JP4015079B2 - レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法 - Google Patents

レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法 Download PDF

Info

Publication number
JP4015079B2
JP4015079B2 JP2003199178A JP2003199178A JP4015079B2 JP 4015079 B2 JP4015079 B2 JP 4015079B2 JP 2003199178 A JP2003199178 A JP 2003199178A JP 2003199178 A JP2003199178 A JP 2003199178A JP 4015079 B2 JP4015079 B2 JP 4015079B2
Authority
JP
Japan
Prior art keywords
mask substrate
portions
diffractive
diffraction
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003199178A
Other languages
English (en)
Other versions
JP2005037598A (ja
Inventor
隆 佐藤
昌史 浅野
秀樹 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003199178A priority Critical patent/JP4015079B2/ja
Priority to TW093119557A priority patent/TWI241395B/zh
Priority to CNB2004100624711A priority patent/CN100462667C/zh
Priority to US10/890,299 priority patent/US7432021B2/en
Priority to NL1026665A priority patent/NL1026665C2/nl
Publication of JP2005037598A publication Critical patent/JP2005037598A/ja
Application granted granted Critical
Publication of JP4015079B2 publication Critical patent/JP4015079B2/ja
Priority to US12/230,269 priority patent/US7812972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体露光装置で使用されるレチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法に係り、特に露光装置の光学補正技術とレチクルの製造方法に関する。
【0002】
【従来の技術】
半導体集積回路パターン(デバイスパターン)を投影露光装置で製造用レチクルからウェハ等の被露光体上にレーザ露光撮影するには、投影露光装置の光学系の焦点位置にウェハが正しく配置されないとコントラストが不良となり、デバイスパターンを正確にウェハ上に露光することができない。このため、光学系の焦点位置にウェハを正しく配置する技術が開発されてきた。例えば、透過光に0度より大かつ180度より小の位相差を生じさせる非対称回折部を備える非対称回折格子を利用する技術がある。このような非対称回折格子は、その透過光にプラス側あるいはマイナス側の一方に強度が偏った回折光を生じさせる性質を有する。この非対称回折格子を備える検査用レチクルを投影露光装置に配置しウェハにレーザ露光すると、ウェハの光軸方向への移動に伴って、ウェハ上の非対称回折格子の投影像の位置が光軸方向と垂直方向に移動する。このウェハの光軸方向への移動量と投影像の位置の移動量は線形関係にある。よって一度この線形関係を取得すれば、後はウェハ上の非対称回折格子の投影像の実測位置を計測すれば、ウェハが焦点位置からどれだけ光軸方向に外れて配置されているかを算出することができた。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002- 55435号公報(第5−6頁、第5図)
【0004】
【発明が解決しようとする課題】
しかし上記方法では、検査用レチクルを使用した焦点位置検査用の露光と、製造用レチクルを使用した半導体集積回路製造用の露光を別々に行う必要があった。そのため、検査用レチクルと製造用レチクルの両方を準備することに伴うコストの上昇、あるいは検査用レチクルから製造用レチクルに交換する際に起こりうる製造用レチクルの配置位置のズレや交換に伴う作業時間の長期化等が半導体集積回路製造工程において問題となっていた。
【0005】
本発明は上記問題点を鑑み、半導体装置製造工程において検査用レチクルと製造用レチクルの両方を準備する必要がなく、半導体集積回路製造用の露光と同時に精度よく露光装置の光学系を検査することを可能とし、光学系補正に要する時間を大幅に短縮することができるレチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明の第1の特徴は、マスク基板と、マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターンと、検査パターンに隣接してマスク基板上に設けられた複数の遮光マスクを有するデバイスパターンとを備えるレチクルであることを要旨とする。ここでデバイスパターンに設けられた溝の深さが、検査パターンに設けられた溝の深さよりも深く、デバイスパターンにおいてマスク基板は複数の遮光マスクの下部まで部分的にエッチングされている。
【0007】
本発明の第2の特徴は、第1の特徴で説明したレチクルを用いて、回折効率の異なるプラス一次回折光とマイナス一次回折光の投影像の画像情報を取得する投影像情報抽出手段と、投影像情報抽出手段で取得された画像情報を保存する光学系情報記憶装置と、光学系情報記憶装置に保存された画像情報を用いて投影像を投影する露光装置の光学系を補正するための補正情報を算出する光学系補正情報提供手段とを備える露光装置検査システムであることを要旨とする。
【0008】
本発明の第3の特徴は、第1の特徴で説明したレチクルを用いて、回折効率が異なるプラス一次回折光とマイナス一次回折光による投影像の画像情報を取得するステップと、画像情報を用いて投影像を投影する露光装置の光学系を補正するための補正情報を提供するステップとを含む露光装置検査方法であることを要旨とする。
【0009】
本発明の第4の特徴は、マスク基板表面に遮光膜を形成する工程と、第1のレジスト膜を遮光膜表面に形成し、第1のレジスト膜をパターニングする工程と、パターニングされた第1のレジスト膜をマスクにして遮光膜を異方性エッチング法により選択的にエッチングする工程と、第1のレジスト膜を除去し、第2のレジスト膜をマスク基板上に形成し、第2のレジスト膜をパターニングする工程と、パターニングされた第2のレジスト膜をマスクにして表出するマスク基板を選択的にエッチングし、回折効率の異なるプラス一次回折光とマイナス一次回折光を生じさせる複数の非対称回折部を形成する工程と、第2のレジスト膜を除去し、第3のレジスト膜をマスク基板上に形成し、第3のレジスト膜をパターニングする工程と、パターニングされた第3のレジスト膜をマスクにして表出するマスク基板を等方性エッチング法により選択的にエッチングし、回折効率が等しいプラス一次回折光とマイナス一次回折光を生じさせる回折部を形成する工程とを含み、回折部を形成する工程が、複数の非対称回折部の少なくとも一部の非対称回折部の内部からマスク基板を等方性エッチング法により選択的にエッチングし、回折部を形成するレチクルの製造方法であることを要旨とする。
【0010】
【発明の実施の形態】
次に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
【0011】
(実施の形態)
本発明の実施の形態に係る縮小投影露光装置は図1に示すように光学系140とウェハステージ32を備える。光学系140は照明光源41、照明光源41の下部に配置された集光レンズ43、集光レンズ43の下部に配置された投影光学系42を備える。集光レンズ43と投影光学系42の間には照明光源41より照射され集光レンズ43で集光された光を受けるデバイスパターン15、アライメントマーク26a, 26b, 26c及び検査パターン20a, 20b, 20cを備えるレチクル5が配置される。ウェハステージ32上にはウェハ31が配置される。デバイスパターン15及び検査パターン20a, 20b, 20cそれぞれで生じた回折光は投影光学系42で集光されウェハ31上に結像する。
【0012】
レチクル5は、図2の拡大平面図に示すように、石英ガラス等からなる透明なマスク基板1、マスク基板1上に配置されたクロム(Cr)等からなる遮光膜17、遮光膜17に設けられた検査パターン用開口56a, 56b, 56c、検査パターン用開口56a, 56b, 56cで表出するマスク基板1上にそれぞれ設けられた非対称回折格子222a, 222b, 222cそれぞれを備える検査パターン20a, 20b, 20c、検査パターン20a, 20b, 20cそれぞれに隣接してマスク基板1上に設けられたアライメントマーク26a, 26b, 26c、遮光膜17に設けられたデバイスパターン用開口57、デバイスパターン用開口57で表出するマスク基板1上にそれぞれ設けられたデバイスパターン15a, 15b, 15cを備える。なおアライメントマーク26a〜26cそれぞれは図1に示したウェハ31の位置合わせに用いられるものである。
【0013】
図2に示した検査パターン20aの拡大平面図の一例が図3である。検査パターン20aは、マスク基板1の表面にそれぞれが正方形の4辺を形成するように配置された、それぞれ回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子22a, 22b, 22c, 22d、非対称回折格子22a, 22b, 22c, 22dそれぞれと平行に配置された孤立遮光パターン61a, 61b, 61c, 61dを備える。非対称回折格子22a, 22b, 22c, 22dそれぞれは一組となって図2に示した非対称回折格子222aを構成している。なお、図2に示した他の検査パターン20b, 20cそれぞれの拡大平面図も図3に示した検査パターン20aと同様の構成である。
【0014】
さらに図3に示した非対称回折格子22aの一部分を拡大した平面図が図4であり、図4に示したA-A方向から見た非対称回折格子22aの断面図が図5である。図4及び図5に示すように、検査パターン20aの非対称回折格子22aは、マスク基板1の表面に配置されたCr等からなる遮光帯70a、遮光帯70aの一方の側に隣接してマスク基板1に設けられた非対称回折部13aを備える。遮光帯70a、非対称回折部13aの一組は非対称回折格子22aの繰り返しパターンの最小単位をなし、さらにこれらと同様の構造である遮光帯70b, 70c, ・・・・・、非対称回折部13b, 13c, ・・・・・それぞれがマスク基板1上で繰り返しパターンで設けられている。なお図3に示した他の非対称回折格子22b〜22dそれぞれも図4及び図5に示した非対称回折格子22aと同様の構造である。
【0015】
ここで、それぞれ隣接する遮光帯70a、非対称回折部13aそれぞれの幅は2:1の比率を有し、隣接する遮光帯70b及び非対称回折部13bを備える繰り返しパターンとは非対称回折部13aと同じ幅の間隔をおいて設けられるのが望ましい。例えば図1に示した縮小投影露光装置において照明光源41から波長193nmのアルゴンフッ素(ArF)エキシマレーザでレチクル5を照射する場合には、遮光帯70aの幅を0.2μm、非対称回折部13aの幅及び遮光帯70aと非対称回折部13bの間隔を0.1μmとすればよい。他の遮光帯70b, 70c, ・・・・・、非対称回折部13b, 13c, ・・・・・それぞれの幅の比率と繰り返しパターンが設けられる間隔も同様である。また非対称回折部13a, 13b, 13c, ・・・・・それぞれはマスク基板1の表面近傍内部に設けられた溝であり、マスク基板1表面に対し露光用レーザの透過光の位相差が90度の整数倍となる深さまで設けられている。例えばマスク基板1が屈折率1.56の石英ガラスからなり、90度の位相差を生じさせるためには、図1に示した照明光源41からArFエキシマレーザで露光する場合、非対称回折部13a, 13b, 13c, ・・・・・それぞれの深さは86.2nmである。
【0016】
次に図2に示したデバイスパターン15aの一部の拡大断面図の一例を図6に示す。図6に示すようにデバイスパターン15aは、マスク基板1に設けられた複数の回折部23a, 23b, 23c, ・・・・・、マスク基板1上部に回折部23a, 23b, 23c, ・・・・・を挟むように配置された複数の遮光マスク7a, 7b, 7c, 7d, 7e, 7f, ・・・・・を備える。なお図2に示した他のデバイスパターン15b, 15cそれぞれの拡大平面図は図6と同様であるので図面は省略する。
【0017】
ここで回折部23a, 23b, 23c, ・・・・・それぞれはマスク基板1表面近傍内部に設けられた溝であり、マスク基板1表面に対し露光用レーザの透過光の位相差が180度の整数倍となる深さまで設けられている。例えばマスク基板1が屈折率1.56の石英ガラスからなり、180度の位相差を生じさせるためには、図1に示した照明光源41からArFエキシマレーザで露光する場合、回折部23a, 23b, 23c, ・・・・・それぞれの深さは172.3nmである。
【0018】
以上、図4及び図5に示した非対称回折格子22a〜22dそれぞれを備える検査パターン20a〜20cそれぞれと図6に示したデバイスパターン15a〜15cそれぞれの両方が図2に示すように同一のマスク基板1上に設けられているところが、本発明の実施の形態に係るレチクル5の特徴の一部をなしている。このようなレチクル5を非対称回折格子22a〜22dそれぞれが設けられた面を下側に向けて配置し、上部からArFエキシマレーザを露光した場合の瞳面での光強度分布を計算した結果を図7に示す。図7のように横軸に瞳面内の位置を、縦軸に光強度をとって光強度をプロットすると、瞳位置の0次光に対して一次回折光はプラス側の一方にのみ発生していることが分かる。なお図5に示した非対称回折部13a, 13b, 13c, ・・・・・それぞれを、マスク基板1表面に対し露光用レーザの透過光に0度より大かつ180度未満の値の整数倍の位相差を生じさせる深さまで設ければ、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせることができるが、位相差90度となる深さまで設けると最もプラス側あるいはマイナス側に回折効率を偏らせることができる。また遮光帯70a, 70b, 70c, ・・・・・、非対称回折部13a, 13b, 13c, ・・・・・それぞれを2:1の比率の幅で設け、繰り返しパターンを非対称回折部13a, 13b, 13c, ・・・・・それぞれと同じ幅の間隔で設けるのも回折効率をプラス側あるいはマイナス側の一方に偏らせるのに効果がある。
【0019】
このような非対称回折格子22a〜22dそれぞれを備えるレチクル5を図1に示す縮小投影露光装置に配置し露光すると、非対称回折格子22a〜22dそれぞれのウェハ31上の投影像は、ウェハステージ32を光軸方向に移動させると光軸に対して垂直方向に移動する。しかし図3に示した孤立遮光パターン61a, 61b, 61c, 61dそれぞれの投影像は、ウェハステージ32を光軸方向に移動させても、光軸に対して垂直方向に移動することはない。
【0020】
このような現象は理論的にも証明が可能である。例えばプラス側のみに一次回折光を生じさせる、格子の間隔がPの非対称回折格子に垂直方向から波長λのコヒーレント光を露光した場合、ウェハが配置される水平面をx-y平面とし、これと垂直な光軸方向をz軸で表すと、ウェハ上での投影光の振幅Eは下記の(1)式で表される。
【0021】
E(x,z) = c0 + c1 exp[2πi(x / P + kz - W1)] ・・・・・(1)
但し、k : (1 - [1 - (λ/ P)2]1/2) / λ
W1 : 収差による回折位相誤差
ci : i次回折のフーリエ強度
ウェハ上での投影光の光強度Iは上記Eの絶対値の2乗で表され、下記(2)式で表される。
【0022】
Figure 0004015079
ここで、明線を得るには(2)式中のcos[2π(x / P + k z - W1)]が1にならなくてはならないので、
x / P + k z - W1 = 0・・・・・(3)
ここで(3)式をzで微分すると、下記(4)式が得られる。
【0023】
dx/dz = -kP・・・・・(4)
以上のことから、非対称回折格子の投影像の移動量dxとウェハの光軸方向の移動量dzは比例関係にあることがわかる。
【0024】
そこで図1に示す縮小投影露光装置でウェハステージ32を光軸方向に逐次移動させ、複数の光軸方向配置位置でシリコン基板上にレジストを塗布した複数のウェハ31を露光した後、ウェハ31を現像液でウェットエッチングして非対称回折格子22a及び孤立遮光パターン61aそれぞれの投影像の位置の相対距離の変化を電子顕微鏡(SEM)や原子間力顕微鏡(AFM)等で観察した。その結果図8に示すように横軸にウェハ31表面の光軸方向配置位置、縦軸に投影像の位置の相対距離をとってプロットすると、ウェハ31を100nm移動させると相対距離は約25nm変化する関係にあることが分かる。他の非対称回折格子22b及び孤立遮光パターン61b、非対称回折格子22c及び孤立遮光パターン61c、非対称回折格子22d及び孤立遮光パターン61dの投影像の位置の相対距離についても同様である。
【0025】
よって、図8に示したようにウェハ31表面の光軸方向配置位置と投影像の位置の相対距離の関係をプロットし、最小自乗法等でウェハ31表面の光軸方向配置位置及び投影像の位置の相対距離を変数とする一次関数式等の近似関数式を一度算出すれば、次回からは算出された近似関数式に投影像の位置の相対距離の実測値を代入することにより、ウェハ31の光軸方向配置位置を算出することが可能となる。
【0026】
また、図3に示した検査パターン20aを備えるレチクル5を図1に示す縮小投影露光装置に配置し露光した場合に、図3に示した互いに直交する向きに設けられた非対称回折格子22aと非対称回折格子22bそれぞれの投影像の焦点位置の差は図1に示す縮小投影露光装置の光学系140の非点収差を意味する。よって、非対称回折格子22a, 22bそれぞれについて投影像の位置とウェハの光軸方向配置位置の線形関係を示す近似関数式を算出すれば、それぞれの近似関数式の切片の差から非点収差を求めることも可能となる。他の互いに直交する非対称回折格子22bと非対称回折格子22c、非対称回折格子22cと非対称回折格子22d及び非対称回折格子22dと非対称回折格子22aについても同様である。
【0027】
次に図3に示す検査パターンの非対称回折格子22a〜22d及び孤立遮光パターン61a〜61dそれぞれの投影像の位置の相対距離を取得して、図1に示す縮小投影露光装置の光学系140の収差や焦点ズレを算出する露光装置検査システムについて図9を用いて説明する。すなわち本発明の実施の形態に係る露光装置検査システムは、中央処理制御装置(CPU)300、光学系情報記憶装置335、入力装置312、出力装置313、プログラム記憶装置330及びデータ記憶装置331を備える。さらにCPU300は投影像情報抽出手段325、光学系補正情報提供手段315を備える。
【0028】
ここで投影像情報抽出手段325は近似関数式算出部301を備え、入力装置312から図3に示した非対称回折格子22a及び孤立遮光パターン61aそれぞれの図1に示したウェハ31上の投影像の画像情報をウェハ31の光軸方向配置位置の情報と共に取得する。なお画像情報は複数の光軸方向配置位置で複数個取得する。図9に示す近似関数算出部301は取得した複数の画像情報から図8に示したような非対称回折格子22a及び孤立遮光パターン61aそれぞれの投影像の位置の相対距離とウェハ31表面の光軸方向配置位置の関係を示す情報を抽出し、投影像の位置の相対距離と光軸方向配置位置とを変数とする近似関数式を算出する。他の非対称回折格子22b〜22d及び孤立遮光パターン61b〜61dそれぞれの投影像からも同様に近似関数式を算出する。
【0029】
図9に示す光学系情報記憶装置335は近似関数式記憶部310、焦点位置記憶部311を備える。近似関数式記憶部310は近似関数式算出部301で算出された近似関数式を保存する。焦点位置記憶部311は図1に示す縮小投影露光装置の光学系140の焦点位置や焦点深度等を保存している。焦点位置及び焦点深度としては光学系140の設計から導かれる理論値を保存してもよいし、あらかじめ複数の光軸方向位置でウェハ31にレチクル5のデバイスパターン15を露光し、現像後の表面形状から許容されるウェハ31の光軸方向配置位置の範囲を保存してもよい。
【0030】
図9に示す光学系補正情報提供手段315は、収差算出部323、焦点ズレ算出部302、焦点ズレ判断部303を備える。収差算出部323は近似関数式記憶部310に保存されている複数の近似関数式を比較して図1に示す縮小投影露光装置の光学系140の収差を算出する。図9に示す焦点ズレ算出部302は、入力装置312から入力された図3に示した非対称回折格子22a〜22d及び孤立遮光パターン61a〜61dそれぞれの図1に示したウェハ31上の投影像の実測位置の相対距離を近似関数式記憶部310に保存されている近似関数式に代入し、ウェハ31の算出配置位置を算出する。図9に示す焦点ズレ判断部303は焦点ズレ算出部302で算出されたウェハ31の算出配置位置と焦点位置記憶部311に保存されていた焦点位置とを比較し、焦点ズレが許容範囲内であるか否かを判断し、その結果を出力装置313に出力する。
【0031】
なお、入力装置312は、キーボード、マウス等が使用可能であり、出力装置313は液晶表示装置(LCD)、発光ダイオード(LED)等によるモニタ画面等が使用可能である。プログラム記憶装置330は、近似関数式算出、焦点ズレ算出及びCPU300に接続された装置間のデータ送受信の制御等をCPU300に実行させるためのプログラムを保存している。データ記憶装置331は、CPU300の演算過程でのデータを一時的に保存する。
【0032】
次に図2に示したレチクル5と図9に示した露光装置検査システムを用いて図1に示す縮小投影露光装置の光学系140に収差が発生していないか、あるいはウェハ31が焦点位置に正しく配置されているか検査する露光装置検査方法について説明する。まず図1、図3、図9、図10を用いて図1に示した縮小投影露光装置の光学系140の収差を算出する露光装置検査方法について説明する。
【0033】
(a)図10のステップS101で図1に示す縮小投影露光装置でレチクル5の検査パターン20a〜20cをウェハ31に露光する。ウェハ31は複数枚用意し、逐次ウェハステージ32を移動させて複数の光軸方向配置位置で露光する。ウェハ31を露光現像後、図3に示した非対称回折格子22a〜22d及び孤立遮光パターン61a〜61dそれぞれのウェハ31表面の投影像の画像情報をウェハ31の光軸方向配置位置の情報と共に図9に示した入力装置312から投影像情報抽出手段325に入力する。
【0034】
(b)ステップS151で投影像情報抽出手段325の近似関数式算出部301は複数の画像情報から非対称回折格子22a及び孤立遮光パターン61aそれぞれのウェハ31表面の投影像の相対距離とウェハ31の光軸方向配置位置の関係を抽出し、近似関数式を算出する。他の非対称回折格子22b〜22d及び孤立遮光パターン61b〜61dそれぞれについても同様に近似関数式を算出する。
【0035】
(c)ステップ102で近似関数式記憶部310は近似関数式算出部301が算出した近似関数式を保存する。
【0036】
(d)ステップS161で光学系補正情報提供手段315の収差算出部323は近似関数式記憶部310に保存された複数の近似関数式を読み込み、これらを比較して光学系140の収差を算出する。
【0037】
(e)ステップS103で光学系補正情報提供手段315は算出された収差を出力装置313に伝達し、検査は終了する。
【0038】
次に図1、図3、図9、図11を用いて、図1に示した縮小投影露光装置の光学系140の焦点ズレを算出する露光装置検査方法について説明する。
【0039】
(a)図11のステップS110で検査対象となるレチクルについて近似関数式が既に算出され図9に示す近似関数式記憶部310に保存されているかどうか判断する。保存されていなければ、図10の説明に記載した説明と同様にステップS101, S151, S102で近似関数式を算出し、これを近似関数式記憶部310に保存させ、ステップS162に進む。一方、既に近似関数式が近似関数式記憶部310に保存されているときは、直接ステップS162に進む。
【0040】
(b)図11のステップS162で図9に示す近似関数式記憶部310に保存されていた近似関数式と入力装置312から入力される図3に示した非対称回折格子22a〜22d及び孤立遮光パターン61a〜61dそれぞれの図1に示すウェハ31表面の投影像の実測位置の相対距離の実測値が図9に示す焦点ズレ算出部302に格納される。焦点ズレ算出部302は近似関数式のウェハ表面上の投影像の位置の相対距離の変数に実測位置の相対距離の実測値を代入しウェハ31の算出配置位置を算出する。算出配置位置は図9に示す焦点ズレ判断部303に伝達される。
【0041】
(c)図11のステップS163で図9に示す焦点位置記憶部311に保存されている図1に示す縮小投影露光装置の光学系140の焦点位置と焦点深度が図9に示す焦点ズレ判断部303に入力され、焦点ズレ判断部303は図11のステップS162で算出されたウェハ31の算出配置位置と焦点位置の差から焦点ズレを算出する。算出された焦点ズレは焦点深度と比較され、例えば算出された焦点ズレが焦点深度内であると判断されれば図1に示す光学系140の補正は必要ないと判断し、算出された焦点ズレが焦点深度の範囲外であれば、算出された焦点ズレをうち消す方向にウェハステージ32を移動させる必要があると判断する。
【0042】
(d)図11のステップS103で図9の光学系補正情報提供手段315は図11のステップS163で出された判断結果を出力装置313に伝達し、検査は終了する。
【0043】
以上示したように、図2に示すレチクル5、図9に示す露光装置検査システム、図10に示す露光装置検査方法を採用すれば、図1に示した縮小投影露光装置の光学系140の収差を検査することが可能となる。また図11に示す露光装置検査方法を採用すれば、図1に示した縮小投影露光装置においてウェハ31が焦点位置に正しく配置されているか検査することも可能となる。さらに焦点ズレが生じていた場合も、算出された焦点ズレをうち消す方向にウェハステージ32を移動させればよく、短時間で光学系140を補正することが可能である。また、従来は検査パターンが設けられた検査用レチクルとデバイスパターンが設けられた製造用レチクルが別個であったため、検査用レチクルで光学系を補正した後、検査用レチクルを製造用レチクルに交換する必要があった。しかし、レチクル5は検査パターン20a〜20c及びデバイスパターン15a〜15cそれぞれの両方を備えているので、光学系140を補正した後そのまま半導体集積回路製造工程に入ることが可能である。さらに半導体集積回路の製造中も光学系140に異常が生じていないかを継続的に検査することも可能とする。例えば半導体集積回路を数ロット生産する場合、図3に示した非対称回折格子22a〜22d及び孤立遮光パターン61a〜61dそれぞれの図1に示すウェハ31上の投影像の位置の相対距離を各ロット毎に観察し比較すれば、縮小投影露光装置で焦点ズレが生じていないかを継続的に検査することができる。また焦点ズレが許容範囲を超えた場合もウェハステージ32を図11に示した露光装置検査方法で算出された焦点ズレをうち消す方向に移動すれば、すぐさま半導体集積回路の製造を再開することが可能となる。よって、半導体集積回路製造工程において露光装置の光学系の焦点位置の調整にかかる時間を大幅に短縮することが可能となり、製造コストの低減を導くものとなる。
【0044】
なお、図2に示すレチクル5の検査パターン20a〜20cそれぞれは図3に示したものに限定されず、例えば図12や図13に示すように非対称回折部113a, 113b, 113c, ・・・・・、遮光帯170a, 170b, 170c, ・・・・・それぞれを備える非対称回折格子122aと非対称回折部213a, 213b, 213c, ・・・・・、遮光帯270a, 270b, 270c, ・・・・・それぞれを備える非対称回折格子122bを連続パターンが互いに反対方向となるように設けたものであってもよい。このような検査パターン20a〜20cそれぞれを備えるレチクル5を図1に示す縮小投影露光装置で露光すると、ウェハ31が光軸方向に移動すれば非対称回折格子122a, 122bそれぞれの投影像の位置は互いにウェハ31上を反対方向に移動するので、図3の配置に比べ2倍の感度でこの投影像の位置とウェハ31の光軸方向配置位置の線形関係を観察することが可能となる。また図14に示すように非対称回折格子122aと孤立遮光パターン62をそれぞれのパターンの長手方向が同じになるよう配置し、非対称回折格子122aと孤立遮光パターン62それぞれの投影像の位置の相対距離を測定してもよい。
【0045】
次に図15から図22を用いて、図5に示した非対称回折格子22aと図6に示したデバイスパターン15aを同一マスク基板上に備えるレチクルを製造する方法について説明する。
【0046】
(a)図15に示すように、石英ガラス等のマスク基板1を用意する。そしてマスク基板1の表面を真空蒸着法等によりCr等からなる遮光膜27を堆積させる。さらに遮光膜27上に第1のレジスト膜8をスピン塗布し、フォトリソグラフィー技術を用いて開口35a, 35b, 35c, 35d, 35e及び開口45a, 45bそれぞれを形成させる。
【0047】
(b)次に、開口35a〜35e及び開口45a, 45bそれぞれより表出する遮光膜27の部分を第1のレジスト膜8をマスクにして異方性エッチングでマスク基板1が表出するまで選択的に除去する。その後第1のレジスト膜8を剥離剤等で除去し、図16に示すように遮光マスク7a, 7b, 7c, 7d及び遮光帯70a, 70bそれぞれをマスク基板1の表面に形成させる。
【0048】
(c)次に、マスク基板1表面に第2のレジスト膜18をスピン塗布する。その後、フォトリソグラフィー技術により図17に示すように開口36a, 36b及び開口46a, 46bそれぞれを形成させる。開口36a, 36b及び開口46a, 46bそれぞれより表出するマスク基板1の部分を第2のレジスト膜18をマスクにして異方性エッチングで選択的に除去し、図18に示すように非対称回折部131a, 131b, 13a, 13bそれぞれを形成させる。なお非対称回折部131a, 131b, 13a, 13bは、マスク基板1表面に対し、露光用レーザの透過光の位相差が90度となる深さまで形成させる。
【0049】
(d)第2のレジスト膜18を剥離剤等で図19に示すように除去する。その後、マスク基板1表面に第3のレジスト膜28をスピン塗布し、フォトリソグラフィー技術によって開口37a, 37bそれぞれを図20に示すように形成させる。
【0050】
(e)第3のレジスト膜28をマスクにして開口37a, 37bそれぞれより表出する非対称回折部131a, 131bからマスク基板1をさらに等方性エッチング法で選択的に除去し、回折部23a, 23bそれぞれを形成させる。回折部23a, 23bそれぞれはマスク基板1表面に対し、露光用レーザの透過光の位相差が180度となる深さまで形成させる。なおエッチング法は異方性エッチング法でもよいが、図21に示すように等方性エッチングにより側壁方向にもエッチングした方がレチクル完成後の露光工程で被露光面の寸法精度が向上する。
【0051】
(f)最後に第3のレジスト膜28を剥離剤等で除去し、図22に示すようにマスク基板1上に遮光マスク7a〜7d、回折部23a, 23bそれぞれを備えるデバイスパターン15aと遮光帯70a, 70b、非対称回折部13a, 13bそれぞれを備える非対称回折格子22aの両方が形成され、実施の形態に係るレチクルが完成する。
【0052】
従来においては、同一マスク基板上に位相の異なる非対称回折部と回折部の両方を設けるのは困難であり、非対称回折格子を備える検査用レチクルとデバイスパターンを備える製造用レチクルの2つのマスクを用意する必要があった。しかし上記製造方法においては、図17から図18に示した工程でマスク基板1表面に対し露光用レーザの透過光の位相差が90度となる深さの非対称回折部131a, 131b, 13a, 13bそれぞれを異方性エッチングにより形成させた後、異方性エッチングで損傷した第2のレジスト膜18を図19に示した工程で剥離させる。次に図20に示すようにパターニングされた第3のレジスト膜28を形成し、非対称回折部131a, 131bそれぞれをマスク基板1表面に対し露光用レーザの透過光の位相差が180度となる深さまでさらに等方性エッチングして回折部23a, 23bそれぞれを形成させている。このような製造方法をとれば、デバイスパターンと非対称回折格子のように露光用レーザの透過光の位相差が異なる回折パターンの両方をマスク基板1上に高精度で形成させることが可能となる。また、遮光マスクの下部まで部分的にエッチングした回折部を有するレチクルで露光すると投影像のコントラストが向上するが、上記製造方法のように異方性エッチングで図18に示したような非対称回折部131a, 131bそれぞれを形成させた後、図21に示したように非対称回折部131a, 131bそれぞれからマスク基板1をさらに等方性エッチングすれば、図22に示したように遮光マスク7b〜7eそれぞれの下部まで部分的にエッチングした回折部23a, 23bを高精度で形成させることも可能となる。
【0053】
(実施の形態の変形例1)
図23は実施の形態の変形例1に係るレチクルの非対称回折格子の断面図であり、図5に示した非対称回折部13a, 13b, 13c, ・・・・・それぞれと異なり、非対称回折部93a, 93b, 93c, ・・・・・及びU型の非対称回折部94a, 94b, 94c, ・・・・・それぞれが交互に設けられている。その他の構成要素の配置等は図5に示した非対称回折格子と同じであるので説明は省略する。
【0054】
ここで非対称回折部93a, 93b, 93c, ・・・・・それぞれ及びU型の非対称回折部94a, 94b, 94c, ・・・・・それぞれはマスク基板1の表面近傍内部に設けられた溝であり、非対称回折部93a, 93b, 93c, ・・・・・それぞれはマスク基板1表面に対し露光用レーザの透過光の位相差が105度となる深さまで設けられ、U型の非対称回折部94a, 94b, 94c, ・・・・・それぞれは75度となる深さまで設けられている。例えばマスク基板1が屈折率1.56の石英ガラスであり、波長193nmのArFエキシマレーザで露光する場合には非対称回折部93a, 93b, 93c, ・・・・・それぞれの深さは100.5nmであり、非対称回折部94a, 94b, 94c, ・・・・・それぞれの深さは71.8nmである。図1に示す縮小投影露光装置に図23に示した非対称回折格子を備えるレチクル5を配置し露光した場合も、ウェハ31の光軸方向配置位置と非対称回折格子の投影像の位置は線形関係を有するので、図9に示した露光装置検査システム及び図10及び図11に示した露光装置検査方法を利用して図1に示す光学系140を検査することが可能となる。
【0055】
次に図24から図28を用いて、図23に示した非対称回折格子を備えるレチクルの製造方法について説明する。
【0056】
(a)図15及び図16の説明に記載した製造方法により石英ガラス等からなるマスク基板1の表面にCr等からなる遮光マスク7a〜7d及び遮光帯70a, 70bを形成し、さらに開口36a, 36b, 38それぞれを有する第2のレジスト膜18を図24に示すようにマスク基板1表面に形成させる。
【0057】
(b)開口36a, 36b, 38それぞれより表出するマスク基板1を異方性エッチングにより選択的に除去し、図25に示すように非対称回折部231a, 231b, 93それぞれを形成させる。非対称回折部231a, 231b, 93それぞれは、マスク基板1表面に対して露光用レーザの透過光の位相差が105度となる深さまで形成させる。
【0058】
(c)図26に示すように第2のレジスト膜18を剥離剤等で除去した後、第3のレジスト膜28をマスク基板1上にスピン塗布し、フォトリソグラフィー技術により図27に示すように開口63a, 63b, 64それぞれを形成させる。
【0059】
(d)開口63a, 63b, 64それぞれより表出するマスク基板1を等方性エッチングにより選択的除去し、図28に示すように回折部23a, 23b及び非対称回折部94それぞれを形成させる。回折部23a, 23bそれぞれは、マスク基板1表面に対して露光用レーザの透過光の位相差が180度となる深さまで形成させ、非対称回折部94は位相差が75度となる深さまで形成させる。
【0060】
(e)最後に第3のレジスト膜28を剥離剤等で除去し、図29に示すように、マスク基板1上に遮光マスク7a〜7d及び回折部23a, 23bそれぞれを備えるデバイスパターンと遮光帯70a, 70b及び非対称回折部93, 94それぞれを備える非対称回折格子の両方を備えるレチクルが完成する。
【0061】
(実施の形態の変形例2)
図30は本発明の実施の形態の変形例2に係るレチクルの非対称回折格子の断面図であり、図5に示した非対称回折部13a, 13b, 13c, ・・・・・それぞれと異なり、階段状の底部を備える階段状回折部86a, 86b, 86c, ・・・・・それぞれが設けられている。その他の構成要素の配置等は図5に示した非対称回折格子と同じであるので説明は省略する。
【0062】
ここで階段状回折部86aの階段状の底部は、位相差光透過面100a、位相差光透過面101a及び等位相光透過面102aそれぞれを備えており、位相差光透過面100aはマスク基板1表面に対して露光用レーザの透過光の位相差が60度となる位置に配置され、位相差光透過面101aは120度となる位置に配置され、等位相光透過面102aは180度となる位置に配置される。よって、マスク基板1が屈折率1.56の石英ガラスであり、波長193nmのArFエキシマレーザ露光する場合には位相差光透過面100aはマスク基板1の表面から57.4nm、位相差光透過面101aは114.9nm、等位相光透過面102aは172.3nmの位置にそれぞれ配置されている。他の階段状回折部86b, 86c, ・・・・・それぞれも同様の配置で位相差光透過面100b, 100c, ・・・・・、位相差光透過面101b, 101c, ・・・・・及び等位相光透過面102b, 102c, ・・・・・それぞれを有している。
【0063】
図1に示す縮小投影露光装置に図30に示した非対称回折格子を備えるレチクル5を配置し露光した場合も、ウェハ31の光軸方向配置位置と非対称回折格子の投影像の位置は線形関係を有するので、図9に示した露光装置検査システム及び図10及び図11に示した露光装置検査方法を利用して図1に示す光学系140を検査することが可能となる。
【0064】
次に図31から図35を用いて、図30に示した非対称回折格子を備えるレチクルの製造方法について説明する。
【0065】
(a)図15から図17の説明に記載の製造方法により、図31に示すように、マスク基板1の表面に遮光マスク7a〜7d、遮光帯70a, 70b、開口36a, 36b, 58a, 58bそれぞれを備える第2のレジスト膜18それぞれを形成させる。
【0066】
(b)開口36a, 36b, 58a, 58bそれぞれより表出するマスク基板1を異方性エッチングにより選択的に除去し、図32に示すように非対称回折部29a, 29b, 30a, 30bそれぞれを形成させる。非対称回折部29a, 29b, 30a, 30bそれぞれは、マスク基板1表面に対し、露光用レーザの透過光が120度の位相差を持つ深さまで形成させる。
【0067】
(c)図33に示すように第2のレジスト膜18を剥離剤等で除去した後、第3のレジスト膜48をマスク基板1上にスピン塗布し、フォトリソグラフィー技術により図34に示すように開口97a, 97b, 98a, 98b, 99a, 99bそれぞれを形成させる。
【0068】
(d)最後に開口97a, 97b, 98a, 98b, 99a, 99bそれぞれより表出するマスク基板1を等方性エッチングにより選択的に除去した後、第3のレジスト膜48を剥離剤等で除去し、図35に示すように遮光マスク7a〜7d及び回折部23a, 23bそれぞれを備えるデバイスパターンと、遮光帯70a, 70b及び階段状回折部86a, 86bそれぞれを備える非対称回折格子の両方をマスク基板1上に備えるレチクルが完成する。
【0069】
(実施の形態の変形例3)
実施の形態の変形例3に係る縮小投影露光装置は図36に示すように、図1に示した縮小投影露光装置の構成要素に加えて、検査用レーザ発振器65a、検査用レーザ発振器65aから発せられたレーザをレチクル5の検査パターン20a及びアライメントマーク26aに導く反射鏡68a、レチクル5の下部に配置されたビームスプリッタ67a、ビームスプリッタ67aで分割されたレーザを受光するTTLセンサ66aを有する検査用光学系を備える。
【0070】
図36において検査用レーザ発振器65aから発せられるレーザはウェハ31に塗布されたレジストの感度外の波長を有しており、反射鏡68aでレチクル5の検査パターン20a及びアライメントマーク26aに導かれ、検査パターン20a及びアライメントマーク26aを透過したレーザはビームスプリッタ67a及び投影光学系42を経てウェハ31表面に照射される。ウェハ31表面の検査パターン20a及びアライメントマーク26aの投影像は投影光学系42、ビームスプリッタ67aを経てTTLセンサ66aで感知される。
【0071】
検査用パターン20b及びアライメントマーク26bそれぞれに対しても同様に検査用レーザ発振器65b、反射鏡68b、ビームスプリッタ67b、TTLセンサ66bを備える検査用光学系が配置されている。また検査用パターン20c及びアライメントマーク26cそれぞれに対しても同様に検査用レーザ発振器65c、反射鏡68c、ビームスプリッタ67c、TTLセンサ66cを備える検査用光学系が配置されている。図36に示した縮小投影露光装置のその他の構成要素の配置等は図1と同様であるので説明は省略する。
【0072】
このように、レチクル5と検査用光学系を用いれば、ウェハ31表面の検査パターン20a, 20b, 20cそれぞれの投影像を観察するために露光後ウェハ31を現像する必要がなく、ウェハ31を縮小投影露光装置に配置したまま検査パターン20a, 20b, 20cそれぞれの投影像を観察することが可能となる。よって、図9に示した露光装置検査システム、図10及び図11に示した露光装置検査方法を利用して、図36に示す縮小投影露光装置の光学系140の検査及び補正をウェハ31を交換することなく行うことを可能とする。また、アライメントマーク26a, 26b, 26cそれぞれが検査パターン20a, 20b, 20cそれぞれに隣接して設けられていることから、ウェハ31の水平方向の位置合わせも同時に行うことが可能となる。
【0073】
(実施の形態の変形例4)
実施の形態の変形例4に係るレチクルの非対称回折格子の平面図が図37であり、図37に示したA-A方向から見た断面図が図38である。図37及び図38に示すように、実施の形態の変形例4に係る非対称回折格子は、マスク基板1に設けられた非対称回折部83a, 83b, 83c, ・・・・・、マスク基板1上に非対称回折部83a, 83b, 83c, ・・・・・それぞれを挟むように配置された遮光帯71a, 71b, 71c, 71d, 71e, 71f, ・・・・・それぞれを備える。
【0074】
ここで非対称回折部83a, 83b, 83c, ・・・・・それぞれはマスク基板1の表面近傍内部に設けられた溝であり、マスク基板1表面に対し露光用レーザの透過光の位相差が0度より大かつ180度未満の値の整数倍となる深さまで設けられており、例えば位相差が90度となる深さまで設けられている。このような非対称回折格子を備える実施の形態の変形例4に係るレチクルの構成は図2に示したレチクル5と同様であるので説明は省略する。
【0075】
図1に示した縮小投影露光装置に図37及び図38に示した非対称回折格子を備えるレチクル5を配置し、レジスト膜を塗布されたシリコン基板等からなるウェハ31上に波長193nmのArFエキシマレーザで露光した後、ウェハ31を現像処理した場合の非対称回折格子の投影像は、図39に示すように、図37及び図38に示した遮光帯71a, 71b, 71c, 71d, 71e, 71f ・・・・・それぞれの投影像である遮光帯投影像104a, 104b, 104c, 104d, 104e, 104f ・・・・・、遮光帯投影像104a, 104b, 104c, 104d, 104e, 104f ・・・・・それぞれを挟むように配置されたマスク基板1表面の投影像である基板表面投影像95a, 95b, 95c, ・・・・・及び非対称回折部83a, 83b, 83c, ・・・・・それぞれの投影像である非対称回折部投影像96a, 96b, 96c, ・・・・・を備える。
【0076】
ここで、図39に示した投影像をSEMやAFM等で観察して得られた遮光帯投影像104a, 104b, 104c, 104d, 104e, 104f ・・・・・それぞれの線幅をL、基板表面投影像95a, 95b, 95c, ・・・・・それぞれの線幅をS1、非対称回折部投影像96a, 96b, 96c, ・・・・・それぞれの線幅をS2とする。この場合、露光量A、露光量Aの1.5倍の強度である露光量Bの2つの条件の露光量で図1に示した縮小投影露光装置のウェハステージ32を光軸方向に移動させてL+S2の長さを測定しプロットしたのが図40であり、Lのみの長さをプロットしたのが図41である。図40に示すようにL+S2の長さの変化量は縮小投影露光装置に配置されたウェハ31の光軸方向への移動量とほぼ線形関係にあり、また露光量を露光量Aから1.5倍の強さである露光量Bに変化させてもウェハ31表面位置に対するL+S2の長さの値はほとんど変化しない。一方図41に示すように、Lのみの長さはウェハ31を焦点位置から-200nmから+200nmまで一定の露光量条件で光軸方向に移動させてもあまり変化しないが、ウェハ31の位置を一定して露光量を変化させるとLの長さも変化することを示している。
【0077】
以上示したように、図1に示した縮小投影露光装置に図37及び図38に示した非対称回折格子を備えるレチクル5を配置しウェハ31に露光すれば、ウェハ31表面の投影像を観察することにより露光量に依存することなくウェハ31がどれだけ焦点位置から光軸方向へずれて配置されているかを算出することが可能となり、さらに縮小投影露光装置において露光量に変化が生じた場合にも、これを検知することが可能となる。
【0078】
次に実施の形態の変形例4に係る露光装置検査システムを図42に示す。CPU400が図9に示した露光装置検査システムのCPU300と異なるのは投影像情報抽出手段425が露光量情報抽出部314を更に備えており、光学系補正情報算出手段415が線幅変化判断部305を更に備えている点である。また光学系情報記憶装置435が線幅記憶部321を更に備えている。その他の構成要素は図9に示した露光装置検査システムと同じであるので説明は省略する。
【0079】
ここで露光量情報抽出部314は図39に示したような投影像の画像情報から遮光帯投影像104a, 104b, 104c, 104d, 104e, 104f ・・・・・それぞれの最適露光量条件での線幅LをLの線幅最適値として抽出する。図42に示す線幅記憶部321は露光量抽出部314で抽出されたLの線幅最適値を保存する。線幅変化判断部305はこの線幅最適値と入力装置312から入力される検査対象のウェハで計測されたLの線幅実測値を比較し、図1に示した縮小投影露光装置において露光量に変化が生じているかどうかを判断する。
【0080】
図1に示す縮小投影露光装置に図37及び図38に示したような非対称回折格子を備えるレチクル5を配置し、図42に示した露光装置検査システムを利用すれば、図1に示した縮小投影露光装置の光学系140の収差や焦点ズレについて検査できるほか、露光量変化についても検査することが可能となる。
【0081】
次に図1、図39、図42、図43を用いて図1に示す露光装置の光学系140の露光量変化を検査するための露光装置検査方法について説明する。
【0082】
(a)まず、図43のステップS101において図1に示す縮小投影露光装置でレチクル5の検査パターン20a〜20cをウェハ31に最適露光量で露光する。ウェハ31を露光現像後、SEMやAFM等で観察された図39に示したようなウェハ31上の投影像の画像情報を図42に示した入力装置312から投影像情報抽出手段425に入力する。
【0083】
(b)図43のステップS152で図42に示す投影像情報抽出手段425の露光量情報抽出部314は画像情報から図39に示した遮光帯投影像104a, 104b, 104c, 104d, 104e, 104f ・・・・・それぞれの線幅を線幅最適値として抽出する。
【0084】
(c)図43のステップS102で図42に示した線幅記憶部321にステップS152で抽出された線幅最適値がウェハ31の光軸方向配置位置の情報と共に保存される。
【0085】
(d)ステップS170で図1に示す縮小投影露光装置で半導体集積回路の製造を開始する。
【0086】
(e)ステップS170で半導体集積回路を数ロット製造した後、図42に示した線幅記憶部321に保存されていた線幅最適値と入力装置312より入力される線幅実測値が線幅変化判断部305に図43のステップS164で格納される。図42に示す線幅変化判断部305は線幅最適値と線幅実測値を比較し、その差から線幅変化を算出する。
【0087】
(f)ステップS103で光学系補正情報提供手段315は算出された線幅変化を出力装置313に伝達し、検査は終了する。
【0088】
以上示したように、図37及び図38に示すような非対称回折格子を備えるレチクル5を図1に示す縮小投影露光装置に配置して露光し、図43に示した露光装置検査方法に従って図42に示す露光装置検査システムを利用すれば、半導体集積回路の製造工程において図1に示す縮小投影露光装置の露光量に変化が生じていないか検査することが可能となる。例えば1ロットの半導体集積回路の製造の最初と最後で図39に示したような非対称回折格子の投影像をSEM観察し、遮光帯投影像104a, 104b, 104c, 104d, 104e, 104f ・・・・・それぞれの線幅Lが増加していれば、図1に示す縮小投影露光装置において露光量が減少していると検知できる。よって、縮小投影露光装置の露光量に絞って対策をとることが可能となり、品質基準を保つための保守点検時間の短縮が可能となる。しかも、図37及び図38に示した実施の形態の変形例4に係る非対称回折格子は、図2に示したように同一マスク基板上にデバイスパターンと検査パターンの両方が設けられていることから、従来のように保守点検用に製造用レチクルから検査用レチクルに交換する必要がない。そのため、歩留まりの悪化等が確認されればそのまま露光現像後のウェハ31を図10、図11、図43に示した方法に従って検査し、図1に示す縮小投影露光装置の光学系140に収差が生じているのか、ウェハ31が焦点位置から外れて配置されているのか、光学系140の露光量が減少しているのか、それぞれ明らかにすることを可能とする。なお図39に示した検査パターンの投影像観察を光学的な観察方法によらず、SEMやAFMを用いた観察に限定すれば、図37及び図38に示したレチクル上の検査パターンの領域を小さくすることも可能となる。
【0089】
(その他の実施の形態)
上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、実施の形態の変形例4において、図39に示した基板表面投影像95a, 95b, 95c, ・・・・・の線幅S1と非対称回折部投影像96a, 96b, 96c, ・・・・・の線幅S2の寸法差によっても被露光体が焦点位置に配置されているかを検査することが可能である。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明からは妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【0090】
【発明の効果】
本発明によれば、半導体装置製造工程において検査用レチクルと製造用レチクルの両方を準備する必要がなく、半導体集積回路製造用の露光と同時に精度よく露光装置の光学系を検査することが可能となり、かつ光学系の補正に要する時間を大幅に短縮することを可能とするレチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る縮小投影露光装置を示す模式図である。
【図2】本発明の実施の形態に係るレチクルの平面図である。
【図3】本発明の実施の形態に係るレチクルの検査パターンの平面図である。
【図4】本発明の実施の形態に係る検査パターンの非対称回折格子の平面図である。
【図5】本発明の実施の形態に係る検査パターンの非対称回折格子の断面図である。
【図6】本発明の実施の形態に係るレチクルのデバイスパターンの断面図である。
【図7】本発明の実施の形態に係る非対称回折格子の瞳面での光強度分布を示す図である。
【図8】本発明の実施の形態に係る非対称回折格子の投影像の被露光面での性質を示す図である。
【図9】本発明の実施の形態に係る露光装置検査システムを示すブロック図である。
【図10】本発明の実施の形態に係る露光装置検査方法を示すフローチャート図である(その1)。
【図11】本発明の実施の形態に係る露光装置検査方法を示すフローチャート図である(その2)。
【図12】本発明の実施の形態に係る検査パターンの変形例の平面図である(その1)。
【図13】本発明の実施の形態に係る検査パターンの変形例の平面図である(その2)。
【図14】本発明の実施の形態に係る検査パターンの変形例の平面図である(その3)。
【図15】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その1)。
【図16】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その2)。
【図17】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その3)。
【図18】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その4)。
【図19】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その5)。
【図20】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その6)。
【図21】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その7)。
【図22】本発明の実施の形態に係るレチクルの製造方法を説明する工程断面図である(その8)。
【図23】本発明の実施の形態の変形例1に係るレチクルの断面図である。
【図24】本発明の実施の形態の変形例1に係るレチクルの製造方法を説明する工程断面図である(その1)。
【図25】本発明の実施の形態の変形例1に係るレチクルの製造方法を説明する工程断面図である(その2)。
【図26】本発明の実施の形態の変形例1に係るレチクルの製造方法を説明する工程断面図である(その3)。
【図27】本発明の実施の形態の変形例1に係るレチクルの製造方法を説明する工程断面図である(その4)。
【図28】本発明の実施の形態の変形例1に係るレチクルの製造方法を説明する工程断面図である(その5)。
【図29】本発明の実施の形態の変形例1に係るレチクルの製造方法を説明する工程断面図である(その6)。
【図30】本発明の実施の形態の変形例2に係るレチクルの断面図である。
【図31】本発明の実施の形態の変形例2に係るレチクルの製造方法を説明する工程断面図である(その1)。
【図32】本発明の実施の形態の変形例2に係るレチクルの製造方法を説明する工程断面図である(その2)。
【図33】本発明の実施の形態の変形例2に係るレチクルの製造方法を説明する工程断面図である(その3)。
【図34】本発明の実施の形態の変形例2に係るレチクルの製造方法を説明する断面図である(その4)。
【図35】本発明の実施の形態の変形例2に係るレチクルの製造方法を説明する工程断面図である(その5)。
【図36】本発明の実施の形態の変形例3に係る縮小投影露光装置を示す模式図である。
【図37】本発明の実施の形態の変形例4に係る検査パターンの非対称回折格子の平面図である。
【図38】本発明の実施の形態の変形例4に係る検査パターンの非対称回折格子の断面図である。
【図39】本発明の実施の形態の変形例4に係る非対称回折格子の投影像の平面図である。
【図40】本発明の実施の形態の変形例4に係る非対称回折格子の投影像の被露光面での性質を示す図である(その1)。
【図41】本発明の実施の形態の変形例4に係る非対称回折格子の投影像の被露光面での性質を示す図である(その2)。
【図42】本発明の実施の形態の変形例4に係る露光装置検査システムを示すブロック図である。
【図43】本発明の実施の形態の変形例4に係る露光装置検査方法を示すフローチャート図である。
【符号の説明】
1…マスク基板
3…ウェハ
5…レチクル
7a, 7b, 7c, 7d, 7e, 7f, ・・・・・ …遮光マスク
8, 18, 28, 48…レジスト膜
13a, 13b, 13c, ・・・・・, 29a, 29b, 30a, 30b, 83a, 83b, 83c, ・・・・・, 93, 93a, 93b, 93c, ・・・・・, 94, 94a, 94b, 94c, ・・・・・, 113a, 113b, 113c, ・・・・・, 131a, 131b, 213a, 213b, 213c, ・・・・・, 231a, 231b …非対称回折部
15, 15a, 15b, 15c…デバイスパターン
17, 27…遮光膜
20a, 20b, 20c…検査パターン
22a, 22b, 22c, 22d, 122a, 122b, 222a, 222b, 222c…非対称回折格子
23a, 23b, 23c, ・・・・・ …回折部
26a, 26b, 26c…アライメントマーク
31…ウェハ
32…ウェハステージ
35a, 35b, 35c, 35d, ,35e, 36a, 36b, 37a, 37b, 38, 45a, 45b, 46a, 46b, 56a, 56b, 56c, 57, 58a, 58b, 63a, 63b, 64, 97a, 97b, 98a, 98b, 99a, 99b…開口
41…照明光源
42…投影光学系
43…集光レンズ
61a, 61b, 61c, 61d, 62…孤立遮光パターン
65a, 65b, 65c…検査用レーザ発振器
66a, 66b, 66c…TTLセンサ
67a, 67b, 67c…ビームスプリッタ
68a, 68b, 68c…反射鏡
70a, 70b, 70c, ・・・・・, 71a, 71b, 71c, 71d, 71e, ・・・・・, 170a, 170b, 170c, ・・・・・, 270a, 270b, 270c, ・・・・・ …遮光帯
86a, 86b, 86c, ・・・・・ …階段状回折部
104a, 104b, 104c, 104d, 104e, 104f, ・・・・・ …遮光帯投影像
95a, 95b, 95c, ・・・・・ …基板表面投影像
96a, 96b, 96c, ・・・・・ …非対称回折部投影像
100a, 100b, 100c, ・・・・・, 101a, 101b, 101c, ・・・・・ …位相差光透過面
102a, 102b, 102c, ・・・・・ …等位相光透過面
140 …光学系
300, 400…CPU
301…近似関数式算出部
302…焦点ズレ算出部
303…焦点ズレ判断部
305…線幅変化判断部
310…近似関数式記憶部
311…焦点位置記憶部
312…入力装置
313…出力装置
314…露光量情報抽出部
321…線幅記憶部
323…収差算出部
315, 415…光学系補正情報提供手段
325, 425…投影像情報抽出手段
335, 435…光学系情報記憶装置
330…プログラム記憶装置
331…データ記憶装置

Claims (26)

  1. マスク基板と、
    前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターンと、
    前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターン
    とを備え、
    前記非対称回折格子が、
    前記マスク基板上に配置された複数の遮光帯と、
    前記複数の遮光帯の一方の側にそれぞれ隣接して前記マスク基板に設けられた複数の非対称回折部
    とを備え、
    前記デバイスパターンが、
    前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が180度の整数倍となる複数の回折部と、
    前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスク
    とを備え、
    前記複数の非対称回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記複数の非対称回折部のそれぞれの深さよりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされていることを特徴とするレチクル。
  2. マスク基板と、
    前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターンと、
    前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターン
    とを備え、
    前記非対称回折格子が、
    前記マスク基板上に配置された複数の遮光帯と、
    前記複数の遮光帯の一方の側にそれぞれ隣接して前記マスク基板に設けられた階段状の底部を備える複数の階段状回折部
    とを備え
    前記デバイスパターンが、
    前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が 180 度の整数倍となる複数の回折部と、
    前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスク
    とを備え、
    前記複数の階段状回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記階段状の底部の少なくとも一つの面よりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされていることを特徴とするレチクル。
  3. 前記階段状の底部が、
    前記マスク基板の表面に対して透過光の位相差が180度となる位置に配置された等位相光透過面と、
    前記マスク基板の前記表面に対して透過光の位相差が0度より大かつ180度未満となる位置に配置された位相差光透過面
    とを備えることを特徴とする請求項に記載のレチクル。
  4. マスク基板と、
    前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターンと、
    前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターン
    とを備え、
    前記非対称回折格子が、
    前記マスク基板に設けられた複数の非対称回折部と、
    前記マスク基板上に、前記複数の非対称回折部を挟むように配置された複数の遮光帯
    とを備え
    前記デバイスパターンが、
    前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が 180 度の整数倍となる複数の回折部と、
    前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスク
    とを備え、
    前記複数の非対称回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記複数の非対称回折部のそれぞれの深さよりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされていることを特徴とするレチクル。
  5. マスク基板、前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターン、及び前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターンを備え、前記非対称回折格子が、前記マスク基板上に配置された複数の遮光帯、及び前記複数の遮光帯の一方の側にそれぞれ隣接して前記マスク基板に設けられた複数の非対称回折部を備え、前記デバイスパターンが、前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が180度の整数倍となる複数の回折部、及び前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスクを備え、前記複数の非対称回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記複数の非対称回折部のそれぞれの深さよりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされているレチクルを用いて、前記回折効率の異なるプラス一次回折光とマイナス一次回折光の投影像の画像情報を取得する投影像情報抽出手段と、
    前記投影像情報抽出手段で取得された前記画像情報を保存する光学系情報記憶装置と、
    前記光学系情報記憶装置に保存された前記画像情報を用いて前記投影像を投影する露光装置の光学系を補正するための補正情報を算出する光学系補正情報提供手段
    とを備えることを特徴とする露光装置検査システム。
  6. マスク基板、前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターン、及び前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターンを備え、前記非対称回折格子が、前記マスク基板上に配置された複数の遮光帯、及び前記複数の遮光帯の一方の側にそれぞれ隣接して前記マスク基板に設けられた階段状の底部を備える複数の階段状回折部を備え、前記デバイスパターンが、前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が 180 度の整数倍となる複数の回折部、及び前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスクを備え、前記複数の階段状回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記階段状の底部の少なくとも一つの面よりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされているレチクルを用いて、前記回折効率の異なるプラス一次回折光とマイナス一次回折光の投影像の画像情報を取得する投影像情報抽出手段と、
    前記投影像情報抽出手段で取得された前記画像情報を保存する光学系情報記憶装置と、
    前記光学系情報記憶装置に保存された前記画像情報を用いて前記投影像を投影する露光装置の光学系を補正するための補正情報を算出する光学系補正情報提供手段
    とを備えることを特徴とする露光装置検査システム。
  7. マスク基板、前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターン、及び前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターンを備え、前記非対称回折格子が、前記マスク基板に設けられた複数の非対称回折部、及び前記マスク基板上に、前記複数の非対称回折部を挟むように配置された複数の遮光帯を備え、前記デバイスパターンが、前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が 180 度の整数倍となる複数の回折部、及び前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスクを備え、前記複数の非対称回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記複数の非対称回折部のそれぞれの深さよりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされているレチクルを用いて、前記回折効率の異なるプラス一次回折光とマイナス一次回折光の投影像の画像情報を取得する投影像情報抽出手段と、
    前記投影像情報抽出手段で取得された前記画像情報を保存する光学系情報記憶装置と、
    前記光学系情報記憶装置に保存された前記画像情報を用いて前記投影像を投影する露光装置の光学系を補正するための補正情報を算出する光学系補正情報提供手段
    とを備えることを特徴とする露光装置検査システム。
  8. 前記投影像情報抽出手段は、前記画像情報から前記投影像のウェハ表面の位置及び前記ウェハの前記光学系の光軸方向配置位置の線形関係を示す近似関数式を算出する近似関数式算出部を備えることを特徴とする請求項5乃至7のいずれか1項に記載の露光装置検査システム。
  9. 前記光学系情報記憶装置は、前記近似関数式算出部で算出された前記近似関数式を保存する近似関数式記憶部を備えることを特徴とする請求項に記載の露光装置検査システム。
  10. 前記光学系補正情報提供手段は、前記近似関数式から前記光学系の収差を算出する収差算出部を備えることを特徴とする請求項8又は9に記載の露光装置検査システム。
  11. 前記光学系補正情報提供手段は、前記投影像の実測位置と前記近似関数式から前記ウェハの算出配置位置を算出する焦点ズレ算出部を備えることを特徴とする請求項乃至10のいずれか1項に記載の露光装置検査システム。
  12. 前記光学系情報記憶装置は、前記光学系の焦点位置を記憶する焦点位置記憶部を更に備えることを特徴とする請求項11に記載の露光装置検査システム。
  13. 前記光学系補正情報提供手段は、前記算出配置位置と前記焦点位置とを比較する焦点ズレ判断部を更に備えることを特徴とする請求項12に記載の露光装置検査システム。
  14. 前記投影像情報抽出手段は、前記画像情報から前記投影像の最適露光量条件での線幅最適値を抽出する露光量情報抽出部を備えることを特徴とする請求項5乃至7101113のいずれか1項に記載の露光装置検査システム。
  15. 前記光学系情報記憶装置は、前記線幅最適値を保存する線幅記憶部を備えることを特徴とする請求項14に記載の露光装置検査システム。
  16. 前記光学系補正情報提供手段は、前記線幅最適値と前記投影像の線幅実測値とを比較する線幅変化判断部を備えることを特徴とする請求項15に記載の露光装置検査システム。
  17. マスク基板、前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターン、及び前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターンを備え、前記非対称回折格子が、前記マスク基板上に配置された複数の遮光帯、及び前記複数の遮光帯の一方の側にそれぞれ隣接して前記マスク基板に設けられた複数の非対称回折部を備え、前記デバイスパターンが、前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が180度の整数倍となる複数の回折部、及び前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスクを備え、前記複数の非対称回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記複数の非対称回折部のそれぞれの深さよりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされているレチクルを用いて、前記回折効率が異なるプラス一次回折光とマイナス一次回折光による投影像の画像情報を取得するステップと、
    前記画像情報を用いて前記投影像を投影する露光装置の光学系を補正するための補正情報を提供するステップ
    とを含むことを特徴とする露光装置検査方法。
  18. マスク基板、前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターン、及び前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターンを備え、前記非対称回折格子が、前記マスク基板上に配置された複数の遮光帯、及び前記複数の遮光帯の一方の側にそれぞれ隣接して前記マスク基板に設けられた階段状の底部を備える複数の階段状回折部を備え、前記デバイスパターンが、前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が 180 度の整数倍となる複数の回折部、及び前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスクを備え、前記複数の階段状回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記階段状の底部の少なくとも一つの面よりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされているレチクルを用いて、前記回折効率が異なるプラス一次回折光とマイナス一次回折光による投影像の画像情報を取得するステップと、
    前記画像情報を用いて前記投影像を投影する露光装置の光学系を補正するための補正情報を提供するステップ
    とを含むことを特徴とする露光装置検査方法。
  19. マスク基板、前記マスク基板上に設けられた、回折効率が異なるプラス一次回折光とマイナス一次回折光を生じさせる非対称回折格子を備える検査パターン、及び前記検査パターンに隣接して前記マスク基板上に設けられたデバイスパターンを備え、前記非対称回折格子が、前記マスク基板に設けられた複数の非対称回折部、及び前記マスク基板上に、前記複数の非対称回折部を挟むように配置された複数の遮光帯を備え、前記デバイスパターンが、前記マスク基板に設けられた前記マスク基板の前記表面に対して透過光の位相差が 180 度の整数倍となる複数の回折部、及び前記マスク基板上に、前記複数の回折部を挟むように配置された複数の遮光マスクを備え、前記複数の非対称回折部及び前記複数の回折部のそれぞれが溝であり、前記複数の回折部のそれぞれの深さが、前記複数の非対称回折部のそれぞれの深さよりも深く、かつ前記複数の回折部において前記マスク基板が前記複数の遮光マスクの下部まで部分的にエッチングされているレチクルを用いて、前記回折効率が異なるプラス一次回折光とマイナス一次回折光による投影像の画像情報を取得するス テップと、
    前記画像情報を用いて前記投影像を投影する露光装置の光学系を補正するための補正情報を提供するステップ
    とを含むことを特徴とする露光装置検査方法。
  20. 前記画像情報から前記投影像のウェハ表面の位置及び前記ウェハの前記光学系の光軸方向配置位置の線形関係を表す近似関数式を算出するステップを更に含むことを特徴とする請求項17乃至19のいずれか1項に記載の露光装置検査方法。
  21. 前記補正情報を提供するステップは、前記近似関数式から前記光学系の収差を算出する手順を含むことを特徴とする請求項20に記載の露光装置検査方法。
  22. 前記補正情報を提供するステップは、前記投影像の実測位置と前記近似関数式から前記ウェハの算出配置位置を算出する手順を含むことを特徴とする請求項20又は21に記載の露光装置検査方法。
  23. 前記補正情報を提供するステップは、前記算出配置位置と前記光学系の焦点位置とを比較し、焦点ズレを判断する手順を更に含むことを特徴とする請求項22に記載の露光装置検査方法。
  24. 前記画像情報から前記投影像の最適露光量条件での線幅最適値を抽出するステップを更に含むことを特徴とする請求項17乃至19212223のいずれか1項に記載の露光装置検査方法。
  25. 前記補正情報を提供するステップは、前記線幅最適値と前記投影像の線幅実測値とを比較し、線幅変化を判断する手順を含むことを特徴とする請求項24に記載の露光装置検査方法。
  26. マスク基板表面に遮光膜を形成する工程と、
    第1のレジスト膜を前記遮光膜表面に形成し、前記第1のレジスト膜をパターニングする工程と、
    パターニングされた前記第1のレジスト膜をマスクにして前記遮光膜を異方性エッチング法により選択的にエッチングする工程と、
    前記第1のレジスト膜を除去し、第2のレジスト膜を前記マスク基板上に形成し、前記第2のレジスト膜をパターニングする工程と、
    パターニングされた前記第2のレジスト膜をマスクにして表出する前記マスク基板を選択的にエッチングし、回折効率の異なるプラス一次回折光とマイナス一次回折光を生じさせる複数の非対称回折部を形成する工程と、
    前記第2のレジスト膜を除去し、第3のレジスト膜を前記マスク基板上に形成し、前記第3のレジスト膜をパターニングする工程と、
    パターニングされた前記第3のレジスト膜をマスクにして表出する前記マスク基板を等方性エッチング法により選択的にエッチングし、回折効率が等しいプラス一次回折光とマイナス一次回折光を生じさせる回折部を形成する工程
    とを含み、
    前記回折部を形成する工程が、前記複数の非対称回折部の少なくとも一部の非対称回折部の内部から前記マスク基板を等方性エッチング法により選択的にエッチングし、前記回折部を形成することを特徴とするレチクルの製造方法。
JP2003199178A 2003-07-18 2003-07-18 レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法 Expired - Fee Related JP4015079B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003199178A JP4015079B2 (ja) 2003-07-18 2003-07-18 レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法
TW093119557A TWI241395B (en) 2003-07-18 2004-06-30 Mask, monitoring system for exposure apparatus, monitoring method for exposure apparatus, and method for manufacturing mask
CNB2004100624711A CN100462667C (zh) 2003-07-18 2004-07-08 原版
US10/890,299 US7432021B2 (en) 2003-07-18 2004-07-14 Reticle, apparatus for monitoring optical system, method for monitoring optical system, and method for manufacturing reticle
NL1026665A NL1026665C2 (nl) 2003-07-18 2004-07-15 Reticule, inrichting voor het bewaken van een optisch stelsel, werkwijze voor het bewaken van een optisch stelsel en werkwijze voor het vervaardigen van een reticule.
US12/230,269 US7812972B2 (en) 2003-07-18 2008-08-27 Reticle, apparatus for monitoring optical system, method for monitoring optical system, and method for manufacturing reticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199178A JP4015079B2 (ja) 2003-07-18 2003-07-18 レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法

Publications (2)

Publication Number Publication Date
JP2005037598A JP2005037598A (ja) 2005-02-10
JP4015079B2 true JP4015079B2 (ja) 2007-11-28

Family

ID=34208719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199178A Expired - Fee Related JP4015079B2 (ja) 2003-07-18 2003-07-18 レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法

Country Status (5)

Country Link
US (2) US7432021B2 (ja)
JP (1) JP4015079B2 (ja)
CN (1) CN100462667C (ja)
NL (1) NL1026665C2 (ja)
TW (1) TWI241395B (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212421B2 (ja) * 2003-06-26 2009-01-21 株式会社東芝 マスク、露光量調整方法及び半導体デバイスの製造方法
JP4015079B2 (ja) * 2003-07-18 2007-11-28 株式会社東芝 レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法
JP2006039148A (ja) * 2004-07-26 2006-02-09 Toshiba Corp ホトマスク、それを用いたフォーカス測定方法および半導体装置の製造方法
JP2007164084A (ja) * 2005-12-16 2007-06-28 Toshiba Corp フォトマスクの製造方法および半導体装置の製造方法
JP4922071B2 (ja) * 2007-05-28 2012-04-25 株式会社オーク製作所 露光描画装置
NL1036647A1 (nl) * 2008-04-16 2009-10-19 Asml Netherlands Bv A method of measuring a lithographic projection apparatus.
CN102569257B (zh) * 2010-12-08 2016-01-20 无锡华润上华科技有限公司 线宽测试结构
US8970956B2 (en) 2011-03-30 2015-03-03 Intel Corporation On-chip diffraction grating prepared by crystallographic wet-etch
JP5533769B2 (ja) * 2011-04-14 2014-06-25 ウシオ電機株式会社 マスクとワークの位置合せ方法
JP2013004700A (ja) * 2011-06-16 2013-01-07 Renesas Electronics Corp 半導体装置の製造方法
NL2008957A (en) * 2011-07-08 2013-01-09 Asml Netherlands Bv Methods and systems for pattern design with tailored response to wavefront aberration.
US8619528B2 (en) * 2011-08-31 2013-12-31 Seagate Technology Llc Method and system for optical calibration
JP5841797B2 (ja) 2011-10-07 2016-01-13 株式会社日立ハイテクノロジーズ 回折格子の製造方法
US20130143002A1 (en) * 2011-12-05 2013-06-06 Seagate Technology Llc Method and system for optical callibration discs
JP5665784B2 (ja) 2012-03-16 2015-02-04 株式会社東芝 フォトマスクおよびパターン形成方法
US9547743B2 (en) * 2015-02-25 2017-01-17 Kabushiki Kaisha Toshiba Manufacturing method for a semiconductor device, pattern generating method and nontransitory computer readable medium storing a pattern generating program
US9939605B2 (en) * 2015-08-06 2018-04-10 Qualcomm Incorporated Submicron wafer alignment
KR102421290B1 (ko) * 2019-09-27 2022-07-15 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 정렬 마크를 형성하기 위한 장치 및 방법
US11270950B2 (en) 2019-09-27 2022-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for forming alignment marks
CN110989290A (zh) * 2019-11-27 2020-04-10 无锡中微掩模电子有限公司 一种高精度多台阶衍射光学图案的制作方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656347A (en) * 1984-01-30 1987-04-07 Nippon Telegraph & Telephone Public Corporation Diffraction grating position adjuster using a grating and a reflector
JPS63144206A (ja) * 1986-12-08 1988-06-16 Minolta Camera Co Ltd 物***置の測定方法
JP2773147B2 (ja) * 1988-08-19 1998-07-09 株式会社ニコン 露光装置の位置合わせ装置及び方法
JPH02127640A (ja) 1988-11-07 1990-05-16 Nec Kyushu Ltd レティクル
JPH035753A (ja) 1989-06-01 1991-01-11 Fujitsu Ltd 薄膜パターンの形成方法
US5576829A (en) 1990-10-08 1996-11-19 Nikon Corporation Method and apparatus for inspecting a phase-shifted mask
JPH04181251A (ja) * 1990-11-16 1992-06-29 Nikon Corp フォトマスク検査装置
US5300786A (en) * 1992-10-28 1994-04-05 International Business Machines Corporation Optical focus phase shift test pattern, monitoring system and process
US5353272A (en) * 1992-12-29 1994-10-04 Eastman Kodak Company Apparatus and method for a modified half-aperture focus/tracking/data sensor system
JPH06302492A (ja) 1993-04-12 1994-10-28 Hitachi Ltd 露光条件検定パターンおよび露光原版ならびにそれらを用いた露光方法
KR0144081B1 (ko) 1994-03-31 1998-08-17 김주용 버니어
US6034378A (en) * 1995-02-01 2000-03-07 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
JPH08248620A (ja) 1995-03-15 1996-09-27 Nippon Precision Circuits Kk レチクルおよびこれを用いたデフォーカスレベル判定方法
US5948571A (en) * 1997-03-12 1999-09-07 International Business Machines Corporation Asymmetrical resist sidewall
JP3274396B2 (ja) * 1997-11-07 2002-04-15 株式会社東芝 パターン測定方法
JP3275863B2 (ja) * 1999-01-08 2002-04-22 日本電気株式会社 フォトマスク
JP3848037B2 (ja) 1999-12-28 2006-11-22 株式会社東芝 フォーカスモニタマスク及びフォーカスモニタ方法
JP2001100392A (ja) 1999-09-28 2001-04-13 Toshiba Corp フォーカスモニタ用マスク及びフォーカスモニタ方法
JP3949853B2 (ja) 1999-09-28 2007-07-25 株式会社東芝 露光装置の制御方法及び半導体製造装置の制御方法
US6208748B1 (en) * 2000-01-05 2001-03-27 Intel Corporation Monitoring focus of a lens imaging system based on astigmatism
JP3302965B2 (ja) * 2000-02-15 2002-07-15 株式会社東芝 露光装置の検査方法
JP2001351853A (ja) 2000-06-08 2001-12-21 Toshiba Corp フォーカスモニタ方法
JP3297423B2 (ja) 2000-08-09 2002-07-02 株式会社東芝 フォーカステストマスク、並びにそれを用いたフォーカス及び収差の測定方法
JP2002203768A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 露光方法、露光システム及び記録媒体
JP4091263B2 (ja) 2001-03-27 2008-05-28 株式会社東芝 フォーカスモニタ方法及び露光装置
JP3906035B2 (ja) * 2001-03-29 2007-04-18 株式会社東芝 半導体製造装置の制御方法
JP2003114514A (ja) 2001-10-02 2003-04-18 Sharp Corp マスクを用いたパターンの転写方法、ハーフトーンマスク、及びその製造方法、並びに回路基板の製造方法
US6842237B2 (en) * 2001-12-28 2005-01-11 International Business Machines Corporation Phase shifted test pattern for monitoring focus and aberrations in optical projection systems
US6772084B2 (en) * 2002-01-31 2004-08-03 Timbre Technologies, Inc. Overlay measurements using periodic gratings
JP3727911B2 (ja) * 2002-09-25 2005-12-21 株式会社東芝 マスク、マスクの製造方法及び半導体装置の製造方法
US6927891B1 (en) * 2002-12-23 2005-08-09 Silicon Light Machines Corporation Tilt-able grating plane for improved crosstalk in 1×N blaze switches
JP3854234B2 (ja) * 2003-02-24 2006-12-06 株式会社東芝 フォーカスモニタ方法及びマスク
JP4015079B2 (ja) * 2003-07-18 2007-11-28 株式会社東芝 レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法

Also Published As

Publication number Publication date
US7812972B2 (en) 2010-10-12
CN100462667C (zh) 2009-02-18
JP2005037598A (ja) 2005-02-10
NL1026665A1 (nl) 2005-01-19
US20090009775A1 (en) 2009-01-08
CN1576778A (zh) 2005-02-09
US20050048378A1 (en) 2005-03-03
NL1026665C2 (nl) 2008-01-08
US7432021B2 (en) 2008-10-07
TW200513629A (en) 2005-04-16
TWI241395B (en) 2005-10-11

Similar Documents

Publication Publication Date Title
JP4015079B2 (ja) レチクル、露光装置検査システム、露光装置検査方法及びレチクルの製造方法
TWI633296B (zh) 微影裝置及用於執行量測之方法
JP6618551B2 (ja) 検査装置、検査方法、リソグラフィ装置、パターニングデバイス及び製造方法
TWI645257B (zh) 檢查方法、微影裝置、光罩及基板
JP4896092B2 (ja) 検査方法および装置、リソグラフィ装置、リソグラフィ処理セル、およびデバイス製造方法
US6842237B2 (en) Phase shifted test pattern for monitoring focus and aberrations in optical projection systems
EP1006413B1 (en) Alignment method and exposure apparatus using the same
US20230044632A1 (en) Dark field digital holographic microscope and associated metrology method
US20020021434A1 (en) Evaluation mask, focus measuring method and aberration measuring method
JP2019523449A (ja) ターゲットの測定方法、基板、計測装置およびリソグラフィ装置
TWI665529B (zh) 量測器件製程參數的方法、度量衡設備、基板、目標、器件製造系統及器件製造方法
JP6920474B2 (ja) リソグラフィ装置の焦点性能を測定するための方法並びにパターニングデバイス及び装置、デバイス製造方法
JP4015087B2 (ja) レチクル、及び露光方法
US9025137B2 (en) Method of structuring a photosensitive material
JP2019501421A (ja) リソグラフィ装置の焦点性能を測定するための方法およびパターニングデバイスおよび装置、デバイス製造方法
TWI628521B (zh) 微影裝置、微影對準方法、資料處理系統及由該資料處理系統執行之控制軟體
EP3964892A1 (en) Illumination arrangement and associated dark field digital holographic microscope
KR102668160B1 (ko) 리소그래피 장치의 포커스 성능을 측정하는 장치들 및 패터닝 디바이스들 및 방법들, 디바이스 제조 방법
JP4091263B2 (ja) フォーカスモニタ方法及び露光装置
TWI752647B (zh) 用於推斷例如聚焦之處理參數之方法與相關聯之設備及製造方法
JPH11184070A (ja) 収差測定方法および収差測定用フォトマスク
EP4375744A1 (en) Photonic integrated circuit for generating broadband radiation
US11733615B2 (en) Methods and patterning devices and apparatuses for measuring focus performance of a lithographic apparatus, device manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees