JP4010999B2 - Voltage fluctuation compensation device - Google Patents

Voltage fluctuation compensation device Download PDF

Info

Publication number
JP4010999B2
JP4010999B2 JP2003299470A JP2003299470A JP4010999B2 JP 4010999 B2 JP4010999 B2 JP 4010999B2 JP 2003299470 A JP2003299470 A JP 2003299470A JP 2003299470 A JP2003299470 A JP 2003299470A JP 4010999 B2 JP4010999 B2 JP 4010999B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
polarity
compensation circuit
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003299470A
Other languages
Japanese (ja)
Other versions
JP2005073376A (en
Inventor
行盛 岸田
正樹 山田
寛 伊藤
明彦 岩田
敏之 菊永
伸彦 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2003299470A priority Critical patent/JP4010999B2/en
Publication of JP2005073376A publication Critical patent/JP2005073376A/en
Application granted granted Critical
Publication of JP4010999B2 publication Critical patent/JP4010999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Description

この発明は、負荷に供給される電力系統の電圧が瞬時的に変動した際に、それを検出して電圧変動を補償する電圧変動補償装置に関するものである。   The present invention relates to a voltage fluctuation compensator that detects and compensates for voltage fluctuation when the voltage of a power system supplied to a load fluctuates instantaneously.

雷などにより電力系統の電圧が瞬時的に低下し、工場などの精密機器などが誤作動や一時停止することにより、生産ラインで多大な被害を被ることがある。このような被害を防ぐために、電力系統の瞬時的電圧低下(以下、瞬低と称す)などの電圧変動を監視して、電圧低下を補償する電圧変動補償装置が用いられている。
従来の電圧変動補償装置は、電力系統に直列に接続され、正負いずれかの極性で補償電圧を出力する複数の電圧補償回路で構成される。各電圧補償回路には、ダイオードが逆並列に接続された4個の半導体スイッチング素子から成るフルブリッジインバータ、および充電コンデンサが備えられ、充電コンデンサの直流電圧を交流に変換して出力する。また、各電圧補償回路の出力端には、高速機械式の定常短絡スイッチが並列に設けられる。各電圧補償回路内の充電コンデンサは、充電ダイオードと充電用トランスによってそれぞれ異なる電圧が充電され、電圧の比は概ね2のべき乗比に設定される。
The voltage of the electric power system is instantaneously reduced by lightning, etc., and precision equipment such as factories malfunctions or is temporarily stopped, which can cause great damage on the production line. In order to prevent such damage, a voltage fluctuation compensator that monitors voltage fluctuations such as an instantaneous voltage drop (hereinafter referred to as a momentary voltage drop) of the power system and compensates for the voltage drop is used.
A conventional voltage fluctuation compensator is configured by a plurality of voltage compensation circuits that are connected in series to a power system and output a compensation voltage with either positive or negative polarity. Each voltage compensation circuit is provided with a full bridge inverter composed of four semiconductor switching elements with diodes connected in antiparallel, and a charging capacitor, which converts the DC voltage of the charging capacitor into AC and outputs it. In addition, a high-speed mechanical steady short-circuit switch is provided in parallel at the output terminal of each voltage compensation circuit. The charging capacitors in each voltage compensation circuit are charged with different voltages by the charging diode and the charging transformer, and the voltage ratio is set to a power ratio of about 2.

定常時、電流は定常短絡スイッチを流れる。また電力系統の瞬低時には、電力系統の電圧低下量を、各電圧補償回路内の充電コンデンサの電圧検出値を各ビット信号の基準値として、該基準値と照合することにより2進数の信号にA/D変換し、該信号によって、上記複数の電圧補償回路の中から所望の組み合わせを選択し、その出力電圧の総和で電力系統の電圧低下を補償する。また、2進数の信号により選択される電圧補償回路が、出力電圧が電力系統の電圧極性と逆極性のものを含むことを可能とし、出力電圧が電力系統と同極性の電圧補償回路内のコンデンサは動作時に放電され、逆極性の電圧補償回路内のコンデンサは動作時に充電される(例えば、特許文献1参照)。   Constantly, current flows through a steady short circuit switch. Further, when the power system is instantaneously reduced, the voltage drop amount of the power system is converted into a binary signal by collating the voltage detection value of the charging capacitor in each voltage compensation circuit with the reference value of each bit signal. A / D conversion is performed, and a desired combination is selected from the plurality of voltage compensation circuits based on the signal, and the voltage drop of the power system is compensated by the sum of the output voltages. In addition, the voltage compensation circuit selected by the binary signal enables the output voltage to include the one having the opposite polarity to the voltage polarity of the power system, and the capacitor in the voltage compensation circuit having the same polarity as that of the power system. Is discharged during operation, and a capacitor in the voltage compensation circuit having a reverse polarity is charged during operation (see, for example, Patent Document 1).

特開2002−359928号公報JP 2002-359928 A

このような従来の電圧変動補償装置においては、補償動作時に頻繁に用いられる低電圧の充電コンデンサについては、電圧低下を抑制するため、必要に応じて系統電圧と逆極性にして他の電圧補償回路内の充電コンデンサの電圧を用いて充電していた。しかしながら、複数の電圧補償回路内の充電コンデンサ全体としては、充電用トランスを用いて、一定の電圧に充電される。このため、補償動作終了後に電圧が低下した充電コンデンサを高速に充電するのは困難であり、また、充電トランスの容量を低減して充電設備を簡素化するには限界があるという問題点があった。   In such a conventional voltage fluctuation compensator, with respect to a low-voltage charging capacitor that is frequently used during compensation operation, another voltage compensation circuit having a polarity opposite to that of the system voltage is used as necessary to suppress a voltage drop. It was charged using the voltage of the charging capacitor inside. However, the entire charging capacitors in the plurality of voltage compensation circuits are charged to a constant voltage using a charging transformer. For this reason, it is difficult to quickly charge a charging capacitor whose voltage has dropped after the compensation operation is completed, and there is a limit to simplifying the charging equipment by reducing the capacity of the charging transformer. It was.

この発明は、上記のような問題点を解消するために成されたものであって、電圧補償回路内のコンデンサを高速に充電して補償動作の信頼性を向上すると共に、充電設備を簡素化して装置構成を小型化、簡略化することを目的とする。   The present invention has been made to solve the above-described problems. The capacitor in the voltage compensation circuit is charged at high speed to improve the reliability of the compensation operation, and the charging equipment is simplified. The purpose is to reduce the size and simplify the device configuration.

この発明に係る電圧変動補償装置は、それぞれコンデンサの電圧を交流に変換して出力する複数の電圧補償回路を電力系統に直列に接続し、該電力系統における電圧低下の監視、およびそれに基づく給電制御を行う制御部を備えて、系統電圧低下時に、上記複数の電圧補償回路の中から所望の組み合わせを選択し、その出力電圧の総和を上記系統電圧に重畳して上記系統電圧の低下を補償し、負荷に供給される電圧の変動を抑える。そして、上記電力系統から上記電圧補償回路を介して上記コンデンサを充電する手段を有し、上記系統電圧が低下していない通常時に、上記電圧補償回路を介して上記負荷に電力供給しつつ、上記電圧補償回路の出力電圧を該電圧補償回路を流れる系統電流の極性と逆極性として、該電圧補償回路が有する上記コンデンサを充電するものである。   The voltage fluctuation compensation device according to the present invention is configured such that a plurality of voltage compensation circuits that respectively convert and output the voltage of a capacitor into an alternating current are connected in series to the power system, voltage drop monitoring in the power system, and power supply control based thereon A control unit is provided to select a desired combination from the plurality of voltage compensation circuits when the system voltage drops, and superimpose the sum of the output voltages on the system voltage to compensate for the system voltage drop. Suppress fluctuations in the voltage supplied to the load. And it has a means to charge the capacitor from the power system through the voltage compensation circuit, while supplying power to the load through the voltage compensation circuit at the normal time when the system voltage is not lowered, The capacitor included in the voltage compensation circuit is charged by setting the output voltage of the voltage compensation circuit to a polarity opposite to the polarity of the system current flowing through the voltage compensation circuit.

この発明による電圧変動補償装置では、系統電圧が低下していない通常時に、系統電圧から負荷に電力供給するための主回路である電圧補償回路を介してコンデンサを充電するようにするため、コンデンサを高速に充電できると共に、充電のための大容量のトランスが不要となる。このため、補償動作の信頼性が向上すると共に、充電設備を簡素化して装置構成を小型化、簡略化できる。   In the voltage fluctuation compensator according to the present invention, in order to charge the capacitor via the voltage compensation circuit which is the main circuit for supplying power from the system voltage to the load at the normal time when the system voltage is not lowered, In addition to being able to charge at high speed, a large-capacity transformer for charging becomes unnecessary. For this reason, the reliability of the compensation operation is improved, and the charging equipment can be simplified to make the device configuration smaller and simplified.

実施の形態1.
以下、この発明の実施の形態1について説明する。図1はこの発明の実施の形態1による電圧変動補償装置100の概略構成図である。
図1に示すように、送電線1からの電力は、変圧器2により降圧されて、電圧変動補償装置100を介して需要家3(負荷)に接続され、電力が供給される。電圧変動補償装置100は、図に示すように、複数(この場合3個)の電圧補償ユニット15と制御回路16とで構成され、正負いずれかの極性で補償電圧を出力する電圧補償回路PN1、PN2、PN3が電力系統に直列に接続される。各電圧補償ユニット15には、ダイオードが逆並列に接続された4個のIGBT9sw11〜9sw14、9sw21〜9sw24、9sw31〜9sw34から成るフルブリッジインバータ、および充電コンデンサ10pn1〜10pn3で構成される各電圧補償回路PN(PN1、PN2、PN3)と、充電コンデンサ10(10pn1〜10pn3)を充電するための充電ダイオード11と充電用トランス14の2次巻線13とが備えられる。なお、充電用トランス1次巻線12は、電力系統と接続される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below. 1 is a schematic configuration diagram of a voltage fluctuation compensating apparatus 100 according to Embodiment 1 of the present invention.
As shown in FIG. 1, the power from the transmission line 1 is stepped down by the transformer 2 and connected to the consumer 3 (load) via the voltage fluctuation compensation device 100 to be supplied with power. As shown in the figure, the voltage fluctuation compensator 100 is composed of a plurality of (in this case, three) voltage compensation units 15 and a control circuit 16, and a voltage compensation circuit PN1, which outputs a compensation voltage with either positive or negative polarity, PN2 and PN3 are connected in series to the power system. Each voltage compensation unit 15 includes a full bridge inverter composed of four IGBTs 9sw11 to 9sw14, 9sw21 to 9sw24, and 9sw31 to 9sw34 having diodes connected in antiparallel, and each voltage compensation circuit composed of charging capacitors 10pn1 to 10pn3. A PN (PN1, PN2, PN3), a charging diode 11 for charging the charging capacitor 10 (10pn1 to 10pn3), and a secondary winding 13 of the charging transformer 14 are provided. The charging transformer primary winding 12 is connected to the power system.

また、充電コンデンサ10(以下、単にコンデンサ10と称す)の充電電圧V1〜V3は、IGBT9(9sw11〜9sw14、9sw21〜9sw24、9sw31〜9sw34)のオン/オフ制御により正負いずれかの極性で電力系統に接続される。各電圧補償回路PN1、PN2、PN3内のコンデンサ10に充電される電圧の比は概ね2のべき乗比に設定されている。つまり、以下の関係を満足させる。
V3=2×V2=2×2×V1
また、直列接続された複数の電圧補償回路PNの出力端には、並列に高速機械式の定常短絡スイッチ8が設けられる。
なお、この定常短絡スイッチ8は、各電圧補償回路PNと並列にそれぞれ設けても良い。
また、フルブリッジインバータはIGBT9以外の自己消弧型半導体スイッチング素子で構成しても良い。
The charging voltage V1 to V3 of the charging capacitor 10 (hereinafter simply referred to as the capacitor 10) is a power system having either positive or negative polarity by on / off control of the IGBT 9 (9sw11 to 9sw14, 9sw21 to 9sw24, 9sw31 to 9sw34). Connected to. The ratio of the voltage charged in the capacitor 10 in each voltage compensation circuit PN1, PN2, PN3 is set to a power ratio of 2. That is, the following relationship is satisfied.
V3 = 2 × V2 = 2 × 2 × V1
A high-speed mechanical steady short-circuit switch 8 is provided in parallel at the output terminals of the plurality of voltage compensation circuits PN connected in series.
The steady short-circuit switch 8 may be provided in parallel with each voltage compensation circuit PN.
Further, the full bridge inverter may be formed of a self-extinguishing semiconductor switching element other than the IGBT 9.

定常短絡スイッチ8および各IGBT9は制御回路16に接続される。この制御回路16の構成および動作について、図2に基づいて以下に説明する。
図2に示すように、系統電圧Vx、系統電流Ixは制御回路16に入力され、極性判定回路24にてそれぞれ極性が判定され、極性判定回路24は、電圧極性信号24aを出力すると共に、系統電圧極性と系統電流極性とが異極性であるとき異極性検出信号24bを出力する。また、系統電圧Vxは誤差増幅器21にも入力され、誤差増幅器21では、系統電圧Vxを、予め設定された正常時の系統電圧である基準電圧20と比較し、両者の差を増幅し、さらに絶対値変換を施して誤差電圧信号21aを出力する。
また、各電圧補償回路PN内のコンデンサ10は電圧検出器を備えて電圧をモニタしており、電圧検出値V1、V2、V3を制御回路16に入力する。
The steady short-circuit switch 8 and each IGBT 9 are connected to the control circuit 16. The configuration and operation of the control circuit 16 will be described below with reference to FIG.
As shown in FIG. 2, the system voltage Vx and the system current Ix are input to the control circuit 16, and the polarity is determined by the polarity determination circuit 24. The polarity determination circuit 24 outputs a voltage polarity signal 24a and the system When the voltage polarity and the system current polarity are different, the different polarity detection signal 24b is output. The system voltage Vx is also input to the error amplifier 21. The error amplifier 21 compares the system voltage Vx with a reference voltage 20 that is a preset normal system voltage, amplifies the difference between the two, and An absolute value conversion is performed and an error voltage signal 21a is output.
The capacitor 10 in each voltage compensation circuit PN includes a voltage detector and monitors the voltage, and the voltage detection values V1, V2, and V3 are input to the control circuit 16.

A/D変換器22では、誤差増幅器21からの誤差電圧信号21a、極性判定回路24からの異極性検出信号24b、各コンデンサの電圧検出値V1、V2、V3を入力として、3ビットのデジタル信号(D1〜D3)を出力する。この3ビットのデジタル信号(D1〜D3)は、各ビットのデジタル信号(D1、D2、D3)の値を−1、+1の双方を可能とした2進数値で構成され、出力電圧を発生させる電圧補償回路PN1、PN2、PN3の組み合わせと、各出力電圧の極性とを選択する。
また、23は瞬低検出部で、瞬低検出して信号z(=0)により定常短絡スイッチ8をオフする。
さらに、25は、各電圧補償回路PNのインバータの駆動信号を発生する駆動信号発生器で、極性判定回路24からの電圧極性信号24aと、デジタル信号D1〜D3とを入力として、各電圧補償回路PNのインバータの駆動信号g11〜g14、g21〜g24、g31〜g34を発生する。
In the A / D converter 22, an error voltage signal 21a from the error amplifier 21, a different polarity detection signal 24b from the polarity determination circuit 24, and voltage detection values V1, V2, and V3 of each capacitor are input, and a 3-bit digital signal is input. (D1 to D3) are output. The 3-bit digital signals (D1 to D3) are composed of binary values that enable both -1 and +1 as the values of the digital signals (D1, D2, D3) of each bit, and generate an output voltage. The combination of the voltage compensation circuits PN1, PN2, and PN3 and the polarity of each output voltage are selected.
Reference numeral 23 denotes a sag detector, which detects a sag and turns off the steady short-circuit switch 8 with a signal z (= 0).
Further, reference numeral 25 denotes a drive signal generator for generating a drive signal for the inverter of each voltage compensation circuit PN, which receives the voltage polarity signal 24a from the polarity determination circuit 24 and the digital signals D1 to D3 as inputs. PN inverter drive signals g11-g14, g21-g24, g31-g34 are generated.

瞬低が発生していない通常時で各コンデンサ10の電圧が低下していない時、デジタル信号D1〜D3は全て0であり、定常短絡スイッチ8はオン状態で、系統電力は抵抗の小さい機械式の定常短絡スイッチ8を通して負荷3に供給される。
また系統電圧の瞬低時には、誤差増幅器21からの誤差電圧信号21aに基づいて発生されたデジタル信号D1〜D3によって、出力すべき電圧補償回路PN1、PN2、PN3が選択される。系統電圧Vxと基準電圧20との差が、充電コンデンサ10pn1の充電電圧V1と等しくなったとき、A/D変換器22からの出力信号における最下位ビットD1のみが1、即ち゛001゛となるよう、また、同様に゛010゛・・・゛111゛の場合も、充電コンデンサ10の充電電圧の組み合わせと等しくなるように誤差増幅器21のゲインは予め調整しておく。
When the voltage of each capacitor 10 does not drop at the normal time when no sag is generated, the digital signals D1 to D3 are all 0, the steady short-circuit switch 8 is in the on state, and the system power has a small resistance. Is supplied to the load 3 through the steady short-circuit switch 8.
When the system voltage is instantaneously reduced, the voltage compensation circuits PN1, PN2, and PN3 to be output are selected by the digital signals D1 to D3 generated based on the error voltage signal 21a from the error amplifier 21. When the difference between the system voltage Vx and the reference voltage 20 becomes equal to the charging voltage V1 of the charging capacitor 10pn1, only the least significant bit D1 in the output signal from the A / D converter 22 becomes 1, that is, “001”. Similarly, in the case of “010” to “111”, the gain of the error amplifier 21 is adjusted in advance so as to be equal to the combination of the charging voltages of the charging capacitor 10.

D1〜D3の信号のいずれかが1となると、瞬低検出部23を通して、信号z(=0)により定常短絡スイッチ8をオフする。そして、駆動信号発生器25からの駆動信号gにより、系統電圧Vxと同極性の補償電圧が出力される。
このような補償動作時における基準電圧、電圧変動補償装置(以下、補償装置と称す)の出力である補償電圧および系統電圧と、各電圧補償回路PN1〜PN3の出力との関係を図3に示す。図3(a)に示すように、系統電圧が基準電圧よりも低下する瞬低時に、その電圧低下量を補償するように、補償装置出力である補償電圧が発生される。この補償電圧Voutは、図3(b)、図3(c)に示すように、各電圧補償回路PN1〜PN3からそれぞれ発生される出力電圧の総和から成る。なお、電圧変動補償装置100全体から8階調の電圧出力を発生することができ、最大の補償電圧は、Vc(=7×V1)となる。
When any one of the signals D1 to D3 becomes 1, the steady short circuit switch 8 is turned off by the signal z (= 0) through the voltage sag detector 23. A compensation voltage having the same polarity as the system voltage Vx is output by the drive signal g from the drive signal generator 25.
FIG. 3 shows the relationship between the reference voltage, the compensation voltage and the system voltage, which are the outputs of the voltage fluctuation compensation device (hereinafter referred to as compensation device), and the outputs of the voltage compensation circuits PN1 to PN3 during such compensation operation. . As shown in FIG. 3A, when the system voltage drops below the reference voltage, a compensation voltage, which is a compensation device output, is generated so as to compensate for the voltage drop. As shown in FIGS. 3B and 3C, the compensation voltage Vout is composed of the sum of output voltages generated from the voltage compensation circuits PN1 to PN3. It should be noted that a voltage output of 8 gradations can be generated from the entire voltage fluctuation compensating apparatus 100, and the maximum compensation voltage is Vc (= 7 × V1).

以上のような瞬低時の補償動作により、各電圧補償回路PN1〜PN3内の充電コンデンサ10の充電電圧は低下する。このため、系統電圧が正常に復帰した後に、コンデンサ10を充電し、次の瞬低補償に備える。
A/D変換器22では、系統電圧が正常に復帰すると、各コンデンサ10の電圧検出値V1、V2、V3からコンデンサ10の電圧低下を検出し、充電すべきコンデンサ10を有する電圧補償回路PNから系統電圧と逆極性の電圧を出力させるようにデジタル信号D1〜D3を出力する。例えば、D1=−1とすると、電圧補償回路PN1は系統電圧と逆極性の出力電圧を発生し、電圧補償回路PN1内のコンデンサ10pn1は、電力系統から電圧補償回路PN1を介して充電される。
The charging voltage of the charging capacitor 10 in each of the voltage compensation circuits PN1 to PN3 is reduced by the compensation operation at the time of the instantaneous drop as described above. For this reason, after the system voltage returns to normal, the capacitor 10 is charged to prepare for the next instantaneous voltage drop compensation.
In the A / D converter 22, when the system voltage returns to normal, the voltage drop of the capacitor 10 is detected from the voltage detection values V1, V2, and V3 of each capacitor 10, and the voltage compensation circuit PN having the capacitor 10 to be charged is detected. Digital signals D1 to D3 are output so as to output a voltage having a polarity opposite to that of the system voltage. For example, when D1 = −1, the voltage compensation circuit PN1 generates an output voltage having a polarity opposite to that of the system voltage, and the capacitor 10pn1 in the voltage compensation circuit PN1 is charged from the power system via the voltage compensation circuit PN1.

このようなコンデンサ10への充電により、負荷3に供給される電圧が低下するものであるが、複数のコンデンサ10を、充電と放電とを組み合わせることにより、負荷電圧の低下を抑制する。
図4において、直列接続された複数の電圧補償回路PN1〜PN3は、全体でV1−V2の電圧を発生して系統電圧に重畳する。ここでは、系統電圧は正極性の場合を示し、瞬低補償終了後に電圧補償回路PN2内のコンデンサ10pn2の電圧低下が検出され、このコンデンサ10pn2に充電するように動作させる。A/D変換器22からの出力を、D1=1、D2=−1、D3=0とすることで、図4に示すように、コンデンサ10pn2は、電力系統から電圧補償回路PN1を介して充電されるが、系統電圧と逆極性の電圧発生は、全体でV1−V2となり、負荷電圧の低下は1階調分となる。
Although the voltage supplied to the load 3 is reduced by charging the capacitor 10 as described above, a decrease in the load voltage is suppressed by combining charging and discharging of the plurality of capacitors 10.
In FIG. 4, a plurality of voltage compensation circuits PN1 to PN3 connected in series generate a voltage of V1-V2 as a whole and superimpose it on the system voltage. Here, the system voltage indicates a case of positive polarity, and a voltage drop of the capacitor 10pn2 in the voltage compensation circuit PN2 is detected after completion of the instantaneous voltage drop compensation, and the capacitor 10pn2 is operated to be charged. By setting the output from the A / D converter 22 to D1 = 1, D2 = -1, and D3 = 0, the capacitor 10pn2 is charged from the power system via the voltage compensation circuit PN1 as shown in FIG. However, the generation of the voltage having the opposite polarity to the system voltage is V1−V2 as a whole, and the decrease of the load voltage is one gradation.

ここで、駆動信号発生器25からの駆動信号による各電圧補償回路の動作について以下に説明する。
例えば、図1で示す電圧補償回路PN1においては、最下位ビットD1=1のときに、系統電圧Vxの極性が正の場合、IGBT9sw11、9sw14をオンし、IGBT9sw12、9sw13をオフすることにより、充電電圧V1を正極性で出力する。また系統電圧の極性が負の場合、IGBT9sw12、9sw13をオンし、IGBT9sw11、9sw14をオフすることにより、充電電圧V1を負極性で出力する。
また、最下位ビットD1=−1のときに、系統電圧Vxの極性が正の場合、IGBT9sw12、9sw13をオンし、IGBT9sw11、9sw14をオフすることにより、充電電圧V1を負極性で出力する。また系統電圧の極性が負の場合、IGBT9sw11、9sw14をオンし、IGBT9sw12、9sw13をオフすることにより、充電電圧V1を正極性で出力する。このD1=−1の場合、出力させる電圧は系統電圧と逆極性の電圧であり、即ち、系統電圧によりコンデンサ10が充電されるものである。
またD1=0のとき、IGBT9sw11〜9sw14、のうち上アーム側9sw12、9sw14あるいは下アーム側9sw11、9sw13のどちらか一方をオン状態とし他方をオフ状態として出力端を短絡し、電圧補償回路PN1からの出力をほぼゼロとする。
Here, the operation of each voltage compensation circuit according to the drive signal from the drive signal generator 25 will be described below.
For example, in the voltage compensation circuit PN1 shown in FIG. 1, when the least significant bit D1 = 1, when the polarity of the system voltage Vx is positive, the IGBTs 9sw11 and 9sw14 are turned on, and the IGBTs 9sw12 and 9sw13 are turned off. The voltage V1 is output with a positive polarity. When the polarity of the system voltage is negative, the IGBTs 9sw12 and 9sw13 are turned on and the IGBTs 9sw11 and 9sw14 are turned off to output the charging voltage V1 with a negative polarity.
When the least significant bit D1 = −1 and the polarity of the system voltage Vx is positive, the IGBTs 9sw12 and 9sw13 are turned on and the IGBTs 9sw11 and 9sw14 are turned off to output the charging voltage V1 with a negative polarity. Further, when the polarity of the system voltage is negative, the IGBTs 9sw11 and 9sw14 are turned on, and the IGBTs 9sw12 and 9sw13 are turned off, so that the charging voltage V1 is output with positive polarity. In the case of D1 = −1, the output voltage is a voltage having a polarity opposite to that of the system voltage, that is, the capacitor 10 is charged by the system voltage.
When D1 = 0, one of the upper arm side 9sw12 and 9sw14 or the lower arm side 9sw11 and 9sw13 of the IGBTs 9sw11 to 9sw14 is turned on, the other is turned off, the output terminal is short-circuited, and the voltage compensation circuit PN1 The output of is almost zero.

ところで、上述したようなコンデンサ10への充電動作は、系統電圧と逆極性の電圧を電圧補償回路PNにて発生させることで行ったが、実際には、負荷3に供給される系統電流と逆極性の電圧を発生させた場合にのみ充電されるもので、このため、異極性検出信号24bにより系統電圧極性と系統電流極性とが異極性であることが検出されると、逆極性電圧の発生、即ちコンデンサ10への充電動作を停止し、系統電圧に電圧を重畳させずにそのまま負荷3へ供給する。   By the way, although the charging operation to the capacitor 10 as described above is performed by generating a voltage having a polarity opposite to that of the system voltage in the voltage compensation circuit PN, actually, it is opposite to the system current supplied to the load 3. When the polarity voltage is generated, the battery is charged only. Therefore, when the polarity detection signal 24b detects that the system voltage polarity and the system current polarity are different, the generation of the reverse polarity voltage occurs. That is, the charging operation to the capacitor 10 is stopped, and the voltage is supplied to the load 3 as it is without superimposing the voltage on the system voltage.

次いで、各コンデンサ10の電圧検出値V1、V2、V3からコンデンサ10の電圧が復帰したことが検出されると、定常短絡スイッチ8をオンし、系統電力は抵抗の小さい機械式の定常短絡スイッチ8を通して負荷3に供給される。各コンデンサ10の電圧はほぼ基準状態に回復しているが、通常、各コンデンサ10の電圧は基準電圧よりも若干高めに充電しておくため、充電用トランス14を介してゆっくり充電する。
なお、系統電圧と逆極性の電圧を発生させてコンデンサ10への充電動作を行っている途中で、系統電圧に瞬低が発生すると、コンデンサ10への充電動作を止め、速やかに補償動作に切り替える。
Next, when it is detected that the voltage of the capacitor 10 has been restored from the voltage detection values V1, V2, and V3 of each capacitor 10, the steady short-circuit switch 8 is turned on, and the system power is a mechanical steady-state short-circuit switch 8 having a small resistance. To the load 3. Although the voltage of each capacitor 10 has almost recovered to the reference state, normally, the voltage of each capacitor 10 is charged slightly higher than the reference voltage, so that it is slowly charged through the charging transformer 14.
In the middle of charging the capacitor 10 while generating a voltage having a polarity opposite to that of the system voltage, if the instantaneous drop occurs in the system voltage, the charging operation to the capacitor 10 is stopped and the operation is quickly switched to the compensation operation. .

この実施の形態では、瞬低時の補償動作により、各電圧補償回路PN1〜PN3内の充電コンデンサ10の充電電圧が低下すると、系統電圧が正常に復帰した後に続いて、系統電圧と系統電流が異極性となる期間を除いて、充電すべきコンデンサ10の電圧補償回路PNから系統電圧と逆極性の出力電圧を発生させて、電力系統から電圧補償回路PNを介してコンデンサ10を充電させる。このように、負荷3に電力供給するための主回路である電圧補償回路PNを介して系統電圧からコンデンサ10を充電するため、コンデンサ10を高速に充電できてコンデンサ10の電圧を回復できる。このため、各コンデンサ10の電圧が概2倍の関係に速やかに復帰でき、補償動作の信頼性が向上する。このため、短い間隔で瞬低が繰り返し断続的に発生するような場合でも、高精度な補償動作が継続できる。 In this embodiment, when the charging voltage of the charging capacitor 10 in each of the voltage compensation circuits PN1 to PN3 decreases due to the compensation operation at the time of a sag, the system voltage and the system current continue after the system voltage returns to normal. Except for the period of different polarity, an output voltage having a polarity opposite to the system voltage is generated from the voltage compensation circuit PN of the capacitor 10 to be charged, and the capacitor 10 is charged from the power system via the voltage compensation circuit PN. Thus, since the capacitor 10 is charged from the system voltage via the voltage compensation circuit PN which is a main circuit for supplying power to the load 3, the capacitor 10 can be charged at a high speed and the voltage of the capacitor 10 can be recovered. Therefore, the voltage of each capacitor 10 can be quickly restored in the approximate 2 K multiple of the reliability of the compensation operation is improved. For this reason, even when the instantaneous drop occurs repeatedly and intermittently at a short interval, a highly accurate compensation operation can be continued.

また、充電用トランス14は、コンデンサ10の電圧が補償動作に問題ない程度に回復した後にさらに充電するために用いるため、ゆっくり充電できればよい。このため、小型で簡略なものでよく、省略することも可能である。これにより、コンデンサ10の充電のための充電設備を簡素化して装置構成を小型化、簡略化できる。   Further, since the charging transformer 14 is used for further charging after the voltage of the capacitor 10 is recovered to a level that does not cause a problem in the compensation operation, it may be charged slowly. For this reason, it may be small and simple, and can be omitted. Thereby, the charging equipment for charging the capacitor 10 can be simplified, and the apparatus configuration can be reduced in size and simplified.

なお、上記実施の形態では、系統電圧と系統電流が異極性となる期間を除いて、充電すべきコンデンサ10の電圧補償回路PNから系統電圧と逆極性の出力電圧を発生させた。コンデンサ10を充電する際に、電圧補償回路PNから発生される出力電圧を、系統電流の極性と常に逆極性になるように制御して充電してもよいことは明らかであるが、上記のように、系統電圧と系統電流が同極性となる期間のみ充電することで、制御が簡略化できる。系統電圧の極性と負荷3に供給される系統電流の極性との関係は、負荷3の力率によって決まるが、通常負荷力率は0.7から1.0程度であるため、コンデンサ10に充電されるエネルギは、系統電圧と系統電流が同極性となる期間に充電されるものが大部分である。このため、系統電圧と系統電流が異極性となる期間を除いても、コンデンサ10を高速に充電できてコンデンサ10の電圧を回復できる効果が十分に得られる。   In the embodiment described above, an output voltage having a polarity opposite to that of the system voltage is generated from the voltage compensation circuit PN of the capacitor 10 to be charged except during a period in which the system voltage and the system current have different polarities. When the capacitor 10 is charged, it is obvious that the output voltage generated from the voltage compensation circuit PN may be controlled and charged so that the polarity of the system current is always opposite to that of the system current. In addition, the control can be simplified by charging only the period in which the system voltage and the system current have the same polarity. Although the relationship between the polarity of the system voltage and the polarity of the system current supplied to the load 3 is determined by the power factor of the load 3, the normal load power factor is about 0.7 to 1.0. Most of the energy to be charged is charged during a period in which the system voltage and system current have the same polarity. For this reason, even if the period in which the system voltage and the system current are different in polarity is excluded, the effect that the capacitor 10 can be charged at high speed and the voltage of the capacitor 10 can be recovered sufficiently.

実施の形態2.
ところで、一般的に負荷3は、定格からの電圧低下量が10%程度以下であれば問題なく正常に動作する。そこで、この実施の形態では、上記実施の形態1で示した電圧変動補償装置において、コンデンサ10を充電する際に、負荷3に供給される負荷電圧の低下量が定格から10%程度以下となるように制御する。
図5に示すように、瞬低が終了して系統電圧が低下していない通常状態に復帰すると、系統電圧のピーク値周辺で系統電圧と逆極性の逆極性電圧Voutを補償装置から出力させる。この場合、電圧補償回路PN1内のコンデンサ電圧であるV1の大きさに相当する1階調の電圧を逆極性電圧Voutとして出力し、さらに、この逆極性電圧が系統電圧の10%以下となるように、系統電圧のピーク値周辺で出力させる。これにより、図に示すように、系統電圧に補償装置出力の逆極性電圧Voutが重畳された負荷電圧は、ピーク値周辺で逆極性電圧Vout分だけ低下する。
Embodiment 2. FIG.
By the way, generally, the load 3 operates normally without any problem if the voltage drop from the rating is about 10% or less. Therefore, in this embodiment, when the capacitor 10 is charged in the voltage fluctuation compensator shown in the first embodiment, the amount of decrease in the load voltage supplied to the load 3 is about 10% or less from the rating. To control.
As shown in FIG. 5, when the instantaneous voltage drop ends and the normal state in which the system voltage does not decrease is restored, a reverse polarity voltage Vout having a polarity opposite to the system voltage is output from the compensation device around the peak value of the system voltage. In this case, a voltage of one gradation corresponding to the magnitude of the capacitor voltage V1 in the voltage compensation circuit PN1 is output as the reverse polarity voltage Vout, and this reverse polarity voltage is 10% or less of the system voltage. And output around the peak value of the system voltage. As a result, as shown in the figure, the load voltage in which the reverse polarity voltage Vout of the compensation device output is superimposed on the system voltage decreases by the reverse polarity voltage Vout around the peak value.

図1に示す補償装置100では、1階調の逆極性電圧を発生させる組み合わせは、系統電圧を正とすると、−V1、V1−V2、V1+V2−V3の3種類である。これらを、コンデンサ10の充電電圧の低下状態に応じて選択して用いることで、負荷電圧を許容される正常状態に保持しながら、電圧低下したコンデンサ10を確実に高速充電できる。   In the compensator 100 shown in FIG. 1, there are three types of combinations that generate a reverse polarity voltage of one gradation, that is, −V1, V1−V2, and V1 + V2−V3 when the system voltage is positive. By selecting and using these in accordance with the state in which the charging voltage of the capacitor 10 is reduced, it is possible to reliably charge the capacitor 10 whose voltage has been reduced at a high speed while maintaining the load voltage in an allowable normal state.

充電中の各時刻において、コンデンサ10のいずれを充電するかの選択は、例えば次のように行う。
1)V1>(V2/2)>(V3/4)、あるいは(V2/2)>V1>(V3/4)のとき、V1+V2−V3の逆極性電圧を発生し、電圧補償回路PN3のコンデンサ10を充電する。
2)V1>(V3/4)>(V2/2)、あるいは(V3/4)>V1>(V2/2)のとき、V1−V2の逆極性電圧を発生し、電圧補償回路PN2のコンデンサ10を充電する。
3)(V3/4)>(V2/2)>V1、あるいは(V2/2)>(V3/4)>V1のとき、のとき、−V1の逆極性電圧を発生し、電圧補償回路PN1のコンデンサ10を充電する。
Selection of which capacitor 10 to charge at each time during charging is performed, for example, as follows.
1) When V1> (V2 / 2)> (V3 / 4) or (V2 / 2)>V1> (V3 / 4), a reverse polarity voltage of V1 + V2-V3 is generated, and the capacitor of the voltage compensation circuit PN3 10 is charged.
2) When V1> (V3 / 4)> (V2 / 2) or (V3 / 4)>V1> (V2 / 2), a reverse polarity voltage of V1-V2 is generated, and the capacitor of the voltage compensation circuit PN2 10 is charged.
3) When (V3 / 4)> (V2 / 2)> V1 or (V2 / 2)> (V3 / 4)> V1, a reverse polarity voltage of −V1 is generated, and the voltage compensation circuit PN1 The capacitor 10 is charged.

このように、各コンデンサ10の電圧検出値の比から充電すべきコンデンサ10を選択することで、コンデンサ電圧が概2倍の関係に速やかに復帰でき、補償動作の信頼性が向上する。また、上記実施の形態1と同様に、コンデンサ10の充電のための充電設備を簡素化して装置構成を小型化、簡略化できる。 Thus, by selecting the capacitor 10 to be charged from the ratio of the voltage detection value of each capacitor 10, the capacitor voltage can be quickly restored in the approximate 2 K multiple of the reliability of the compensation operation is improved. Further, similarly to the first embodiment, the charging equipment for charging the capacitor 10 can be simplified to reduce the size of the apparatus configuration.

なお、この実施の形態では、補償装置から0〜7の8階調の電圧出力を発生することができ、コンデンサ10を充電する際に1階調の逆極性電圧を出力させたが、これに限るものではない。即ち、補償装置は、4つ以上の電圧補償回路PNを直列に接続して出力階調数を増大してもよく、コンデンサ10を充電する際に出力する逆極性電圧は、系統電圧の10%以下であれば、2以上の階調でもよく、逆極性電圧の出力期間が長くなるように異なる階調の電圧を組み合わせて用いてもよい。   In this embodiment, the voltage output of 8 gradations of 0 to 7 can be generated from the compensation device, and when the capacitor 10 is charged, the reverse polarity voltage of 1 gradation is output. It is not limited. That is, the compensation device may increase the number of output gradations by connecting four or more voltage compensation circuits PN in series, and the reverse polarity voltage output when charging the capacitor 10 is 10% of the system voltage. Below, two or more gradations may be used, and different gradation voltages may be used in combination so that the output period of the reverse polarity voltage becomes long.

上記実施の形態2で示した充電動作における充電時間について、以下に説明する。
系統の基準電圧をVn、瞬低後の系統電圧がVs(位相変化なし)、コンデンサjの容量をCj、コンデンサjの初期充電電圧をVChj、補償動作により発生するコンデンサjの電圧低下を△VCj、負荷電流をIn、負荷力率をpf、瞬低継続時間をTとすると、概ね次の関係が成り立つ(j=10pn1、10pn2、10pn3)。
Σ1/2×Cj×[VChj−(VChj−△VCj)]=(Vn−Vs)×In×pf×T
逆極性電圧としてα×Vnを発生してコンデンサjを充電する場合、充電時間をT2、充電中のコンデンサjの電圧をVCjとすると概ね次の関係が成り立つ。
Σ1/2×Cj×[VCj−(VChj−△VCj)]=α×Vn×In×pf×T2
ここで、VCj=VChjまでコンデンサjを充電するとすると
T2=(T/α)×Vn/(Vn−Vs)
となる。
但し、Vn−Vsは、Vnの10%〜100%程度、αは0.1程度である。
The charging time in the charging operation shown in the second embodiment will be described below.
The reference voltage of the system is Vn, the system voltage after the instantaneous drop is Vs (no phase change), the capacity of the capacitor j is Cj, the initial charging voltage of the capacitor j is VChj, and the voltage drop of the capacitor j generated by the compensation operation is ΔVCj When the load current is In, the load power factor is pf, and the instantaneous drop duration is T, the following relationship is generally established (j = 10 pn1, 10 pn2, 10 pn3).
Σ1 / 2 × Cj × [VChj 2 − (VChj−ΔVCj) 2 ] = (Vn−Vs) × In × pf × T
When α × Vn is generated as a reverse polarity voltage and the capacitor j is charged, the following relationship is generally established when the charging time is T2 and the voltage of the capacitor j being charged is VCj.
Σ1 / 2 × Cj × [VCj 2 − (VChj−ΔVCj) 2 ] = α × Vn × In × pf × T 2
Here, if capacitor j is charged to VCj = VChj, T2 = (T / α) × Vn / (Vn−Vs)
It becomes.
However, Vn−Vs is about 10% to 100% of Vn, and α is about 0.1.

実施の形態3.
上記実施の形態2では、逆極性電圧が系統電圧の10%以下となるように、系統電圧のピーク値周辺で出力させたが、この実施の形態では、図6に示すように、補償装置から出力される逆極性電圧Voutを、正弦波による滑らかな電圧波形で出力させる。この場合、逆極性電圧Voutは系統電圧の10%程度で出力し、これにより、系統電圧に補償装置出力の逆極性電圧Voutが重畳された負荷電圧は、系統電圧の90%程度の正弦波による電圧波形となる。
このような、逆極性電圧Voutは、各電圧補償回路PN内の複数のIGBTから成るインバータをPWM制御を用いて駆動制御することで出力できる。
Embodiment 3 FIG.
In the second embodiment, the output is performed around the peak value of the system voltage so that the reverse polarity voltage becomes 10% or less of the system voltage. However, in this embodiment, as shown in FIG. The output reverse polarity voltage Vout is output in a smooth voltage waveform by a sine wave. In this case, the reverse polarity voltage Vout is output at about 10% of the system voltage, so that the load voltage in which the reverse polarity voltage Vout of the compensation device output is superimposed on the system voltage is a sine wave of about 90% of the system voltage. It becomes a voltage waveform.
Such a reverse polarity voltage Vout can be output by driving and controlling an inverter composed of a plurality of IGBTs in each voltage compensation circuit PN using PWM control.

例えば、上記実施の形態2と同様に、1階調の逆極性電圧を用いるとして、所望のコンデンサ10に充電可能な出力パターンを選択し、各電圧補償回路PN内のインバータに対してPWM制御により生成された駆動信号を出力する。これにより、負荷3への供給電圧が正弦波による滑らかな電圧波形となり、負荷3への悪影響が防止できる。また、上記実施の形態2と同様に、負荷電圧を許容される正常状態に保持しながら、電圧低下したコンデンサ10を確実に高速充電できる。また、コンデンサ電圧が概2倍の関係に速やかに復帰でき、補償動作の信頼性が向上する。さらに、コンデンサ10の充電のための充電設備を簡素化して装置構成を小型化、簡略化できる。 For example, as in the second embodiment, assuming that a reverse polarity voltage of one gradation is used, an output pattern capable of charging a desired capacitor 10 is selected, and PWM control is performed on the inverter in each voltage compensation circuit PN. The generated drive signal is output. Thereby, the supply voltage to the load 3 becomes a smooth voltage waveform by a sine wave, and adverse effects on the load 3 can be prevented. Further, similarly to the second embodiment, the capacitor 10 whose voltage has been lowered can be reliably charged at high speed while the load voltage is maintained in an allowable normal state. The capacitor voltage can be quickly restored in the approximate 2 K multiple of the reliability of the compensation operation is improved. Furthermore, the charging equipment for charging the capacitor 10 can be simplified to reduce the size of the apparatus configuration.

なお、この場合、系統電圧の10%を超える階調で逆極性電圧を発生するパターンを選択しても、補償装置から出力される逆極性電圧Voutを、PWM制御により、系統電圧の10%程度の正弦波形で出力させることができる。このため、大型のフィルタが必要にならない程度に補償装置の出力階調を大きくしても良い。   In this case, even if a pattern for generating a reverse polarity voltage at a gradation exceeding 10% of the system voltage is selected, the reverse polarity voltage Vout output from the compensation device is about 10% of the system voltage by PWM control. The sine waveform can be output. For this reason, the output gradation of the compensation device may be increased to such an extent that a large filter is not required.

この発明の実施の形態1による電圧変動補償装置の構成図である。1 is a configuration diagram of a voltage variation compensating apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1による制御回路を示す回路図である。It is a circuit diagram which shows the control circuit by Embodiment 1 of this invention. この発明の実施の形態1による補償動作を説明する電圧波形図である。It is a voltage waveform diagram explaining the compensation operation by Embodiment 1 of this invention. この発明の実施の形態1による充電動作を説明する図である。It is a figure explaining the charging operation by Embodiment 1 of this invention. この発明の実施の形態2による充電動作を説明する図である。It is a figure explaining the charging operation by Embodiment 2 of this invention. この発明の実施の形態3による充電動作を説明する図である。It is a figure explaining the charging operation by Embodiment 3 of this invention.

符号の説明Explanation of symbols

3 負荷(需要家)、
9sw11〜9sw14,9sw21〜9sw24,9sw31〜9sw34 インバータ(半導体スイッチング素子としてのIGBT)、
10(10pn1,10pn2,10pn3) 充電コンデンサ、16 制御回路、
23 瞬低検出部、24 極性判定回路、24b 異極性検出信号、
25 駆動信号発生器、100 電圧変動補償装置、
PN1〜PN3,PN 電圧補償回路、V1,V2,V3 コンデンサ電圧検出値、
Vx 系統電圧、Ix 系統電流。
3 Load (customer),
9sw11 to 9sw14, 9sw21 to 9sw24, 9sw31 to 9sw34 inverter (IGBT as a semiconductor switching element),
10 (10pn1, 10pn2, 10pn3) charging capacitor, 16 control circuit,
23 Voltage drop detection unit, 24 polarity determination circuit, 24b
25 drive signal generator, 100 voltage fluctuation compensator,
PN1 to PN3, PN voltage compensation circuit, V1, V2, V3 capacitor voltage detection value,
Vx grid voltage, Ix grid current.

Claims (7)

それぞれコンデンサの電圧を交流に変換して出力する複数の電圧補償回路を電力系統に直列に接続し、該電力系統における電圧低下の監視、およびそれに基づく給電制御を行う制御部を備えて、系統電圧低下時に、上記複数の電圧補償回路の中から所望の組み合わせを選択し、その出力電圧の総和を上記系統電圧に重畳して上記系統電圧の低下を補償し、負荷に供給される電圧の変動を抑える電圧変動補償装置において、上記電力系統から上記電圧補償回路を介して上記コンデンサを充電する手段を有し、上記系統電圧が低下していない通常時に、上記電圧補償回路を介して上記負荷に電力供給しつつ、上記電圧補償回路の出力電圧を該電圧補償回路を流れる系統電流の極性と逆極性として、該電圧補償回路が有する上記コンデンサを充電することを特徴とする電圧変動補償装置。 A plurality of voltage compensation circuits, each of which converts the voltage of the capacitor into alternating current and outputs it, is connected in series to the power system, and includes a control unit that monitors voltage drop in the power system and performs power supply control based on the voltage drop. When the voltage drops, a desired combination is selected from the plurality of voltage compensation circuits, the sum of the output voltages is superimposed on the grid voltage to compensate for the drop in the grid voltage, and fluctuations in the voltage supplied to the load are compensated. In the voltage fluctuation compensator to be suppressed, it has means for charging the capacitor from the power system via the voltage compensation circuit, and power is supplied to the load via the voltage compensation circuit at a normal time when the system voltage is not lowered. While supplying, the capacitor of the voltage compensation circuit is charged by setting the output voltage of the voltage compensation circuit to a polarity opposite to the polarity of the system current flowing through the voltage compensation circuit. Voltage fluctuation compensation device, characterized in that. 上記電圧補償回路を流れる系統電流の極性が上記系統電圧と同極性の場合のみ、上記電力系統から上記電圧補償回路を介して上記コンデンサを充電することを特徴とする請求項1記載の電圧変動補償装置。 2. The voltage fluctuation compensation according to claim 1, wherein the capacitor is charged from the power system through the voltage compensation circuit only when the polarity of the system current flowing through the voltage compensation circuit is the same as the polarity of the system voltage. apparatus. 上記コンデンサを充電する際、上記負荷に供給される電圧の低下量が所定の許容量以下となるように、上記電圧補償回路から出力される上記系統電流極性の逆極性電圧(以下、単に逆極性電圧と称す)を制御することを特徴とする請求項1または2記載の電圧変動補償装置。 When charging the capacitor, the reverse voltage of the system current polarity output from the voltage compensation circuit (hereinafter simply referred to as reverse polarity) so that the amount of decrease in the voltage supplied to the load is not more than a predetermined allowable amount. 3. The voltage fluctuation compensating apparatus according to claim 1, wherein the voltage fluctuation compensator is controlled. 上記コンデンサを充電する際、上記複数の電圧補償回路の中から、各出力電圧極性が上記系統電流と同極性のものを含むことを可能にして所望の組み合わせを選択し、その出力電圧の総和による上記逆極性電圧にて上記コンデンサを充電することを特徴とする請求項3記載の電圧変動補償装置。 When charging the capacitor, a desired combination is selected by allowing each output voltage polarity to include the same polarity as the system current from among the plurality of voltage compensation circuits, and the sum of the output voltages is selected. 4. The voltage fluctuation compensating apparatus according to claim 3, wherein the capacitor is charged with the reverse polarity voltage. 上記複数の各電圧補償回路は、ダイオードが逆並列に接続された複数個の半導体スイッチング素子から成るインバータを備え、上記コンデンサを充電する際、上記インバータ内の各半導体スイッチング素子をPWM制御を用いて駆動制御することを特徴とする請求項3または4記載の電圧変動補償装置。 Each of the plurality of voltage compensation circuits includes an inverter composed of a plurality of semiconductor switching elements having diodes connected in antiparallel, and when charging the capacitor, each semiconductor switching element in the inverter is controlled using PWM control. 5. The voltage fluctuation compensator according to claim 3, wherein driving control is performed. 上記各電圧補償回路内の上記コンデンサの電圧低下を検出する手段を有し、該電圧低下が検出されたコンデンサを充電するように、上記各電圧補償回路から電圧出力することを特徴とする請求項1〜5のいずれかに記載の電圧変動補償装置。 The voltage compensation circuit includes means for detecting a voltage drop of the capacitor in each voltage compensation circuit, and outputs a voltage from each voltage compensation circuit so as to charge the capacitor in which the voltage drop is detected. The voltage fluctuation compensation apparatus in any one of 1-5. 上記コンデンサの電圧低下が解消された時点で、上記電圧補償回路は上記系統電圧への上記逆極性電圧の重畳を止め、上記コンデンサへの充電を終了することを特徴とする請求項6記載の電圧変動補償装置。 The voltage compensation circuit according to claim 6, wherein when the voltage drop of the capacitor is resolved, the voltage compensation circuit stops superimposing the reverse polarity voltage on the system voltage and terminates the charging of the capacitor. Fluctuation compensation device.
JP2003299470A 2003-08-25 2003-08-25 Voltage fluctuation compensation device Expired - Fee Related JP4010999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299470A JP4010999B2 (en) 2003-08-25 2003-08-25 Voltage fluctuation compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299470A JP4010999B2 (en) 2003-08-25 2003-08-25 Voltage fluctuation compensation device

Publications (2)

Publication Number Publication Date
JP2005073376A JP2005073376A (en) 2005-03-17
JP4010999B2 true JP4010999B2 (en) 2007-11-21

Family

ID=34404671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299470A Expired - Fee Related JP4010999B2 (en) 2003-08-25 2003-08-25 Voltage fluctuation compensation device

Country Status (1)

Country Link
JP (1) JP4010999B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276815A4 (en) * 2015-03-26 2018-11-21 Mitsubishi Electric Corporation Power conversion apparatus
JP6684440B2 (en) * 2016-04-08 2020-04-22 国立大学法人 名古屋工業大学 Self-excited reactive power controller
CN116072070A (en) * 2022-11-04 2023-05-05 厦门天马显示科技有限公司 Display panel, driving method thereof and display device

Also Published As

Publication number Publication date
JP2005073376A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
USRE40528E1 (en) Voltage fluctuation compensating apparatus
JP2011055648A (en) Power storage device in which ac output is possible
WO2013153571A1 (en) Power conversion device
JP4329692B2 (en) Power converter
EP3301776B1 (en) Power fluctuation mitigation system
JP4010999B2 (en) Voltage fluctuation compensation device
JP3911175B2 (en) Voltage fluctuation compensation device
JP4365171B2 (en) Power converter and power conditioner using the same
JP3967706B2 (en) Power converter
JP3872370B2 (en) Voltage fluctuation compensation device
US20210359589A1 (en) Power conversion device
JP4048161B2 (en) Voltage compensator
KR101936564B1 (en) Apparatus for controlling multilevel inverter
JP4113071B2 (en) Voltage fluctuation compensation device
JP3903421B2 (en) Voltage fluctuation compensation device
JP3887007B2 (en) Power output device
JP3886858B2 (en) Voltage fluctuation compensation device
JP4005110B2 (en) Power output device
JP6025663B2 (en) Uninterruptible power system
JP6056010B2 (en) Power supply
JP2002300725A (en) Voltage fluctuation compensation device
JP5755967B2 (en) Uninterruptible power system
JP4214078B2 (en) Voltage fluctuation compensation device
JP2009278813A (en) Instantaneous voltage drop compensator
JPH0715892A (en) Control circuit for uninterruptible power supply equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees