JP4214078B2 - Voltage fluctuation compensation device - Google Patents

Voltage fluctuation compensation device Download PDF

Info

Publication number
JP4214078B2
JP4214078B2 JP2004117476A JP2004117476A JP4214078B2 JP 4214078 B2 JP4214078 B2 JP 4214078B2 JP 2004117476 A JP2004117476 A JP 2004117476A JP 2004117476 A JP2004117476 A JP 2004117476A JP 4214078 B2 JP4214078 B2 JP 4214078B2
Authority
JP
Japan
Prior art keywords
voltage
charging
voltage compensation
compensation circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004117476A
Other languages
Japanese (ja)
Other versions
JP2005304191A (en
Inventor
行盛 岸田
正樹 山田
明彦 岩田
敏之 菊永
伸彦 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2004117476A priority Critical patent/JP4214078B2/en
Publication of JP2005304191A publication Critical patent/JP2005304191A/en
Application granted granted Critical
Publication of JP4214078B2 publication Critical patent/JP4214078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

この発明は、負荷に供給される電力系統の電圧が瞬時的に変動した際に、それを検出して電圧低下を補償する電圧変動補償装置に関するものである。   The present invention relates to a voltage fluctuation compensator that detects when a voltage of a power system supplied to a load fluctuates instantaneously and compensates for a voltage drop.

雷などにより電力系統の電圧が瞬時的に低下し、工場などの精密機器などが誤作動や一時停止することにより、生産ラインで多大な被害を被ることがある。このような被害を防ぐために、電力系統の瞬時的電圧低下(以下、瞬低と称す)などの電圧変動を監視して、電圧低下を補償する電圧変動補償装置が用いられている。
従来の電圧変動補償装置は、電力系統に直列に接続され、正負いずれかの極性で補償電圧を出力する複数の電圧補償回路で構成される。各電圧補償回路には、ダイオードが逆並列に接続された4個の半導体スイッチング素子から成るフルブリッジインバータ、および充電コンデンサが備えられ、充電コンデンサの直流電圧を交流に変換して出力する。また、各電圧補償回路の出力端には、高速機械式の定常短絡スイッチが並列に設けられる。
各電圧補償回路内の充電コンデンサは充電ダイオードと充電用トランスの2次巻線によって電圧が充電され、それぞれ異なる電圧が充電され、電圧の比は概ね2のべき乗比に設定される。また充電用トランス1次巻線は、電力系統と接続される。
The voltage of the electric power system is instantaneously reduced by lightning, etc., and precision equipment such as factories malfunctions or is temporarily stopped, which can cause great damage on the production line. In order to prevent such damage, a voltage fluctuation compensator that monitors voltage fluctuations such as an instantaneous voltage drop (hereinafter referred to as a momentary voltage drop) of the power system and compensates for the voltage drop is used.
A conventional voltage fluctuation compensator is configured by a plurality of voltage compensation circuits that are connected in series to a power system and output a compensation voltage with either positive or negative polarity. Each voltage compensation circuit is provided with a full bridge inverter composed of four semiconductor switching elements with diodes connected in antiparallel, and a charging capacitor, which converts the DC voltage of the charging capacitor into AC and outputs it. In addition, a high-speed mechanical steady short-circuit switch is provided in parallel at the output terminal of each voltage compensation circuit.
The charging capacitor in each voltage compensation circuit is charged with a voltage by the secondary winding of the charging diode and the charging transformer, different voltages are charged, and the voltage ratio is set to a power of approximately 2. The charging transformer primary winding is connected to the power system.

次に、動作について説明する。通常時、定常短絡スイッチはオン状態で、電流は定常短絡スイッチを流れる。また電力系統の電圧低下時には、定常短絡スイッチは速やかに遮断される。その後は、系統の電流が電圧補償回路を流れ、誤差電圧に応じて複数の電圧補償回路内から所望の組み合わせを選択し、その出力電圧の総和で電力系統の電圧低下を補償する(例えば、特許文献1参照)。   Next, the operation will be described. Normally, the steady short-circuit switch is in an ON state, and current flows through the steady short-circuit switch. Further, when the voltage of the power system drops, the steady short circuit switch is quickly cut off. After that, the system current flows through the voltage compensation circuit, selects a desired combination from the plurality of voltage compensation circuits according to the error voltage, and compensates for the voltage drop of the power system by the sum of the output voltages (for example, patents) Reference 1).

特開2002−359929号公報JP 2002-359929 A

上記のような従来の電圧変動補償装置において、直列に接続された各電圧補償回路が充電用トランスの2次巻線と半波整流回路とをそれぞれ備えてコンデンサを充電するものは、部品点数が少なく簡略な装置構成を実現できるものであったが、以下のような問題点があった。
電力系統に1次巻線が接続された充電用トランスによりコンデンサに充電する際、充電電流は、交流である系統電圧の半周期に集中して流れる。充電用トランスの一次側は共通1次巻線で構成され複数の電圧補償回路の全ての充電電流に対応する電流が流れるため、充電用トランスの一次側の容量が大きくなり装置が大型化するものであった。
In the conventional voltage fluctuation compensator as described above, each voltage compensation circuit connected in series includes the secondary winding of the charging transformer and the half-wave rectifier circuit to charge the capacitor. Although a small and simple apparatus configuration could be realized, there were the following problems.
When a capacitor is charged by a charging transformer having a primary winding connected to the power system, the charging current flows in a concentrated manner in a half cycle of the system voltage that is alternating current. The primary side of the charging transformer is composed of a common primary winding, and the current corresponding to all the charging currents of the plurality of voltage compensation circuits flows, so that the capacity of the primary side of the charging transformer is increased and the device is enlarged. Met.

この発明は、上記のような問題点を解消するために成されたものであって、直列に接続された各電圧補償回路が充電用トランスの2次巻線と半波整流回路とをそれぞれ備えてコンデンサを充電する電圧変動補償装置において、コンデンサへの充電の効率を高め、充電用トランスの一次側の容量を低減して、装置全体を安価で小型に構成することを目的とする。   The present invention has been made to solve the above-described problems, and each voltage compensation circuit connected in series includes a secondary winding of a charging transformer and a half-wave rectifier circuit. An object of the present invention is to increase the efficiency of charging a capacitor and reduce the primary side capacitance of a charging transformer so that the entire device is inexpensive and small in size.

この発明に係る電圧変動補償装置は、共通の1次巻線を有する充電用トランスの2次巻線と、半波整流回路と、該充電用トランスおよび該半波整流回路により充電されるコンデンサとをそれぞれ有して、該各コンデンサに充電された直流電圧を交流に変換して出力する複数の電圧補償回路の交流側を電力系統に直列に接続し、系統電圧低下の監視、およびそれに基づく給電制御を行う制御部を備えて、系統電圧低下時に、上記複数の電圧補償回路の中から所望の組み合わせを選択し、その出力電圧の総和により補償電圧を発生させて系統電圧低下を補償する装置である。そして、上記複数の電圧補償回路、上記充電用トランスの共通の1次巻線への入力電圧が正極性の時に該電圧補償回路内のコンデンサが充電される第1の電圧補償回路と、上記第1の電圧補償回路内の充電用トランス2次巻線とは逆極性である充電用トランス2次巻線を有し、該入力電圧が負極性の時に該電圧補償回路内のコンデンサが充電される第2の電圧補償回路とで構成され、上記第1の電圧補償回路内の充電用トランス2次巻線と、上記第2の電圧補償回路内の充電用トランス2次巻線とが互いに同極性に構成された場合に比べて、上記充電用トランスの一次側で発生する熱損失を低減したものである。 A voltage fluctuation compensator according to the present invention includes a secondary winding of a charging transformer having a common primary winding, a half-wave rectifier circuit, a capacitor charged by the charging transformer and the half-wave rectifier circuit, A plurality of voltage compensation circuits that convert the DC voltage charged in each capacitor into AC and output the AC voltage, connect the AC side in series to the power system, monitor the system voltage drop, and supply power based thereon A device that includes a control unit that performs control, selects a desired combination from the plurality of voltage compensation circuits when the system voltage drops, and generates a compensation voltage based on the sum of output voltages to compensate for the system voltage drop. is there. The plurality of voltage compensation circuits include : a first voltage compensation circuit in which a capacitor in the voltage compensation circuit is charged when an input voltage to the common primary winding of the charging transformer is positive ; The charging transformer secondary winding has a polarity opposite to that of the charging transformer secondary winding in the first voltage compensation circuit, and the capacitor in the voltage compensation circuit is charged when the input voltage is negative. And the charging transformer secondary winding in the first voltage compensation circuit and the charging transformer secondary winding in the second voltage compensation circuit are the same as each other. Compared to the case where the polarity is configured, the heat loss generated on the primary side of the charging transformer is reduced .

この発明による電圧変動補償装置では、複数の電圧補償回路を、上記充電用トランスの共通の1次巻線への入力電圧が正極性の時に該電圧補償回路内のコンデンサが充電される第1の電圧補償回路と、該入力電圧が負極性の時に該電圧補償回路内のコンデンサが充電される第2の電圧補償回路とで構成したため、充電用トランスの共通の1次巻線への入力電圧が正負いずれの極性でも、コンデンサへ効率よく充電でき、充電用トランスの一次側の容量を低減でき、装置構成を小型化できる。   In the voltage fluctuation compensator according to the present invention, the plurality of voltage compensation circuits are connected to the first capacitor in which the capacitor in the voltage compensation circuit is charged when the input voltage to the common primary winding of the charging transformer is positive. Since the voltage compensation circuit and the second voltage compensation circuit in which the capacitor in the voltage compensation circuit is charged when the input voltage is negative, the input voltage to the common primary winding of the charging transformer is Regardless of the positive or negative polarity, the capacitor can be charged efficiently, the capacity of the primary side of the charging transformer can be reduced, and the device configuration can be downsized.

実施の形態1.
以下、この発明の実施の形態1について説明する。図1はこの発明の実施の形態1による電圧変動補償装置の概略構成図である。
図1に示すように、電力系統から送電線1を介して供給される電力は、変圧器2により降圧されて、電圧変動補償装置3を介して需要家(負荷)に供給される。電圧変動補償装置3は、電力系統と直列に接続される複数(この場合3個)の電圧補償回路31〜33と、この電圧補償回路31〜33をバイパスするために並列に接続された短絡スイッチ4と、給電制御を行う制御回路5とで構成される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below. 1 is a schematic configuration diagram of a voltage fluctuation compensating apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the power supplied from the power system via the transmission line 1 is stepped down by the transformer 2 and supplied to the consumer (load) via the voltage fluctuation compensation device 3. The voltage fluctuation compensator 3 includes a plurality (in this case, three) of voltage compensation circuits 31 to 33 connected in series with the power system, and a short-circuit switch connected in parallel to bypass the voltage compensation circuits 31 to 33 4 and a control circuit 5 for performing power feeding control.

電圧補償回路31〜33は、第2の電圧補償回路31、32と第1の電圧補償回路33とで構成され、正負いずれかの極性で補償電圧を出力し、系統電圧に重畳することで系統電圧の瞬低を補償する。各電圧補償回路31〜33には、ダイオードが逆並列に接続された4個のIGBT8〜11から成るフルブリッジの単相インバータa1〜a3と、コンデンサ7a1〜7a3(第2のコンデンサ7a1、7a2、第1のコンデンサ7a3)と、各コンデンサ7a1〜7a3を充電するための半波整流回路を構成する充電ダイオード17a1〜17a3および抵抗6a1〜6a3と、充電用トランス14の2次巻線13a1〜13a3(第2の2次巻線13a1、13a2、第1の2次巻線13a3)とが備えられる。なお、複数の単相インバータa1〜a3の交流側は直列に電力系統に接続される。また、充電用トランス1次側には共通の1次巻線12が電力系統と接続されて配設される。
また、単相インバータa1〜a3はIGBT8〜11以外の自己消弧型半導体スイッチング素子で構成しても良い。
The voltage compensation circuits 31 to 33 are composed of the second voltage compensation circuits 31 and 32 and the first voltage compensation circuit 33. The compensation voltage is output in either positive or negative polarity and superimposed on the system voltage. Compensates for voltage sag. Each voltage compensation circuit 31 to 33 includes a full-bridge single-phase inverter a1 to a3 composed of four IGBTs 8 to 11 having diodes connected in antiparallel, and capacitors 7a1 to 7a3 (second capacitors 7a1, 7a2, A first capacitor 7a3), charging diodes 17a1 to 17a3 and resistors 6a1 to 6a3 constituting a half-wave rectifier circuit for charging the capacitors 7a1 to 7a3, and secondary windings 13a1 to 13a3 of the charging transformer 14 ( Second secondary windings 13a1, 13a2, and first secondary winding 13a3). Note that the AC sides of the plurality of single-phase inverters a1 to a3 are connected in series to the power system. A common primary winding 12 is connected to the power system on the primary side of the charging transformer.
The single-phase inverters a1 to a3 may be constituted by self-extinguishing semiconductor switching elements other than the IGBTs 8 to 11.

また、第1の電圧補償回路33内の第1の2次巻線13a3と、第2の電圧補償回路31、32内の第2の2次巻線13a1、13a2とは、互いに逆極性に構成する。充電用トランス14の共通1次巻線12への入力電圧が正極性の時に、第1の電圧補償回路33において、第1の2次巻線13a3を介して第1のコンデンサ7a3へ充電電流が流れ第1のコンデンサ7a3は充電される。また充電用トランス14の共通1次巻線12への入力電圧が負極性の時に、第2の電圧補償回路31、32において、第2の2次巻線13a1、13a2を介して第2のコンデンサ7a1、7a2へ充電電流が流れ各第2のコンデンサ7a1、7a2は充電される。   Further, the first secondary winding 13a3 in the first voltage compensation circuit 33 and the second secondary windings 13a1 and 13a2 in the second voltage compensation circuits 31 and 32 are configured to have opposite polarities. To do. When the input voltage to the common primary winding 12 of the charging transformer 14 is positive, in the first voltage compensation circuit 33, a charging current is supplied to the first capacitor 7a3 via the first secondary winding 13a3. The flow first capacitor 7a3 is charged. In addition, when the input voltage to the common primary winding 12 of the charging transformer 14 is negative, the second voltage compensation circuits 31 and 32 use the second capacitor via the second secondary windings 13a1 and 13a2. A charging current flows to 7a1 and 7a2, and the second capacitors 7a1 and 7a2 are charged.

コンデンサ7a1〜7a3の充電電圧V1〜V3は、IGBT8〜11のオン/オフ制御により正負いずれかの極性で電力系統に接続される。各電圧補償回路31〜33内のコンデンサ7a1〜7a3に充電される電圧の比は概ね2のべき乗比に設定されている。つまり、以下の関係を満足させる。
V3=2×V2=2×2×V1
またコンデンサ7a1〜7a3の静電容量の比は4:2:1、抵抗6a1〜6a3の比を1:2:4とする。
Charging voltages V1 to V3 of capacitors 7a1 to 7a3 are connected to the power system with either positive or negative polarity by on / off control of IGBTs 8 to 11. The ratio of the voltages charged in the capacitors 7a1 to 7a3 in each of the voltage compensation circuits 31 to 33 is set to a power ratio of 2. That is, the following relationship is satisfied.
V3 = 2 × V2 = 2 × 2 × V1
The capacitance ratio of the capacitors 7a1 to 7a3 is 4: 2: 1, and the ratio of the resistors 6a1 to 6a3 is 1: 2: 4.

短絡スイッチ4および各単相インバータa1〜a3内の4個のIGBT8〜11は、系統電圧を監視してその瞬低を検出しそれに基づく給電制御を行う制御回路5に接続される。また、系統電圧も制御回路5に入力される。この制御回路5の構成および動作について、以下に説明する。
図2は、制御回路5の詳細を示す回路図である。また、図3は、図1で示した電圧変動補償装置3による電圧補償の動作と制御回路5の制御動作との関係を示す波形図である。
図2に示すように、系統電圧は制御回路5に入力され、目標電圧25と比較される。このとき目標電圧25は、正常時の系統電圧とする。両者の差を誤差増幅器26にて増幅し、さらに絶対値変換を施した後、A/Dコンバータ27にて3ビットのデジタル信号(D1〜D3)に変換する。系統電圧と目標電圧25との差が、コンデンサ7a1の充電電圧V1と等しくなったとき、A/Dコンバータ27からの出力信号における最下位ビットのみが1、即ち“001”となるよう、誤差増幅器26のゲインは予め調整しておく。
The short-circuit switch 4 and the four IGBTs 8 to 11 in each of the single-phase inverters a1 to a3 are connected to a control circuit 5 that monitors the system voltage, detects the instantaneous drop, and performs power supply control based on the voltage drop. The system voltage is also input to the control circuit 5. The configuration and operation of the control circuit 5 will be described below.
FIG. 2 is a circuit diagram showing details of the control circuit 5. FIG. 3 is a waveform diagram showing the relationship between the voltage compensation operation by the voltage fluctuation compensation device 3 shown in FIG. 1 and the control operation of the control circuit 5.
As shown in FIG. 2, the system voltage is input to the control circuit 5 and compared with the target voltage 25. At this time, the target voltage 25 is a normal system voltage. The difference between the two is amplified by the error amplifier 26, further subjected to absolute value conversion, and then converted into a 3-bit digital signal (D1-D3) by the A / D converter 27. When the difference between the system voltage and the target voltage 25 becomes equal to the charging voltage V1 of the capacitor 7a1, the error amplifier is set so that only the least significant bit in the output signal from the A / D converter 27 becomes 1, that is, “001”. The gain of 26 is adjusted in advance.

D1〜D3の信号のいずれかが1となると、NOR回路28を通して、信号4aにより短絡スイッチ4をオフする。
一方、制御回路5に入力された系統電圧は、極性判定回路29にも入力され、極性が判定される。次いで、系統電圧の極性が正・負の場合に応じて、デジタル信号D1〜D3にてアクテイブとなる信号(8a1〜11a1、8a2〜11a2、8a3〜11a3)をAND回路30および反転器40を経て選択する。
このように、制御回路5では、出力電圧を発生させる電圧補償回路31〜33の組み合わせを選択し、各電圧補償回路31〜33の単相インバータa1〜a3の駆動信号8a1〜11a1、8a2〜11a2、8a3〜11a3を発生する。各電圧補償回路31〜33からそれぞれ発生される出力電圧の総和により、電圧変動補償装置3は、0〜7階調の補償電圧を発生することができ、最大の補償電圧は、Vc=7×V1となる。
When one of the signals D1 to D3 becomes 1, the short circuit switch 4 is turned off by the signal 4a through the NOR circuit 28.
On the other hand, the system voltage input to the control circuit 5 is also input to the polarity determination circuit 29 to determine the polarity. Next, the signals (8a1 to 11a1, 8a2 to 11a2, and 8a3 to 11a3) that become active in the digital signals D1 to D3 are passed through the AND circuit 30 and the inverter 40 depending on whether the polarity of the system voltage is positive or negative. select.
As described above, the control circuit 5 selects the combination of the voltage compensation circuits 31 to 33 that generate the output voltage, and the drive signals 8a1 to 11a1 and 8a2 to 11a2 of the single-phase inverters a1 to a3 of the voltage compensation circuits 31 to 33. , 8a3 to 11a3. Based on the sum of the output voltages generated from the voltage compensation circuits 31 to 33, the voltage fluctuation compensator 3 can generate a compensation voltage of 0 to 7 gradations. The maximum compensation voltage is Vc = 7 × V1.

系統電圧が通常時、即ちデジタル信号D1〜D3が全て0の時は、電流は短絡スイッチ4を流れる。
図3(a)に示すように、系統電圧の瞬低時には、目標電圧である基準電圧となるように電圧変動補償装置3は補償電圧を発生して系統電圧に重畳する。このとき、短絡スイッチ4がオフし、各単相インバータa1〜a3は図3(b)に示すように電圧を出力し、これらの出力は、系統にて組み合わされて8階調の補償電圧で精度良く電圧補償を行う。
When the system voltage is normal, that is, when the digital signals D1 to D3 are all 0, the current flows through the short-circuit switch 4.
As shown in FIG. 3A, when the system voltage is instantaneously reduced, the voltage fluctuation compensator 3 generates a compensation voltage and superimposes it on the system voltage so that the reference voltage is the target voltage. At this time, the short-circuit switch 4 is turned off, and each of the single-phase inverters a1 to a3 outputs a voltage as shown in FIG. 3B, and these outputs are combined in the system and have a compensation voltage of 8 gradations. Perform voltage compensation with high accuracy.

次に、各コンデンサ7a1〜7a3の充電動作について図4に基づいて以下に詳細に説明する。
図4に示すように、各電圧補償回路31〜33のコンデンサ7a1〜7a3は、それぞれ充電用トランスの2次巻線13a1〜13a2および充電用ダイオード17a1〜17a3を介して流れる充電電流により充電される。上述したように、第1の電圧補償回路33内の第1の2次巻線13a3と、第2の電圧補償回路31、32内の第2の2次巻線13a1、13a2とは、互いに逆極性に構成され、充電用トランス14の共通1次巻線12への入力電圧が正極性の時に、共通1次巻線12に正極性の電流i5が流れ、第1の電圧補償回路33において、第1の2次巻線13a3を介して第1のコンデンサ7a3へ充電電流i3が流れて第1のコンデンサ7a3は充電される。また充電用トランス14の共通1次巻線12への入力電圧が負極性の時に、共通1次巻線12に負極性の電流i4が流れ、第2の電圧補償回路31、32において、第2の2次巻線13a1、13a2を介して第2のコンデンサ7a1、7a2へ充電電流i1、i2が流れて各第2のコンデンサ7a1、7a2は充電される。
Next, the charging operation of the capacitors 7a1 to 7a3 will be described in detail below based on FIG.
As shown in FIG. 4, the capacitors 7a1 to 7a3 of the voltage compensation circuits 31 to 33 are charged by the charging current flowing through the secondary windings 13a1 to 13a2 of the charging transformer and the charging diodes 17a1 to 17a3, respectively. . As described above, the first secondary winding 13a3 in the first voltage compensation circuit 33 and the second secondary windings 13a1 and 13a2 in the second voltage compensation circuits 31 and 32 are opposite to each other. When the input voltage to the common primary winding 12 of the charging transformer 14 is positive, a positive current i5 flows through the common primary winding 12, and the first voltage compensation circuit 33 A charging current i3 flows to the first capacitor 7a3 via the first secondary winding 13a3, and the first capacitor 7a3 is charged. When the input voltage to the common primary winding 12 of the charging transformer 14 is negative, a negative current i4 flows through the common primary winding 12, and the second voltage compensation circuits 31 and 32 Charging currents i1 and i2 flow to the second capacitors 7a1 and 7a2 through the secondary windings 13a1 and 13a2, respectively, and the second capacitors 7a1 and 7a2 are charged.

このような充電動作における充電用トランス14の2次側電流を図5(a)に、1次側電流を図5(b)に示す。コンデンサ7a3〜7a1に充電される電圧の比は4:2:1であるため、第1のコンデンサ7a3への充電電流i3、第2のコンデンサ7a2への充電電流i2、第2のコンデンサ7a1への充電電流i1においても、絶対値の比は4:2:1となる。また、第1のコンデンサ7a3への充電電流i3の1次側換算値が共通1次巻線12に流れる電流i5となり、第2のコンデンサ7a2への充電電流i2、i1の和の1次側換算値が共通1次巻線12に流れる電流i4となる。このため、i5とi4とのピーク値の比(絶対値)は4:3となり、正極性と負極性とでバランス良く効率的にコンデンサ7a3〜7a1を充電できる。   FIG. 5A shows the secondary current of the charging transformer 14 in such a charging operation, and FIG. 5B shows the primary current. Since the ratio of the voltages charged in the capacitors 7a3 to 7a1 is 4: 2: 1, the charging current i3 to the first capacitor 7a3, the charging current i2 to the second capacitor 7a2, and the second capacitor 7a1 Even in the charging current i1, the ratio of absolute values is 4: 2: 1. Further, the primary side converted value of the charging current i3 to the first capacitor 7a3 becomes the current i5 flowing through the common primary winding 12, and the primary side conversion of the sum of the charging currents i2 and i1 to the second capacitor 7a2 The value is the current i <b> 4 flowing through the common primary winding 12. Therefore, the ratio (absolute value) of the peak values of i5 and i4 is 4: 3, and the capacitors 7a3 to 7a1 can be charged efficiently with a good balance between positive polarity and negative polarity.

以上のように、この実施の形態では、第1の電圧補償回路33内の第1の2次巻線13a3と、第2の電圧補償回路31、32内の第2の2次巻線13a1、13a2とを、互いに逆極性に構成したため、充電用トランス14の共通1次巻線12への入力電圧が正極性の時に、第1の電圧補償回路33内の第1のコンデンサ7a3が充電され、負極性の時に、第2の電圧補償回路31、32内の第2のコンデンサ7a1、7a2が充電される。このように、充電用トランス14の共通1次巻線12への入力電圧が正極性と負極性との双方でバランス良く効率的にコンデンサ7a3〜7a1を充電できる。   As described above, in this embodiment, the first secondary winding 13a3 in the first voltage compensation circuit 33 and the second secondary winding 13a1 in the second voltage compensation circuits 31 and 32, 13a2 are configured to have opposite polarities, so that when the input voltage to the common primary winding 12 of the charging transformer 14 is positive, the first capacitor 7a3 in the first voltage compensation circuit 33 is charged, During the negative polarity, the second capacitors 7a1 and 7a2 in the second voltage compensation circuits 31 and 32 are charged. In this way, the capacitors 7a3 to 7a1 can be efficiently charged with good balance between the positive voltage and the negative voltage of the input voltage to the common primary winding 12 of the charging transformer 14.

コンデンサ7a3〜7a1の充電にあたり、充電用トランス1次側の巻線抵抗をR、交流である系統電圧の周期をTとし、充電電流i1、i2、i3の1次側換算値をI、2I、4Iとすると、充電用トランス1次側で発生する熱損失L1は(1)式のようになる。   When charging the capacitors 7a3 to 7a1, the winding resistance on the primary side of the charging transformer is R, the period of the system voltage that is alternating current is T, and the primary side converted values of the charging currents i1, i2, and i3 are I, 2I, Assuming 4I, the heat loss L1 generated on the primary side of the charging transformer is expressed by the following equation (1).

Figure 0004214078
Figure 0004214078

一方、比較のために仮に、第1の2次巻線13a3と第2の2次巻線13a1、13a2とが互いに同極性に構成され、充電用トランス14の共通1次巻線12への入力電圧が正負いずれか一方の極性でのみコンデンサが充電される例を考える。その他の条件が同一であるとすると、充電用トランス1次側で発生する熱損失L2は(2)式のようになる。   On the other hand, for comparison, the first secondary winding 13a3 and the second secondary windings 13a1, 13a2 are configured to have the same polarity, and the input to the common primary winding 12 of the charging transformer 14 is performed. Consider an example where a capacitor is charged only with either positive or negative voltage. Assuming that other conditions are the same, the heat loss L2 generated on the primary side of the charging transformer is expressed by equation (2).

Figure 0004214078
Figure 0004214078

上記(1)、(2)式から、この実施の形態による充電用トランス1次側で発生する熱損失L1は、上記比較例の熱損失L2の25/49と約半分になることが分かる。充電用トランス14の容量は、概ね熱損失により決定されるため、充電用トランス14の1次側容量は大幅な低減が可能となる。これにより小型で安価な装置構成の電圧変動補償装置が得られる。さらに、このような効果が、第1の電圧補償回路33内の第1の2次巻線13a3と、第2の電圧補償回路31、32内の第2の2次巻線13a1、13a2とを、互いに逆極性に構成するだけで容易に実現できる。   From the above equations (1) and (2), it can be seen that the heat loss L1 generated on the primary side of the charging transformer according to this embodiment is about half of 25/49 of the heat loss L2 of the comparative example. Since the capacity of the charging transformer 14 is generally determined by heat loss, the primary capacity of the charging transformer 14 can be significantly reduced. As a result, a small and inexpensive apparatus for compensating voltage fluctuation can be obtained. Further, such an effect causes the first secondary winding 13a3 in the first voltage compensation circuit 33 and the second secondary windings 13a1 and 13a2 in the second voltage compensation circuits 31 and 32 to be connected. It can be easily realized only by constructing them with opposite polarities.

上記実施の形態では、3個の電圧補償回路を備えるものとしたが、2個または4個以上の電圧補償回路を備えたものであっても、各コンデンサの充電電圧の大きさを、最小の充電電圧に対して概ね2倍(K=0、1、2、・・・)とし、最大の充電電圧のコンデンサを有する電圧補償回路、その他全ての電圧補償回路で、第1、第2の電圧補償回路(または第2、第1の電圧補償回路)を構成すると、充電用トランスの共通1次巻線への入力電圧が正極性と負極性との双方でバランス良く効率的にコンデンサを充電でき、同様の効果が得られる。 In the above embodiment, three voltage compensation circuits are provided. However, even if two or more voltage compensation circuits are provided, the magnitude of the charging voltage of each capacitor is minimized. approximately 2 K times (K = 0,1,2, ···) with respect to the charging voltage and the maximum voltage compensation circuit having a capacitor charging voltage, in all other voltage compensation circuit, the first, second When the voltage compensation circuit (or the second or first voltage compensation circuit) is configured, the input voltage to the common primary winding of the charging transformer is efficiently charged in a balanced manner with both positive and negative polarity. And the same effect can be obtained.

また、複数のコンデンサの充電電圧の大きさが、最小の充電電圧に対して概ね2倍(K=0、1、2、・・・)でないものであっても、第1の電圧補償回路および第2の電圧補償回路は、第1の電圧補償回路内のコンデンサの充電電圧の総和と、第2の電圧補償回路内のコンデンサの充電電圧の総和とがバランスするように設定することで、充電用トランスの共通1次巻線への入力電圧が正極性と負極性との双方でバランス良く効率的にコンデンサを充電でき、同様の効果が得られる。 The size of the charging voltages of the capacitors, generally 2 K times (K = 0,1,2, ···) for the minimum charge voltage even those not, the first voltage compensation circuit And the second voltage compensation circuit is set so that the sum of the charging voltages of the capacitors in the first voltage compensation circuit and the sum of the charging voltages of the capacitors in the second voltage compensation circuit are balanced. The input voltage to the common primary winding of the charging transformer can be efficiently charged in a balanced manner with both positive and negative polarity, and the same effect can be obtained.

実施の形態2.
以下、この発明の実施の形態2について説明する。図6はこの発明の実施の形態2による電圧変動補償装置の概略構成図である。
図に示すように、電圧変動補償装置3は、電力系統と直列に接続される複数(この場合3個)の電圧補償回路31a、32a、33と、この電圧補償回路31a、32a、33をバイパスするために並列に接続された短絡スイッチ4と、給電制御を行う制御回路5とで構成される。電圧補償回路31a、32a、33は、第2の電圧補償回路31a、32aと第1の電圧補償回路33とで構成され、正負いずれかの極性で補償電圧を出力し、系統電圧に重畳することで系統電圧の瞬低を補償する。各電圧補償回路31a、32a、333には、ダイオードが逆並列に接続された4個のIGBT8〜11から成るフルブリッジの単相インバータa4、a5、a3と、コンデンサ7a1〜7a3(第2のコンデンサ7a1、7a2、第1のコンデンサ7a3)と、各コンデンサ7a1〜7a3を充電するための半波整流回路を構成する充電ダイオード17a4、17a5、17a3および抵抗6a1〜6a3と、充電用トランス14aの2次巻線13a4、13a5、13a3(第2の2次巻線13a4、13a5、第1の2次巻線13a3)とが備えられる。なお、複数の単相インバータa4、a5、a3の交流側は直列に電力系統に接続される。また、充電用トランス1次側には共通の1次巻線12が電力系統と接続されて配設される。
Embodiment 2. FIG.
The second embodiment of the present invention will be described below. FIG. 6 is a schematic configuration diagram of a voltage fluctuation compensating apparatus according to Embodiment 2 of the present invention.
As shown in the figure, the voltage fluctuation compensator 3 bypasses the voltage compensation circuits 31a, 32a, 33 and the voltage compensation circuits 31a, 32a, 33 connected in series with the power system. In order to do so, it is composed of a short-circuit switch 4 connected in parallel and a control circuit 5 that performs power feeding control. The voltage compensation circuits 31a, 32a, 33 are composed of the second voltage compensation circuits 31a, 32a and the first voltage compensation circuit 33, and output a compensation voltage with either positive or negative polarity and superimpose it on the system voltage. To compensate for the instantaneous voltage drop. Each voltage compensation circuit 31a, 32a, 333 includes a full-bridge single-phase inverter a4, a5, a3 composed of four IGBTs 8-11 having anti-parallel diodes connected thereto, and capacitors 7a1-7a3 (second capacitors). 7a1, 7a2, first capacitor 7a3), charging diodes 17a4, 17a5, 17a3 and resistors 6a1-6a3 constituting a half-wave rectifier circuit for charging each capacitor 7a1-7a3, and secondary of charging transformer 14a Windings 13a4, 13a5, 13a3 (second secondary windings 13a4, 13a5, first secondary winding 13a3) are provided. The AC sides of the plurality of single-phase inverters a4, a5, a3 are connected in series to the power system. A common primary winding 12 is connected to the power system on the primary side of the charging transformer.

この実施の形態では、第1の電圧補償回路33は、上記実施の形態1と同様であるが、第2の電圧補償回路31a、32aについては、第2の2次巻線13a4、13a5は第1の2次巻線13a3と同じ極性で構成され、半波整流回路を構成する充電ダイオード17a4、17a5は、第1の電圧補償回路33内の充電ダイオード17a3と逆向きに配設される。このため、第2のコンデンサ7a1、7a2には、第1のコンデンサ7a3の充電電圧と逆極性の充電電圧が充電され、単相インバータa4、a5も、第1の電圧補償回路33内の単相インバータa3とは、各IGBT8〜11の極性を逆向きに構成する。
充電用トランス14aの共通1次巻線12への入力電圧が正極性の時に、第1の電圧補償回路33において、第1の2次巻線13a3を介して第1のコンデンサ7a3へ充電電流が流れ第1のコンデンサ7a3は充電される。また充電用トランス14aの共通1次巻線12への入力電圧が負極性の時に、第2の電圧補償回路31a、32aにおいて、第2の2次巻線13a4、13a5と充電ダイオード17a4、17a5とを介して第2のコンデンサ7a1、7a2へ充電電流が流れ各第2のコンデンサ7a1、7a2は充電される。
In this embodiment, the first voltage compensation circuit 33 is the same as that in the first embodiment, but the second secondary windings 13a4 and 13a5 are the same as those in the second voltage compensation circuits 31a and 32a. The charging diodes 17a4 and 17a5, which are configured with the same polarity as that of the first secondary winding 13a3 and form a half-wave rectifier circuit, are disposed in the opposite direction to the charging diode 17a3 in the first voltage compensation circuit 33. Therefore, the second capacitors 7a1 and 7a2 are charged with a charging voltage having a polarity opposite to the charging voltage of the first capacitor 7a3, and the single-phase inverters a4 and a5 are also connected to the single-phase in the first voltage compensation circuit 33. The inverter a3 is configured so that the polarities of the IGBTs 8 to 11 are reversed.
When the input voltage to the common primary winding 12 of the charging transformer 14a is positive, in the first voltage compensation circuit 33, a charging current is supplied to the first capacitor 7a3 via the first secondary winding 13a3. The flow first capacitor 7a3 is charged. When the input voltage to the common primary winding 12 of the charging transformer 14a is negative, the second secondary windings 13a4 and 13a5 and the charging diodes 17a4 and 17a5 are used in the second voltage compensation circuits 31a and 32a. A charging current flows to the second capacitors 7a1 and 7a2 through the second capacitors 7a1 and 7a2 to charge the second capacitors 7a1 and 7a2.

コンデンサ7a1〜7a3の充電電圧V1〜V3、静電容量、抵抗6a1〜6a3の値の関係は、上記実施の形態1と同様とする。この場合、制御回路5では、図7に示すように、出力電圧を発生させる電圧補償回路31a、32a、33の組み合わせを選択し、各単相インバータa4、a5、a3の駆動信号8a1〜11a1、8a2〜11a2、8a3〜11a3をAND回路30および反転器40、41を経て選択する。
各電圧補償回路31a、32a、33からそれぞれ発生される出力電圧の総和により、電圧変動補償装置3は、0〜7階調の補償電圧を発生することができ、図8に示すように各単相インバータa4、a5、a3が制御されて電流が流れるとき、最大の補償電圧Vc=7×V1を発生して系統電圧に重畳する。
The relationship among the charging voltages V1 to V3 of the capacitors 7a1 to 7a3, the capacitance, and the values of the resistors 6a1 to 6a3 is the same as that in the first embodiment. In this case, in the control circuit 5, as shown in FIG. 7, the combination of the voltage compensation circuits 31a, 32a, and 33 for generating the output voltage is selected, and the drive signals 8a1 to 11a1 of the single-phase inverters a4, a5, and a3, 8a2 to 11a2 and 8a3 to 11a3 are selected through the AND circuit 30 and the inverters 40 and 41.
Based on the sum of the output voltages generated from the voltage compensation circuits 31a, 32a, and 33, the voltage fluctuation compensator 3 can generate compensation voltages of 0 to 7 gradations. As shown in FIG. When the phase inverters a4, a5, a3 are controlled and a current flows, the maximum compensation voltage Vc = 7 × V1 is generated and superimposed on the system voltage.

次に、各コンデンサ7a1〜7a3の充電動作について図9に基づいて以下に説明する。
図9に示すように、各電圧補償回路31a、32a、33のコンデンサ7a1〜7a3は、それぞれ充電用トランス14aの2次巻線13a4、13a5、13a3および充電用ダイオード17a4、17a5、17a3を介して流れる充電電流により充電される。充電用トランス14aの共通1次巻線12への入力電圧が正極性の時に、共通1次巻線12に正極性の電流i5が流れ、第1の電圧補償回路33において、第1の2次巻線13a3を介して第1のコンデンサ7a3へ充電電流i3が流れて第1のコンデンサ7a3は充電される。また充電用トランス14aの共通1次巻線12への入力電圧が負極性の時に、共通1次巻線12に負極性の電流i4が流れ、第2の電圧補償回路31、32において、第2の2次巻線13a1、13a2を介して第2のコンデンサ7a1、7a2へ充電電流i1、i2が流れて各第2のコンデンサ7a1、7a2は充電される。
Next, the charging operation of the capacitors 7a1 to 7a3 will be described below with reference to FIG.
As shown in FIG. 9, the capacitors 7a1 to 7a3 of the voltage compensation circuits 31a, 32a, and 33 are respectively connected to the secondary windings 13a4, 13a5, and 13a3 of the charging transformer 14a and the charging diodes 17a4, 17a5, and 17a3. It is charged by the flowing charging current. When the input voltage to the common primary winding 12 of the charging transformer 14a is positive, a positive current i5 flows through the common primary winding 12, and the first secondary voltage compensation circuit 33 generates a first secondary voltage. A charging current i3 flows to the first capacitor 7a3 via the winding 13a3, and the first capacitor 7a3 is charged. In addition, when the input voltage to the common primary winding 12 of the charging transformer 14a is negative, a negative current i4 flows through the common primary winding 12, and the second voltage compensation circuits 31, 32 Charging currents i1 and i2 flow to the second capacitors 7a1 and 7a2 through the secondary windings 13a1 and 13a2, respectively, and the second capacitors 7a1 and 7a2 are charged.

このような充電動作における充電用トランス14aの2次側電流、1次側電流は、図5(a)、図5(b)と同様となる。このため、上記実施の形態1と同様に、充電用トランス14aの共通1次巻線12への入力電圧が正極性と負極性との双方でバランス良く効率的にコンデンサ7a1〜7a3を充電できる。このため、充電用トランス1次側で発生する熱損失が同様に低減でき、充電用トランス14aの1次側容量は大幅な低減が可能となり、小型で安価な装置構成の電圧変動補償装置が得られる。   The secondary side current and the primary side current of the charging transformer 14a in such a charging operation are the same as those shown in FIGS. 5 (a) and 5 (b). Therefore, as in the first embodiment, the capacitors 7a1 to 7a3 can be efficiently charged with good balance between the positive voltage and the negative voltage of the input voltage to the common primary winding 12 of the charging transformer 14a. For this reason, the heat loss generated on the primary side of the charging transformer can be similarly reduced, and the primary side capacity of the charging transformer 14a can be greatly reduced, thereby obtaining a voltage fluctuation compensating device having a small and inexpensive device configuration. It is done.

なお、上記実施の形態1、2では、充電用トランス14の1次側は補償対象の電力系統が接続されるものとしたが、他の交流電源と接続して電力を供給しても良い。   In the first and second embodiments, the primary side of the charging transformer 14 is connected to the power system to be compensated. However, power may be supplied by connecting to another AC power source.

また、上記実施の形態1、2において、共通1次巻線12への入力電圧が負極性の時に充電される第2の電圧補償回路を電圧補償回路33で構成し、正極性の時に充電される第1の電圧補償回路をその他の電圧補償回路で構成しても良い。   In the first and second embodiments, the second voltage compensation circuit that is charged when the input voltage to the common primary winding 12 is negative is constituted by the voltage compensation circuit 33, and is charged when the input voltage is positive. The first voltage compensation circuit may be composed of other voltage compensation circuits.

この発明の実施の形態1による電圧変動補償装置の概略構成図である。1 is a schematic configuration diagram of a voltage variation compensating apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1による電圧変動補償装置の制御回路を示す図である。It is a figure which shows the control circuit of the voltage fluctuation compensation apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電圧補償動作を説明する波形図である。It is a wave form diagram explaining the voltage compensation operation | movement by Embodiment 1 of this invention. この発明の実施の形態1による充電動作を説明する図である。It is a figure explaining the charging operation by Embodiment 1 of this invention. この発明の実施の形態1による充電動作を説明する波形図である。It is a wave form diagram explaining the charging operation by Embodiment 1 of this invention. この発明の実施の形態2による電圧変動補償装置の概略構成図である。It is a schematic block diagram of the voltage fluctuation compensation apparatus by Embodiment 2 of this invention. この発明の実施の形態2による電圧変動補償装置の制御回路を示す図である。It is a figure which shows the control circuit of the voltage fluctuation compensation apparatus by Embodiment 2 of this invention. この発明の実施の形態2による電圧補償動作を説明する図である。It is a figure explaining the voltage compensation operation | movement by Embodiment 2 of this invention. この発明の実施の形態2による充電動作を説明する波形図である。It is a wave form diagram explaining the charging operation by Embodiment 2 of this invention.

符号の説明Explanation of symbols

3 電圧変動補償装置、5 制御回路、7a1,7a2 第2のコンデンサ、
7a3 第1のコンデンサ、12 1次巻線、
13a1,13a2,13a4,13a5 第2の2次巻線、
13a3 第1の2次巻線、14,14a 充電用トランス、
17a1〜17a5 半波整流回路としての充電用ダイオード、
31,31a,32,32a 第2の電圧補償回路、33 第1の電圧補償回路、
a1〜a5 単相インバータ。
3 voltage fluctuation compensation device, 5 control circuit, 7a1, 7a2 second capacitor,
7a3 first capacitor, 12 primary winding,
13a1, 13a2, 13a4, 13a5 second secondary winding,
13a3 first secondary winding, 14, 14a charging transformer,
17a1 to 17a5 charging diode as a half-wave rectifier circuit,
31, 31a, 32, 32a second voltage compensation circuit, 33 first voltage compensation circuit,
a1-a5 Single-phase inverter.

Claims (3)

共通の1次巻線を有する充電用トランスの2次巻線と、半波整流回路と、該充電用トランスおよび該半波整流回路により充電されるコンデンサとをそれぞれ有して、該各コンデンサに充電された直流電圧を交流に変換して出力する複数の電圧補償回路の交流側を電力系統に直列に接続し、系統電圧低下の監視、およびそれに基づく給電制御を行う制御部を備えて、系統電圧低下時に、上記複数の電圧補償回路の中から所望の組み合わせを選択し、その出力電圧の総和により補償電圧を発生させて系統電圧低下を補償する電圧変動補償装置において、
上記複数の電圧補償回路、上記充電用トランスの共通の1次巻線への入力電圧が正極性の時に該電圧補償回路内のコンデンサが充電される第1の電圧補償回路と、上記第1の電圧補償回路内の充電用トランス2次巻線とは逆極性である充電用トランス2次巻線を有し、該入力電圧が負極性の時に該電圧補償回路内のコンデンサが充電される第2の電圧補償回路とで構成され
上記第1の電圧補償回路内の充電用トランス2次巻線と、上記第2の電圧補償回路内の充電用トランス2次巻線とが互いに同極性に構成された場合に比べて、上記充電用トランスの一次側で発生する熱損失を低減したことを特徴とする電圧変動補償装置。
Each of the capacitors has a secondary winding of a charging transformer having a common primary winding, a half-wave rectifier circuit, and a capacitor charged by the charging transformer and the half-wave rectifier circuit. The AC side of a plurality of voltage compensation circuits that convert and output the charged DC voltage to AC is connected in series to the power system, and includes a control unit that monitors system voltage drop and performs power feeding control based on the system voltage drop. In a voltage fluctuation compensator that selects a desired combination from the plurality of voltage compensation circuits at the time of a voltage drop and generates a compensation voltage by a sum of output voltages to compensate for a system voltage drop.
The plurality of voltage compensation circuit includes a first voltage compensation circuit capacitor in the voltage compensation circuit when the input voltage is positive polarity to a common primary winding of the transformer for the charging is charged, the first The charging transformer secondary winding has a polarity opposite to that of the charging transformer secondary winding in the voltage compensation circuit, and the capacitor in the voltage compensation circuit is charged when the input voltage is negative. It is composed of a second voltage compensation circuit,
Compared to the case where the charging transformer secondary winding in the first voltage compensation circuit and the charging transformer secondary winding in the second voltage compensation circuit are configured to have the same polarity, the charging transformer A voltage fluctuation compensator characterized in that heat loss generated on the primary side of the transformer is reduced .
上記第1の電圧補償回路および上記第2の電圧補償回路は、該第1の電圧補償回路内のコンデンサの充電電圧の総和と、該第2の電圧補償回路内のコンデンサの充電電圧の総和とがバランスするように設定されることを特徴とする請求項1に記載の電圧変動補償装置。 The first voltage compensation circuit and the second voltage compensation circuit include a sum of charging voltages of capacitors in the first voltage compensation circuit, and a sum of charging voltages of capacitors in the second voltage compensation circuit. The voltage fluctuation compensation device according to claim 1, wherein the voltage fluctuation compensation device is set so as to balance. 上記各コンデンサの充電電圧の大きさは、最小の充電電圧に対して概ね2倍(K=0、1、2、・・・)であり、最大の充電電圧のコンデンサを有する電圧補償回路、その他全ての電圧補償回路で、第1、第2の電圧補償回路(または第2、第1の電圧補償回路)を構成することを特徴とする請求項2に記載の電圧変動補償装置。 Magnitude of the charging voltage of each capacitor is generally 2 K times the minimum charge voltage (K = 0,1,2, ···) is, the voltage compensation circuit having a capacitor of the maximum charging voltage, 3. The voltage fluctuation compensation device according to claim 2, wherein all other voltage compensation circuits constitute first and second voltage compensation circuits (or second and first voltage compensation circuits).
JP2004117476A 2004-04-13 2004-04-13 Voltage fluctuation compensation device Expired - Fee Related JP4214078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117476A JP4214078B2 (en) 2004-04-13 2004-04-13 Voltage fluctuation compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117476A JP4214078B2 (en) 2004-04-13 2004-04-13 Voltage fluctuation compensation device

Publications (2)

Publication Number Publication Date
JP2005304191A JP2005304191A (en) 2005-10-27
JP4214078B2 true JP4214078B2 (en) 2009-01-28

Family

ID=35335071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117476A Expired - Fee Related JP4214078B2 (en) 2004-04-13 2004-04-13 Voltage fluctuation compensation device

Country Status (1)

Country Link
JP (1) JP4214078B2 (en)

Also Published As

Publication number Publication date
JP2005304191A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US10998824B2 (en) Electric power conversion device
JP4445470B2 (en) Power supply
EP3661037B1 (en) Pulsed rectifier architecture
JP4329692B2 (en) Power converter
WO2019234884A1 (en) Control device and power control system
JP2013172530A (en) Power conversion device
JP4214078B2 (en) Voltage fluctuation compensation device
JP4365171B2 (en) Power converter and power conditioner using the same
JP3967706B2 (en) Power converter
JP2017215179A (en) Testing device
JP2003274559A (en) Voltage ripple compensator
US11515778B2 (en) Power conversion device
KR20220170645A (en) Bi-directional power conversion system with wide DC bus control range
Farhadi-Kangarlu et al. Design and application of a five-level cross-switched inverter in low-voltage distribution system voltage compensation
KR101343953B1 (en) Double conversion uninterruptible power supply of eliminated battery discharger
JP4010999B2 (en) Voltage fluctuation compensation device
KR101936564B1 (en) Apparatus for controlling multilevel inverter
JP4044533B2 (en) Switching device
JP2006311725A (en) Controller for power converter
JP4113071B2 (en) Voltage fluctuation compensation device
JP2005176460A (en) Uninterruptible power supply unit
JP4339903B2 (en) Switching device
JP6549493B2 (en) Uninterruptible power supply system
JP4048161B2 (en) Voltage compensator
JP3903421B2 (en) Voltage fluctuation compensation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees