを一旦終了する。なお、前記ステップ140の判定条件が満たされていない場合(Toff ≦T)にも、エアコン制御ルーチンを一旦終了する。この場合には、エアコン26のオン状態が継続されることとなる。
【0062】
前述したエアコン制御ルーチンによると、実エバポレータ温度Tに応じてコンプレッサ27のデューティ比、及びエンジン11にかかるコンプレッサ27のトルクが、例えば図7(a),(b),(d)に示すように変化する。実エバポレータ温度Tが上昇してエアコンオン温度Ton以上になる(タイミングt10,t30)と、ステップ110→120→130→140→リターンの順に処理が行われ、100%のデューティ比でコイル73に通電するための指令が出される。この通電によりコンプレッサ27の吐出容量が0%から100%に切替り、エンジン11にかかるコンプレッサ27のトルクが急激に増加する。デューティ比100%の状態は、実エバポレータ温度Tがエアコンオフ温度Toff 以上である限り維持される。
【0063】
一方、実エバポレータ温度Tが下降してエアコンオフ温度Toff を下回る(タイミングt20,t40)と、ステップ140の判定条件が満たされるため、ステップ110→120→130→140→150→リターンの順に処理が行われる。コイル73への通電を停止するための指令、すなわち、デューティ比を100%から0%に切替えるための指令が出される。この通電停止によりコンプレッサ27の吐出容量が100%から0%に切替り、エンジン11にかかるコンプレッサ27のトルクが減少する。
【0064】
デューティ比0%の状態は、実エバポレータ温度Tがエアコンオン温度Ton未満である限り維持される。ステップ120の判定条件が満たされないことから、ステップ110→120→リターンの順に処理が行われるからである。そして、実エバポレータ温度Tが再びエアコンオン温度Ton以上になると、デューティ比が0%から100%に切替えられる。
【0065】
次に、図6のフローチャートは、エンジンECU91によって実行される処理のうち、アイドル時において、エンジン11の実回転速度(実エンジン回転速度NE)を目標回転速度となるように制御するための「アイドル回転速度制御ルーチン」を示している。ここでの目標回転速度としては、エアコン26がオフされているときの目標回転速度NEoff と、オンされているときの目標回転速度NEonとの2種類がある(図7(e)参照)。これらの目標回転速度は、NEoff <NEonの条件を満たす値、例えば、NEoff =575回転/分、NEon=680回転/分に設定されている。この制御ルーチンは所定のタイミング、例えば所定時間毎に繰返し実行される。
【0066】
エンジンECU91は、まずステップ210において、制御実行条件が成立しているか否かを判定する。ここでの制御実行条件は、前述したステップ110でのものと同じである。このステップ210の判定条件が満たされていないと、アイドル回転速度制御ルーチンを一旦終了する。これに対し、ステップ210の判定条件が満たされていると、次のステップ220へ進み、エバポレータ後温度センサ86による実エバポレータ温度Tが、エアコンオン温度Ton以上であるか否かを判定する。この処理は、前述したステップ120の処理と同じである。
【0067】
ステップ220の判定条件が満たされている(Ton≦T)と、ステップ230において、スロットル弁19を所定開度開弁させるための指令信号をスロットル用アクチュエータ21に出力する。この信号に応じたスロットル用アクチュエータ21の作動により、スロットル弁19は、それまでのスロットル開度に所定値を上乗せした開度まで開弁する。この開弁により燃焼室16に取込まれる吸入空気量が増加する。一方、エンジンECU91により別途行われる燃料噴射制御ルーチンでは、吸入空気量の増量にともない燃料噴射量が増量され、エンジン11の出力トルクが増大する。この出力トルクの増大により、エンジン11の回転速度が、エアコンオン時の目標回転速度NEonに収束する。
【0068】
なお、前記ステップ220の各判定条件が満たされていないと、アイドル回転速度制御ルーチンを一旦終了する。この場合、スロットル弁19はそれ以前のスロットル開度を保持することとなる。
【0069】
次に、ステップ240において、エバポレータ後温度センサ86による実エバポレータ温度Tが、エアコンオフ温度Toff よりも低いか否かを判定する。この処理は、前述したステップ140の処理と同様である。ステップ240の判定条件が満たされている(Toff >T)と、ステップ250へ移行し、そのときの圧力センサ88による冷媒圧力と、バッテリ89の電圧(バッテリ電圧)とに基づきディレイ時間を算出する。ここで、バッテリ電圧は、流量制御弁56のコイル73に供給される電力に関連する要素の1つであり、同コイル73に通電される制御電流に対応している。このバッテリ電圧は、コンプレッサ27以外の電気負荷や、バッテリ89の使用期間等によって変化する。例えば、バッテリ電圧は、他の電気負荷が大きくなった場合には一時的に低下する。また、バッテリ89の使用期間が長くなると、充電能力等が低下し、バッテリ電圧が経時的に低下する。
【0070】
ディレイ時間は、エアコン26をオンからオフに切替えるための指令信号、別の表現をすると、コンプレッサ27の吐出容量を最大(100%)から最小(0%)に切替えるための指令信号が出されてから、スロットル弁19を元の開度に戻すまでの時間である。このようにディレイ時間を設けたのは、吐出容量の最大から最小への切替え信号が出された場合、エンジン11にかかるコンプレッサ27のトルクがゆっくりと低下するためである。このコンプレッサ27のトルクに見合うトルクをエンジン11で発生させるために、切替え指令が出された後もディレイ時間が経過するまでは、元の開度に所定値を上乗せしたスロットル開度でスロットル弁19を開弁させ続けて吸入空気量を増量させるようにしている。
【0071】
また、ディレイ時間を可変としたのは、コンプレッサ27の吐出容量の最大から最小への切替え指令が出されてから、エンジン11にかかるコンプレッサ27のトルクが十分小さくなるまでの時間が、切替え指令が出されたときに流量制御弁56の作動ロッド62に作用している力によって異なるからである。この力としては、感圧機構67による力と電磁アクチュエータ68による電磁力とが挙げられる。
【0072】
感圧機構67による力には冷媒圧力が関与している。前記時間は、冷媒圧力が高いときには長く、低いときには短くなる傾向にある。これは、アイドル時のようなエンジン低回転域では、コンプレッサ27の吐出容量が100%から0%に変化する場合、コンプレッサ27から吐出される冷媒の流量が限られる。そのため、冷媒圧力が高い場合には、作動ロッド62の弁体部63が全開位置へ変位する時間が長くなるものと考えられる。
【0073】
また、電磁アクチュエータ68の電磁力に関与するコイルに流れる制御電流については、前記時間は、制御電流が多いときには長く、少ないときには短い傾向にある。別の表現をすると、前記時間は、バッテリ電圧が高いときには長く、低いときには短い傾向にある。これは、デューティ比を変化させているものでは、バッテリ電圧が高い場合、同じデューティ比でも電流値が大きくなる。このため、冷媒の流量が多め(コンプレッサ容量大)に制御され、デューティ比が100%から0%まで低下される場合、弁体部63が全開位置へ変位する時間が長くなるものと考えられる。
【0074】
このような観点から、前記ディレイ時間の算出に際しては、例えば図5に示すマップを参照する。このマップには、冷媒圧力に対するディレイ時間が、バッテリ電圧毎に規定されている。このマップでは、バッテリ電圧一定のもとでは、冷媒圧力が低いときにはディレイ時間が短く、冷媒圧力が高くなるに従いディレイ時間が長くなるように設定されている。また、冷媒圧力一定のもとでは、バッテリ電圧が低いときにはディレイ時間が短く、バッテリ電圧が高くなるに従いディレイ時間が長くなるように設定されている。
【0075】
前記ステップ250においてディレイ時間を算出すると、次のステップ260へ移行する。ステップ260では、吐出容量の最大から最小への切替え指令が出力されてから、前記ディレイ時間が経過するまで、スロットル弁19を、前記ステップ230の開度で開弁させ続ける。そして、ディレイ時間が経過すると、スロットル弁19を元の開度に復帰させるための指令信号をスロットル用アクチュエータ21に出力する。この信号に応じたスロットル用アクチュエータ21の作動により、スロットル弁19は元のスロットル開度(前記所定値を上乗せする前の開度)まで閉弁する。この閉弁により燃焼室16に取込まれる吸入空気量が減少する(元の量に戻る)。一方、エンジンECU91により行われる燃料噴射制御ルーチンでは、この吸入空気量の減量にともない燃料噴射量が減量され、エンジン11の出力トルクが減少する。この出力トルクの減少により、実エンジン回転速度NEが、エアコンオフ時の目標回転速度NEoff に収束する。
【0076】
ステップ260の処理を行った後、アイドル回転速度制御ルーチンを一旦終了する。なお、前記ステップ240の判定条件が満たされていない場合(Toff ≦T)にも、アイドル回転速度制御ルーチンを一旦終了する。この場合には、スロットル弁19が所定開度開弁した状態が継続されることとなる。
【0077】
前述したアイドル回転速度制御ルーチンによると、吐出容量の最大から最小への切替え指令(コンプレッサ27のデューティ比の切替え指令)に応じて、吸入空気量(ISC流量)及び実エンジン回転速度NEが例えば図7(a),(c),(e)に示すように変化する。
【0078】
実エバポレータ温度Tが上昇してエアコンオン温度Ton以上となり、コンプレッサ27のデューティ比が0%から100%に切替えられる(タイミングt10,t30)と、ステップ210→220→230→240→リターンの順に処理が行われる。スロットル弁19が所定開度開弁して吸入空気量が増加するとともに燃料噴射量が増加する。実エンジン回転速度NEが上昇し、目標回転速度NEonに収束する。このスロットル弁19の開弁状態は、実エバポレータ温度Tがエアコンオフ温度Toff を下回るまでは少なくとも維持される。
【0079】
一方、実エバポレータ温度Tが下降してエアコンオフ温度Toff を下回り、コンプレッサ27のデューティ比が100%から0%に切替えられる(タイミングt20,t40)と、ステップ210→220→230→240→250→260→リターンの順に処理が行われる。冷媒圧力及びバッテリ電圧に基づきディレイ時間が算出され、前記デューティ比の切替え指令が出されてもすぐにはスロットル弁19は元の開度に復帰されない。切替え指令から前記ディレイ時間が経過するまでは、スロットル弁19の前記開弁状態が維持される。そして、ディレイ時間が経過する(タイミングt25,t45)と、スロットル弁19が元の開度に復帰される。従って、ディレイ時間が経過するまでは、スロットル弁19の開弁にともなって吸入空気量(ISC流量)が増量され続ける。この増量に応じて燃料噴射量も増量され続けるため、エンジン11の出力が増加する。この出力増加によりコンプレッサ27のトルクが相殺される。その結果、実エンジン回転速度NEが目標回転速度NEoff に収束する。
【0080】
以上詳述した本実施形態によれば、以下の効果が得られる。
(1)コンプレッサ27の吐出容量を最大から最小に切替えるための指令が出されてから、エンジン11にかかるコンプレッサ27のトルクが十分小さくなるまでの時間は、コンプレッサ27から吐出される冷媒の圧力が大きく関与している。前記時間は、冷媒圧力が高いときには長く、低いときには短くなる傾向にある。
【0081】
そのため、冷媒圧力が低い場合、図7(d)において二点鎖線で示すようにエンジン11にかかるコンプレッサ27のトルクも相対的に小さくなって、同トルクが十分に小さくなるまでの時間が短くなる。この際、ディレイ時間が適正値よりも大きな一定の値であると、必要以上の時間にわたってスロットル弁19の開弁状態が続けられる。過度の量の空気がエンジン11に取込まれ、それにともなって過度の量の燃料が噴射される。その結果、実エンジン回転速度NEが図7(e)において二点鎖線で示すように上昇する現象、いわゆる回転の吹上がりが発生するおそれがある。
【0082】
また、前記とは逆に冷媒圧力が高い場合、図示はしないがエンジン11にかかるコンプレッサ27のトルクも相対的に大きくなって、同トルクが十分に小さくなるまでの時間が長くなる。この際、ディレイ時間が適正値よりも小さな一定の値であると、必要な時間が経過する前にスロットル弁19の開弁状態が終わる。必要量の空気がエンジン11に取込まれず、燃料噴射量が不足する。その結果、実エンジン回転速度NEがエアコンオフ時の目標回転速度NEoff を下回る現象、いわゆる回転の落込みが発生するおそれがある。
【0084】
これに対し本実施形態では、冷媒圧力が高いときには低いときよりもディレイ時間を長く設定することにより、そのときの冷媒圧力に応じた適切なディレイ時間が設定されることとなる。このため、スロットル弁19の開弁状態が必要な時間にわたって継続する。例えば、冷媒圧力が低い場合には、図7(c)において二点鎖線で示すようにディレイ時間を短くする。こうすると、冷媒圧力が低い場合、図7(d)において二点鎖線で示すようにエンジン11にかかるコンプレッサ27のトルクも相対的に小さくなって、同トルクが十分小さくなるまでの時間が短くなるが、適切な時間にわたってスロットル弁19の開弁状態が続けられる。また、図示はしないが、冷媒圧力が高い場合にはディレイ時間が長くされる。こうすると、冷媒圧力が高い場合、エンジン11にかかるコンプレッサ27のトルクも相対的に大きくなって、同トルクが十分小さくなるまでの時間が長くなるが、適切な時間にわたってスロットル弁19の開弁状態が続けられる。
冷媒圧力にかかわらず適正量の空気がエンジン11に取込まれ、それにともなって適正量の燃料が噴射される。そして、これらの燃料噴射により、吐出容量の最大から最小への切替え指令が出された後、スロットル用アクチュエータ21により発生するトルクが十分小さくなる時期を、エンジン11にかかるコンプレッサ27のトルクが十分小さくなる時期に一致させることが可能となる。その結果、回転の吹上がり(図7(e)の二点鎖線参照)や落込みを抑しつつ実エンジン回転速度NEを目標回転速度NE off に収束させることが可能となる。
【0085】
)コンプレッサ27の吐出容量の最大から最小への切替え指令が出されてから、エンジン11にかかるコンプレッサ27のトルクが十分小さくなるまでの時間は、供給電力が多いときには長く、少ないときには短くなる傾向にある。
【0086】
そのため、コイル73への制御電流が少ない又は電圧(バッテリ電圧)が低いと、エンジン11にかかるコンプレッサ27のトルクも相対的に小さくなって、同トルクが十分小さくなるまでの時間が短くなる。この際、ディレイ時間が適正値よりも大きな一定の値であると、必要以上の時間にわたってスロットル弁19の開弁状態が続けられる。過度の量の空気がエンジン11に取込まれ、それにともなって過度の量の燃料が噴射される。その結果、エンジン11では回転の吹上がりが発生するおそれがある。
【0087】
また、前記とは逆に制御電流が多い又は電圧(バッテリ電圧)が高いと、エンジン11にかかるコンプレッサ27のトルクも相対的に大きくなって、同トルクが十分小さくなるまでの時間が長くなる。この際、ディレイ時間が適正値よりも小さな一定の値であると、必要な時間が経過する前にスロットル弁19の開弁状態が終わる。必要量の空気がエンジン11に取込まれず、燃料噴射量が不足する。その結果、エンジン11では回転の落込みが発生するおそれがある。
【0089】
これに対し、本実施形態では、バッテリ電圧が高いときには低いときよりもディレイ時間を長く設定することにより、そのときのバッテリ電圧に応じた適切なディレイ時間が設定されることとなる。このため、スロットル弁19の開弁状態が必要な時間にわたって継続する。例えば、バッテリ電圧が低い場合にはディレイ時間を短くする。こうすると、バッテリ電圧が低い場合、エンジン11にかかるコンプレッサ27のトルクも相対的に小さくなって、同トルクが十分小さくなるまでの時間が短くなるが、適切な時間にわたってスロットル弁19の開弁状態が続けられる。また、バッテリ電圧が高い場合にはディレイ時間が長くされる。こうすると、バッテリ電圧が高い場合、エンジン11にかかるコンプレッサ27のトルクも相対的に大きくなって、同トルクが十分小さくなるまでの時間が長くなるが、適切な時間にわたってスロットル弁19の開弁状態が続けられる。バッテリ電圧の高低にかかわらず適正量の空気がエンジン11に取込まれ、それにともなって適正量の燃料が噴射される。そして、これらの燃料噴射により、吐出容量の最大から最小への切替え指令が出された後、スロットル弁開弁にともない発生するトルクが十分小さくなる時期を、エンジン11にかかるコンプレッサ27のトルクが十分小さくなる時期に一致させることが可能となる。その結果、エンジン11では回転の吹上がりや落込みを抑しつつ実エンジン回転速度NEを目標回転速度NE off に収束させることが可能となる。
【0090】
)ディレイ時間を、冷媒圧力とバッテリ電圧の両方に基づいて算出している。このため、冷媒圧力のみ又はバッテリ電圧のみに基づく場合に比べて、より適切なディレイ時間を算出することができる。その結果、回転の吹上がりや落込みをより一層確実に抑制することができる。
【0091】
なお、本発明は次に示す別の実施形態に具体化することができる。
・前記実施形態では、冷媒圧力とバッテリ電圧とに基づきディレイ時間を算出したが、冷媒圧力のみに基づいてディレイ時間を算出したり、バッテリ電圧のみに基づいてディレイ時間を算出したりしてもよい。
【0092】
・バッテリ電圧に代えて、コイル73への制御電流に基づいてディレイ時間を算出するようにしてもよい。
・本発明を、給気通路55に代えて又は加えて抽気通路54の開度を調整することによりクランク室36の内圧Pcを調整するようにしたコンプレッサを駆動するエンジンに適用してもよい。
【0093】
・図5のマップに代えて、所定の演算式に従ってディレイ時間を算出するようにしてもよい。
・本発明を、吐出容量についての第1所定量を最大以外の値としたコンプレッサや、第2所定量を最小以外の値としたコンプレッサを駆動するエンジンに適用してもよい。
【0094】
その他、前記各実施形態から把握できる技術的思想について、それらの効果とともに記載する。
(A)請求項に記載の内燃機関のアイドル回転速度制御装置において、前記電磁アクチュエータはバッテリを電力供給源とし、前記変更手段は前記電磁アクチュエータに通電される制御電流又はバッテリ電圧に応じて前記ディレイ時間を変更するものである。
【0095】
(B)請求項1に記載の内燃機関のアイドル回転速度制御装置において、前記変更手段は、前記制御手段における前記ディレイ時間を、前記冷媒圧力と前記電磁アクチュエータに供給される電力とに基づき変更するものである。すなわち、前記冷媒圧力が高く前記電力が多いとき、前記ディレイ時間を、前記冷媒圧力が低く前記電力が少ないときよりも、長く設定する。
【0096】
上記(B)の構成によれば、冷媒圧力のみ又は供給電力のみに基づく場合に比べてより適切なディレイ時間を算出することができ、回転の吹上がりや落込みをより一層確実に抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明のアイドル回転速度制御装置の一実施形態についてその構成を示す略図。
【図2】図1におけるコンプレッサの概略断面図。
【図3】図2における流量制御弁の概略断面図。
【図4】アイドル時にエアコンをオン・オフ制御する手順を示すフローチャート。
【図5】ディレイ時間の決定に用いられるマップのマップ構造を示す略図。
【図6】エアコンのオン・オフ制御時に実エンジン回転速度を目標回転速度となるように制御する手順を示すフローチャート。
【図7】エアコンのオン・オフ制御時における実エンジン回転速度等の変化を示すタイミングチャート。
【符号の説明】
11…エンジン(内燃機関)、21…スロットル用アクチュエータ(調整用アクチュエータ)、27…可変容量型コンプレッサ、32…エバポレータ、56…流量制御弁、62…作動ロッド(弁体)、64…感圧部材、67…感圧機構、68…電磁アクチュエータ、91…エンジン電子制御ユニット(ECU)。

Claims (2)

  1. 冷媒循環回路における所定箇所での冷媒の圧力変動に応じて変形する感圧部材と電磁アクチュエータとを備え、前記感圧部材の変形にともなう力と前記電磁アクチュエータの電磁力とにより、流量制御弁の弁体を変位させて吐出容量を変更するとともに、機関アイドル時には、前記冷媒循環回路におけるエバポレータの目標温度と実温度との偏差に基づき前記電磁アクチュエータへの電力供給を制御することにより、前記吐出容量を第1所定量又はそれよりも少ない第2所定量に変化させるようにした可変容量型コンプレッサを駆動する内燃機関に用いられる装置であり、
    前記可変容量型コンプレッサに対し、前記吐出容量を前記第1所定量にするための指令が出されると機関回転速度が同指令に応じた目標回転速度となり、前記吐出容量を前記第1所定量から前記第2所定量に切替えるための指令が出されると、所定のディレイ時間が経過した後、前記機関回転速度が前記切替え指令に応じた目標回転速度となるように調整用アクチュエータを制御する制御手段と、
    前記ディレイ時間を前記所定箇所での冷媒の圧力に応じて変更する変更手段とを備えるとともに、前記変更手段は、前記冷媒圧力が高いとき、前記ディレイ時間を、前記冷媒圧力が低いときよりも長く設定するものであることを特徴とする内燃機関のアイドル回転速度制御装置
  2. 冷媒循環回路における所定箇所での冷媒の圧力変動に応じて変形する感圧部材と電磁アクチュエータとを備え、前記感圧部材の変形にともなう力と前記電磁アクチュエータの電磁力とにより、流量制御弁の弁体を変位させて吐出容量を変更するとともに、機関アイドル時には、前記冷媒循環回路におけるエバポレータの目標温度と実温度との偏差に基づき前記電磁アクチュエータへの電力供給を制御することにより、前記吐出容量を第1所定量又はそれよりも少ない第2所定量に変化させるようにした可変容量型コンプレッサを駆動する内燃機関に用いられる装置であり、
    前記可変容量型コンプレッサに対し、前記吐出容量を前記第1所定量にするための指令が出されると機関回転速度が同指令に応じた目標回転速度となり、前記吐出容量を前記第1所定量から前記第2所定量に切替えるための指令が出されると、所定のディレイ時間が経過した後、前記機関回転速度が前記切替え指令に応じた目標回転速度となるように調整用アクチュエータを制御する制御手段と、
    前記ディレイ時間を前記電磁アクチュエータに供給される電力に応じて変更する変更手段とを備えるとともに、前記変更手段は、前記電力が多いとき、前記ディレイ時間を、前記電力が少ないときよりも長く設定するものであることを特徴とする内燃機関のアイドル回転速度制御装置。
JP2001373281A 2001-12-06 2001-12-06 内燃機関のアイドル回転速度制御装置 Expired - Fee Related JP4023146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373281A JP4023146B2 (ja) 2001-12-06 2001-12-06 内燃機関のアイドル回転速度制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373281A JP4023146B2 (ja) 2001-12-06 2001-12-06 内燃機関のアイドル回転速度制御装置

Publications (2)

Publication Number Publication Date
JP2003172166A JP2003172166A (ja) 2003-06-20
JP4023146B2 true JP4023146B2 (ja) 2007-12-19

Family

ID=19182031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373281A Expired - Fee Related JP4023146B2 (ja) 2001-12-06 2001-12-06 内燃機関のアイドル回転速度制御装置

Country Status (1)

Country Link
JP (1) JP4023146B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135681B2 (ja) * 2004-06-02 2008-08-20 トヨタ自動車株式会社 動力出力装置およびこれを搭載するハイブリッド車並びにこれらの制御方法
KR101103916B1 (ko) * 2005-12-19 2012-01-12 현대자동차주식회사 오일펌프구조
JP5843478B2 (ja) * 2011-05-18 2016-01-13 ダイハツ工業株式会社 内燃機関の制御装置
KR102089742B1 (ko) * 2014-01-07 2020-03-17 한온시스템 주식회사 차량 공조장치용 압축기의 제어방법
JP6107778B2 (ja) * 2014-09-25 2017-04-05 トヨタ自動車株式会社 内燃機関の回転速度制御装置
CN109927712B (zh) * 2017-12-15 2021-03-26 宝沃汽车(中国)有限公司 一种车辆动力***耦合方法、装置及车辆
CN111706497B (zh) * 2020-06-30 2022-04-26 潍柴动力股份有限公司 一种空气压缩机的扭矩修正方法及相关装置

Also Published As

Publication number Publication date
JP2003172166A (ja) 2003-06-20

Similar Documents

Publication Publication Date Title
US6336335B2 (en) Engine control apparatus of vehicle having air conditioner
US6484520B2 (en) Displacement control apparatus for variable displacement compressor, displacement control method and compressor module
US6910344B2 (en) Compressor torque estimate device, engine controller and method of estimating compressor torque
US6467291B1 (en) Refrigeration cycle apparatus
KR100431778B1 (ko) 용량가변형 압축기의 용량제어장치
EP1726829B1 (en) Control apparatus for variable capacity compressor and method of calculating torque of variable capacity compressor
US7721563B2 (en) Apparatus for and method of calculating torque of variable capacity compressor
EP1101639B1 (en) Air conditioning apparatus
US20050066669A1 (en) Vehicle air conditioner with discharge capacity control of compressor
US6119473A (en) Refrigeration-cycle apparatus for vehicle use
JP2002052925A (ja) 車両用空調装置
JP2580354B2 (ja) 車両用空気調和制御装置
JP4023146B2 (ja) 内燃機関のアイドル回転速度制御装置
KR100455240B1 (ko) 차량용 공조장치 및 내연기관의 아이들 회전속도 제어장치
JP3741022B2 (ja) 車両用空調装置
JP2004098757A (ja) 空調装置
JP3906796B2 (ja) 容量可変型の圧縮機の制御装置
JP2002211237A (ja) 車両空調装置用圧縮機の制御装置
JP3817328B2 (ja) 可変容量コンプレッサ制御装置
JP4085851B2 (ja) 内燃機関の補機駆動装置
JP5324929B2 (ja) 車両用空調システム
WO2010082598A1 (ja) 車両用空調システム
JP2001163044A (ja) 車両用空調装置
JPH03281420A (ja) 自動車用空気調和機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees